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Abstract

Unsteady computational fluid dynamics (CFD) simulations are essential in aerospace engineering because
they can provide high-fidelity flow fields to better understand transient physics, such as vortex shedding.
However, unsteady full-order CFD simulations must repeatedly march the flow solution with a small time
step and are computationally expensive. Reduced-order modeling (ROM) is a powerful approach to alleviate
the above issue by decomposing the unsteady flow solutions into spatial modes and temporal coefficients,
making the unsteady flow easier to simulate. Existing ROM studies mostly focused on parametric problems
that use a large number of simulation samples to train an offline model (parametric ROM). Although the
trained model can quickly predict any flow fields within the parameter space, the computational cost for
generating the massive unsteady simulation samples is still high, especially when the number of parameters
and their ranges increase. To further address the high-cost issue, we develop an efficient predictive ROM ap-
proach to accelerate individual unsteady aerodynamic simulations. We use the Galerkin projection approach
to reduce the Reynolds-averaged Navier—Stokes equations, along with the discrete empirical interpolation
method (DEIM) for decreasing the computation cost for nonlinear terms. In addition, we develop an efficient
ROM formulation that correlates the temporal coefficients between the momentum, pressure, and turbulence
equations, allowing solving fewer ROM equations at the prediction stage. The intrusive nature of the pre-
dictive ROM enables using the first portion of unsteady flow data to accelerate the rest of the simulation;
no massive offline samples are needed. We use the stalled turbulent flow over the NACA0012 airfoil as the
benchmark and evaluate the predictive ROM’s speed and accuracy for challenging non-equilibrium scenarios
caused by a large sudden change in flow conditions. The run time ratios between CFD and ROM (including
the calculation of basis vectors and projection matrices) range between 13 and 45. The pressure, drag, lift,
pitching moment, and flow fields simulated by the ROM approach agree reasonably well with the CFD refer-
ences at various times. The proposed predictive ROM approach is, in principle, applicable to different airfoil
geometries and flow conditions and can be integrated into a design optimization process for accelerating
unsteady aerodynamic simulations.
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1. Introduction

Computational fluid dynamics (CFD) of unsteady flow is essential in aerospace engineering design because
it can provide high-fidelity field data to better understand transient flow physics, such as vortex shedding,
flow separation, and unsteady fluid-structure interaction. The CFD-based design has been used for simple
geometries such as airfoils and complex cases such as aircraft. However, unsteady flow simulations are
computationally expensive because they must march the flow solution with a small step in time. There is a
need to reduce the above cost and make unsteady CFD simulations more affordable.

To alleviate the above cost, one can use the reduced-order modeling (ROM) approach. ROM typically
starts with computing a set of modes (basis vectors) that capture the spatial flow patterns using the proper
orthogonal decomposition (POD) with the method of snapshot [1]. It can then approximate the full-order
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flow solutions using a linear combination of spatial modes and temporal coeflicients. Computing the temporal
coefficients is generally much faster than solving the full-order unsteady CFD, making the ROM approach
computationally efficient. Moreover, the main flow physics are preserved during the POD projection so that
the ROM model can predict the 3D field variables such as velocity and pressure fields. In contrast, surrogate
models such as neural networks and Kriging can typically predict surface variables such as drag, lift, pitching
moment, and pressure distribution [2-5]. The ROM approach has been used in various aerospace applications
such as aircraft, turbomachinery, combustors, and re-entry vehicles (see the review papers [6-11] for more
details).

ROMs can be implemented in two ways: non-intrusive and intrusive. Non-intrusive or data-driven ROMs
treat the full-order low model as a black box. It can directly learn the relationship between the POD temporal
coefficients and the flow parameters (e.g., Reynolds number, angle of attack, and airfoil shape). There are
numerous non-intrusive ROM studies, and here we conduct a literature review of only a few recent works. Li
et al. [12] developed a non-intrusive ROM that utilized a long short-term memory (LSTM) neural network
to train the relationship. The trained ROM can then rapidly predict unsteady aerodynamic flow across
different airfoil shapes. Liu et al. [13] implemented a signal interpolation approach consisting of the discrete
empirical interpolation method (DEIM) and Kriging to alleviate the cost of generating large amounts of high-
fidelity CFD training data. The trained ROM model exhibited good prediction accuracy across different
Reynolds numbers and angles of attack. Krolick et al. [14] developed a data-driven ROM approach that
preserved the state consistency to ensure physical simulation results for unsteady aero-structural coupling
problems. Decker et al. [15] developed a manifold alignment-based non-intrusive multi-fidelity ROM approach
to predict aerodynamic flow fields over transonic and supersonic airfoils with different shapes. Halder et al.
[16] combined the deep learning convolutional autoencoders (CAE) and Gaussian process regression (GPR)
to learn the temporal coefficients of a non-intrusive ROM model. They found that the CAE-GPR ROM
outperformed the traditional POD-GPR method. Saltari et al. [17] used neural networks to train a non-
intrusive ROM and studied the effect of wind gusts on the wing aeroelastic response. Liu et al. [18] developed
a data-driven ROM framework that combined a convolutional neural network (CNN) with a convolutional
LSTM to predict complex transonic flow phenomena, such as shock wave motions with buffet flow, at
various angles of attack. A non-intrusive ROM that combined the operator inference method with quadratic
manifolds was proposed by Geelen et al. [19]. They found the proposed ROM approach was scalable and
efficient for modeling dynamic systems. Kapteyn et al. [20] incorporated data-drive ROM into a digital
twin model and allowed aircraft to dynamically adjust the mission in case of structural damage. The
authors validated this capability using a fixed-wing unmanned aerial vehicle prototype. In addition to
aerospace engineering, data-driven ROM has been used to enable rapid aerodynamic analysis and design of
automobiles [21, 22].

Intrusive ROM’s implementation requires the full-order model’s (FOM) governing equations. It derives
the ROM equations by projecting the FOM into a reduced space, making it much faster to solve [23].
The projection-based ROM (e.g., using POD) was used to accelerate flow simulations in early studies in
the 1900s [24-26]. To reduce nonlinear calculation cost in projection ROM, Chaturantabut and Sorensen
[27] proposed a discrete empirical interpolation method (DEIM) that showed significant speed up with
negligible errors. Carlberg et al. [28] proposed a Gauss-Newton with approximated tensors (GNAT) and
gappy POD [29] method for non-linear intrusive ROM and applied it to turbulent flow over the Ahmed body.
They showed that GNAT reduced the computational cost by two orders of magnitude while maintaining good
accuracy. Lorenzi et al. [30] developed a POD-ROM solver for Reynolds-averaged Navier—Stoke (RANS)
equations and tested it with lid-driven cavity turbulent flow. The POD-ROM solver exhibited satisfactory
performance in accuracy and computational cost. Star et al. [31] later extended the POD-ROM solver for
predicting turbulent heat transfer. He et al. [32] developed a least-square Petrov-Galerkin intrusive ROM
solver and evaluated it using steady turbulent flow over 2D airfoils and 3D wings, and both cases achieved
reasonable speedups with satisfactory accuracy. Huang et al. [33] proposed a model-form preserving least-
squares with variable transformation (MP-LSVT) method and tested it using 2D and 3D reacting turbulent
flow. The MP-LSVT solver exhibited better numerical stability and accuracy than standard POD ROM
solvers in predicting future flow states. Garbo and Bekemeyer [34] developed an unsteady residual ROM
solver and evaluated its performance using subsonic and transonic turbulent flow over 2D airfoils and 3D
aircraft. They found that the proposed intrusive ROM can reduce 90% computational time compared with
the full-order CFD.



Both ROM implementations have their advantages and limitations. The non-intrusive ROM does not
need to access the FOM source code and is flexible to implement. However, the drawback is that they rely
on a large number of simulation samples to cover the entire parameter space, so the computational cost for
the offline stage can be high (e.g., hundreds of hours in [12]), especially when the number of parameters and
their ranges increase. In addition, a non-intrusive model needs additional training points when dealing with
new flow conditions and geometries outside of the parameter space. Non-intrusive ROMs are mostly used
for parametric studies (a.k.a parametric ROMs). The intrusive ROMs incorporate the governing equations
in the loop and can predict wider flow conditions and geometries. It can use the first portion of FOM
simulations to train a ROM model and predict the flow for the rest of the simulation (a.k.a. predictive
ROMs); no massive offline samples are needed. However, the limitation is that it requires access to the
FOM source codes, especially the governing equations (e.g., the Navier—Stokes equations) and how they are
discretized and solved. Therefore, it requires careful consideration of ROM robustness and efficiency, and
its implementation is typically more challenging and time-consuming than non-intrusive ones. Recently,
hybrid projection and data-driven ROM approaches [35-38] have been proposed to combine the advantages
of intrusive and non-intrusive ROM.

The objective of this paper is to develop an efficient ROM approach to accelerate unsteady aerody-
namic simulations (predictive ROM) without generating massive training samples. Therefore, we choose
the intrusive ROM approach. Compared with non-intrusive ROM approaches (e.g., dynamic mode decom-
position (DMD) [39, 40]), the intrusive predictive ROM has the potential of better capturing irregular,
non-equilibrium flow patterns. We developed a Galerkin projection ROM solver to predict turbulent flow
over cylinders and airfoils in a previous work [41]. This paper is a further step forward and improves the
computational efficiency and robustness to handle more challenging predictive cases. We use the Galerkin
projection approach to reduce the RANS equations. To further reduce the computation cost for nonlinear
terms, we use the discrete empirical interpolation method (DEIM). To tackle the challenge of intrusive ROM
implementation, we develop an efficient ROM formulation that correlates the temporal coefficients between
the moment, pressure, and turbulence equations, allowing solving fewer ROM equations at the prediction
stage. We also implement special treatments for improving the stability and robustness of the Galerkin
DEIM-ROM solution. We use the stalled turbulent flow over the NACA0012 airfoil with a relatively high
Reynolds number (10°) as the benchmark. We first verify our ROM solver implementation using a simple
periodic flow case that has reached a full equilibrium state. Then, we evaluate the ROM solver’s performance
in predicting more challenging non-equilibrium flow. Non-equilibrium unsteady simulations are often needed
in aerodynamic design optimization. In each optimization iteration, we need to change the flow conditions
or airfoil shapes using initial conditions from a previous design. The flow will undergo a transient process
before reaching equilibrium for the new conditions. Having the capability to predict non-equilibrium tur-
bulent flow can help accelerate unsteady simulations in design optimization. However, non-equilibrium flow
is more challenging to predict, and to what extent intrusive ROM can predict non-equilibrium turbulent
flow is not well studied. The most original contribution of this paper is developing an intrusive, predictive
ROM approach that uses a small amount of training data to predict non-equilibrium flow caused by a large
sudden change in flow conditions (i.e., a five-degree change in angle of attack). To our best knowledge, the
capability to predict such large variations has not been demonstrated in existing ROM studies.

The rest of this paper is organized as follows. In Section II, we elaborate on the full-order model and
the proposed Galerkin DEIM-ROM approach. We then discuss the benchmark results for the NACA0012
airfoil in non-equilibrium conditions in Section III. Finally, in Section IV, we summarize our conclusions,
perspectives, and future improvements.

2. Method

In this section, we elaborate on the proposed predictive ROM approach. We start with the formulations
for unsteady turbulent flow simulations (full-order model), followed by the reduced-order model and DEIM to
accelerate the computation of nonlinear terms. We also discuss the treatments for improving the robustness
of ROM and DEIM-ROM solutions.



2.1. Full-order modeling (FOM)

We use OpenFOAM’s [42] built-in solver pisoFoam to simulate the flow. It solves three-dimensional,
unsteady turbulent flow, governed by the incompressible Navier—Stokes equations:

V-U=0, (1)

% + (U -V)U 4+ Vp -V -vq(VU + [VU]T) =0, (2)

where ¢ is the time, p is the kinematic pressure, U is the velocity vector U = [u, v, w], Veg = v + 14 with v
and v; being the kinematic and turbulent eddy viscosity, respectively.
pisoFoam rewrites the viscous term in the momentum equation (2) as:

—V - veg(VU + [VU|T) = =V - (0egVU) — V - (veg dev([VU]T)), (3)

where dev([VU]T) denotes the deviatoric part of the [VU]? tensor. This treatment enhances the numerical
stability for full-order flow simulations. We observe that maintaining this treatment for the viscous term is
critical to ensure the numerical stability for the reduced-order modeling (elaborated on in the next section).
To connect the turbulent viscosity to the mean flow variables, the Spalart—Allmaras (SA) model is used:
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Spalart and Allmaras [43] provide a detailed description of the terms and parameters in this model.

To solve the continuity and momentum equations (1) and (2), the pressure implicit with splitting of
operators (PISO) algorithm [44] is used. First, the momentum equation is discretized, and an intermediate
velocity field is solved using the pressure field obtained from the previous iteration (p~%). Here we use a
first-order Euler implicit time scheme as an example. Extending to other time schemes is straightforward.
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where a is the coeflicient resulting from finite-volume discretization, subscripts P and N denote the control
volume cell and all of its neighboring cells, respectively, and
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represents the influence of velocity from all the neighboring cells and the previous iteration. A new, inde-
pendent variable ¢ (face flux) is introduced to linearize the convective term:

/SUU-dS:ZUfo~Sf:Z¢Uf, (8)
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where the subscript f denotes the cell face. ¢ can be obtained from the previous iteration or an initial guess.
Solving the momentum equation (6), we obtain an intermediate velocity field that does not yet satisfy the
continuity equation.

Next, the continuity equation is coupled with the momentum equation to construct a pressure Poisson
equation, and a new pressure field is computed. The discretized form of the continuity equation is

/U-dS:ZUf-sf:o. (9)
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Instead of using a simple linear interpolation, Uy in this equation is computed by interpolating the cell-
centered velocity U p—obtained from the discretized momentum equation (6)—onto the cell face as follows:

v= (%) - (5) e (10

This idea of momentum interpolation was initially proposed by Rhie and Chow [45] and is effective in
mitigating the oscillating pressure (checkerboard) issue resulting from the collocated mesh configuration.
Substituting Eq. (10) into Eq. (9), we obtain the pressure Poisson equation:

1 HU
v(vp)v.( ( >>. (1)
ap ap
Solving Eq. (11), we obtain an updated pressure field p’. Then, this new pressure field is used to correct
the face flux

HU 1
and velocity field .
U' = ;[H(U) — Vp'l. (13)

The H(U) term depends on U but has not been updated so far. To account for this, one needs to
repeatedly solve the Eq. (7) and Egs. (11) to (13) (corrector loop), such that the velocity and pressure fields
fully satisfy the continuity and momentum equations at each time step. In this paper, we perform two
iterations for the corrector loop.

Then, we solve the turbulence equation (4) to obtain an updated turbulence viscosity ().

The above steps will be repeated for each time step in unsteady simulations.

2.2. Galerkin projection reduced-order modeling (ROM)

The ROM approach we propose consists of the following steps: full-order flow simulation, calculation
of basis vectors using the methods of snapshot [1], calculation of Galerkin projection vectors and matrices,
computation of temporal coefficients by solving the ROM equation, and reconstruction of full-order flow
variables for post-processing.

We first run full-order flow simulations using CEFD. During the simulation, we save the flow field snapshots
every few iterations. Then, we assemble the flow variables such as velocity, pressure, face flux, and turbulent
viscosity, into snapshot matrices, separately. Taking the velocity vector as an example (Eq. 14), its snapshot
matrix is Sy € R™*™, where n is the number of flow states, and m is the number of snapshots, and n > m.
Note that we use all U = [u, v, w] components in the velocity snapshot matrix so n = 3nee with neey being
the number of mesh cells. We use the fluctuation component of state variables in the snapshot matrices,
i.e., we subtract the instantaneous state variables with their mean values (@ = u —w). We observe that this
treatment enhances the ROM’s numerical stability.
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Once the snapshot matrices are constructed, we use them to compute the basis vectors (POD modes) for
the flow variables. We use the singular value decomposition (SVD) approach to compute basis vectors. The
SVD of a snapshot matrix S € R™*™ can be written as:

s=uxv’. (15)

where 3 is a n X m matrix that contains the singular values and U € R"*™ and V' € R™*™ are orthogonal
matrices whose columns are the left and right basis vectors, respectively. We will use the left matrix U
because its columns are the function of eigenvectors for the snapshot correlation matrix C = 87 S.



Instead of computing the basis vectors for all flow variables independently using Eq. 15, we solve the
eigen-problem for the velocity correlation matrix Cy = S 55’ v and use these eigenvectors and eigenvalues to
compute the basis vectors for all other flow variables, similar to [30, 46]. This treatment allows all the flow
variables to share the same temporal coefficients, with the assumption that other flow variables are correlated
with velocity. The benefit is that we need to solve only the reduced momentum equation and can use the
temporal coefficients to reconstruct all other flow variables. This is especially useful for turbulent variables
because the expansion of the eddy viscosity as the linear combination of spatial modes (basis vectors) is
more flexible and less dependent on turbulent modeling; this approach applies to any RANS model. The
details of the basis vector calculation are as follows.

First, we compute the correlation matrix for the velocity snapshot matrix as Cyy = S 55 v- Next, we solve
the eigen-problem for the C'yy matrix using the scalable library for eigenvalue problem computations (SLEPc)
library [47] and obtain its eigenvalues )\iU and eigenvectors vZU (the subscript denote the ith component).
The ith velocity basis vector is then computed as:

1
oY = Syv?, 1<i<m. (16)
The ith singular value is then computed as ¥; = v/ \;.
As mentioned above, we will use the velocity eigenvalues and eigenvectors to compute the basis vectors

for other flow variables. Taking the pressure basis vector as an example,

1
P = S,wY, 1<i<m. (17)

where S, is the snapshot matrix for pressure. We can use a similar formulation for other variables.

We typically have a large number of snapshots (i.e., m > 100), so it is not necessary to keep all of the basis
vectors. Because doing this will significantly increase the computational cost while adding flow modes that
are not significant in producing accurate solutions. Note that the eigenvalues are stored in descending order,
and the modes corresponding to the larger eigenvalues hold most of the energy present in the full-order flow.
We usually drop basis vectors whose corresponding eigenvalues are less than 1% of the largest eigenvalue;
however, trial-and-error is needed when dealing with a specific case (see detailed discussion in Sec. 3).

Once the basis vectors are computed, a full-order flow variable can be approximated by a linear combi-
nation of these basis vectors:

U~U + i a;i(t)®Y (18)
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where a;(t) are the temporal coefficients for the weights, r is the number of kept modes (r < m), U, p, ¢,
and v, are the mean velocity, pressure, face flux, and turbulent viscosity, respectively.

Substitute the above equations (18 to 21) into the momentum equation (2) and project it to <I>£-]7 we have
the ROM equation:

8 ; T ks r
861 =C;+ J; Lija; + Z Z Qijrajar, (22)

j=1k=1

where the constant vector C, linear matrix L, and quadratic matrices @ are defined as:
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where <> denotes the inner product.
As an example, if we substitute Eq. 19 into the pressure term (Vp) in the momentum equation and
project to @?:

T T
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j=1 j=1

where < ®Y,Vp > and Z;=1 aj < <I>1U,V<I>§ > go to the constant C and linear Z;=1 L;ja; terms in the
ROM equation, respectively. We can follow a similar approach to derive other terms in the ROM equation.
We will pre-compute these vectors and matrices before solving Eq. 22.

In matrix form, Eq. 22 reads:

g—? =C+La+a"Qa (27)

Note that, during the projection procedure the continuity equation is automatically satisfied because
the approximated face flux (Eq. 20) is a linear combination of the full-order face flux solutions (snapshot
matrix) that already satisfy the continuity equation. So only the momentum equation is projected to obtain
the ROM equations. Then, we can solve the unknown time-dependent coeflicients a;(t) using the first-order
explicit Euler scheme. Finally, after the temporal coefficients a;(t) are solved, we can substitute them back
into Egs. 18 to 21 to reconstruct the three-dimensional velocity and pressure fields.

The proposed ROM solution process is summarized as follows:

Full-order CFD results are obtained by solving Eqgs. 1, 2, and 4.

The basis vectors are calculated using Eqgs. 16 and 17.

The Galerkin projection vectors and matrices are computed from Egs. 23, 24, and 25
The temporal coefficients a;(t) are solved based on Eq. 22.
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The full-order flow fields are reconstructed using Eqs. 18 to 21.

2.3. Discrete empirical interpolation method (DEIM)

The above ROM formulation is computationally efficient if the number of kept modes (r) is small, e.g.,
r < 20. For complex cases (such as non-equilibrium turbulent flow), we may need more modes to fully
predict the flow. In this case, the computation of the quadratic matrices becomes prohibitively slow because
the cost scales with r3. To alleviate this issue, one can use hyper-reduction methods such as DEIM [27]
and gappy POD [29]. In this paper, we use DEIM to accelerate the nonlinear term computation in the
momentum equation. We formulate a robust DEIM-ROM to ensure numerical stability.

First, we substitute the approximated states (Egs. 18 to 21) to the momentum equation and project
to ®Y, similar to the previous subsection (Eq. 28). Here, we use a special treatment that merges the
contribution of the mean state variables in the nonlinear term to the C' vector and L matrix. We keep the
fluctuation component of nonlinear term N in its original inner-product format without separating the basis
vectors @ and a. This treatment greatly enhances the numerical stability of the DEIM-ROM simulation, as
opposed to using the instantaneous nonlinear term.

(9(11'
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Algorithm 1 Greedy algorithm to compute the mask matrix P for DEIM
Input: Basis vector matrix for N: & = [&,®,,-- ,®,] where ® € R &, € R &, =

(@1, By, -, B
Output: Mask matrix: P = [P, Pa,---,P,], where P € R"*?, P; € R"*! Py, = [Py, Py, -+, Py]
1: P=20 > Initialize P with zeros
2: 1 < max(|®4]) > Find the row index of the maximal value in ®
3: Pip] =1 > Assign 1 to the v; row for Py
4: fort=1:p—1do > Loop over p — 1
5. ¢+ PL®c, =P, ®, > Solve ¢; € Rt*?
6: R =®,,,— ®,¢ > Calculate the residual R, € R**!
7: v < max(|Ry|) > Find the row index of the maximal value in Ry
8: Pyl =1 > Assign 1 to the v row for Py 4

where the constant vector C and linear matrix L have the same formulation as in Egs. 23 and 24, and the
N term is computed as follows:

N(@®Ya, ®%a,®"a) = -V - (8%, 8Ya) + V- (8" a)(V(®Ya) + dev[V(®Y a)]T) (29)
=~V (¢-oU-U)+ V- (s ~7) (VU ~U) +dev[V(U - O)|"),

The above formulation for N term can not be computed during the full-order flow simulations (FOM)
because it depends on the time-averaged variables, e.g., U. Therefore, we compute IN using Eq. 29 after the
FOM is done. We then construct the snapshot matrix using Eq. 30. Note that here the nonlinear term is
already in the fluctuation form, so we do not subtract its mean field.

-Isrl,l -Zyl,2 ]Srl,l
Ng1 Nizo -+ Ngj

Svi=1 . o . (30)
Nn,l Nn,Z Nn,l

where [ is the total number of snapshots, and we may need to save the nonlinear term more frequently than
the state variables, so generally [ > m. Then, we can compute the basis vector for N using a similar approach
mentioned above. Note that the nonlinear term’s basis vectors also use the eigenvalues and eigenvectors of
the velocity, as shown in Eqs. 16 and 17.

N~ ®Vec (31)

where ¢ € RP*! is the temporal coefficient with p being the kept modes for the nonlinear term (in general,
p>r), and ®Y € R"*P is the basis vector matrix for .

Then, we can construct an interpolation matrix P € R™*P to determine the interpolation sample points.
We will then use these sample points to interpolate all nonlinear terms in the flow field. P is a very sparse
matrix with only one identity in each column, and it can be computed using the greedy algorithm, as shown
in Algorithm 1. Note that we may have duplicated v in the P matrix. If this happens, we run line 7 again
and find the row index for the second largest value in R; to ensure the indices in the P matrix are unique.

00 --- 10
10 --- 00
00 --- 00
PUP =t (32)
00 -~ 00
0 1 0 0
0 0 0 1]




We then multiply P? to both sides of Eq. 31.

PTN ~ PT®VNe (33)

Next, we solve a dense linear equation to obtain ¢ from the above equation. We will find the ¢ coefficient
to match the nonlinear term values at the sample points only, instead of all the mesh cells. We can then
substitute the ¢ solution back to Eq. 31.

N~ &V [PTeN]! PTN = Ab (34)
—_—— e
AERnXP beERPX1

The mechanism of the above formulation allowing a much cheaper nonlinear term calculation is that, the
PTN term essentially projects the high-dimensional nonlinear vector N to a much lower dimension p. So,
we need to compute the nonlinear terms only at the p sample points where P is not zero. In other words, we
do not need to compute N for every mesh cell, we only need to compute it at p interpolation points. Then,
we multiply the nonlinear term value at these p points with the A matrix to interpolate the nonlinear term
values for the rest of the mesh cells. The A matrix will be pre-computed once, and the number of numerical
operations is proportional to p (as opposed to r3 for the original nonlinear term formulation in Eq. 25) and
independent of the mesh size. This will greatly speed up the nonlinear term calculation.

If we subsitute Eq. 34 back to the ROM equation Eq. 28, we have the final version of the DEIM-ROM
equation:

—~=C+ L _a + D b (35)
ot N~ =

~~ rx1 rXr rxl rXp px1

rx1

where the constant vector C and linear matrix L are the same as before and the new vectors and matrices
are defined as:

Diﬁj =< @?,AJ‘ > (36)

bj = PIN(®"a,®%a,®"a) (37)

where A; denotes the jth column of the A matrix defined in Eq. 34, and P;‘-F is the jth row of the PT
matrix.

To compute the nonlinear term at the interpolation points (PTN ), we utilize the fvMeshSubset library
in OpenFOAM and create a subset mesh that contains the cells for the interpolation points, as well as two
levels of surrounding cells to ensure the correct stencil for the nonlinear operators. Once the subset mesh
is created, we use it to compute the PTN term in Eq. 37 when solving the ROM equation (35), and the
original full-scale mesh is no longer used. To be more specific, for each ROM time step, we use the latest
a coefficient to compute the fluctuation component of state variables, i.e., ®”a, ®’a, and ®"*a. We then
assign these updated state variable fluctuations to the subset mesh variables and compute the nonlinear
terms at the interpolation points using Eq. 37. For 2D problems, the total number of cells in the subset
mesh is on the order of 10p, so its computation cost is significantly lower than that for the full-scale mesh
cells, which typically have ~100 000 cells.

The proposed DEIM-ROM solution process is summarized as follows:

We first run FOM by solving Egs. 1, 2, and 4 and save the state variable snapshots.
After FOM is done, we calculate the nonlinear term snapshots using Eq. 29.

We compute the state basis vectors for both state variables and nonlinear terms.

The Galerkin projection vectors and matrices are computed from Egs. 23, 24, and 36.

The temporal coefficients a;(t) are solved using the first-order Euler scheme based on Eq. 35. For each
time step, we compute the nonlinear term only at p interpolation points using Eq. 37.

6. The full-order flow fields are reconstructed using Egs. 18 to 21.

Tk W =



2.4. Numerical stability for reduced-order modeling with DEIM

One of the major challenges in developing an intrusive unsteady ROM solver is numerical stability. The
instability in the ROM simulation may result in flow divergence, gradual increase or decrease of the periodic
flow magnitude, or a phase shift of the time series, especially for simulations with a long time period. See
more detailed discussion in [48-54]. In this subsection, we discuss the main stability considerations in our
ROM implementations.

The most important factor is the numerical consistency between the ROM and FOM formulations. We
observe that using consistent numerical operators between FOM and ROM greatly stabilizes the simulation.
For the viscous term in the momentum equation, if we use the original formulation for the viscous term —V -
Vet (VU + [VU]T), the ROM simulation will become unstable and diverge. As mentioned above, this insta-
bility will be circumvented by using the FOM-consistent viscous term: —V - (vegVU) — V - (v dev([VU]T)),
as shown in Eq. 3. Therefore, we used the FOM-consistent viscous operators when computing the linear and
nonlinear matrices in Eqgs. 24 and 25, as well as the nonlinear term in DEIM (Eq. 29). In addition to the
viscous term, we need to carefully formulate the convective term. In FOM, the convective term is linearized
by introducing an independent variable ¢, as shown in Eq. 8. The FOM continuity equation enforces the
face flux, instead of the velocity, to be divergence-free. Therefore, in the ROM formulations (Eqs. 23 to 25
and 29), we use ¢-based formulations for the convective term in the momentum equation. For example, the
V - (®%,®Y) operator denotes the divergence of the ¢ basis vector (defined on the face center) times the
velocity basis vector that is interpolated to the cell face center. We find that this treatment ensures the
conservative of the ROM formulation and enhances its numerical stability.

Another important factor is the treatment of the state variables in the ROM formulations. As mentioned
before, we subtract the instantaneous state variables with their mean values when constructing the snapshot
matrix, e.g., Eq. 14. There are mean state variables in the constant vector C' and linear matrix L of the
ROM equation (27). In the ROM equation solution process, we solve for the fluctuation component of the
state variables, instead of their absolute values. We find that having the mean state variables in the C
vector and L matrix enhances the ROM simulation’s stability. The above treatment of mean flow variables
is especially important for the DEIM’s stability. As shown in Eq. 29, we use the fluctuation component of the
state variables as the input to compute the fluctuation component of the nonlinear term, instead of using the
instantaneous state variables to compute the instantaneous nonlinear term, in the DEIM-ROM formulation.
This treatment has the advantage that the constant vector and linear matrix in the DEIM formulation are
the same as the ones in the original ROM equation. Therefore, the DEIM-ROM’s numerical stability is
partially inherited from the original ROM formulation. In addition, during the DEIM-ROM simulation, we
solve for the fluctuation component of the highly nonlinear N term, instead of its instantaneous value. We
find that this helps us circumvent the numerical instability in the DEIM-ROM simulation.

We observe satisfactory numerical stability for short-term simulations using our DEIM-ROM formulation.
However, further improvement can be made by incorporating more stabilization methods to enhance long-
term simulation stability. Examples are the least square Petrov—Galerkin formulation, regulation of the basis
vectors, the addition of the artificial dissipation term, and the randomization of DEIM interpolation points.
We will consider these treatments in future work.

3. Results and Discussion

In this section, we evaluate our ROM solver’s performance using stalled turbulent flow over the NACA0012
airfoil. We first test our ROM solver using a simple periodic flow case. We run FOM until the mean state
variables no longer change and use the fully evolved flow field as the initial condition. We then run FOM
with the same flow conditions (i.e., same Reynolds number and angle of attack) and use the first portion of
FOM data to train ROM. This simple setup allows us to verify our ROM implementation, and we will use it
as a reference for the following cases. Next, we consider more challenging non-equilibrium cases, where we
run FOM with a different flow condition (e.g., different angle of attack). Because of this change, the flow
will undergo a transient process before reaching equilibrium for the new flow conditions. We then use the
transient FOM data to train a ROM to accelerate the rest of the simulation. We consider non-equilibrium
flow caused by both small perturbations and large variations. The small variation cases (e.g., the angle of
attack changes less than 0.5 degrees) are mainly used in perturbation response analyses, e.g., gust wind.
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Table 1: Boundary conditions for the airfoil CFD simulations (FOM). The simulation domain is a rectangular box.

Inlet Top Bottom Front Back Outlet
u  u=(un,0,0) Vu-n=0 Vwu-n=0 Symmetry Symmetry Vu- n=0
p Vp - n=0 Vp-n=0 Vp-n=0 Symmetry Symmetry 0
1 Vin Vi-n=0 Vv-n=0 Symmetry Symmetry V7 -n=0

Figure 1: Unstructured mesh for the NACAQ0012 airfoil with 243 838 cells. We use three levels of refined mesh for the wake
region. The incoming flow is in the x direction, and the airfoil have a angle of attack @ = 20°. The simulation domain is 60
times the airfoil chord length in the streamwise direction.

The large variation case (i.e., the angle of attack changes by 5 degrees) mimics a design optimization process
where we simulate new designs using initial conditions from the previous design.

3.1. ROM wverification using equilibrium unsteady flow

As mentioned above, we use the NACA0012 airfoil as the benchmark. The airfoil has a chord length
of ¢ = 1.0 m and an angle of attack (a) of 20°. The computational domain is a rectangular box with 60c,
20c¢, and 0.1c¢ in the z, y, and z directions, respectively. The leading edge of the airfoil is 10c downstream
from the inlet. This relatively large computational domain is chosen to allow the wake to dissipate freely
before hitting the simulation’s outer boundaries. The flow velocity at the inlet is set as u;, = 1.0 m/s, and
the corresponding Reynolds number is 10°. We use the second-order implicit Euler method for temporal
discretization. We use the second-order upwind and central schemes for discretizing the convective and
viscous terms, respectively. These discretization settings are typical for pisoFoam. The detailed FOM
boundary conditions are summarized in Table 1.

We use OpenFOAM’s built-in mesh generation tool snappyHexMesh to generate an unstructured mesh,
as shown in Fig. 1. Note that we add three layers of mesh refinement to capture the details of the airfoil
wake and small-scale flow modes. We find that these small-scale modes are important for representing the
complete flow physics of full-order flow simulations. We evaluate the impact of mesh density and associated
discretization errors on the simulation results. To this end, we generate four meshes with increasing density
and compute the functions of interest (Cy, Cy, and C,,), as shown in Table 2. We find that Cy, C;, and Cp,
do not change significantly when increasing the mesh density from L3 to L4. Therefore, we use the L3 mesh
with 243,924 cells as the benchmark in this study.

As mentioned above, we use a fully evolved flow at Re = 1x 10° and o = 20° as the initial condition. Note
that we do not include the initial field computation runtime in our FOM and ROM because it is a one-time
cost. Then, we perform FOM for 10 s, approximately 5.5 periods of vortex shedding cycles. The FOM time
step is 0.001 s with a Courant—Friedrichs—Lewy (CFL) number ~0.63. The snapshots are collected in a time
window of 2 s and cover approximately the first 1.2 periods of vortex shedding. We save the instantaneous
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Table 2: Mesh refinement study for Re = 10° and o = 20°. The functions of interest do not change significantly when increasing
the mesh refinement from L3 to L4. Therefore, we use the L3 mesh in our study.

Level Mesh cells Cy & Cm
L1 63,952 0.3778 0.8983 0.1317
L2 139,428 0.3697 0.8978 0.1304
L3 243,924 0.3614 0.8519 0.1207
14 539,982 0.3601 0.8462 0.1200

U_Mode_0 (m/s)
0.0e+00 0.006 1.4e-02

L oee—

~

U_Mode_1 (m/s)
0.0e+00 0.006

‘ e

U_Mode_2 (m/s)
0.0e+00 0.01 0.015  2.4e-02

‘ o— ‘

Figure 2: Mean and the first three modes of velocity for the equilibrium case. The angle of attack a = 20°, and the Reynolds
number is 105.

flow fields for velocity, pressure, face flux, and turbulent viscosity every 0.02 s, so we have a total number
of 100 snapshots for training ROM. The number of snapshots is selected based on the balance between the
accuracy and memory and computational costs. Specifically, we gradually increase the number of snapshots
until the ROM accuracy no longer changes. Note that we use a similar approach to select the best number
of modes and DEIM points in the following. We then perform SVD to compute the modes from these 100
snapshots; the mean and first three modes for the velocity and pressure are shown in Figs. 2 and 3. We
observe finer flow structures for the modes having smaller singular values (the higher the modes, the smaller
of singular values). Considering the balance between accuracy and efficiency, we keep the first 20 modes for
both ROM and DEIM-ROM. The corresponding singular values for the 20" mode is 0.2%. In other words,
we drop the basis vectors whose corresponding singular values are less than 0.2% of the largest one, as shown
in Fig. 4. We use 40 interpolation points for DEIM-ROM.

After the modes are computed, we compute the vectors and matrices for the ROM equation (Eq. 27).
Then, we can solve the ROM equation for the temporal coefficients a;(t). Finally, we can substitute them
into Egs. 18 to 21 to reconstruct the flow fields. The simulation is conducted in serial using the Intel Xeon
W-1370 CPU running at 2.9 Hz. Table 3 summarizes the performance of FOM, ROM, and DEIM-ROM.
The FOM simulation takes 39124 s (wall-clock runtime), and the training and prediction portions take 7384
s and 31740 s, respectively. The ROM performance can be broken down into three parts. The calculation
of basis vectors (BasisVec; Egs. 16 and 17), Galerkin projection vectors and matrices (ProjMat; Egs. 23, 24,
and 25), and POD temporal coefficients a;(t) (SolveROM; Eq. 22) take 320 s, 700 s, and 25 s, respectively.
The total runtime for ROM is 1045 s, and the speed-up factor between FOM (prediction) and ROM is 30.4.
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Figure 3: Same as Fig. 2 but for the pressure.
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Figure 4: Normalized POD eigenvalues for the equilibrium case. We keep the first 20 modes for ROM.

The BasisVec calculation between ROM and DEIM-ROM is similar. However, the DEIM-ROM’s ProjMat
is much faster (352 s vs 700 s) because DEIM-ROM’s computational cost no longer depends on r® and mesh
size. Because the DEIM-ROM needs to re-compute nonlinear terms when solving a;(t), its SolveROM cost is
slightly higher than ROM (40 s vs 25 s). Due to the gain in ProjMat, DEIM-ROM’s speed-up factor increases
to 44.5. Note that both ROMs exhibit reasonable speedup, and the extra benefit of DEIM is insignificant
for the equilibrium case because we use only 20 modes. However, for the non-equilibrium cases (shown in
the next subsection), the original ROM’s computational cost will become prohibitive because we need many
more modes, and using DEIM is necessary. Next, we will evaluate the accuracy of the proposed ROM and
DEIM-ROM approaches.

The comparisons of flow fields among FOM, ROM, and DEIM-ROM are shown in Fig. 5. Overall, the
flow fields agree reasonably well. For example, the separation bubble and wake structure predicted by ROM
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Table 3: Breakdown of computational cost for FOM, ROM, and DEIM-ROM (equilibrium case). ROM and DEIM-ROM
achieve a speedup factor of 30.4 and 44.5, respectively. The speed-up factor is calculated as the runtime ratio between the FOM
(prediction) and ROM (including the computation of basis vectors, projection matrices, and POD temporal coefficients).

FOM 39124 s
Training 7384 s
Prediction 31740 s

ROM 1045 s
BasisVec 320 s
ProjMat 700 s
SolveROM 258

Speed-up factor 30.4

DEIM-ROM 713 s
BasisVec 321 s
ProjMat 352 s
SolveROM 40 s

Speed-up factor 44.5

and DEIM-ROM are almost identical to that from FOM at 0.5 and 1.0 7', where T is the period of vortex
shedding. Note that we observe similar accuracy between ROM and DEIM-ROM, so we show only the
DEIM-ROM field prediction results in the following.

To further quantify the comparison, we plot the time series of flow variables at two probe points in
Fig. 6. Here the probe points are located in the airfoil wake (coordinates: [2.5, —0.25] and [3.5, 0]) and
marked as “Probe 17 and “Probe 2” in Fig. 5. The amplitude and phase of the velocity at probe points
computed by DEIM-ROM (dots) agree reasonably well with FOM (lines). Though the velocity time series
at probe 2 exhibit more oscillation frequencies, their agreements are as good as probe 1. This indicates
that ROM is able to handle problems with wide-banded frequencies. In addition to the flow field variables,
we plot the comparisons of integral variable time series, i.e., drag, lift, and pitching moment in Fig. 7 and
observe reasonably good agreements between FOM and DEIM-ROM. Figure 8 shows the comparisons of
pressure distribution over the airfoil between FOM and DEIM-ROM. Again, we observe reasonably good
surface pressure agreements at various time instances within a period. This ensures an accurate prediction of
integral variables such as drag and lift. The good agreement in the pressure prediction justifies our treatment
of correlating the POD temporal coefficients between velocity, pressure, and turbulent variables, elaborated
on in Sec. 2.2. This finding is slightly different from Stabile et al. [46] and Stabile and Rozza [55], where
the authors found solving a reduced pressure Poisson equation was necessary for the pressure prediction
accuracy. To capture a more quantitative wake structure, we plot the velocity variation in the y (vertical)
direction in Fig. 9. The velocity is extracted from a slice 0.5¢ downstream from the airfoil trailing edge.
We find low-speed regions (wake) oscillating in the vertical (y) direction in a time period. The above wake
structures are well captured by ROM and DEIM-ROM at various time instances.

Finally, we use the normalized L? error to further quantify the discrepancy between FOM and ROM. For
instance, the L? error for the velocity component v reads:

||Error||r2 = < (urom — urom), (UroM — Urom) >z (38)
" < UFOM, UFOM > L2

where upom is the FOM velocity, ugrom is the ROM velocity, Trom is the mean (time-averaged) FOM
velocity for normalization, and <>2 denotes the L? norm (inner product). Note that we use the velocity
magnitude for normalization, instead of each velocity component. For the whole flow field <> calculation,
we loop over all mesh cells. For the probe points, we loop over all time series data.

Tables 4 and 5 show the time series prediction errors. Overall, the errors are small. The L? error in
Cy is higher than C; and C),, indicating that the drag force is more challenging to predict. We speculate
this is because the Cy value is more sensitive to the turbulence intensity and requires an accurate surface
turbulence prediction. Note that we do not directly solve a reduced turbulence model in our ROM formu-
lation, instead, we correlate the turbulence variable’s temporal coefficient with the velocity. This treatment
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Figure 5: Comparisons of flow fields at 0.5 T' (left) and 1.0 T' (right) for the equilibrium case, where T is the period of vortex
shedding. We achieve reasonably good agreements among FOM (top), ROM (middle), and DEIM-ROM (bottom).

provides acceptable surface turbulence prediction for the equilibrium case. For the velocity time series, we
find that probe 1’s errors are slightly larger than probe 2’s, probably because it is closer to the airfoil. We
also observe that the error in the vertical velocity (v) is larger than the one in the streamwise velocity (u).
However, both errors are less than ~ 1072, so it is not distinguishable from Fig. 6.

Figure. 10 shows the time evolution of flow field L? errors (x10~%). Again, the overall errors are small.
The pressure and vertical velocity have relatively large errors than other variables. We find that the errors
grow slowly over time, but the maximal L? error remains under 0.05. This trend is similar to that reported
by Stabile and Rozza [55]. The authors evaluated their Galerkin ROM solver using a flow-over-cylinder case
and found that the error increased with time. Table 4 shows the comparison of time-averaged drag, lift, and
pitching moment between FOM and ROM. The ROM and DEIM-ROM predictions match the FOM data by
four and three digits, respectively. This level of error is acceptable for unsteady aerodynamic analysis and
design. Overall, our ROM implementation is accurate and can accelerate equilibrium unsteady aerodynamic
simulations. As mentioned above, we find that the DEIM-ROM’s error is only slightly higher than ROM’s.
In the next subsection, we will show only the DEIM-ROM results.

Note that the good agreement for the verification case is primarily because we use a fully evolved flow
as the initial condition and run FOM and ROM with the same flow condition. Therefore, the basis vectors
already cover all the possible flow structures. Other approaches, such as DMD or data-driven ROM, may
have similar performance for this simple case. However, we will show in the next subsection that our intrusive
ROM can also use non-equilibrium data for training and predict non-equilibrium flows.
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Figure 6: Comparison of velocity time-series at probe 1 (left) and probe 2 (right) for the verification case. We achieve reasonably
good agreements between FOM and DEIM-ROM. We use the first 2 s data for training, as indicated by the grey line.
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Figure 7: Comparisons of drag (top), lift (mid), and pitching moment (bottom) for the equilibrium case. We achieve reasonably
good agreements between FOM and DEIM-ROM. We use the first 2 s data for training, as indicated by the grey line.

3.2. Predictive ROM for non-equilibrium unsteady flow

In this subsection, we consider a more challenging flow condition: non-equilibrium. The non-equilibrium
flow settings (such as the airfoil geometry, mesh, and computational domain) are similar to the equilibrium
case. We first run FOM at Re = 10° and a = 20° until the mean flow variables no longer change. We then
use the fully evolved flow as the initial condition. Next, we run FOM at a different flow condition (e.g.,

16



0.5 1

00 02 04 06 08 10 00 02 04 06 08 10
x/c xlc

Figure 8: Comparison of pressure distribution on the airfoil surface for the verification case. We achieve reasonably good
agreements between FOM and DEIM-ROM at various time instances within one flow period.
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Figure 9: Comparisons of velocity profile 0.5¢ downstream of the trailing edge (verification case). We observe reasonably good
agreements between FOM and DEIM-ROM at various time instances within one period.

Table 4: Normalized L? error (x 10~%) for Cy, Cy, Cm, u, and v time-series are small (verification case).

Case o, c o Probe 1 Probe 2
u v u v
ROM 18.07 4.469 8.498 14.07 115.1 8897 127.5

DEIM-ROM 1842 5.886 12.58 23.27 2404 16.77 181.9

different Reynolds number or angle of attack). Because of this change, the flow will undergo a transient
process before reaching a new equilibrium state. We use a small portion of FOM data (transient process;
run at new flow conditions) to train a ROM to accelerate the rest of the flow simulation.

We consider two types of flow condition changes: Reynolds number and angle of attack, and call them
Reynolds number and angle of attack predictive cases, respectively. The non-equilibrium predictive ROM
can be used to accelerate unsteady flow simulations for two aerospace applications. The first application is
the analysis of perturbation response. For example, aircraft may be subject to a sudden change in the flow
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Table 5: Comparisons of time-averaged drag, lift, and pitching moment for the verification case. ROM and DEIM-ROM match
with FOM for almost all four digits.

FOM ROM DEIM-ROM
Cq 0.3614 0.3614 0.3614
C;  0.8519 0.8519 0.8520
Cy, 0.1207 0.1207 0.1207

10" 3
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Figure 10: Normalized L? error of the whole flow field for the verification case: ROM (left) and DEIM-ROM (right). L? errors
of state variables remain at a low level and grow slowly.

Figure 11: DEIM points distribution in the z — y plane for the non-equilibrium case. We use 120 and 230 DEIM points for
Re =2 x 10° (left) and for Re = 3 x 10° (right) respectively.

condition (e.g., gust wind). One needs to simulate and analyze the non-equilibrium unsteady flow response
before it reaches a new steady-state flight. The second application is aerodynamic shape optimization. In
each optimization iteration, we need to simulate unsteady flow with a new design (e.g., new airfoil shape,
Reynolds number, or angle of attack) using the initial conditions from the previous design. Therefore, each
optimization iteration must simulate unsteady flows undergoing a transient process. As mentioned above,
we consider non-equilibrium flow caused by both small perturbations and large variations. For perturbation
response analysis, the flow condition change is typically small. So we can use the first few seconds of data
for training (see Secs. 3.2.1 and 3.2.2). For design optimization, a more drastic flow change can happen.
Therefore, we will use the data from a pre-equilibrium state for training (see Sec. 3.2.3).

3.2.1. Reynolds number predictive cases (small perturbation)

We use the fully evolved flow field at Re = 10° as the initial condition and predict the flow at five different
Reynolds numbers, i.e., Re = [1.5, 2, 2.5, 3, 3.5] x 105. The angle of attack is kept at o = 20°. Without the
loss of generality, we show the results for Re = 2 x 10° and 3 x 10° only. Note that we change the Reynolds
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Table 6: Breakdown of computational cost for FOM and DEIM-ROM (non-equilibrium, Reynolds number predictive cases).
DEIM-ROM achieves a speedup factor of 13.6. The speed-up factor is calculated as the runtime ratio between the FOM
(prediction) and ROM (including the computation of basis vectors, projection matrices, and POD temporal coefficients).

FOM 61593 s
Training 23149 s
Prediction 38444 s

DEIM-ROM 2838 s
BasisVec 1123 s
ProjMat 1000 s

SolveROM 715 s
Speed-up factor 13.6

number by changing the fluid kinematic viscosity v, instead of the incoming flow velocity. Therefore, the
whole flow field is immediately impacted by the flow condition change.

Because the flow evolution is more complex, we need to use more modes to better represent the flow. To
balance the accuracy and computational efficiency, we use 100 modes for the non-equilibrium case. Using
100 modes is made possible by using the DEIM-ROM formulation. We used 120 and 230 DEIM-ROM
interpolation points for the predictive cases Re = 2 x 10° and 3 x 10, respectively. The optimal number of
DEIM interpolation points is selected based on trials and errors, as mentioned above. Figure 11 shows the
distribution of the DEIM points. We find that most of the DEIM points are clustered in the wake region,
where the vortex energy is strongest (see Fig. 2). Only a small portion of them are located near the leading
edge. We observe a similar DEIM point distribution pattern for all simulations.

We run FOM for a total of 16 s. Then, we save the instantaneous flow fields (snapshots) every 0.02 s, use
the first 6 s of the FOM data (approximately three vortex shedding periods) for ROM training, and predict
the flow for the rest of 10 s. Note that we exclude the first snapshot at 0.02 s to eliminate the impact of flow
spin-up. In other words, we use a total number of 299 snapshots for training. We find that this treatment
improves the accuracy of ROM prediction for non-equilibrium cases. Compared with the above verification
case, we need more data for training. This is because the flow is no longer in equilibrium, so using one
flow period’s data is insufficient to capture the trend in the transient process. In this study, we run the
simulations for a relatively short time (16 s) to demonstrate the predictive ROM’s capability. To evaluate
the ROM’s capability for long-term prediction, e.g., O(100) s, we will further improve the robustness of our
ROM implementation in future work (e.g., using the Petrov—Galerkin formulation).

The breakdown of computational cost for DEIM-ROM is summarized in Table 6. The time cost is the
average cost among the five cases. We achieve a speedup factor of 13.6. As expected, the speedup factor is
less than the ROM verification case. This is because we use more modes and snapshots and the calculation of
basis vector and projection matrices are much more expensive. Moreover, we need more DEIM interpolation
points, so the solveROM step is more costly (note that we used only 40 interpolation points in the verification
case).

Figure 12 shows the comparison of drag, lift, and pitching moment time series between FOM and DEIM-
ROM. Overall, the drag, lift, and pitching moment increase with increasing the Reynolds number. If the
Reynolds number increases by a factor of two (Re = 2 x 10°), the time series undergo a relatively short
transient increase and eventually reach a new equilibrium state within 16 s. However, with a slightly larger
Reynolds number change (Re = 3 x 10%), the transient process takes much longer, and the flow does not reach
a full equilibrium state within 16 s. As expected, the non-equilibrium flow is more challenging to predict,
and the agreement between FOM and ROM is not as good as the verification case. The overall trend is well
captured, although the phase and the amplitude of the time series predicted by ROM are slightly off. This
level of time-series prediction error is similar to that reported in [33, 54, 56].

The comparison of velocity time series at probe point 2 is shown in Fig. 13. The change in the Reynolds
number has a larger impact on the streamwise velocity w (top figures) than the vertical velocity v (bottom
figures). Also, a larger Reynolds number change results in a larger variation in the transient process (when
comparing the left and right figures), especially for u. The ROM time series agree better in v than u. Again,
the error is larger than the ROM verification case.

Figure 14 depicts the surface pressure distribution within 8.5 to 10 s (approximately one flow period
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Figure 12: Comparisons of drag (top), lift (mid), and pitching moment (bottom) for the non-equilibrium case. We use Re = 10°
as the initial condition to predict Re = 2 x 10° (left) and 3 x 105 (right). We use the first 6 s data for training, as indicated by
the grey line. We achieve reasonable agreements between FOM and DEIM-ROM.
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Figure 13: Same as Fig. 12 but for the velocity time-series at probe point 2.

in the prediction stage). Overall, the pressure agreements between FOM and ROM are better than the
time-series results shown in Figs. 12 and 13. As expected, the ROM pressure prediction has larger errors
for a larger Reynolds number change, especially near the trailing edge. We also evaluate the variations of
streamwise velocity in the y direction in Fig. 15. Overall, ROM captures the wake structure well. We find
that ROM performs better in predicting spatial velocity distribution (Fig. 15) than the temporal variation
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Figure 14: Comparison of pressure distribution on the airfoil surface (non-equilibrium). We use Re = 10° as the initial condition
to predict Re = 2 x 10° (left) and 3 x 10® (right). We achieve good agreements between FOM and DEIM-ROM.
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Figure 15: Comparisons of velocity profile 0.5¢ downstream of the trailing edge (non-equilibrium): We use Re = 10° as the
initial condition to predict Re = 2 x 105 (left) and 3 x 10° (right). We observe good agreements between FOM and DEIM-ROM.

(Fig. 13).
The normalized L? errors of time series and flow fields with various predictive Reynolds numbers are
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Figure 16: Normalized L2 errors of Cy4, Cj, and Cp, time series (left) and whole flow field (right) for the Reynolds number
predictive cases (non-equilibrium).

given in Fig. 16. Overall, the L? errors grow as the Reynolds number change increases. This is expected
because a larger Reynolds number change results in a longer transient process (see Fig. 12 right), making the
flow fields more complex and challenging to predict. For the time series, the error in C,, is the largest and
grows most rapidly when the predictive Reynolds number increases, compared with Cy and Cj. This trend
differs from the verification case. As shown in Table. 4, the error for C; time series was the largest. For the
field variables, we find the trend is similar to the verification case: the v and p errors are the largest among
other flow variables. However, the field error growth rate is less than the time series one. This indicates that
the surface variables are more challenging to predict than the field variables for the non-equilibrium case.

3.2.2. Angle of attack predictive cases (small perturbation)

In this subsection, we consider non-equilibrium flow caused by a small change in the angle of attack.
Instead of changing the far field velocity, we rotate the airfoil to change the angle of attack. Therefore,
the flow around the airfoil is immediately impacted by the angle of attack change. This predictive setup is
different from the Reynolds number cases shown in the previous subsection because it needs to change the
CFD mesh. To ensure the new mesh has the same mesh cells and topology, we use pyGeo to rotate the
airfoil surface mesh. pyGeo is an open-source tool that uses the free-form deformation (FFD) approach to
parameterize the geometry [57]. Then, we use IDWarp to propagate the surface mesh deformation to the
volume mesh. IDWarp uses an inverse-distance weighting approach to smoothly deform the volume mesh
and can preserve the near-wall mesh orthogonality [58].

We use the fully evolved flow field with o = 20° as the initial condition and predict five different angles
of attack, i.e., @ = [20.1°,20.2°,20.3°,20.4°,20.5°]. The Reynolds number is kept at Re = 10°. Again, we
mainly analyze the predictive results for & = 20.3° and 20.5°. Similar to the Reynolds number predictive
cases, we use 100 modes and 300 snapshots, which cover 6 s of FOM data. We use 160 and 238 DEIM
interpolation points for the a = 20.3° and 20.5° cases, respectively. We then use the trained ROM to predict
the flow for the rest of the 10 s.

The breakdown of computational cost for DEIM-ROM is summarized in Table 7. Again, the time cost
is the average cost among the five cases. We achieve a speedup factor of 13.4. This number is much lower
than the ROM verification case, but it is slightly lower than the speed-up factor from the Reynolds number
predictive cases. This is because more DEIM interpolation points are used in the angle of attack predictive
cases.

Fig. 17 shows the comparisons of drag, lift, and pitching moment time series between FOM and DEIM-
ROM. All surface variables decrease with increasing the angle of attack, confirming that the airfoil is in a
stall condition. Changing the angle of attack has a larger impact on the surface variables than changing
the Reynolds number (i.e., comparing Figs. 12 and 17). The flow undergoes a longer transient period and
does not reach a full equilibrium state within 16 s. This is probably because we change the airfoil pitch
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Table 7: Breakdown of computational cost for FOM and DEIM-ROM (non-equilibrium, angle of attack predictive cases). DEIM-
ROM achieves a speedup factor of 13.4. The speed-up factor is calculated as the runtime ratio between the FOM (prediction)
and ROM (including the computation of basis vectors, projection matrices, and POD temporal coefficients).

FOM 60763 s
Training 23524 s
Prediction 37239 s

DEIM-ROM 2772 s
BasisVec 1032 s
ProjMat 1010 s

SolveROM 730 s
Speed-up factor 13.4
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Figure 17: Comparisons of drag (top), lift (mid), and pitching moment (bottom) for the non-equilibrium cases. We use oo = 20°
as the initial condition to predict o = 20.3° (left) and 20.5° (right). We use the first 6 s data for training, as indicated by the
grey line. We achieve good agreements between FOM and DEIM-ROM.

angle and the mesh, both directly impact the surface variables. Because the flow becomes more complicated,
the agreement between FOM and ROM is less satisfactory than the Reynolds number predictive cases. For
example, the oscillation magnitudes of Cy4, C;, and C,, are over-predicted for the a = 20.5° case (Fig. 17
right). However, ROM successfully captures the overall decreasing trend of the time series. Again, the
time-series prediction error is similar to the one reported in recent intrusive ROM studies [33, 54, 56].

Fig. 18 plots the velocity time series at probe point 2 for a = 20.3° and 20.5°. In contrast to the surface
variables, the variations of velocity time series are less sensitive. This indicates that changing the angle of
attack has a larger impact on the surface variables than the field variables. Again, we find that the agreement
of v is better than that of u, and ROM captures the velocity variation reasonably well.

The comparisons of surface pressure distribution for o = 20.3° and 20.5° are shown in Fig. 19. The
surface pressure agreement between FOM and ROM is slightly worse than the Reynolds number predictive
cases (comparing Figs. 14 and 19). Moreover, changing the angle of attack introduces relatively large errors
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Figure 18: Same as Fig. 17 but for the velocity time-series at probe point 2.

near the leading and trailing edges. However, changing the Reynolds number mostly impacts the ROM
prediction accuracy near the trailing edge. Fig. 20 plots the comparisons of streamwise velocity variations
in the y direction. ROM captures the overall wake structure, although the error is generally larger than
the Reynolds number predictive cases. Fig. 21 shows the L? errors for Cy, C;, and C,,, and field variables.
Overall, we observe the same trend as the Reynolds number predictive cases, i.e., the error grows as the
change of angle of attack increases with C,,, p, and v having relatively large errors.

3.2.8. Angle of attack predictive cases (large perturbation)

In this subsection, we consider non-equilibrium flow caused by a large variation in the angle of attack. As
mentioned above, design optimization typically uses initial conditions from the previous design to simulate
the flow for a new design; these two designs can have significantly different flow conditions. To mimic such
a scenario, we use the fully evolved flow field at the angle of attack @ = 20° as the initial condition and
predict the flow for o = 25°. The Reynolds number is kept at Re = 10°.

Due to the large variation in the angle of attack, the time series of the surface and field variables (see
Fig. 22 left and Fig. 23 left) have much larger changes at the beginning than the small perturbation cases
(see Figs. 17 and 18). These longer and irregular transient phrases pose greater challenges for the predictive
ROM. There are two main reasons. First, the mean flow changes drastically during the initial transient
phase (e.g., 0 to 10 s in Fig. 22 left). If we still follow a similar setting as the small perturbation case and
use the first 6 s of ROM data for training, the mean flow variables (U, P, ¢, and ;) between the training and
prediction will be significantly different. This will break our current ROM formulation because the constant
vector C and linear matrix L (Eq. 22) assume the mean flow variables are time-invariant or change only
slightly. Note that this is the case for the small perturbation cases (e.g., Figs. 12 and 17). The second reason
is that the flow pattern changes rapidly during the initial transient phase, so the trained modes will not be
able to represent the quasi-equilibrium flow later.

Given the above two reasons, we use the FOM data from 10 s to 16 s to train the ROM instead of the
first 6 s. Similar to the small angle of attack perturbation predictive cases, we use 100 modes, 300 snapshots,
and 240 DEIM interpolation points. We then predict the flow for the following 18 s (i.e., from 16 s to 34
s). The ROM speed-up factor is 24.3. We get a higher speed-up factor than the small perturbation cases
because we have a longer prediction time here.

Figure 22 right shows the zoom-in time series of drag, lift, and moment. Our ROM prediction agrees with
the FOM data reasonably well. Note that a similar capability was demonstrated using non-intrusive DMD
approaches [39, 40]. The authors used pre-equilibrium flow for training and predicted full equilibrium flow.
Our study is a further step forward because both training and prediction flow fields are not in fully equilibrium
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Figure 19: Comparison of pressure distribution on the airfoil surface (non-equilibrium). We use av = 20° as the initial condition
to predict a = 20.3° (left) and 20.5° (right). We achieve good agreements between FOM and DEIM-ROM.
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Figure 20: Comparison of velocity profile 0.5¢ downstream of the trailing edge (non-equilibrium). We use o = 20° as the initial
condition to predict o = 20.3° (left) and 20.5° (right). We achieve good agreements between FOM and DEIM-ROM.

states. This new capability was primarily attributed to the intrusive nature of our ROM approach, which
has the flexibility of predicting more irregular flow features.
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Figure 22: Comparisons of drag (top), lift (mid), and pitching moment (bottom) for the large angle of attack case: zoomed out
(left) and zoomed in (right). We use o = 20° as the initial condition to predict o = 25°. We use the FOM data from 10 s to
16 s for training, as indicated by the grey line. We achieve good agreements between FOM and DEIM-ROM.

Figure 23 shows the time series of velocity at probe point 2. Compared with the small perturbation cases
in the previous subsection, we observe larger errors. This is expected because the velocity fluctuation is
much more complicated, and the velocity in the prediction time window (16 s to 34 s) has not reached a full
equilibrium state, especially the u velocity component.

Compared with temporal evolution, the agreement for spatial distribution between FOM and ROM is
much better. As shown in the comparison of pressure distribution (Fig. 24) and wake structure (Fig. 25)
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Figure 23: Same as Fig. 22 but for the velocity time-series at probe point 2.
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Figure 24: Comparison of pressure distribution on the airfoil surface (large angle of attack). We use o = 20° as the initial
condition to predict a = 25°. We achieve good agreements between FOM and DEIM-ROM.

plots. The agreement for the large variation case is similar to the small perturbation cases. This implies
that the main challenge for large variation cases is capturing the temporal evolution.

4. Conclusion

In this paper, we develop a predictive reduced-order modeling (ROM) approach to accelerate unsteady
aerodynamic simulations. We use the Galerkin projection approach to reduce the Reynolds-averaged Navier—
Stokes (RANS) equations into a quadratic ordinary differential equation. We then incorporate the discrete
empirical interpolation method (DEIM) into the above ROM equation to avoid computing the quadratic
matrices (result from the RANS nonlinear terms) and reduce the computational cost. In addition, we develop
an efficient ROM formulation that correlates the temporal coefficients between the momentum, pressure,
and turbulence equations. This treatment allows us to solve fewer ROM equations at the prediction stage.
Moreover, the ROM formulation can be applied to any turbulence model because we don’t need to solve a
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Figure 25: Comparison of velocity profile 0.5¢ downstream of the trailing edge (large angle of attack). We use a = 20° as the
initial condition to predict a = 25°. We achieve good agreements between FOM and DEIM-ROM.

reduced turbulence equation explicitly. Owing to the intrusive nature of the proposed ROM approach, we
can use the first portion of unsteady flow data to accelerate the rest of the simulation.

The speed and accuracy of the proposed Galerkin ROM and DEIM-ROM have been tested using stall
turbulent flow over the NACA0012 airfoil. We consider two unsteady flow scenarios: equilibrium and non-
equilibrium. For the equilibrium cases, we achieve speed-up factors of 30.4 (ROM) and 44.5 (DEIM-ROM).
Regarding accuracy, the velocity contours, wake structures, surface pressure distribution, and time series of
drag, lift, pitching moment, and velocities computed by ROM agree reasonably well with the FOM references.
The overall error grows slowly with time and remains at a relatively low level. The good agreement is mostly
attributed to the training data being in an equilibrium state and containing all the possible spatial modes.
For the non-equilibrium cases, the flow undergoes a transient process before reaching equilibrium for new
flow conditions and is more challenging to predict. We need to use more data for training and more modes
to better represent the flow; therefore, the speed-up factor reduces to about 13. ROM predicts the overall
trend of the non-equilibrium turbulent flow reasonably well, although the agreement is not as well as in
the equilibrium case. In addition, we find that ROM performs better in predicting spatial variations (e.g.,
pressure distribution and wake structure) than temporal variations (e.g., time-series data).

The proposed predictive ROM approach is, in principle, applicable to different airfoil geometries and flow
conditions and can be integrated into a design optimization process for accelerating unsteady aerodynamic
simulations. In the future, we will further improve the robustness and accuracy of our ROM formulation
for long-term non-equilibrium flow simulations where the mean flow changes significantly. In addition, we
will enable the ROM capability for predicting flow with different boundary conditions (e.g., far-field velocity
magnitude and direction). With the above improvements implemented, we will parallelize our ROM solver
and extend its capability for predicting three-dimensional flow problems. Moreover, we will extend our ROM
implementation to more disciplines, e.g., aerostructural coupling.
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