Appl. Comput. Harmon. Anal. 66 (2023) 161-192

Applied and Computational Harmonic Analysis

Jjournal homepage: www.elsevier.com/locate/acha

Contents lists available at ScienceDirect

Computational
Harmonic Analysis

H Applied and

Modewise operators, the tensor restricted isometry property, and n

low-rank tensor recovery ™

Check for
updates

Cullen A. Haselby *, Mark A. Iwen®, Deanna Needell *, Michael Perlmutter "*,

Elizaveta Rebrova ©

& Michigan State University, Department of Mathematics, and the Department of Computational
Mathematics, Science and Engineering (CMSE), United States of America

b University of California, Los Angeles, Department of Mathematics, United States of America

¢ Princeton University, Department of Operations Research and Financial Engineering, United States of

America

ARTICLE INFO

ABSTRACT

Article history:

Received 14 October 2021
Received in revised form 16 August
2022

Accepted 27 April 2023

Available online 9 May 2023
Communicated by Ozgur Yilmaz

Keywords:
Tensor-structured data
Dimension reduction
Modewise measurements

Recovery of sparse vectors and low-rank matrices from a small number of linear
measurements is well-known to be possible under various model assumptions on
the measurements. The key requirement on the measurement matrices is typically
the restricted isometry property, that is, approximate orthonormality when acting
on the subspace to be recovered. Among the most widely used random matrix
measurement models are (a) independent subgaussian models and (b) randomized
Fourier-based models, allowing for the efficient computation of the measurements.
For the now ubiquitous tensor data, direct application of the known recovery
algorithms to the vectorized or matricized tensor is memory-heavy because of
the huge measurement matrices to be constructed and stored. In this paper, we
propose modewise measurement schemes based on subgaussian and randomized
Fourier measurements. These modewise operators act on the pairs or other small
subsets of the tensor modes separately. They require significantly less memory than
the measurements working on the vectorized tensor, provably satisfy the tensor
restricted isometry property and experimentally can recover the tensor data from
fewer measurements and do not require impractical storage.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction and prior work

Geometry preserving dimension reduction has become important in a wide variety of applications in

the last two decades due to improved sensing capabilities and the increasing prevalence of massive data
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sets. This is motivated in part by the fact that the data one collects often consists of high-dimensional
representations of intrinsically simpler and effectively lower-dimensional data. In such settings, randomized
linear projections have been demonstrated to preserve the intrinsic geometric structure of the collected data
in a wide range of applications in both computer science (where one often deals with finite data sets [14,1])
and signal processing (where manifold [4] and sparsity [17] assumptions are common). In this context, the
vast majority of prior work has been focused on recovering vector data taking values in a set S C R™ using
random linear maps into R™ with m < n which are guaranteed to approximately preserve the norms of all
elements in S. The focus of this paper is extending this line of work to higher-order tensors taking values
in Rnlx...xnd.

In the vector case, uniform guarantees for the approximate norm preservation for all sparse vectors, in
the form of the restricted isometry property (RIP), have numerous applications. They include recovery
algorithms that reconstruct all sparse vectors from a few linear measurements (such as, l;-minimization
[12,16,30], orthogonal matching pursuit [42], CoSaMP [31,16], iterative hard thresholding [8] and hard
thresholding pursuit [15]). Extending these algorithms from sparse vector recovery to low-rank matrix or
low-rank tensor recovery is very natural. Indeed, rank-r matrices (i.e., two-mode tensors) in R™*™ can be
recovered from O(rn) linear measurements [11,17]. Extensions to the low-rank higher-order tensor setting,
however, are less straightforward due to, e.g., the more complicated structure of higher-order singular value
decomposition and non-unique definition of the tensor rank. Still, there are many applications that motivate
the use of tensors, ranging from video and longitudinal imaging [26,6] to machine learning [36,39] and dif-
ferential equations [5,27]. Thus, while tensor applications are ubiquitous and moreover the tensors arising in
these applications are extremely large-scale, few methods exist that do satisfactory tensor dimension reduc-
tion. Our goal here is thus to demonstrate a tensor dimension reduction technique that is computationally
feasible (in terms of application and storage) and that guarantees preservation of geometry. As a motivating
example, we consider the problem of tensor reconstruction from such dimension reduction measurements,
and in particular the Tensor Iterative Hard Thresholding method is used for this purpose herein.

In [34], the authors propose tensor extensions of the Iterative Hard Thresholding (IHT) method for several
tensor decomposition formats, namely the higher-order singular value decomposition (HOSVD), the tensor
train format, and the general hierarchical Tucker decomposition. Additionally, the recent papers [20,19]
extend the Tensor IHT method (TIHT) to low Canonical Polyadic (CP) rank and low Tucker rank tensors,
respectively. TIHT as the name suggests is an iterative method that consists of one step that applies the
adjoint of the measurement operator to the remaining residual and a second step that thresholds that signal
proxy to a low-rank tensor. This method has seen provable guarantees for reconstruction under various
geometry preserving assumptions on the measurement maps [34,20,19]. All these works however propose
first reshaping a d-mode tensor X € R"1*--*"d into an H?:l n;-dimensional vector x and then multiplying
by an m X Hle n; matrix A. Unfortunately, this means that the matrix A must be even larger than the
original tensors X. The main goal of this paper is to propose a more memory-efficient alternative to this
approach.

In particular, we propose a modewise framework for low-rank tensor recovery. A general two-stage mod-
ewise linear operator £ : R™1 % XM"d — R™M1XXMar takes the form

ﬁ(X) = RQ (R1<X) X1 Al XJAJ> X1 Bl s Xy Bd/’ (1)

where (i) R is a reshaping operator which reorganizes an R™*""*"d tensor into an R™*" X% tensor,
after which (ii) each A; € R™*" is applied to the resphaped tensor for j = 1,... ,d via a modewise
product (reviewed in Section 2), followed by (iii) an additional reshaping via Ro into an R™1 % Xmy
tensor, and finally (iv) additional j-mode products with the matrices B; € R XM for j=1,...,d. More
general n-stage modewise operators can be defined similarly. First analyzed in [21,23] for aiding in the
rapid computation of the CP decomposition, such modewise compression operators offer a wide variety of
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computational advantages over standard vector-based approaches (in which R4 is a vectorization operator so
thatd=1,4;, = A ¢ R™<I15 7 s a standard Johnson-Lindenstrauss map (see, e.g., [29]), and all remaining
operators Ra, By,... are the identity). In particular, when R; is a more modest reshaping (or even the
identity) the resulting modewise linear transforms can be formed using significantly fewer random variables
(effectively, independent random bits), and stored using less memory by avoiding the use of a single massive
m X H;l n; matrix. In addition, such modewise linear operators also offer trivially parallelizable operations,
faster serial data evaluations than standard vectorized approaches do for structured data (see, e.g., [23]),
and the ability to better respect the multimodal structure of the given tensor data.

Related Work: This paper is directly motivated by recent work on low-rank tensor recovery using vector-
ized measurements [34,20,19]. In particular, we consider the same class of low-rank tensors as in [34], but
utilize modewise compression maps rather than a purely vectorization based approach. We also note other
recent work involving the analysis of modewise maps for tensor data include, e.g., applications in kernel
learning methods which effectively use modewise operators specialized to finite sets of rank-one tensors [2],
as well as a variety of works in the computer science literature aimed at compressing finite sets of low-rank
(with respect to, e.g., CP and tensor train decompositions [33]) tensors. Additionally, we note more general
results involving extensions of bounded orthonormal sampling results to the tensor setting [23,3] which
apply to finite sets of arbitrary tensors.

Contributions: The purpose of this paper is to use the framework of modewise measurement operators
(see Equation (1)) to create highly structured and computationally efficient measurement maps. We aim
to provide both theoretical guarantees and empirical evidence that several of these modewise maps allow
for the efficient recovery of tensors with low-rank HOSVD decompositions. This represents the first study
of such modewise maps for performing norm-preserving dimension reduction of nontrivial infinite sets of
elements in (tensorized) Euclidean spaces, and so provides a general framework for generalizing the use of
such maps to other types of, e.g., low-rank tensor models. Our main theoretical results are presented in
Section 3. In particular, Theorem 3.3 provides a sufficient condition for a modewise map to satisfy a TRIP.
Theorem 3.8 then provides sufficient considitions for a two-step map which combines modewise maps and a
vectorization based approach to also satisfy TRIP. Corollaries 3.4, 3.6, 3.9 and 3.11 then provide examples
of maps, constructed from either subgaussian matrices or subsampled orthogonal matrices with random
sign that will satisfy these assumptions with high probability. While previous work has shown that it is
possible to construct norm-preserving modewise embeddings of either finite sets [23] or low-dimensional
subspaces (see, e.g., [21,28]), this is the first work to extend these techniques to the much larger set of all
tensors with a low-rank HOSVD decomposition in order to obtain modewise embeddings with the Tensor
Restricted Isometry Property (TRIP). Additionally, having obtained modewise TRIP operators, we then
consider low-rank tensor recovery via Tensor IHT (TIHT). We also provide an empirical demonstration of
the good performance such modewise maps can provide for tensor recovery in Section 4.1.

A Motivation for Low Memory Measurements: One example in which low storage requirements for linear
measurements are particularly valuable is the use streaming algorithms for tensor reconstruction in the big
data setting (see, e.g., [37]). In such settings one does not have access to the entire large tensor one wishes
to approximate all at once, but instead receives the tensor over an extended period of time via a series of
updates. For example, suppose that one is aggregating tensor data over time via the simple additive rule

Xy =X + AAX, Xo=10

based on updates AX;. Then, at a later time, one needs to reconstruct an estimate of X7 = Zle AX; €
R71>xnd for some T° > 0 large. Here the simple solution of simply storing every intermediate tensor
X; in uncompressed form is unattractive when the overall tensor dimensions are large because it requires
a huge storage commitment over a large number of updates for simply aggregating the final tensor Xp.
Alternatively, one may reduce the storage costs by instead storing small linear sketches of the intermediate
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tensors. In this setting a linear operator £ : R™1X " X7d — R™M1XXTMar yith Hzlzl my < H?Zl ne can be
used to iteratively update the much smaller sketch

LX) = L(Xe—1) + LIAXL)

over the course of the many updates t =0, ...,T. The final sketch £L(X7) can then be used to approximately
recover X7 at a later date in a one-time memory-expensive application of, e.g., TTHT.

A potential drawback of this approach is that one must store £ itself in addition to storing the £(X;_1)
and L(AX;). Therefore, in order for this method to be useful, the cost of storing £ must be less than the
savings accrued by not storing the A;. Indeed, even in the traditional compression setting, one needs to store
the measurement operator itself and without a low memory approach, that storage itself will often exceed
any savings gained by the compression of the data. Hence, with such motivating applications in mind, we
focus on developing low-memory tensor sketches L.

Paper Outline: The rest of this paper is organized as follows. In Section 2, we will provide a brief review
of basic tensor definitions. In Section 3, we will state our main results, which we then prove in Section 5.
In Section 4, we discuss applications of our results recovering low-rank tensors via the TIHT, and present
numerical results. In Section 6, we provide a short conclusion and discussion of directions for future work.
Proofs of auxiliary results are provided in the appendices.

2. Tensor prerequisites

In this section, we briefly review some basic definitions concerning tensors. For further overview, we
refer the reader to [24]. Let d > 1, nq,...,nq > 1 be integers, and [n;] := {1,...,n;} forall j =1,...,d.
For a multi-index i = (i1,...,%4) € [n1] X -+ X [ng], we will denote the i-th entry of a d-mode tensor
X € Rm*Xn"d by X;. When convenient we will also denote the entries by X (i1,...,4q), &i,,. iy, or X(i).
For the remainder of this work, we will use bold text to denote vectors (i.e., one-mode tensors), capital
letters to denote matrices (i.e., two-mode tensors) and use calligraphic text for all other tensors.

2.1. Modewise multiplication and j-mode products:

For 1 < j < d, the j-mode product of d-mode tensor X' € R™1>XMi—1XnjXNj41XXNd with 3 matrix
U € R™i*™ is another d-mode tensor X' x; U € R™1 XXM —1XmiXn1XXna Jts entries are given by

j
(X XG5 U )iy iy iy sosia = Z KisroigroiaUesi; (2)
ij=1
for all (il, S ,ij_l,g, ij+1, R ,id) S [Tll] X e X [nj_l] X [m]} X [le_H] X oo X [nd] If yq,...yq are vectors,

y; € R", we define their outer product Y = O;l:l y; € R™"> X" to be the d-mode tensor in R"™1* >4
whose entries are given by

d
Vir,oia = H(}’j)z‘j~
j=1
In particular, if ) has this form, then one may use (2) to see that

ijU=<Z_Cj)1yi> XjU:<Z§yi>OUYjO( CdD Yz'>~ (3)

i=j+1

For further discussion of the properties of modewise products, please see [21,24].
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2.2. HOSVD decomposition and multilinear rank

Let r = (r1,...,74) be a multi-index in [n;] X -+ - X [ng]. We say that a d-mode tensor X’ has multilinear
rank or HOSVD rank at most r if there exist subspaces Uy C R™ ... Uy C R™ such that

d
dimi; =r; and X € ®Ui,
i=1

where ®?:1 U; denotes the tensor product of the subspaces U; here. We note that a tensor X has rank at

most r = (r1,...,74) if and only if there exists a core tensor C € R™* %7 guch that
d
X=Cx1U' xy...xqU% = Cky,...kg) O s, 4
ka1 = 33 k) g
ka=1 k1=l

where, for each 1 < i < d, ui,...7uii is an orthonormal basis for U;, and U’ is the n; x r; matrix
U' = (uf,...,ul ). A factorization of the form (4) is called a Higher-Order Singular Value Decomposition
(HOSVD) of the tensor X. It is well-known (see e. g [34]) that we may assume that the core tensor C has
orthogonal subtensors in the sense that for all 1 < i < d, we have (Ci,=p,Cr;=¢) = 0 for all p # ¢, where

Ci,=p is (d — 1)-mode subtensor of C only contalnlng entrles where k; = p, i.e.

Z Clk1y...spy.. ka)C(k1y. . q,.. ., kq) =0 unless p =gq. (5)
k=1
J#

We also note that, since each of the {uj, }i“; form an orthonormal basis for U;, we have ||C||p = || X||p :=

(X, X), where here (-,-) denotes the trace inner product.

Remark 2.1. The Canonical Polyadic (CP) rank of a d-mode tensor is the minimum number of rank-one
tensors (i.e., outer products of d vectors) required to represent the tensor as a sum. If X has HOSVD rank
r then (4) implies X has CP rank at most I1%_,r;. (In particular, if r; = r for all i, then X has CP rank at
most r<.)

2.8. Restricted isometry properties and tensors

Definition 2.2. [RIP(e,S) property] We say that a linear map A, defined on a normed vector space with
norm || - ||, has the RIP(e, S) property if for all elements s € S

L =o)llsl* < [AGI* < (1 +e)s]? (6)

We emphasize that the set S in Definition 2.2 can be a subset of any normed vector space (not necessarily
a tensor space). In the following definition, we will focus on the generalized Frobenius norm which we define
by

ndg ni
1207 =D > X (i)
ig=1 i1=1

Definition 2.3. [TRIP (4, r) property] We say that a linear map A has the TRIP(d,r) property if for all X
with HOSVD rank at most r we have

(1= )1 X]E < JAX)IE < 1+ )| X]E (7)
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2.4. Reshaping and the HOSVD

For simplicity we will assume below, and for the rest of this paper, that there exist n,r > 1 such that
n; = n,r; = r for 1 < i < d. We note that this assumption is made only for the sake of clarity, and all of
our analysis can be extended to the general case.

We let k be an integer which divides d and let d’ := d/k. Consider the reshaping operator

d d
R:QR" = QQR™
i=1 =1

that flattens every x modes of a tensor into one. Note that R decreases the total number of modes from d
to d’ = d/k. Formally, R is defined to be the unique linear operator such that on rank-one tensors it acts as

d ) d/ Ki d/ )
®(6x) -5 & x)-ox

=\ e=14m(i-1)

where ® denotes the Kronecker product when applied to vectors. We observe that if a tensor X’ has a
form (4), then its reshaping X := R(X) is the d’-mode tensor X’ € ®f:1 R™" with HOSVD rank at most

r’ = (r*,...,r") given by

i re rt . d, .
R X Y i) O, a
=1 N

Jar=1

where the new component vectors ﬁf , are obtained by taking Kronecker product of the appropriate u?ci, and
where € € R™ ™" is a reshaped version of C from (4). Since each of the {uj }; _; was an orthonormal

basis for U;, it follows that {&i% }7"_; is an orthonormal basis for U; == span ({ad }r_y).

3. Main results: modewise TRIP

For 1 <i<d,let A; be an m x n* matrix, let A : R?"X~*n" 5 RMX.-Xm he the linear map which acts

modewise on d’-mode tensors by
A(y):yxl Al Xo oo Xqr Ad/. (9)
Let X be a d mode tensor with HOSVD decomposition given by (4). By (3) and (8), we have that
ARX) = AX) = Y ... Clirs- - vja)(Aril oo Agad ). (10)
Jar=1 Jji=1

Our first main result will show that A satisfies the TRIP(d,r) property under the assumption that each
of the A; satisfies a restricted isometry property on the set S o defined below, which corresponds to all
unit norm tensors that either have rank (1,...,1) or can be written as the sum of two tensors with rank

(1,...,1).
Definition 3.1. [The set S; 5] Consider a set of vectors in R™",

Sy :={t| 0=, u cs" !} (11)
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and let Sy := {”xﬂ,”z ‘ x,y € §1 st (x,y) = 0} For the rest of this text we will let Sy 2 := S1 U Ss, and
note that Sy o C S™ 1.

More precisely, will show that Ao R satisfies the TRIP(§, r) property under the assumption that each of
the A; satisfy the RIP(e, S 2), where ¢ is a suitably chosen parameter depending on 4. In the case where
r=1:=(1,1,...,1), this is nearly trivial. Indeed, if ¥ = ¢ O%_, 0!, and A is the map defined in (9), then
we have

, d
S, d O O
| 4@)|| = lle O ait|| = fe TT et
=1 =1
Therefore, since Hé\g H = |Ic| H?Zl |[4f||, we immediately obtain the following proposition.

Proposition 3.2. Suppose that A is defined as per (9) and that each of the A; have RIP(e,S1 2) property. Let
§ =max{(1+¢&)?—1,1— (1 —¢)?} and assume that § < 1. Then Ao R satisfies the TRIP(S,1) property,
that s,

1= NX]* < JARX)* < (1 + )X
for all X with HOSVD rank 1 = (1,1,...,1).

Our first main result is the following theorem which is the analogue for Proposition 3.2 for r > 2. It shows
that if each of the A; satisfies RIP (g, Sy 2) property for a suitable value of ¢, then A has the TRIP(4,r)

property.

Theorem 3.3. Suppose that A is defined as per (9) and that each of the A; have RIP(e,S1 2) property. Let
r > 2, let § = 4d'r% and assume that § < 1. Then Ao R satisfies the TRIP(J,r) property, i.e.,

(1= 9)IX]* < JAR@X))? < (1 +9)1X]? (12)
for all X with HOSVD rank less than v = (r,r,...,r).
Proof. See Section 5.3. O

The following corollary shows that we may pick the matrices A; to have i.i.d. properly normalized
subgaussian entries.

Corollary 3.4. Let r > 2 and let v = (r,r,...,r). Suppose that A is defined as per (9) and that each of the
A; € R™*™" has i.i.d. —subgausszan entmes for alli=1,...,d, where d = d/k for k > 2, and suppose
that 0 < n,6 < 1. Let

2 2
m}C(S_Zr?dmax{M d In <d>} (13)
K

K2 KN

for a sufficiently large constant C. Then Ao R satisfies TRIP(S,r) property (7) with probability at least
1—n.

Proof. See Section 5.3. O



168 C.A. Haselby et al. / Appl. Comput. Harmon. Anal. 66 (2023) 161-192

If one compares Corollary 3.4 to the analogous result in [34], they may note that our bounds depend on r2¢

rather than . However, in many applications of interest the total dimension Hle n; is orders of magnitude
larger than the number of modes d. For example, a five-minute 1080p video shot at 24 frames per second is
naturally modeled as a tensor in R1920X1080x3x7200 iy, wwhich case we have d = 4 and [[,_, n; =~ 4.48 x 101°.
Therefore, in this paper, we will focus on the dependence in on the total dimension rather than the number
of modes.

For another possible choice of the A;, we consider the set of Subsampled Orthogonal with Random Sign
matrices defined below. Note, in particular, that this class includes subsampled Fourier (i.e., discrete cosine
and sine) matrices.

Definition 3.5 (Subsampled Orthogonal with Random Sign (SORS) matrices). Let F € R™ ™ denote an
orthonormal matrix obeying

A
F*F =1 and max|F;;| < — 14
[Pyl < (14)
for some A > 0. Let H € R™*"™ be a matrix whose rows are chosen i.i.d. uniformly at random from
the rows of F. We define a Subsampled Orthogonal with Random Sign (SORS) measurement ensemble as
A= ,/7-HD, where D € R"*" is a random diagonal matrix whose the diagonal entries are i.i.d. £1 with
equal probability.

Analogous to Corollary 3.4, the following result shows that we may choose our matrices A; to be SORS
matrices in Theorem 3.3.

Corollary 3.6. Let r > 2 and let v = (r,r,...,r). Suppose that A is defined as per (9) and that each of
the A; € R™*"" 4s a SORS matriz with A < C' for a universal constant C', as per Definition 3.5, for all
i=1,...,d, where d = d/k for k > 2. Furthermore, suppose that 0 < n,0 < 1. Let

2
m > 015—2r2d%n(”) L, (15)
where
K 2
L=1In <ﬁ> In (26” d) In2 [025—%%7” m(s) 1, (Q—dﬂ (16)
KN KN K KN

and C1,Cs are sufficiently large absolute constants. Then A o R satisfies TRIP(S,r) property (7) with
probability at least 1 — ).

Proof. See Section 5.3. O

d

If we wish, to further improve embedding dimension of m ' provided by Corollaries 3.4 and 3.6, we can

apply a secondary compression, analogous to the one used in [21], by letting
.AQnd(X) = AQnd (VeCt(.A(R(X))), (17)

where A and R are as in Theorem 3.3, vect is a vectorization operator which reshapes a d-mode tensor into
a vector by lexicographic ordering, and As,q is a matrix which satisfies an RIP property on the range of
vecto AoR. Notably, we will show that the two-step map, As,q is able to achieve greater dimension reduction
than its one-step counterpart A o R. While it is true that As,q has a higher memory cost than Ao R, it
has lower memory cost than a vectorization based approach as we shall discuss further in Remark 3.13.
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In Theorem 3.8 stated below, we will show that Asg,g4 satisfies TRIP(d,r) for suitably chose parameters.
One of the key challenges in doing this is that, for any given ¢, the new factor vectors {Az'&; ’]7::1 defined
as in (10) are no longer orthogonal to one another. Therefore (10) is not an HOSVD decomposition of
A(z\(}), and the HOSVD rank of A(/'to’) might be much larger than the HOSVD rank of X'. However, one may
overcome this difficulty by observing that, with high probability, A(R (X)) will belong to the following set

of nearly orthogonal tensors.

Definition 3.7 (Nearly orthogonal tensors Br ,.0.x ). Let Br ,.0,» be the set of d-mode tensors in X € R™* >
that may be written in standard form (4) such that

(a) [luj,[l2 < R for all i and k;,

(b) |<u}c,u§€,>\ < pfor all k; # K,

(c) the core tensor C satisfies ||C||lp = 1,

(d) C has orthogonal subtensors in the sense that (5) holds for all 1 <4 < d,
(e) |X][r = 0.

Our next main result is the following theorem which shows that As,4 satisfies TRIP(d,r) for suitably
chosen parameters.

Theorem 3.8. Let v > 2 and let v = (r,r,...,7) € R Suppose that A and As,q are defined as in (9)
and (17). Let d' = d/k and assume that A; satisfies the RIP(g,81.2) property for all i = 1,...,d', where
§ =12d'r% < 1. Assume that As,q satisfies the RIP(5/3, Bl+s7€)1,5/37r/)7 property wherer’ = (r*,...,r") €
RY . Then, Asng will satisfy the TRIP(S,r) property, i.e.,

(1= 0)[[X]?* < [M2na(X)|1? < (14 8)[| X
for all X with HOSVD rank at most r.
Proof. See Section 5.4. O

The following two corollaries show that we may choose the matrices A; and Asnq to be either %—
subgaussian or SORS matrices. We also note that it is possible to produce other variants of these corollaries
where, for example, one takes each A; to be subgaussian and lets As,q be a SORS matrix.

Corollary 3.9. Let r > 2 and let v = (r,r,...,7) € R Suppose that A and Asnq are defined as in (9) and
(17), and that all of the A; € R™*™ have 4.i.d. %-subgaussi(m entries for alli =1,...,d', where d' = d/k,
and suppose that 0 < n,§ < 1. Let

d?1 d? 2d
m > Co~ 22 max{m, — In <—) } , (18)
K K KN
and let Agpg € R™2ndX™ pe g ﬁ—subgaussian matriz with 1.1.d. entries with
d dmr"® d dmr"® d>mrté 2
Mand = 05_2 max { (W—W) In (_ + ]_) + mr In (1 + 57#1) + m; ,11’1 (—) } . (19)
K K K K n

Then, Asnq satisfies the TRIP(0,r) property, i.e.,
(1= 8)X|1* < [[Azna(X)[* < (1 +8)[| X%,

for all X with HOSVD rank at most v with probability at least 1 — 1.
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Proof. See Section 5.4. O

Remark 3.10. Note that applying the reshaping operator (with £ > 1) is necessary in order for us to actually
achieve dimension reduction in the first step. Indeed, if xk = 1, then (18) requires m > n". We also note
that when other parameters are held fixed, the final dimension mg,4 will be required to be O(n), O(§~2),
O(Iln(n=Y)) or O(r??). While the dependence on the number modes d is exponential, we are primarily
interested in cases where n is large in comparison to the rank or the number of modes. In this case, the
terms involving n will dominate the terms involving 7¢. In Section 4.1, we will show that TRIP-dependent
tensor recovery methods (e.g., tensor iterative hard thresholding, discussed in Section 4), successfully work
for d =4 and k = 2.

In [34], the author considered i.i.d. subgaussian measurements applied to the vectorizations of low-rank
tensors and proved that the TRIP(J,r) property will hold with probability at least 1 — n if the target
dimension satisfies

M finar = C6 2 max{(r® 4+ dnr)Ind,In(n")}.

We note this bound has the same computational complexity as ours with respect to n, §, and n. While their
result has much better dependence on r, here, we are primarily interested in high-dimensional, low-rank
tensors and therefore are primarily concerned with the dependence on n. It is not known if the results from
[34] are optimal, but it is believed that these results are likely almost optimal. Therefore, we believe that
our results are likely almost optimal with respect to n, §, and n as well.

Corollary 3.11. Let r > 2 and let v = (r,r,..., 7). Suppose that A and Asnq are defined as in (9) and (17),
and that all of the A; € R™ ™" are SORS matrices (as per Definition 3.5) for all i = 1,...,d', where
d' = d/k. Furthermore, suppose that 0 < n,d <1 and, as in (15), let

9 2d nd? In(k)

m > Cd “r - L, where L is defined by (16). (20)

K

Next, let Appg € R™2dX™ qlso be a SORS matriz with

a d
—+1 p In (1+6r) + =

d K K
mang > C52 {M In <d ) 4 dmr
I

2 K
dmré}.i,

L =1n? <c_1 <ln é) [LH - dmr” In (é + 1> + dmr® In (1+ (5rd) + deMﬂ) In <é> In <%—m> .
02 n K K K K2 U] U]
Then, Agnq satisfies the TRIP(0,r) property, i.e.,
(1= )IX]* < [Azna(X)|* < (1 + )] X]
holds for all X with HOSVD rank at most r with probability at least 1 —n.
Proof. See Section 5.4. O

Remark 3.12. Similar to the subgaussian case, we note that reshaping (with x > 1) is needed in order
for us to achieve dimension reduction in the first compression. We also note that the final dimension is
O(npolylog(n)), O(§~2polylog(62)), polylog(n~!) and O(r?¥polylog(r)).
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Remark 3.13. One of the advantages of our method over a vectorization-based approach is that the maps A
and Agy,g require less memory to store than those considered in [34]. In particular, A requires d'mn” entries
to be stored in order to sketch a dimension of m? and Asng requires d'mn” + m% manq in order to sketch
a dimension of ma,q. By contrast, the map considered in [34] requires nm entries to reach a dimension of
m. To make this more concrete, we consider the case where d = 4, n = 40, k = 2, the final target dimension
is 10,000, and our maps are dense matrices with Gaussian entries. In this case, Asnq, with intermediate
dimensions of m; = my = 250 would require 40% x 250 x 2 + 2502 x 10,000 = 625, 800, 000 random entries,
with a storage cost of about 2.5 gigabytes assuming 32-bit floating point arithmetic and the SI meaning of the
prefix giga as 10° bytes. The vectorization based approach requires 40* x 10,000 = 25, 600, 000, 000 random
entries at a storage cost of about 102.4 gigabytes. In Section 4.1, we will show that under these settings
tensor recovery experiments using Asnq have an identical recovery rate reliability in both the Gaussian case
and SORS case when compared to those that use vectorization-based compression, despite the 40 times
smaller memory requirement.

4. Low-rank tensor recovery

Low-rank tensor recovery is the task of recovering a low-rank (or approximately low-rank) tensor from a
comparatively small number of possibly noisy linear measurements. This problem serves as a nice motivating
example of where the use of modewise maps with the TRIP(4, r) property can help alleviate the burdensome
storage requirements of maps which require vectorization. Indeed, when the goal is compression, storing very
large maps in memory as required by vectorization-based approaches is counterintuitive and often infeasible.

In the two-mode (matrix) case, the question of low-rank recovery from a small number of linear measure-
ments is now well-known to be possible under various model assumptions on the measurements [11,10,35].
One of the standard approaches is so-called nuclear-norm minimization:

X = argmin | X||, subject to L(X)=y.
X ERm1xn2
Since the nuclear norm is defined to be the sum of the singular values, it serves as a fairly good, compu-
tationally feasible proxy for rank. As in classical compressed sensing, an alternative to optimization-based
reconstruction is the use of iterative solvers. One such approach is the Iterative Hard Thresholding (IHT)
method [8,9,38] that finds a solution via the alternating updates

V= X0+ £ (y = LX), ’

Xj+1 =H, (y]) , ( )
where X is initiated randomly. Here, £* denotes the adjoint of the operator £, and the function H, is a
thresholding operator, which returns the closest rank r matrix via a truncated SVD. Results for IHT prove
that sparse vector or low-rank matrix recovery is guaranteed when the measurement operator L satisfies
various properties. For example, in the case of sparse vector recovery, the restricted isometry property is
enough to guarantee accurate reconstruction [8]. In the low-rank matrix recovery case, measurements can
be taken to be Gaussian [13], or satisfy various analogues of the restricted isometry property [38,7,41]. In
what follows, for the sake of simplicity, we will focus on the case where p1; = 1, which is referred to as
Classical IHT. However, our results can also be extended to Normalized TIHT where the step size p; takes
a different value at each step. (See [34] and the references provided there.)

The iterative hard thresholding method has been extended to the tensor case ([18,34,19]). In this problem,
one aims to recover an unknown tensor X € R™**-*"d with e.g., HOSVD rank r = (r,...,r), where r <
min n;, from linear measurements of the form y = £(X') +e, where L is a linear map from R™*--*"d — C™,
with m <[], n;, and e is an arbitrary noise vector. The iteration update is given by the same updates as
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(22). The primary difference with the matrix case is in the thresholding operator H, that approximately
computes the best rank r approximation of a given tensor. Unfortunately, exactly computing the best rank
r approximation of a general tensor is NP-hard. However, it is possible to construct an operator H, in a
way such that

12 — He(2)||F < CVd|| 2 — Zppst| F, (23)

where Zgggr € R™**"d ig the true best rank r approximation of Z € R™*--*"4_(For details, please see
[34] and the references therein.) For the rest of this section, we will always assume that H, is constructed
in a way to satisfy (23).

The following theorem is the main result of [34]. It guarantees accurate reconstruction of a tensor X via
TIHT guarantee when the measurement operator satisfies the TRIP(J, 3r) property for a sufficiently small 4.
Unfortunately, the condition (24), required by this theorem, is a bit stronger than (23), which is guaranteed
to hold. As noted in [34], getting rid of the condition (24) appears to be difficult if not impossible. That
said, (23) is a worst-case estimate, and in our numerical experiments we observe H, typically returns much
better estimates and the condition (24) does often hold, especially in early iterations of the algorithm.

Theorem 4.1 ([3/], Theorem 1). Let X € R™> X" Jet 0 < a < 1, and let L : R™ X" — R™ satisfy
TRIP(6,3r) with 6 < a/4 for some a € (0,1). Assume that y = L(X) + e, where e € R™ is an arbitrary
noise vector, and let X7 and Y7 be defined as in (22). Assume that

2

a
ba = 17(1 4 1+ 030) || L2

177 = 27 p < A+ &)1V = X||p,  where (24)

Then

, , b,
[X7 = X|p <a|X° — X|F+ 1 lell2s

—a

where by = 2v/1+ 0 + \/4€, + 282||L]|2-2-

Theorem 4.1 shows that low-rank tensor recovery is possible when the measurements satisfy the
TRIP(4, 3r) property. In [34], the authors also show it is possible to randomly construct maps which satisfy
this property with high probability. Unfortunately, these maps require first vectorizing the input tensor
into a n?-dimensional vector and then multiplying by an m x n? matrix. This greatly limits the practical
use of such maps since this matrix requires more memory than the original tensor. Thus, our results here
for modewise TRIP are especially important and applicable in the tensor recovery setting. The following
corollary, which shows that we may choose £ = A or Asy,g (asin (9) or (17)), now follows immediately from
combining Theorem 4.1 with Theorems 3.3 and 3.8.

Corollary 4.2. Assume the operator L, is defined in one of the following ways:

(a) L = vecto Ao R, where A is defined as per (9), vect is a vectorization operator, and the matrices A;
satisfy the RIP(e,812), and § = 4d'(3r)% < a/4.

(b) L = Agna defined as in (17), its component matrices A; satisfy RIP(g, Sy 2) property, § = 12d'%(3r)%,
and Afinar satisfies the RIP(6/3,B14cc1-5/3,x) pProperty.

Consider the recovery problem from the noisy measurements'y = L(X) + e, where e € R™ is an arbitrary
noise vector. Let 0 < a < 1, and let X7, and Y7 be defined as in (22), and assume that (24) holds. Then,
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Fig. 1. Fraction of successfully recovered random tensors out of a random sample of 100 tensors in with various

intermediate dimensions. A run is considered successful if relative error is below 1% in at most 1000 iterations.

. ) ba
|7 — X||p < ]| X° — X||F + T llell

—a

where b, = 2v/1+ 8§ + /4&, + 262|| Al 2—2.
4.1. Ezperiments

In this section, we show that TIHT can be used with modewise measurement maps as defined in (22) can
be used to successfully reconstruct low-rank tensors. In our experiments we will consider random four-mode
tensors in R™*™*"*" for n = 40 and n = 96. In the case where n = 40, we will utilize both modewise
Gaussian and SORS measurements. In the case where n = 96 we will only consider SORS measurements.'

In our experiments, we compare our two-step modewise approach to a vectorization based method. We
consider the percentage of successfully recovered tensors from batches of 100 randomly generated low-rank
tensors, as well as the average number of iterations used for recovery on the successful runs. In the case
where n = 40, we consider the algorithm to have successfully recovered the tensor if the relative error falls
below 1% in at most 1000 iterations. Similarly, in the case where n = 96, we consider the algorithm to have
successfully recovered the tensor if the relative error falls below 5% in at most 1000 iterations. Compression
in terms of final size of measurements over total number of entries in the true tensor ranges from about 0.04%
to 0.4% depending on the choice for final sketching dimension. In all instances, we initialize the algorithm
using a randomly generated low-rank tensor. In our experiments, apply the map from (17) with k = 2. That
is, we reshape a four-mode tensor whose modes are all of length n into a n? x n? matrix, perform modewise
measurements reducing each of the two reshaped modes to m, the choice for intermediate dimension, and
then in the second stage, vectorize that result and compress it further to mapg, the final target dimension. In

1 Qur code is available at https://github.com/MichaelPerlmutter/ModewiseTrip.
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our experiments, we consider a variety of intermediate dimensions to demonstrate the stability of advantage
of the modewise measurements over the vectorized ones. In our experiments, for fair comparison, we will set
the final embedding of our two-step process mopnq equal to the final embedding dimension of the vectorized
method mgnar. For a unified presentation, we will refer to the final dimension as mg in either case.

As noted in Remark 3.13, our proposed two-step method offers significant storage savings as compared
to the vectorized based approach. For example, when we use Gaussian measurements with my = 10,000
and n = 40, the vectorized computations had to be carried out using four NVIDIA v100 GPUs in parallel,
whereas the two-step method easily fits on memory of one GPU. In the case where n = 96, generating,
storing and applying Gaussian random matrices is impractical. For instance in the scenario we consider in
Fig. 3, where n = 96 and my = 65,536, we would need more than 22.25 terabytes to store the Gaussian
map required for the vectorized approach. A two-step approach would require about 4.4 terabytes to store
the measurement matrices.

We also note that we may apply SORS measurements to larger tensors than Gaussian measurements.
This is because a fast Fourier transform enables SORs measurement matrices to be applied to the tensor
without explicitly forming all the measurement maps. In particular, we need only store the sign changes
which form the diagonal of matrix D, and store the choice of which rows are sampled from F to form matrix
H (see Definition 3.5). This same size of problem requires about 67 megabytes storage in two-step method
and 340 megabytes for the vectorized approach. Thus we restricted ourselves to SORS measurements for in
the n = 96 case for both the vectorized and two-step approach.

As shown in Figs. 1 and 2 the two-step approach, when compared to the vectorized approach with
the same choice of final sketching dimension, shows reliable recovery rate, and comparable convergence
speed with both Gaussian and SORS measurements. Indeed, for some choices of intermediate and final
sketching dimensions, modewise measurements empirically recover low-rank tensors more reliably than
vectorized measurements (see Fig. 1, bottom row). We show that these advantages do not result in the
need for a substantially increased number of iterations in order to achieve our convergence criteria. Across
all considered scenarios, the average number of iterations to meet the convergence criteria can be bounded
by two to eight times the number needed in the corresponding vectorized approach, depending on the choice
m for intermediate sketching dimension. Interestingly, for some ranges of the intermediate and final target
dimension mg, and in the case of SORS measurements in the rank (5,5,5,5) instance, fewer iterations are
needed (see Fig. 2, bottom right). Thus, modewise measurements are an effective, memory-efficient method
of dimension reduction, and the choice of intermediate sketching dimension allows us to further balance
trade-offs in terms of convergence speed and overall memory requirements, given a particular size and rank.

In Fig. 3, we investigate the performance of the algorithms as rank of the tensor increases. A larger tensor,
with n = 96 enables us to consider a wider range of r’s that are reasonably considered to be low-rank. We
maintain the vectorized to two-step comparison, and also consider two different final sketching dimensions,
mg = 32,768 and 65, 536. Due to the larger problem size and ranks, we scaled the convergence criteria to be
5% relative error in at most 1000 iterations for the comparison of recovery reliability and convergence speed.
We observed in terms of performance of the algorithms a phase change as rank of the tensor increases for a
fixed final sketching dimension. In particular, for mg = 32,768 the performance of vectorized and two-step
approach empirically degrade significantly at » = 6 and 7 respectively for this convergence criteria. When
doubling the sketching dimension to my = 65,536 we see empirically that phase change that the drop in
performance occurs at r = 8. The bottom row of Fig. 3 shows the shift in terms of average relative error
for a fixed number of iterations. For the larger ranks and smaller sketching dimensions we observe that
stagnation at non-global optima appears more likely and the runtimes required for acceptable recovery can
become impractical. Both vectorized and two-step approaches have this feature, however for a fixed final
sketching dimension, for some ranks near the threshold the two-step method performs incrementally better.
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5. Proofs and theoretical guarantees

In this section, we will state auxiliary results that link the RIP property on a set S with the covering
number of S, and establish the covering number estimates for the subsets of interest.

5.1. Auziliary results: RIP estimates

For a set S we let N'(S,t) denote its covering number, i.e., the minimal cardinality of a net contained in
S, such that every element of S is within distance t of an element of the net. For further discussion of the
covering numbers, please see [40]. The following proposition shows the estimates on the covering number of
S can be used to show that maps constructed from subgaussian matrices have the RIP (e, S) property. Its
proof, which is a generalization of the proof of [34, Theorem 2], can be found in Appendix C.

Proposition 5.1. Suppose A € R"™*"" has i.i.d. %—subgaussz'an entries. Let S C R™ *™ be a subset of unit
norm k-mode tensors and let N'(S,t) denote the covering number of S. Then for any 0 < n,e < 1 and

1 2
m > Ce™? max / InN(S,t)dt | ,1,In(n7") p, (25)
0

for some suitably chosen constant C > 0, with probability at least 1 — 1, the map A(X) = A(vect(X)) has

the RIP(e,S) property, i.e.,

(1 =&)X < ||A(vect(X)||? < (14 &)||X||*> forall X €S.

We also need an analogue of Proposition 5.1 that holds for SORS matrices. Such results are known in the
literature, however all of them have additional logarithmic terms compared to the i.i.d. subgaussian case.

We shall use the following result from [22] which is a refinement of Theorem 3.3 of [32].

Theorem 5.2 (Theorem 9 of [22]). Suppose A € R™*"" is a SORS matriz as per Definition 3.5 with A < C"
for an absolute constant C'. Let S be a subset of R™", and let w denote the Gaussian width (see, e.g. [10])
of the projection of S onto the unit ball, S := {x/Ixll2 | x € S\ {0}}, i.e. w:= sup, . 5(x,g)2 where g is
a standard Gaussian random vector. Let 0 < n,e < 1 and assume

m > Ce %w? In? [clw2 111(27]*1)5*2] In(2n~ 1) In(2en"n~1), (26)

for some suitably chosen constants C,cy > 0. Then, with probability at least 1 — 1, the matriz A has the
RIP(e,S) property, i.e.,

(1 —e)|Ix||* < |1Ax|* < (1 +o)||x||*  holds for allx € S.

Remark 5.3. It is known (see, e.g., Theorem 8.1.10 of [40]) that the Gaussian width w(S) can be estimated
by the same Dudley-type integral as used in (25). Namely, for any set S,

W(S) < / VNS 1) dt.
0

Additionally, if S is a subset of the unit ball, we have In(N(S,t)) = 0 for t > 2, and therefore,
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W(S) < / VNS, 1) dt.
0

5.2. Auziliary results: covering estimates

The proofs of Corollaries 3.4 and 3.9 rely on applying Proposition 5.1 to the sets S1,2 and By r g, defined
in Definitions 3.1 and 3.7. The proofs of Corollaries 3.6 and 3.11 analogously follow from an application
of Theorem 5.2. The following two lemmas provide covering estimates for these sets. Their proofs can be
found in Appendix B.

Lemma 5.4 (Covering number for very low rank tensors). The covering number for the set S1 o defined in

Definition 3.1 satisfies
6r\"" 2
N(Si2,t) < (<7> +1) .

Lemma 5.5. For all0 >0, 0<e,u<1, R>1, and allr = (r,7,...,7) € RY, the set Br or C R" defined
in Definition 3.7 admits a covering with

d
d+ 1D\ Hrnd rd nr
N(BR,p,G,ra H . ||F7€) < <¥) (R2 er“) d/2 (R2 +,UzT'd)d /2 R(dfl)dnr. (27)

(Note that the right-hand side is independent of 6.)

Remark 5.6. If we set © = 6 = 0 and R = 1 we may obtain the covering number bound

3(d+ 1) rdtdnr
c 3

N(Broow |- ) < (

via a trivial modification of the proof of Lemma 5.5 which doesn’t require an application of Lemma B.1
when 6 = 0. This is the same as the estimate obtained in [34, Lemma 5] for By ,0.r-

Remark 5.7. One may note that the right hand side of (27) increases rapidly as R grows large. Indeed, if we
do not assume that orthogonality holds in (4), it is difficult if not impossible to obtain bounds independent
of R. For instance, our result has similar R dependency to Lemma 2.6 of [19] which provides a covering
number bound of tensors with bounded factors and low CP rank. Nevertheless, when we apply Lemma 5.4,
we will set R = (1 + ¢) and so this dependence will not have a large influence on our main results such as
Theorem 3.8.

5.83. Proof of Theorem 3.3 and Corollaries 3./ and 3.6
In order to prove Theorem 3.3, it will be useful to write A as a composition of maps
A) = Aa (... (A1(D))), where A;(Y) =Y x; A; for 1 <i < d'. (28)
Our argument will be based on showing that A; approximately preserves the norm of Aiq(e.. (Al(/'f’ )))
for all 1 < i < d’. We first note that by (8), we may still write X as a sum of 7% orthogonal tensors. This

motivates Lemma 5.8 which shows that if a linear operator L on an inner product space V satisfies certain
assumptions, then it approximately preserves the norm of orthogonal sums (up to a factor depending on the
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number of terms). Lemma 5.9 then provides sufficient conditions for the assumptions of Lemma 5.8 to hold.
Lastly, Lemma 5.10 will show that the image of the first i — 1 compressions, A;_1(... (Al(,)é)))7 satisfies
these conditions and therefore that we may proceed inductively. The proofs of Lemmas 5.8, 5.9, and 5.10
are deferred to Appendix A.

Lemma 5.8. Let V be an inner product space and let L be a linear operator on V. Let U C V be a subspace
of V spanned by an orthonormal system {vi,..., vk} € V. Suppose that

A =e)llvil* < lLvill> < A +e)vil® for all1 <i < K, (29)
and also that
(L=g)|vi £ vi|P <IL(vi £V)IIP < A +e)|lvi£v,|* foralll <i,j< K. (30)
Then we have
(1= Ke)llwl* < [[Lw|* < (1 + Ke)|[wl* for all w € U.

The next lemma checks that, if A;, satisfies RIP(e, Si 2) property for some 1 < igp < d’, then the operator
A, satisfies the conditions of Lemma 5.8 for the system of rank one component tensors that are produced
by our reshaping procedure.

Lemma 5.9. Let {V1,...,Vk} € R %™ be an orthonormal system of rank one tensors of the form Vi =
Od L Ve where ||V ]| :'1 foralll <i<d. Let 1 <ig < d, suppose A;, has the RIP(/2,S1,2) property

1=

and assume that each v}? is an element of the set Sy defined in Definition 5.1. Then the conditions (29) and
(30) are satisfied for (the vectorizations of) these {V;}X | and L = A;, defined via A;j(X) = X x;, A, -

The next auxiliary lemma gives a formula for the tensor ); obtained by applying the first ¢ of the maps

#(d'~t) rank-one
tensors of unit norm. Moreover, for each of the terms in this sum, the (¢ 4+ 1)-st component vector is ﬁ;jjl

A;. In particular, it shows that ) can be written as an orthogonal linear combination of r
as defined in (8) and therefore is an element of the set Sj.

Lemma 5.10. Let )y = X and Vi = A(Vi—1) = Vo1 x4 Ag forallt =1,...,d . Then, foreach1 <t < d'—1,
we may write

e

V= Z Z Ct(jt+17~~~ajd’) |:<ié1v;t+17~~»7jd’) O( 6 ﬁ;1>:|’ (31)

X . i =t+1
Jar=1 Jt+1=1 i=tt

i i
Jt41ssJar Jt41seesdar
t. However, we suppress this dependence in order to avoid cumbersome notation.)

where ||v | =1 for all valid index subsets. (We note that the terms v implicitly depend on

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. First, note that we can write )y = X as an orthogonal linear combination of r?
norm one terms of the form

d’ .

o1 .
Oujia ]-gjig'rﬁa
=1
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where each of the vectors u L 1< < r*, are obtained as the vectorization of a rank-one k-mode tensor.
Therefore, since A; satlsﬁes RIP(&, 12), Lemma 5.9 allows us to apply Lemma 5.8 to see

AL (X)]| < (1 + 2re)]| X (32)

Next, we apply Lemma 5.10 and note that there are r* #(d'=1) terms appearing in the sum in (31). Therefore,
Lemmas 5.8 and 5.9 allow us to see that

1Veeall < (1420 02) |2 (33)
for 1 <t <d —1. Since Yy = .A()%), combining (32) and (33) implies that the operator A defined in (9)
satisfies

d -1

JA) | < TT (1+ 2@ =0) 2.

t=0

To complete the upper bound set « := 2r% and note that 2« < 1. Then, since r > 2

d -1 d -1
H (1 + 27"”(‘1/_75)5) = H (1+ar™t)
t=0 t=0
d -1 d -1
—14+a Z Pt o2 Z pmitta)e L d'—(+. 4 (d -1)k
t1,t2=0:
t1 <to
d -1 d'—1 2 d'—1 a

S1+()(ZT7tH+ aZriM +...+ 0427‘7”””
t=0 t=0 t=0

o0 o0 2 o] d/
< 1+a22_t+ <a22_t> +.F (aZQ‘t>
t=0 t=0 t=0

<1420+ (20)2 4 ...+ (20)
<142da
=1+4d"r%

which completes the proof of the upper bound. The proof of the lower bound is nearly identical. O
We will now prove Corollaries 3.4 and 3.6.

Proof of Corollary 3.4. We first note that Lemma 5.4 implies that the integral from (25) can be bounded
as

1
/\/ln./\/' (S12,t dt<C’/\/fmln 6rk/t) dt < C+/knln(k (34)
0

Since the set Sy 2 contains (reshaped) unit norm k-tensors, the assumption that m satisfies (13) implies that
each of the A; will satisfy the assumptions of Proposition 5.1 with 17/d’ in place of n and e =2 = (d/k)?r2462.
Therefore, by the union bound, we have that all of the A; will satisfy RIP (e, S1,2) with probability at least
1 — 7, and so the result now follows from Theorem 3.3. O



180 C.A. Haselby et al. / Appl. Comput. Harmon. Anal. 66 (2023) 161-192

Proof of Corollary 3.6. To estimate the Gaussian width Sy 2, we use (34), Lemma 5.4, and Remark 5.3 to
see that

2 1
w(SLQ) S /1/1HN(8172,15) dt S /1/1HN(81,2,75) dt + 1/1I1N(81,2, 1)
0 0

< C"\/knln(k) + C"+/knIn(rk) = C\/knln(k)

We now observe that the assumption (15) allows us to apply Theorem 5.2 with 7/d’ in place of n and

£72 = (d/k)?r??6—2. Therefore, analogous to the proof of Corollary 3.4, we conclude the proof of by taking
the union bound and applying Theorem 3.3. O

5.4. Proof of Theorem 3.8 and Corollaries 3.9 and 3.11

The key to proving Theorem 3.8 is Lemma 5.11, which shows that the output of the first compression
step A(R(X)) lies in a set of nearly orthogonal tensors introduced in Definition 3.7, and Lemma 5.5 which
bounds the covering numbers for such tensors. We can then get TRIP by applying Proposition 5.1 to the
vectorization of A(R(X)).

Lemma 5.11. Let X be a unit norm d-mode tensor with HOSVD rank at most r = (r,...,r). Let A be
defined as in (9), assume that the matrices A; have the RIP(g,81,2) property for all 1 < i < d', and that
§ = 12d'r% < 1. Then, the d'-mode tensor A(X) € R™**™ s an element of the set Biic c1-5/3 (as per

Definition 3.7). Additionally, let Bmgm = {

X
1X1e

X e Bl+5,871_5/3,r/} and suppose that m > r¢1. Then,

~ 9(d K+ 1 ritrtmd/k dmr® /k 2 g 2
N Bosro - I0) < (252 (14 +2r)™™ /" (14 2yt

holds for allt >0, and 1 > § > 0.
Proof. Asin (8) we set X = R(X), and write

d'

Z Zle,...,]d/ Ollolﬂ

Jar=1  j1=1 =

where, for all i, the vectors {ﬁ;l}g;l are mutually orthogonal. Recall that by (10), we have

Z Zojlr-wjd' (Alﬁ}lo...QAd/ﬁ‘;;/)_

Jar=1 J1=1

By RIP(e,S12) property, A || < (1+¢) for all 1 < i < d and all 1 < j; < 7% Additionally, by
Lemma A.1 (stated in Appendix A) we have

|(Au Au/>\<5

for all 1 <4 < d and all 1 < j;,j; < 7% such that j; # j;. The properties of the core tensor (c¢) and (d)
are preserved under the action of A and are satisfied for a unit norm, tensor in the HOSVD standard form.
Finally, Theorem 3.3 implies that A satisfies the TRIP(d/3,r) property which in turn guarantees that .A(/'% )
will also satisfy property (e) of Definition 3.7 with § =1 — /3.
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Applying Lemma 5.5 (with R = (14¢) and m, d’, ", and ¢ in place of n,d,r, and €) and the assumption

d—1

m>=r we obtain

6(d/k+1

r+r"md/k
dmr"® /k 2 g2
N (Biseei—s/ze | - lest) < ( 7 )) (1+e) +57"d) (14¢)?

Furthermore, a geometric rescaling argument implies that

- X
N Ba RN ,t :N<{—

hols for all § < 1. The stated result now follows. O

X e Bl+6,e,1—6/3,r’} s ” : Hth) < N (Bl-‘rs,s,l—é/?,,r’a || : ”Fa 2t/3)

Theorem 3.8 now follows from a direct application of Lemma 5.11 and Theorem 3.3.

Proof of Theorem 3.8. Theorem 3.3 implies that A satisfies the TRIP(d/3,r) property and Lemma 5.11
implies that A(X') belongs to the set By, . 1_s/3r- Therefore, we have

[ A2na(X) 12 < (1+8/3)JAWX) || < (1+6/3)%[1X]% < (1 + )X,
and
(1= o)X < (1-6/3)%|X)> < (1= §/3)[|AX)]| < [[A2na(X)]? O

The proofs of Corollaries 3.9 and 3.11 require an additional estimate bounding the Gaussian width of
BE’M from Lemma 5.11.

Remark 5.12. Let BE’M C R™*-X™ he the set of d'-mode tensors defined as per Lemma 5.11 and Defini-
tion 3.7. We can see that

1 2 1
/ InN (B st /,/m/\/(éa’&ﬁt) dt g/,/ln/\/(ég,é,,t) dt +\/InN (B 5., 1).
0 0 0

If m > r?!, then we may apply Lemma 5.11 and use the concavity of /- to see that

1
/ lnN 567-, \/ r"”"md 1n<9(d/fz+l)) dt

0 O
1 1

d2 K
1+s) +srd) dt+/\/ :;T In(1+¢) dt

0

0
dmir+ d dmr* d>mrr
<oyfri+ T (—+1)+\/ e 1n((1+6)2+67"d)+\/ S In(l+e).
K KR

Furthermore, we also have

VInN (Be s, 1) < C'y[rd + dmr \/In (ﬁ + 1)
R Y

K 2 K
+\/me ln((1+5)2+<€rd)—|—\/d (1 +e).
K

K
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Proof of Corollary 3.9. Similar to the proof of Corollary 3.4, the assumption that m satisfies (18), implies
that with probability at least 1 — 7/2, all of the A; satisfy the RIP(g,S;2) property, § = 12d'r% < 1.
The assumption (18) also implies m > r9~!. Therefore, by Proposition 5.1, the estimate for the Dudley-
type integral from Remark 5.12, and the linearity of Asnq o vect we see that As,q o vect satisfies the
RIP ((5/37 Blﬁ,s’l,(;/g,r/) property with probability at least 1 — n/2 as long as

dmr"® d dmr*® d>mr=s 2
Maona > C§~ % max { <rd 4T ) In (— + 1) LU (14 06r?) + 777127’ ,In (—) } :
K K K K n

The result now follows by applying Theorem 3.8. O

Proof of Corollary 3.11. Repeating the arguments used in the proof of Corollary 3.6, we see that the as-
sumption that m satisfies (20), implies that with probability at least 1 — n/2, all of the A; satisfy the
RIP (e, 81 2) property with 6 = 12d'r% < 1. We also note that (20) implies that m > 79! so that we
may apply Remark 5.12. Thus, (21) and Theorem 5.2 imply that As,g satisfies the RIP ((5/37 Blﬁ,a’l,(;/g,r/)
property with probability at least 1 — n/2. Therefore, the result now follows from Theorem 3.8. O

6. Conclusion and future work

In this paper, we have proved that several modewise linear maps (with subgaussian and subsampled from
the orthogonal ensemble — e.g., discrete Fourier — measurements) have the TRIP for tensors with low-rank
HOSVD decompositions. Our measurements maps require significantly less memory than previous works
such as [34] and [19] that establish TRIP for vectorized measurements. We also note that unlike other
closely related works such as [23] and [21] that establish modewise Johnson-Lindenstrauss embeddings, our
results hold for all low-HOSVD rank tensors whereas previous work focuses on finite sets or for tensors
lying in a low-dimensional vector space. In our experiments, we have demonstrated that we are able to
recover low-rank tensors from a compressed representation produced via two-step modewise measurements.
Moreover, we show that we are able to achieve such recovery from a lower compressed dimension than with
purely vectorized measurements, establishing yet another advantage.

A natural direction for future work would involve extending these results to other tensor formats in-
cluding, e.g., tensors which admit compact tensor train, (hierarchical) Tucker, and/or CP decompositions
instead. Additional projects of value might include parallel implementations of the TIHT algorithm using
modewise maps that fully leverage their structure, as well as more memory efficient TIHT variants which
reconstruct the factors of a given low-rank tensor from its measurements instead of reconstructing the entire
tensor in uncompressed form. Indeed, such a memory efficient TIHT implementation in combination with
using modewise measurements would allow for memory efficient low-rank tensor reconstruction from the
measurement stage all the way through reconstruction of the final approximation in compressed form.

Appendix A. The proof of Lemmas 5.8, 5.9, and 5.10

The proof of Lemma 5.8 requires the following well-known auxiliary lemma. For completeness, we provide
a short proof below.

Lemma A.1. Let V be an inner product space and let L be a linear operator on V. Let {vi,..., vk} be a
finite orthonormal system in V (that is, ||vi|| =1 for all i and (v;,v;) =0 for all i # j). Suppose that

(1—e)|lvi £ vi [P < |[L(vi £ V)P < (L +e)|vi£vj|> foralll <i,j < K,i#j.

Then
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[(Lvi, Lv;)| <e  foralli#j.

Proof. Let i # j. Then,

ULy, Lvy) = | L(vi +v)|? = [L(vi = v))]?
< (Lt e)lvi+vil* = (1= e)llvi — vyl|?
= @ +e)(Ivill* + Ivill* +2(vi, v;)) = (@ = ) ([Ivill* + [Iv51I* = 2(vi, v;))
= 4(vi, v) + 2e(vall* + [ val*)
= 4e,

where the last inequality follows from the fact that ||v1]|? = ||v2|* = 1 and (v;, v;) = 0. Thus, (Lv;, Lv;) <
. The reverse inequality is similar. O

We may now prove Lemma 5.8.

The Proof of Lemma 5.8. We argue by induction on K. When K = 1, the result is immediate from (29)
and the fact that £ is linear. Now assume the result is true for K — 1. An arbitrary element of &/ may be
written as

K
W = E C;V;
i=1

where c1,...,cx are scalars. We will write w = wg_1 4+ cx Vg, where

K-1
Wg 1= E C;Vi.
i=1

By construction, we have

lew|? = |[Lwr_1]|? + |lex Lvic||? + 2k (LWx 1, LV ).

We may use the inequality 2ab < a? + b? along with Lemma A.1 to see

K-1 K-1
2CK<[,WK,1,£VK> = Z 2CiCK<£Vi7£VK> < g Z 2CKCZ‘
i=1 i=1
K-1 K-1 (35)
<ed (k+c)<(K—Deck+e>
i=1 i=1
By the inductive assumption,
K-1
lewi_a P < (1+ (K — De)llwr [ = 1+ (K — 1)) 3 &
i=1

Thus,
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K—-1 _
[Lw]* < (14 (K = 1)) Y e + (1+e)ck + (K — Deck +¢ Z c
=t (36)

=

(14 Ke) Z = (1+ Ke)|lw]|%.

The reverse inequality is similar. O

Proof of Lemma 5.9. Without loss of generality, we consider the case where ig = 1. By assumption, we have
v} € S for all 1 < k < K. Therefore, since A; is assumed to have the RIP(e/2, S; 2) property, we have

1-¢/2=(1-¢/2)IIvill?* <[ Avil® < (1 +¢/2)vil* = 1 +¢/2.

Now, (29) follows from the fact that

d’ X
4 (5%)

and the fact that the v§ have norm one. To prove (30), we let 1 < k1, k2 < K and recall that Vy, = O'le Vi,

and Vg, = Of,zl v§‘€2, where each of the v}‘cl and v}‘cz have norm one. If k; = ks, (30) follows immediately

d’ d
‘ = [[(A1vi) Ovi O- .. Ovii | = I AwvlIVEIl- - Vi I = [Axviell,

from (29). Otherwise, we may use the assumption that {Vi,...,Vk} form an orthonormal system to see
d/ d/ d/
i i i i
0= (Vs Vi) = <z<_)1 Vklvig Vk2> = H(Vk-,lvvk2>'
= = i=1

This implies that there exists an i such that (v} ,vi ) = 0. If (vi ,vi ) = 0, then since A; satisfies
RIP(e, S ,2), we may apply Lemma A.1, and the Cauchy-Schwarz inequality to see that

d d . J ,
\<A1 (lezl) A (,_quz)ﬂ  {AVE L A2 V2 v V)]

d/
< /2] Ivi, Vi, |
1=2

=¢e/2.

On the other hand, if <v£1 , vi2> = 0 for some ¢ # 1 then we have

d’ . d’ . ’ ’
(a0 (i) A (G vi) )| = vt v 6, )] v v =

Therefore, in either case we have
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d d 2 d 2 a 2 d . d
(G G BB o (G 2 () 4 ()
i=1 i=1 i=1 i=1 i=1 i=1

d 2 d 2
<(1+5/2)< iC_)lvzl + Z4(_)1v}€2 )Jrs
d 2 d 2 d 2 d 2
(1+5/2)< O Vi || +1|O vi, >+(€/2)< O Vi || +{|O v, )
i=1 i=1 i=1 i=1
d 2
— (149 | Ovi, + O Vil
i=1 i=1
where in the last equality, we used orthogonality to see
d d 2 d 2 d 2
O vy, + Ovi,|| =[OV +]0O v,
1=1 =1 1=1 =1

The reverse inequality is similar. O

Proof of Lemma 5.10. We argue by induction. When ¢t = 0, the decomposition (31) follows immediately
from (8) with Cy = C and the fact that Yy = X.
Now suppose that the result is true for ¢ for some 0 < ¢ < d — 2. Then,

Vit1 = Ve Xe41 Arpa

d’

=> > Gl o) [(évéwh---dd') Q(At+1ﬁ;:11)o< O u]>:|

. . i=t+2
Jar=1  Jr1=1 =t

Therefore, summing over j;y1-st mode and normalizing yields

rk

" 41 d
Vit1 = Z Z Cor1(etas - Jar) KZQIV}HQ,...,M,) O( O uji>:| ;

Jar=1 Jt42=1 i=t+2

where the new terms v (with one less subscript) are defined as

Jt+25esdar

i {’;’Hz Ja i
. yees . N | ] .
Viepa,odar = ‘ and Ct+1(']t+27 co 7-]d/) - HV.7t+27~--7Jd’

. b
~i
Viera,eda

where
TK/
iy = O Culierteda) (O V) OAwail). o
Jedzsendar tJttts o Jd) D Vi, 15,
Jtr1=1 -

Appendix B. The proof of Lemmas 5.4 and 5.5

The proof of Lemma 5.4. Classical results [40] utilizing volumetric estimates show that

3

N < (3) 1)
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Let V] be the k-fold Kronecker product of t/2x-nets for S*~1. By (37), we may choose N to have cardinality
at most (6x/t)"". Moreover, for any X = @_, u’ € Sy (defined by (11)),

K K
Qu' - Qi
i=1 i=1

inf ||X —X||p < inf
XeN; XeN:

~ 1 .
X=®_,a" F

K K

j—1 K J
Y@ @ @
XeNl i . . . .
X:®f:1ﬂ1‘]71 =1 =3 =1 =541

k_fiZ1 , ) K )
e 32 (Tt ) 1 ot T 1

26/\/’1 i o L
X=or_ i j=1 \i=1 i=j+1
t
< Kk—.
2K

IN

F

Now, let S7 5 be the set of nonzero X' = X} + A such that each X; € S; U{0} and has (X, X2) = 0. For
a given X' € S 5, we may set X = X; 4 Xy, where for i = 1,2 Xj is the best (N U {0})-approximation of
X;, and note that

1X = X||p < ||X — Xil|p + || X2 — Xa|lp < t.

Thus, Nz := (N U{0}) + (N +U{0}) = {A1 + X2 | X1, X2 € N1 +U{0}} \ {0} is a t-net of S , with
cardinality at most ((%)"™" + 1)2. Lastly, we note that each element of Sf , has norm at least one and that
S1,2 is the projection of Sf , onto the unit sphere. Therefore, the projection of N> onto the unit sphere is
t-net for S; 2. O

The following technical lemma will be used in the proof of Lemma 5.5.

Lemma B.1. Let A C B C R", and suppose that C C B is an /2-net of B. Then, there exists an e-net
C' C A of A with cardinality |C'| < |C].

Proof. We will construct C’ from C' as follows. First, let C' be the subset of C' whose elements are all at
least €/2 away from A,

C:= {x | x € Cand inf |x—yl2 > 5/2}.
yEA

Next, for each x € C'\ C let x’ € A be any point of A satisfying ||x — x’||2 < €/2, and then set

C' = U x' C A.

x€C\C

Note that |C’| < |C| by construction.

To see that C’ is an e-net of A, choose any y € A C B and let x € C be a point satisfying ||y — x|| < &/2.
Noting that x ¢ C, we can see that there is a x’ € €’ such that ||x — x'||s < £/2. Therefore, by the triangle
inequality,

ly = xll2 < lly = x[l2 + [x = x'[|l2 < &.

This establishes the desired result. O
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The proof of Lemma 5.5. Our argument is based on the proof of [34, Lemma 5], with necessary modifications
to account for the fact that the tensor factors are not orthogonal.
Part 1: Construction of the net. An arbitrary element of Bg ,, ¢,» can be written as X = Cx 1Vixg. . . xgVe

X

where the core tensor C € R"* is a d-mode tensor with Frobenius norm one and the factor matrices

Vi e R™ " have columns V;‘ with norm at most R. The set of all core tensors satisfying the orthogonality

condition (d) is isometric to a subset of the unit ball in R". Therefore, the admissible core tensors admit
an £1-net A of the cardinality at most (3/51)Td by [34, Lemma 1]. We define the || -||1,2 norm by [|[V]|1,2 :=
max; ||v;||2 and note that by construction we have

V|12 < R. Therefore, our admissible factor matrices
satisfying condition (b) have an eo-net (with respect to the ||-||1,2 norm) of the cardinality at most (3R /e2)™"
again by [34, Lemma 1]. We now define
. 3 rd 3R dnr
Ni={Txa Va7 T e N and 7 e Nz}, V] < (_) <_) .

€1 13}

Going forward we will prove that A above is an €/2-net of B, ,,,0,r for suitable choices of 1 and e5. The
result will then follow from noting Bgr ,,6,r € Br,u,0,r and applying Lemma B.1.

Part 2: Term by term approximation. Let us take an arbitrary element of X € Bg 0, and consider its
component-wise approximation in X € N-

X=Cx1Vxy...xqV?*€Bpor and ?:@xlvl xz...xdvde./\f,

where ||C — C||r < &1 and ||Vi — V12 < &g for all 1 < i < d. The triangle inequality implies that

d
1% = X|r <Y ITlr (38)
§=0
where Ty = (C — C) ><1V1 Xa ... xdvd and for 1 < j <d,

7;‘:CX1V1...Xj_1Vj71 Xjo xj+17j+l...><dvd fOI‘lg]gd,

where Wi = Vi — V7.

Part 3: Bounding 7; for j=1,...,d. For 1 < j < d, we can expand

ITi% =" > Tt ta)l

ta=1 t1=1

n r r J—1 ) d 2 (39)
Dol ol ST} X R B X | B
ti=1 |kq=1 k1=1 i=1 i=7+1
1<i<d
where v¢, Co ,v. denote the columns of V?, and similarly wi,...,w’ and ¥i,...,¥. denote the columns of

Wi and V'. Exchanging the sums, we can rewrite (39) in the following way:
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n d
Z Z Clk1, ... ka)C(ln, - 1) > [H vl ( ]wi(tj)wij(tj) II @ )wi, (k)
li=1 .

l
k;=1 t;=1 =1 ! i=j+1
1<7,<d 1<1<d 1<i<
r jil . . d
= C(k1a~ -wkd)c(llw"ald) [HW%NVZ&)] <Wi:j,W%j> H <V;c,;avz;>
li=1,k;=1 i=1 i=j+1
\zgd

We estimate scalar products by |<W§w,w2) 2 and

o o R?2, ifk; =1,
<V%i,vzi>l,|<vz,,,vz>l<{ ’ o

1, otherwise
Therefore, for any 1 < j < d, we have
r i-1 o d
S Clhkne o ka)Cl L) [H<vzi,vzi>] wiowi | T] 6. %5
li=1,k;=1 i=1 i=j+1
1<i<d
T j—1 ) . d
= Y Clki,....ka)C(ly,. .., la) [ngﬁ,vzi)] wiow) | T %k ve)
Ii=1,k;=1 i=1 i=j+1
1<i<d
ki=0;Vi#j
i-1 o d
+ Z C(kla BRI} kd)c(llv ) ld) [H<V%Zav%z>‘| <Wi1 ; W%J> H <V;ciav2i>

lizl,kizl =1 Z:j+1

1<i<d
Jitj s.t. ki#l;
T T
SRS N Ck,. o ka)C - la) + pRPTPES Y (C(R, - ka)C(ls - L)

Ii=1,k;=1 li=1,k;=1
1<i<d 1<i<d

ki=0;Vit]

since u < 1 < R by assumption. Hence, we have

HEH%’ < RQ(dil)&% Z E ZCkla cey ,“-akd)c(kla“'vljv"'akd)

ki=1  kj=1£;=1

1<i<d,i#j
T
+/1/R2(d_2)€§ Z |C(£17"'a€d>c<kl7"'7kd)|
Li=1 k=1
1<i<d
2
r
=RV N " (C(kr, . kg, k)P + p RS | ST (C(, )] |

where in the last step we have used the fact that by the orthogonality property (d)

ZCk;l,..., oo ka)C(kiy .o ljy .o kq) =0 unless k; = ¢;
z#]

(40)
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to see that

d

Z Z (kvsookgs oo ka)CRy, oLy ka) = Y (C(Ry, o ks a)

1 k]':]. j k;=1
#J

Recalling that all of our core tensors are unit norm, and appealing to Cauchy-Schwarz now allows us to
see that

ITiF < R*ODed + uR*Dedrd|C| 3 (41)
< e2R?T4(R? + prd).
Part 4: Bounding 7. We note that for any 1 < i < d, the || - ||[r — || - ||» operator norm of the operator

X — X x; V' is the same as the ¢y-operator norm of the matrix V? acting on R”. Next, we observe that for
all x = (x1,...,z,) € R” with ||x||2 = 1, we have

T T T
Vx5 = Y (viovi)mw, =Y (vi,videi + Y (Vi vi)awa.
k=1 k=1 k#l=1
Thus, bounding the coefficients by (40) and using Cauchy—Schwarz we have that
2
IVix||3 < R? ka +p Z x|z < R2(Ix|[3 + (Z |93k|> < (B? +rp) x5

k#l=1 k=1

Therefore, since ||C — C||% < &1,
170l = [(C = C) x1 V1 Xa ... xa V|| < (R? 4+ rp)?e?

Part 5: Conclusion and cardinality estimate. By (38), we get that |X — X[/ < ¢/2 if each ||T;]| <
£/2(d+ 1). That is, taking (R? + pur)¥/%e; :=¢/2(d + 1) and 2 R*"2(R? + pur®)Y/? := ¢/2(d + 1), we get

Vi< (3>rd <3R)dm B <6(d+1))rd+m‘i ((R2 . ur)d/Q)N (Rd R4 )1/2>dm~ (42)

€1 1S e

This concludes the proof of Lemma 5.5. 0O
Appendix C. The proof of Proposition 5.1

Proposition 5.1 follows by essentially repeating the proof of Theorem 2 of [34]. We include the argument
here for completeness. The key probabilistic component of the proof is the supremum of chaos inequality
proved in [25]:

Theorem C.1 ([25], Theorem 3.1). Let A be a collection of matrices, which size is measured through the
following three quantities E,V and U defined as

E(A) == 72(A)(72(A) + dr(A)) + dr(A)da2(A)
V(A) :=da(A)(2(A) + drp(A)), and (43)
U(A) == d3(A),
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where

dr(A) = iuliHAHE da(A) = iuaHAHz%
S S

and v2(A) = y2(A, || - ll22) s Talagrand’s functional. Let € be an L-subgaussian random vector whose
entries &; are independent, mean-zero and variance-1. Then, fort > 0,

t2 t
P A E|A E(A)+t) <2 — i y—— 0 ],
(i [14€18 ~ EA€1E] > c1EA) + ) < 200 (~comin{ - 770 1)
where the constants c1,co depend only on the subgaussian constant L.
The proof of Proposition 5.1. Observe that

esi= sup |[A(vect(X))|* —1] = sup [[[Va€|* —E[VxE|?],
xes,|x|=1 xes,|x|=1

where £ € R™" ™ is a vector with i.i.d. %-subgaussian entries, and Vy € R™*"" ™ ig a block-diagonal matrix

vect(X)T 0 0

_ b 0 vect(X)T ... 0

Va = Jm -
0 0 oo veet(X)T

Let V = V(S) be the set of all such matrices Vy where X € §. We will now apply Theorem C.1. It is easy
to check (see [34, Theorem 3]) that

da(V) =m~Y? and dp(V) =1, (44)

therefore, by Theorem C.1,

IP’{E ( + +—1>+t}<2 < i { v t2}>f nt>0 (45)
ex —Co 11N or a. 5
szalntrt < 2exp | —c 1+,

where v2 = y2(V).
For any set Sy, the Talagrand functional v2(Sp) is a functional of Sy which can be bounded by the
Dudley-type integral

d2(So)

’YQ(S()) S C / \/IHN(S(), || . ||2_>2,t) dt. (46)

0

We need to consider Sy = V(S). We note that due to (44),

NV 22, w) S NS, |- lr, vVmu),

and so by a change of variables

12(V(S)

/ VIRV i) d

ﬂ\
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This implies that v5(V) < CC~/2¢ by the main condition on m given in the statement of Proposition 5.1.
Choosing C' large enough, this ensures that vy < g/6¢y for any ¢; > 1.
Taking ¢t = ¢/2 and using € < 1, we can now rewrite (45) as

2
€ € 1 €
P > — —+ — -5 <2 —Cyme?

sz {Gcl] T e ) Ta( S 2ew (-Cme)

If C is chosen large enough, then m > Ce 2Inn~! implies that the probability bound is at most 1 and
m > Ce~? implies that m~'/2 < £/6¢,. This concludes the proof of Proposition 5.1. O
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