LOCAL MASS-CONSERVING SOLUTION FOR A CRITICAL
COAGULATION-FRAGMENTATION EQUATION

HUNG V. TRAN AND TRUONG-SON VAN

ABSTRACT. The critical coagulation-fragmentation equation with multiplicative coagu-
lation and constant fragmentation kernels is known to not have global mass-conserving
solutions when the initial mass is greater than 1. We show that for any given positive
initial mass with finite second moment, there is a time T* > 0 such that the equation
possesses a unique mass-conserving solution up to 7*. The novel idea is to singularly
perturb the constant fragmentation kernel by small additive terms and study the limiting
behavior of the solutions of the perturbed system via the Bernstein transform.

1. Introduction

We study the local well-posedness of the following coagulation-fragmentation equation

(C-F)

Fip(s;t) = Qe (p)(s,t) + Qr(p)(s,t)  in (0,00) x (0,00),

(1.1) p(5,0) = po(s in (0, 00).

Here, p(s,t) is the density of particles of size s at time ¢ > 0. The coagulation and
fragmentation terms are given by

Qe =3 [ afs — 5,8)p(s — 8, )p(5,) 5 — / " a5, 9)p(s, o5, 1) s,

S (o)
/ b(s —5,8)p(s,t)ds + / b(s,5)p(s+5,t)ds.
0 0

Qr(p)(s,1) = —3

The kernels of interest are
a(s,8) = s8, b(s,§) =1 fors,§>0.

Let my(t) be the k-th moment of p(-,t) for k,t > 0, that is,

mg(t) = /OOO sfp(s,t)ds.

In particular the first moment m (¢) represents the total mass of the system (1.1) at time
t>0.

It was conjectured that with this specific choice of kernels, if the system starts out with
initial mass m(0) < 1, then there will be a unique mass-conserving solution (see [4, 12]). It
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has been proven that mass-conserving solutions cannot exist for all time when m;(0) > 1
n [2, 11].

The history of C-F dates back more than a century ago with the work [9]. For more
extensive discussions of the subject, we refer the readers to the following works [1-3, 11].
Although there has been a lot of advancement in the field, a lot still remains to be discovered,
including the following question we set out to answer in this paper.

Question. Fiz m1(0) > 1. Is there a time T > 0 such that the equation (1.1) still has a
unique mass-conserving solution for 0 <t <T?

The answer to such question is not obvious as there are systems of coagulation-fragmentation
equations that exhibit instantaneous mass loss, that is, mq(t) < my(0) for all ¢ > 0.
For t > 0, let 7(-,t) be the distribution corresponding to the density p(-,t), i.e.,

(s, t) = / p(r,t)dr for s >0.
(0,s]

By probabilistic convention, we use the same notion 7(+,¢) to denote the measure on (0, c0)
with this distribution function. We always use the following notion of weak solutions to (1.1).

Definition 1. We say that p is a weak solution of the equation (1.1) in the measure sense if
/ o(s)dm(s,t) / / (s+8) — ¢(s) — ¢(8))als, 8) dn(s,t) dn(3,t)

_7/ / (s — 3) — $(3))b(s — 5,8) ds dn(s, 1),

for all test functions ¢ € BC([0,00)) N Lip([0, 00)) with ¢(0) = 0. Here, BC([0,00)) and
Lip([0, o)) are the classes of bounded continuous functions and Lipchitz continuous functions
on [0, 00), respectively.

For x > 0, let ¢,(s) =1 — e~ ™® be a test function, and denote by F(x,t) the Bernstein
transform of p(s,t), that is,

Fat) =Bl 2 [T e dnts.0),

Define m = mq(0). If my(t) = m for ¢t € [0,T) with some T > 0, then F satisfies the
following singular Hamilton—Jacobi equation

O F + - (8F m)(@IF—m—l)—&-g—m:O in (0,00) x (0,T),
(1.2) 0< F(x t) < mzx on [0,00) x [0,T),
F(z,0) = Fy(z) = Blpo](z) on [0,00).

Our main result in this paper is the following.

Theorem 1.1. Let py be a density function such that m = mq1(0) > 1/2, and mz(0) > 0.

Then, there exists a unique mass-conserving weak solution to equation (1.1) fort € [0,T%),
where
« _ bm 1
© 6m — 1my(0)

In the case when a(s,8) = s§ and b(s,8) = 0, it was shown in [7] that the C-F loses
mass exactly after T = m(0)~! > 0. Therefore, our result is consistent with that in [7].
The reason for this is that fragmentation helps prevent gelation (mass loss by formation
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of infinite-size particles). Equation (1.1) is more complicated because of the interaction
between coagulation and fragmentation kernels. We note that T™* is not known to be sharp
in Theorem 1.1.

We briefly summarize the progress of the conjecture in [4, 12] for m = m1(0) € (0, 1]. Under
certain assumptions, global existence and uniqueness of mass-conserving solutions when
m < 1/(4log2) was proven in [6] by the moment-bound method. By studying equation (1.2),
the authors of this paper obtained the global well-posedness for m < 1/2 in [11], which means
that T* = 400 in this regime. Furthermore, while uniqueness of mass-conserving solutions
for m € [1/2,1] was established in [11], the existence question remains an outstanding open
problem. For large time behavior results of (1.2), see [8, 11].

We continue this program of studying equation (1.2) to establish Theorem 1.1. The novel
idea is to singularly perturb b(s,5) = 1 by b°(s,8) = 1+ &(s + 8) for £ > 0 and study the
limiting behavior of the solutions of the perturbed system via the Bernstein transform.

Outline of the paper. In Section 2, we introduce an approximating system to (1.1) and
study various properties of it that is inherent to (1.1). In Section 3, we give a proof of
Theorem 1.1 by taking the limit of the approximating system. Our arguments are based
on studying viscosity solutions of (1.2). Finally, in Appendix, we give a heuristic argument
explaining why one should expect that our approximating system possesses a mass-conserving
solution.

2. Approximating fragmentations

In this section, we always assume the setting of Theorem 1.1. In order to study equa-
tion (1.1), we regularize it by adding a small additive term to the fragmentation kernel.
More precisely, for € > 0, we consider

@1) 57 (5,0) = po(s) in (0, 00).

Here, the corresponding fragmentation kernel is

{@pg(sat) = Qc(p ) (s, 1) + QE(p")(s, 1) in (0,00) x (0,00),

b°(s,8) =14¢e(s+5) fors,§>0.

Equation (2.1) has been shown to have a unique mass-conserving solution by [4]. By
studying the second moment of p°, we can show that the second moment of the solution to
equation (1.1), if exists, is finite up to time 7% = ;o™ mgl(o)'

Let Fe(z,t) = B[p°(-,t)](x), the Bernstein transform of p*. Then, F* satisfies the

following equation.

S

1 F
O F° + 5(81F5 —m)(0, F* —m—1)+ - m= eGe(x,t) in (0,00)?,
(2.2) 0< FE <mx on [0, 0)?
F(x,0) = Fo(x) on [0, 00).

9

mi(t)  ORFS(wt) 1. o .
5 5 x(m O Fe(z,t)) .

For derivations of equations (1.2) and (2.2), we refer the reader to [8, 11].

G (a,t) =
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Remark 2.1. It is interesting to note that equation (2.2) is a backward parabolic equation.
The well-posedness theory for this equation from the PDE viewpoint is a very interesting
open question.

Lemma 2.2. Fore > 0, let p° be the mass-conserving solution to equation (2.1). Then, for
0<t<Tr,

1
ma(0)~L — (6m)~1(6m — 1)t

m5(t) <

Proof. We proceed by using the method in [4, Theorem 3.1]. The idea is to use a cut-off
technique and the moment-bound method. For n € N, define
a"(s, 8) £ a(s,8)1j.n (s +3),
bo" (s, 8) = b° (s, 8)1p0,(s +3),
n def
Po = Polon -

Denote the coagulation and fragmentation terms corresponding the above kernels as Q¢ and
2", respectively. Let p=™ be the solution to the equation

9p™" (s,t) = Qe (p™")(s,1) + Q%" (p=")(s,)  in (0,00) x (0,00),
#£7(5,0) = i (5) in (0, 00).
Then, supp(p=™(-,t)) C [0,n] for every ¢ > 0. Let 5" (-,t) be the distribution corre-

sponding to the density p="(-,t). Take ¢(s) = s%1[g ,)(5) + n*1(;,00)(s) as a test function in
Definition 1. Then,

(2.3)

/ / §°8% 1o,y (s + 8) dm™" (s, ) dm™" (5, 1)
- / / (s — 8)8110.1(5) d& (1 + £5) " (s, )
0 0

oS o) oo .3
< / / s252 dr®" (s,t) dn®™(3,t) — / 5 Ljo,n)(s) dm="(s,1)
o Jo o 6 7
g,n ma’n(t) 1 g,n
(o7 - B < (1 w02,
where we used the Cauchy-Schwarz inequality in the last line
™ (0) 2 mi (Oms" (0) > " (1)
Therefore, for ¢t < 6m T 1(0),

1
m3(0)=1 — (6m)~(6m — 1)t -

Letting n — oo and using the compactness result in [4, Remark 3.10], we have

ms" (1) <

mi(t) < : ,
mz(0)~1 — (6m)~H(6m — 1)t
for t < 6m T ’mz(O) The proof is finished by picking T = 6mm1 mzl(o) O

We now let € — 0 in equation (2.2) to obtain a viscosity solution of (1.2).
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Lemma 2.3. For each ¢ >0, let ' be the smooth solution to equation (2.2). Then, there
exists F € C([0,00) x [0,T%)) such that, locally uniformly for (x,t) € [0,00) x [0,T%),

lim Fi(x,t) = F(z,t),

1—> 00

for some sequence {g;} — 0. Furthermore, F is a viscosity solution to (1.2).

Proof. We recall equation (2.2)

1 re

OF + 5 (0pFF =m) (0, F° =m — 1) + — —m = eG(z,1)  in (0,00)%,
Ongng OD[0,00)z,
F=(w,0) = Fo(w) on [0, 00),

where ® 2 e (3. 1)
ms(t) O0iF°(z,t 1
5~ £ 5 —E(m—ﬁwFE(aj,t)).
Recall that F¢ is the Bernstein transform of p°, i.e.,
F(x,t) = B[p* (-, 1)](x) -

Therefore, for (x,t) € [0,00)2, we have

GE(x,t) =

0 < 0, F°(x,t) = / se”**dn®(s,t) < m,
0

oo
\agpf(mn:/ s’e ™" dr®(s,t) < m(t).
0

Here, 7°(-, t) is the distribution corresponding to the density p(-,t). In particular,
0. F(0,t) =m.

By the mean value theorem, we have that for every ¢ > 0, T < T* and (z,t) € [0,00) x [0, 7],
there exists 6 € (0,1) such that

m5(t) O2F¢(x,t)

G (z,t) = 5 5 + 02F°(0x,1).
Therefore, by Lemma 2.2,
5
(2.4) sup G®(z,t)| < .
(ac,t)e[O,oo)X[O,T]| (2] -7
Furthermore, we also have
1 Fe 3
L0 P — m)(0uF —m— 1)+ L | < P E3)
2 T 2
As a consequence, for (z,t) € [0,00) x [0,7T] and € € (0,1),
m(m + 5 5
O ()] + 0, F ()] < TUED 0

By the Arzela-Ascoli theorem, there exist a function F € C([0,00) x [0,T*)) and a sequence
{e;} — 0 such that F°i — F locally uniformly on [0, c0) x [0, 7).
For € > 0, write
awr P—m)(p—m—1) u

He (z,t,p,u) = 5 +——m—eG%(x,t).
x
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Equations (2.2) can be rewritten as
O F° + He(z,t, F, F*) =0 in (0,00) x (0,7*).
Furthermore, we have that by estimate (2.4),
H® — H°
locally uniformly in (0,00) x (0,7*) x [0,m] x (0,00). Thus, by the stability of viscosity

solutions (see, e.g., [10]), F' is a viscosity solution of equation (1.2). O

Lemma 2.4. Let F be a viscosity solution to equation (1.2) given by Lemma 2.3. Then, in
the viscosity sense, in (0,00) X (0,T) for T < T*, we have

(2.5) 0< 0. F<m,
__ m(m+5) 5
2. F| < ,
(2.6) |0 F| 5 T
and
2 _
(2.7) —T*_TgaﬁFgo.

Proof. This is a consequence of 0 < 0, F°¢ < m, Lemmas 2.2 and 2.3. In particular, the
inequalities (2.5) and (2.6) are straightforward.
Let us now prove (2.7). As F¢ is the Bernstein transform of p°, we have that for
(z,t) € (0,00) x (0,7,
2
T*-T
Furthermore, for h > 0, there exist 6,6 € (0,1) such that
S Fe(x + 2h,t) + F&(x,t) — 2F°(x + h,t)

< -—mi(t) = 92F°(0,t) < 02F°(z,t) < 0.

0 12
_ O2F(z + h+ 0h,t)h? + 92F°(x + Oh, t)h?
B 2h?
1 ~
= 5(@%Ff(gc +h+0h,t) + O2F(z + Oh,t))
1

> 02F%(z,t) > e

In the above, we used the fact that 93F¢ > 0. Letting ¢ — 0, we obtain
02F(x+2h,t)+F(x,t)72F(x+h,t)2_ 2 .
h? T -T

Inequality (2.7) follows immediately by letting h — 0. O

In order to show the uniqueness of solutions to equation (1.2), we need the following
comparison principle. A similar result was proven in [11]. We provide the details here for
self-containment.

Lemma 2.5 (Comparison Principle for (1.2)). For T € (0,T*), let u be a sublinear viscosity
subsolution and v be a sublinear viscosity supersolution to equation (1.2), respectively. Then
u <.
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Proof. Since (1.2) is singular at = 0, we cut off its singularity by introducing a sequence
of function {¢, }, where

1
@n(x):max{,x} for all z € [0,00) .
n
For each n € N, we consider the following approximating Hamilton-Jacobi equation

OF + 5(0uF —m)(0:F —m — 1)+ 2 —m =0 in (0,00) x (0,T),
(2.8) F(x,0) = Fy(x) on [0,00),
F(0,t) =0 on [0,00),

We claim that w is a subsolution, and v" =+ ™ is a supersolution to equation (2.8),
respectively. It is clear to see that u is a subsolution. To check that v is a supersolution, we
note that,

U+%_m: Ly _m>tom, forz>l,

Pn n+m-—mz2=2—m, forx<%.
Therefore,

8v"+1(80"—m)(8v"—m—1)+ v -m

1
28tv+§(ﬁxvfm)(8mvfm—l)+%—m}O

in the viscosity sense. By the classical theory of viscosity solution applied to equation (2.8),
we imply that

u <",

As v™ — v uniformly when n — oo, we then conclude
u<v on [0,00)x[0,T),

as desired. O

Corollary 2.6. Let F be the function as in Lemma 2.3. Then F is the unique sublinear
viscosity solution to equation (1.2) on [0,00) x [0,T) for T < T*. As a consequence, the
convergence in Lemma 2.3 is in full sequence, that is, locally uniformly on [0,00) x [0,T*),
we have

(2.9) lim F€ = F.

e—0

Proof. First, note that F > 0 as it is a subsequential limit of F*¢ > 0. By (2.6),

- m(m +5) 5

<
Flat) < (52 + o )t + Fola),
for (x,t) € [0,00) x [0,T). Therefore, F is sublinear on [0,00) x [0,T). By Lemma 2.5, F is
the unique sublinear viscosity solution to equation (1.2). By this uniqueness, (2.9) follows
immediately. O
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3. Local existence of solutions to the C-F equation (1.1)

We now prove our main result, Theorem 1.1. Throughout this section, we will always
assume the setting of Theorem 1.1. Let ' = F be the sublinear viscosity solution to
equation (1.2) found in Section 2. By Lemma 2.4, we already have that F € C%1((0, ) x
(0,7%)). Let us now use this result to yield further that F' € C*°((0,00) x (0,7%)).

Proposition 3.1. Let F = F be the sublinear viscosity solution to equation (1.2) for T = T*.
Then, F' € C*((0,00) x (0,T%)).
Proof. We proceed by using the method of characteristics (see [5, Chapter 3]). Fix t € (0,7*)
and denote by X(x,s) the characteristic at time s € [0,¢] starting from z > 0, that is,
X(x,0) = x. Set P(x,s) = 0,F(X(x,s),s)), and Z(z,s) = F(X(z,s),s). When there is
no confusion, we just write X (s), P(s), Z(s) instead of X(z,s), P(x, s), Z(z, s), respectively.
Then, X (0) =z, P(0) = 0, Fy(z), Z(0) = Fy(x). We have the following Hamiltonian system

X = 8,H(P(s), Z(s), (R?P@%ﬂm+%%

s P
P—*@H (8H)P—X()2* (s)
7 =P 9,H-H=26"_ e

Note first that FF € C%1((0,00) x (0,7*)), and also 0
Therefore,

(3.1) —(m+;)<X

Besides, the concavity of F' in z yields further that

5 Z(s) P(s) 1 F(X(s),s)
P= X6 X6 T ( X(s)

m(i-m)

0, F < m thanks to Lemma 2.4.

N

§ .

— 9, F(X(s),s) ) >0.
X5~ X(s) X0 (x0)0)

Let us now show that {X(z,-)}¢(0,00) are well-ordered in (0, 00) x (0,7%), and none of
these two characteristics intersect. Assume otherwise that X (x,s) = X(y,s) > 0 for some
x#yand s € (0,t]. As F € CH((0,00) x (0,T%)), 0, F(X(z,s), s) is uniquely defined, and
therefore,

P(z,s) = P(y,s) = 0, F(X(x,s),s) and Z(z,s)=2Z(y,s)=F(X(z,s),s).

Hence, (X, P, Z)(z,s) = (X, P, Z)(y, s), and this contradicts the uniqueness of solutions
to the Hamiltonian system on [0, s] as we reverse the time.
By Lemma 2.4, we have that for ¢ < T* and (z, s) € (0,00) x [0, ],

2
ST —t
in the viscosity sense. We differentiate the first equation in the Hamiltonian system with
respect to = and use the fact that P(x,s) = 0, F(X(z,s), s) to yield that

< O2F(2,8) <0

0. X (z,5) = 0, P(x,5) = O?F(X(x,5),5) 0. X(x,5) > 8 X (2, 8).

T
Thus, 0, X (z, s) satisfies a differential inequality, and in particular,
Sy eToT 0. X (x,s) is nondecreasing on [0, t].

Therefore, 9, X (xz,s) > 0 for all (z,s) € (0,00) x [0,t] as 9, X (z,0) = 1. By the inverse
function theorem, X (-, s) is then locally smooth, and

F(z,s) = Z(X (x,s),s)
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is smooth as Z is also smooth. The proof is complete. O

To show the absolute-monotone property of F', we exploit the approximating functions
{F*®}<>0, which are Bernstein functions themselves. This allows us to completely avoid the
technical tour de force as in [11, Proposition 3.10].

Lemma 3.2. Let F = F be the sublinear viscosity solution to equation (1.2) for T = T*.
Then, for every (x,t) € (0,00) x (0,T*) and k € N,
(3.2) (=) 1oFF(x,t) > 0.

Proof. Fix k € Nand t € (0,T*). For each € > 0, let F’ be the solution to equation (2.2).
For every test function ¢ € C2°((0,00)) with ¢ > 0, we have that

0< [ e e o = [ (DF (@ 00k do.
0 0
Letting e — 0, we have
/ (fl)F(x,t)afgo(x) dx>0.
0

As F € C*((0,00) x (0,77*)), we integrate by parts once again to get

/ (1) 1R F(x, t)p(x)de >0,
0
from which (3.2) follows. O

Proof of Theorem 1.1. Let F = F be the sublinear viscosity solution to equation (1.2) for
T = T*. By Proposition 3.1 and Lemma 3.2, we deduce that for each ¢ € (0,7%), F(-,t) is a
Bernstein function. Theorem 1.1 follows from the fact that for each Bernstein function f,
there exists a Borel measure p so that B[u] = f (see [11, Appendix]). O

Appendix A. Some moment bounds for solutions to (2.1)

In this appendix, we will demonstrate a heuristic understanding on why equation (2.1)
is well-posed for all ¢ > 0, which was proven in [4]. This essentially comes from the ability
to control all the moments based on certain differential inequalities. Here, the strong
fragmentation term plays a crucial role. The argument here follows that in [4].

Assume that my(0) < oo for all k € N. Heuristically, we consider test functions ¢(s) = s
in Definition 1 to read off the information about mg (¢). We will demonstrate how this is
done for k = 2,3. Higher moments could be bounded in a similar manner inductively.

For k = 2, by using ¢(s) = s2, we get that

d 1 €
o (t) = mi ()2 — cmi () — Sms ().

We wish to control m$(t)? to prevent blow-up in finite time of m$(t). By Holder’s inequality,

k

we have
oo ) 3 1/3 , [® 3/2 2/3 o0
(/ (54/‘3/);/3) ds) (/ (32/3p§/3) ds) 2/ s2peds.
0 0 0
Therefore,
ms5(t)°
m4(t) 2 mg

This implies that
e ms(t)?
6 m?2

< 06,2 ’
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for some C 2 > 0. Therefore, for ¢ > 0,

mg(t) < mQ(O) + nggt.

For k = 3, using ¢(s) = s3, we have

d 1 e

ZMs(8) = 3ma(t)ma(t) — 5mat) — 5

By the Cauchy-Schwarz inequality, we have

mg(tymi(t) = m5(t)* .

Therefore,
ms(t)Q
(¢t 2 3
m5( ) m ’
and p
€
oS () < 3(ma(0) + Ceat)mi(t) — 1o—mi(1)* < Cealt+1)%,

for some C, 3 > 0. Thus, for t > 0,

m§(t) < ma(0) + Coz(t +1)3.
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