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Abstract

Here, we study a level-set forced mean curvature flow with the homogeneous
Neumann boundary condition. We first show that the solution is Lipschitz
in time and locally Lipschitz in space. Then, under an additional condition
on the forcing term, we prove that the solution is globally Lipschitz. We
obtain the large time behavior of the solution in this setting and study the
large time profile in some specific situations. Finally, we give two examples
demonstrating that the additional condition on the forcing term is sharp,
and without it, the solution might not be globally Lipschitz.

Résumé

Dans cet article on étudie, par la méthode des ensembles de niveau, le mou-
vement par courbure moyenne avec une condition de Neumann homogène au
bord. On montre d’abord que la solution est Lipschitz en temps et locale-
ment Lipschitz en espace. Ensuite, sous une condition supplémentaire sur le
terme de forçage, on montre que la solution est globalement Lipschitz. Dans
ce contexte, on obtient le comportement en temps long de la solution et on
étudie le profil asymptotique dans certaines situations. Enfin, on propose
deux exemples pour montrer que la condition additionnelle sur le terme de
forçage ne peut pas être améliorée et que sans celle-ci la solution peut perdre
son caractère Lipschitz global.
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1. Introduction

In this paper, we study the level-set equation for the forced mean curva-
ture flow
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ut = |Du| div
✓

Du

|Du|

◆
+ c(x)|Du| in ⌦⇥ (0,1), (1.1)

@u

@~n
= 0 on @⌦⇥ [0,1), (1.2)

u(x, 0) = u0(x) on ⌦. (1.3)

The domain ⌦ ⇢ Rn with n � 2 is assumed to be bounded and C
2,✓ for some

✓ 2 (0, 1). Here, c = c(x) is a forcing function, which is in C
1(⌦), and ~n is

the outward unit normal vector to @⌦. Throughout this paper, we assume
that u0 2 C

2,✓(⌦), and @u0
@~n = 0 on @⌦ for compatibility.

We first notice that the well-posedness and the comparison principle for
(1.1)–(1.3) are well established in the theory of viscosity solutions (see [2, 4,
10, 11] for instance). Our main interest in this paper is to go beyond the
well-posedness theory to understand the Lipschitz regularity and large time
behavior of the solution. The Lipschitz regularity for the solution is rather
subtle because of the competition between the forcing term and the mean
curvature term together with the constraint on perpendicular intersections of
the level sets of the solution with the boundary of ⌦. It is worth emphasizing
that the geometry of @⌦ plays a crucial role in the analysis.

We now describe our main results. First of all, we show that u is Lipschitz
in time and locally Lipschitz in space.

Theorem 1.1. Let u be the unique viscosity solution u of (1.1)–(1.3).
Then, there exists a constant M > 0 and for each T > 0, there exists a
constant CT > 0 depending on T such that

(
|u(x, t)� u(x, s)| 6 M |t� s|,
|u(x, t)� u(y, t)| 6 CT |x� y|,

for all x, y 2 ⌦, t, s 2 [0, T ].
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We next show that if we put some further conditions on the forcing term
c, then we have the global Lipschitz estimate in x of the solution. Denote by
(
C0 := max{�� : � is a principal curvature of @⌦ at x0 for x0 2 @⌦} 2 R,
K0 := min{d : d is the diameter of an open ball inscribed in ⌦} > 0.

Theorem 1.2. Assume that there exists � > 0 such that

1

n
c(x)2 � |Dc(x)|� � > max

⇢
0, C0|c(x)|+

2nC0

K0

�
for all x 2 ⌦. (1.4)

Let u be the unique viscosity solution to (1.1)–(1.3). Then, there exist con-
stants M,L > 0 depending only on the forcing term c and the initial data u0

such that
(
|u(x, t)� u(x, s)| 6 M |t� s|,
|u(x, t)� u(y, t)| 6 L|x� y|,

for all x, y 2 ⌦, t, s 2 [0,1). (1.5)

Let us now explain a bit the geometric meaning of K0. For each x 2 @⌦,
let

Kx = max{2r > 0 : B(x� r~n(x), r) ⇢ ⌦}.

Then, K0 = minx2@⌦ Kx. We notice next that if ⌦ is convex in Theorem 1.2,
then we clearly have C0  0. In this case, (1.4) becomes 1

nc(x)
2 � |Dc(x)|�

� > 0, a kind of coercive assumption, which often appears in the usage of
the classical Bernstein method to obtain Lipschitz regularity (see [19] for
instance).

In the specific case where c ⌘ 0 and ⌦ is convex and bounded, the global
Lipschitz estimate of the solution was obtained in [9]. See Remark 1. More-
over, a very interesting example was given in [9] to show that the solution
is not globally Lipschitz continuous if ⌦ is not convex. Motivated by this
example, we give two examples showing that u is not globally Lipschitz con-
tinuous if we do not impose (1.4). Furthermore, the examples demonstrate
that condition (1.4) is sharp.

Let us note that the graph mean curvature flow with the Neumann bound-
ary conditions has been studied much in the literature (see [13, 15, 20] and
the references therein).

We next study the large time behavior of u under condition (1.4).
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Theorem 1.3. Assume (1.4). Let u be the unique viscosity solution to
(1.1)–(1.3). Then,

u(·, t) ! v, as t ! 1,

uniformly on ⌦ for some Lipschitz function v, which is a viscosity solution
to 8

<

:
�
⇣
div

⇣
Dv
|Dv|

⌘
+ c(x)

⌘
|Dv| = 0 in ⌦,

@v

@~n
= 0 on @⌦.

(1.6)

We prove Theorem 1.3 by using a Lyapunov function, which is quite
standard. We say that v is the large time profile of the solution u. It
is important to note that the stationary problem (1.6) may have various
di↵erent solutions, and thus, the question on how the large time profile v

depends on the initial data u0 is rather delicate and challenging. We are
able to answer this question in the radially symmetric setting, and it is still
widely open in the general settings.

Theorem 1.4. Suppose that, by abuse of notions,
8
><

>:

⌦ = B(0, R) for some R > 0,

c(x) = c(r) for |x| = r 2 [0, R],

u0(x) = u0(r) for |x| = r 2 [0, R].

(1.7)

Here, c 2 C
1([0, R], [0,1)), and u0 2 C

2([0, R]) with u
0
0(R) = 0. Denote by

A :=

⇢
r 2 (0, R] : c(r) =

n� 1

r

�
,

A+ :=

⇢
r 2 (0, R] : c(r) >

n� 1

r

�
,

A� :=

⇢
r 2 (0, R] : c(r) <

n� 1

r

�
.

Define d : (0, R] ! (0, R] as

d(r) =

8
>>><

>>>:

r if r 2 A,

max (A \ (0, r)) if r 2 A+,

min (A \ (r, R]) if r 2 A� and A \ (r, R] 6= ;,
R if r 2 A� and A \ (r, R] = ;.
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Write u(x, t) = �(|x|, t) for x 2 ⌦ = B(0, R) and t > 0. Then, the limiting
profile �1(r) = limt!1 �(r, t) can be written in terms of u0 as: for each
r0 2 (0, R],

�1(r0) = max {u0(r) : r > d(r0)} . (1.8)

As a by-product, Theorem 1.4 shows that the solution to (1.1)–(1.3) is
not globally Lipschitz continuous with an appropriate choice of initial data
u0.

Corollary 1.5. Consider the setting in Theorem 1.4. Assume that there
exist 0 < a < b < R such that a, b 2 A and (a, b) ⇢ A�. Assume further that
u0 is a C

2 function on [0, R] such that

u0(r) =

8
><

>:

1 for r 6 a,

2 (0, 1) for a < r 6 b,

0 for b < r 6 R.

Then, u is not globally Lipschitz, and

�1(r) =

(
1 for r 6 a,

0 for a < r 6 R.

Lastly, we give another example to show the non global Lipschitz phe-
nomenon in Theorem 6.1. Since we deal with the situation where ⌦ is un-
bounded there, we leave the precise statement of Theorem 6.1 and corre-
sponding adjustments to Section 6.

Our problem (1.1)–(1.2) basically describes a level-set forced mean curva-
ture flow with the homogeneous Neumann boundary condition. If a level set
of the unknown u is a smooth enough surface, then it evolves with the normal
velocity V (x) = + c(x), where  equals (n�1) times the mean curvature of
the surface at x, and it perpendicularly intersects @⌦ (if ever). What is really
interesting and delicate here is the competition between the forcing term c(x)
and the mean curvature term  coupled with the constraint on perpendicu-
lar intersections of the level sets with the boundary. It is worth emphasizing
that we do not assume ⌦ is convex, and the geometry of @⌦ plays a crucial
role in the behavior of the solution here. Indeed, analyzing the competition
between the two constraints, the force and the boundary condition subjected
to @⌦, as time evolves in viscosity sense is the main topic of this paper.
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We now briefly describe our approaches to get the aforementioned results.
We use the maximum principle and rely on the classical Bernstein method
to establish a priori gradient estimates for the solution. The main di�culty
is when a maximizer is located on the boundary, which we cannot apply the
maximum principle directly. We deal with this di�culty by considering a
multiplier that puts the maximizer, with the homogeneous Neumann bound-
ary condition, inside the domain so that the maximum principle is applicable.
To the best of our knowledge, the idea of handling a maximizer in the proof
of Theorem 1.2 for the level-set equation for forced mean curvature flows
under the Neumann boundary condition is new in the literature.

Once we get a global Lipschitz estimate for the solution, by using a stan-
dard Lyapunov function, we prove the convergence in Theorem 1.3. Next,
the radially symmetric setting is considered, and (1.1)–(1.3) are reduced to
a first-order singular Hamilton-Jacobi equation with the homogeneous Neu-
mann boundary condition; see [7, 8] for a related problem on the whole
space. By using the representation formula for the Neumann problem (see,
e.g., [16]), we are able to obtain Theorem 1.4 and Corollary 1.5. The situa-
tion considered in Theorem 6.1 is related to that in [23, Section 4] with no
forcing term. As we have a constant forcing c interacting with the boundary,
the construction in the proof of Theorem 6.1 is rather delicate and involved.
It is worth emphasizing that Corollary 1.5 and Theorem 6.1 demonstrate
that condition (1.4), which is needed for the global Lipschitz regularity of u,
is essentially optimal.

We conclude this introduction by giving a non exhaustive list of related
works to our paper. There are several asymptotic analysis results on the
forced mean curvature flows with Neumann boundary conditions [13, 21, 22,
24] or with periodic boundary conditions [3], but they are all for graph-like
surfaces. The volume preserving mean curvature flow, which is a di↵erent
type of forced mean curvature flows, was studied in [17, 18]. Recently, the
relation between the level set approach and the varifold approach for (1.1)
with c ⌘ 0 was investigated in [1]. We also refer to [8, 14] for some recent
results on the asymptotic growth speed of solutions to forced mean curvature
flows with discontinuous source terms in the whole space.

Organization of the paper

The paper is organized as follows. In Section 2, we give the notion of
viscosity solutions to the problem and some basic results. In Section 3, we
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prove the local and global gradient estimates. Section 4 is devoted to the
study on large time behavior of the solution and its large time profile. We
give two examples that the spatial gradient of the solution grows to infinity
as time tends to infinity in Sections 5 and 6 if we do not impose assumption
(1.4) on the force c.

2. Preliminaries

In this section, we recall the notion of viscosity solutions to the Neumann
boundary problem (1.1)–(1.3) and give some related results.

Let Sn be the set of symmetric matrices of size n. Define F : ⌦ ⇥ (Rn \
{0})⇥ Sn ! R by

F (x, p,X) = trace

✓✓
I � p⌦ p

|p|2

◆
X

◆
+ c(x)|p|.

We denote the semicontinuous envelopes of F by, for (x, p,X) 2 ⌦⇥Rn⇥Sn,

F⇤(x, p,X) = lim inf
(y,q,Y )!(x,p,X)

F (y, q, Y ), F
⇤(x, p,X) = lim sup

(y,q,Y )!(x,p,X)
F (y, q, Y ).

Definition 2.1. An upper semicontinuous function u : ⌦ ⇥ [0,1) ! R is
said to be a viscosity subsolution of (1.1)–(1.3) if u(·, 0) 6 u0 on ⌦, and, for
any ' 2 C

2(⌦⇥ [0,1)), if (x̂, t̂) 2 ⌦⇥ (0,1) is a maximizer of u� ', and
if x̂ 2 ⌦, then

't(x̂, t̂)� F
⇤(x̂, D'(x̂, t̂), D2

'(x̂, t̂)) 6 0;

if x̂ 2 @⌦, then

min

⇢
't(x̂, t̂)� F

⇤(x̂, D'(x̂, t̂), D2
'(x̂, t̂)),

@'

@~n
(x̂, t̂)

�
6 0.

Similarly, a lower semicontinuous function u : ⌦ ⇥ [0,1) ! R is said to
be a viscosity supersolution of (1.1)–(1.3) if u(·, 0) > u0 on ⌦, and, for any
' 2 C

2(⌦ ⇥ [0,1)), if (x̂, t̂) 2 ⌦ ⇥ (0,1) is a minimizer of u � ', and if
x̂ 2 ⌦, then

't(x̂, t̂)� F⇤(x̂, D'(x̂, t̂), D
2
'(x̂, t̂)) > 0;
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if x̂ 2 @⌦, then

max

⇢
't(x̂, t̂)� F⇤(x̂, D'(x̂, t̂), D

2
'(x̂, t̂)),

@'

@~n
(x̂, t̂)

�
> 0.

Finally, a continuous function u is said to be a viscosity solution of (1.1)–
(1.3) if u is both its viscosity subsolution and its viscosity supersolution.

Henceforth, since we are always concerned with viscosity solutions, the
adjective “viscosity” is omitted. The following comparison principle for so-
lutions to (1.1)–(1.3) in a bounded domain is well known (see, e.g., [10]).

Proposition 2.2 (Comparison principle for (1.1)–(1.3)). Let u and v

be a subsolution and a supersolution of (1.1)–(1.3), respectively. Then, u 6 v

in ⌦⇥ [0,1).

To obtain Lipschitz estimates, it is convenient to consider an approximate
problem of (1.1)–(1.3) by considering, for " > 0, T > 0,

8
>>>><

>>>>:

u
"
t =

p
"2 + |Du"|2 div

✓
Du"p

"2+|Du"|2

◆
+ c(x)

p
"2 + |Du"|2 in ⌦⇥ (0, T ],

@u
"

@~n
= 0 on @⌦⇥ [0, T ],

u
"(x, 0) = u0(x) on ⌦.

(2.1)
Equation (2.1) describes the motion of the graph of u"

" under the forced mean
curvature flow V = + c in ⌦ with right contact angle condition on @⌦. The
following result on a priori estimates on the gradient of u" plays a crucial
role in our analysis.

Theorem 2.3 (A priori estimates). Assume that @⌦ is smooth and c 2
C

1(⌦). For each " 2 (0, 1) and T > 0, assume that u" 2 C
1(⌦ ⇥ (0, T ]) \

C
1(⌦ ⇥ [0, T ]) is the unique solution of (2.1). Then, there exist a constant

M > 0 and a constant CT > 0 depending on T such that

ku"
tkL1(⌦⇥[0,T ]) 6 M and kDu

"kL1(⌦⇥[0,T ]) 6 CT . (2.2)

Here, M and CT are independent of " 2 (0, 1).

The proof of Theorem 2.3 is given in the next section. The a priori
estimates then allow us to get the existence and uniqueness of solutions to
(2.1).
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Proposition 2.4. For each " 2 (0, 1) and T > 0, equation (2.1) has a
unique continuous solution u

". Furthermore, u" 2 C
2,1(⌦⇥ (0, T ]) \C

1(⌦⇥
[0, T ]) and (2.2) holds.

Proposition 2.4 can be obtained by the classical parabolic PDE theory.
For instance, we refer to [22] for a similar form of Proposition 2.4. The proof
of this proposition is quite standard, and hence, is omitted here.

Once we get (2.2), by the standard stability result of viscosity solutions,
and the uniqueness of viscosity solutions to (1.1)–(1.3), we imply that

u
" ! u as "! 0 uniformly on ⌦⇥ [0, T ]

for each T > 0. Moreover, Theorem 2.3 and Proposition 2.4 give us right
away Theorem 1.1.

3. Lipschitz regularity

In this section, we prove Theorems 1.1, 1.2, and 2.3. As noted, it is
actually enough to prove Theorems 1.2 and 2.3. First, we prove that the
time derivative of u" is bounded.

Lemma 3.1. Assume that @⌦ is smooth and c 2 C
1(⌦). Suppose that

u
" 2 C

1(⌦⇥ (0, T ])\C
1(⌦⇥ [0, T ]) is the unique solution of (2.1) for each

" 2 (0, 1) and T > 0. Then, there exists M > 0 depending only on the forcing
term c and the initial data u0 such that, for " 2 (0, 1),

ku"
tkL1(⌦⇥[0,T ]) 6 ku"

t(·, 0)kL1(⌦) 6 M.

Proof. Set b(p) = In � p⌦ p/("2 + |p|2). Then (2.1) is expressed as

u
"
t � b

ij(Du
")u"

ij � c(x)
p
"2 + |Du"|2 = 0 in ⌦⇥ (0, T ]. (3.1)

Here, we use the Einstein summation convention, and we write fi =
@f
@xi

and

fij =
@2f

@xi@xj
for i, j = 1, . . . , n, where f = f(x, t) is a given function. We now

show that
ku"

tkL1(⌦⇥[0,T ]) 6 ku"
t(·, 0)kL1(⌦). (3.2)

To prove (3.2), it is enough to obtain the upper bound

max
⌦⇥[0,T ]

u
"
t = max

⌦
u
"
t(·, 0)
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as the lower bound can be obtained analogously.
Di↵erentiating (3.1) with respect to t yields

(u"
t)t � b

ij(u"
t)ij � (bij)tu

"
ij � c(x)

(u"
t)lu

"
lp

"2 + |Du"|2
= 0,

where

(bij)t = �
(u"

t)iu
"
j

"2 + |Du"|2 � u
"
i (u

"
t)j

"2 + |Du"|2 +
2u"

iu
"
ju

"
l (u

"
t)l

("2 + |Du"|2)2 .

Suppose, on the contrary, that u"
t(x, t) > max⌦ u

"
t(·, 0) for some (x, t) 2

⌦⇥ (0, T ]. Then, there exist a small number � > 0 and (x0, t0) 2 ⌦⇥ (0, T ]
such that (x0, t0) 2 argmax⌦⇥(0,T ](u

"
t � �t).

At (x0, t0), we have Du
"
t = 0, and note that the boundary case x0 2 @⌦

is included due to the homogeneous Neumann boundary condition. Thus,

(u"
t)t � b

ij(u"
t)ij = 0, at (x0, t0). (3.3)

On the other hand, (u"
t � �t)t > 0, �b

ij(u"
t)ij > 0 at (x0, t0). Note that

the Neumann boundary condition is used for D
2
u
"
t 6 0 at (x0, t0) as well.

Since (u"
t)t > � > 0, we arrive at a contradiction in (3.3). Thus, (3.2) holds.

Choose
M = n

2kD2
u0kL1(⌦) + kc

p
1 + |Du0|2kL1(⌦)

to complete the proof.

We are now ready to prove Theorems 1.2 and 2.3 using the classical
Bernstein method. It is important emphasizing that the boundary behavior
needs to be handled rather carefully. We first give a proof of Theorem 1.2.

Proof of Theorem 1.2. Assume first that @⌦ is smooth and c 2 C
1(⌦). For

each " 2 (0, 1) and T > 0, let u" 2 C
1(⌦ ⇥ (0, T ]) \ C

1(⌦ ⇥ [0, T ]) be the
unique solution of (2.1).

Let w
" =

p
"2 + |Du"|2. In view of Lemma 3.1, we only need to show

that
max

⌦⇥[0,T ]
w

" 6 C (3.4)

for some positive constant C depending only on ku0kC2(⌦), kckC1(⌦), the con-
stants n, C0, K0, and � from (1.4). The crucial point here is C does not
depend on T and ". Fix (x0, t0) 2 argmax⌦⇥[0,T ] w

". If t0 = 0, then

max
⌦⇥[0,T ]

w
" 6 w

"(x0, 0) 6 kDu0kL1(⌦) + 1,

10



and (3.4) is valid. We next consider the case t0 > 0.
We write u = u

", w = w
" in this proof for brevity. Di↵erentiate (3.1) in

xk and multiply the result by uk to get

ukukt � (Dpb
ij ·Duk)ukuij � b

ij
ukukij � ukckw � c

ukulkul

w
= 0.

Substituting wwt = ukukt, wwk = ulukl and wwij = ukijuk+ b
kl
ukiulj, we get

wwt�w(Dpb
ij ·Dw)uij�wb

ij
wij+b

ij
b
kl
ukiulj�wDu·Dc�cDu·Dw = 0. (3.5)

We divide the proof into two cases: x0 2 ⌦ and x0 2 @⌦.

Case 1: the interior case x0 2 ⌦. We follow the computations of [6,
Lemma 4.1]. At (x0, t0), we have wt > 0, Dw = 0, D2

w 6 0, and thus

wDu ·Dc > b
ij
b
kl
ukiulj.

We then use the Cauchy-Schwarz inequality

(tr↵�)2 6 tr(↵2)tr(�2)

for all ↵, � 2 Sn, and put ↵ = A
1
2BA

1
2 , � = In, where A = (bij), B = (ukl),

In the n by n identity matrix to get tr(AB)2 > (trAB)2/tr(In).
Therefore, at (x0, t0),

|Dc(x0)|w2 > wDu ·Dc > b
ij
b
kl
ukiulj = tr(AB)2 > (trAB)2

tr(In)
=

1

n
(ut � c(x0)w)

2

Since 1
nc(x)

2 � |Dc(x)| > � > 0 by (1.4), we imply that at (x0, t0),

�w
2 6 2utc(x0)

n
w =) w 6

2MkckL1(⌦)

n�
,

which confirms (3.4).

Case 2: the boundary case x0 2 @⌦. As @⌦ is C2,✓, we assume that n is
defined as a C

1 function in a neighborhood of @⌦. Note that the Neumann
boundary condition Du · ~n = 0 gives (D2

u ~n+D~nDu) · v = 0 for all v 2 Rn

perpendicular to ~n on @⌦⇥ [0, T ]. Thus, on @⌦⇥ [0, T ],

@w

@~n
=

D
2
uDu

w
· ~n = �D~nDu ·Du

w
6 C0

|Du|2

w
,

11



where C0 = sup{�� : � is a principal curvature of @⌦ at x0 for x0 2 @⌦}.
If C0 < 0, then @w

@~n < 0 on @⌦ ⇥ [0, T ], and hence w cannot attain its
maximum on @⌦ ⇥ [0, T ]. Therefore, C0 > 0. We consider the case when
C0 > 0 first, and deal with the case when C0 = 0 later. We note that if
C0 > 0, then

@w

@~n
6 C0

|Du|2

w
< C0w.

Take xc 2 ⌦ so that B := B(xc, K0/2) is inside ⌦ and tangent to the
boundary @⌦ at x0. Consider a multiplier

⇢(x) = �C0

K0
|x� xc|2 +

C0K0

4
+ 1 for x 2 ⌦.

Then, ⇢ > 1 in B, ⇢ = 1 on @B, and ⇢ 6 1 on ⌦ \ B. Besides, C0⇢(x0) +
@⇢
@~n(x0) = 0.

Denote by  = ⇢w. Then, at (x0, t0),

@ 

@~n
=
@(⇢w)

@~n
= ⇢

@w

@~n
+ w

@⇢

@~n
< w

✓
C0⇢+

@⇢

@~n

◆
= 0. (3.6)

By the choice of ⇢, it is clear that

 (z, t) 6 w(z, t) 6 w(x0, t0) =  (x0, t0) for (z, t) 2
�
⌦ \B

�
⇥ [0, T ],

and, by (3.6),

max
⌦⇥[0,T ]

⇢w = max
B⇥[0,T ]

⇢w >  (x0, t0) = w(x0, t0). (3.7)

Let (x1, t1) 2 argmax⌦⇥[0,T ] ⇢w. If t1 = 0, then for all (x, t) 2 ⌦⇥ [0, T ],

w(x, t) 6 w(x0, t0) = ⇢(x0)w(x0, t0) 6 ⇢(x1)w(x1, 0)

6
✓
C0K0

4
+ 1

◆⇣
kDu0kL1(⌦) + 1

⌘
,

and we are done. Thus, we may assume that t1 > 0. In light of (3.6)–
(3.7), we yield that x1 2 B ⇢ ⌦. At this point (x1, t1), we have  t > 0,
D = 0, D2

 6 0. Consequently, as  t = ⇢tw + ⇢wt, D = wD⇢ + ⇢Dw,
and  ij = wij⇢+ wi⇢j + wj⇢i + w⇢ij, we have at (x1, t1),

12



8
><

>:

wt > �⇢t
⇢ w = 0,

Dw = �w
⇢D⇢,

wij =
1
⇢( ij � wi⇢j � wj⇢i � w⇢ij).

Therefore, at (x1, t1), by (3.5)

� ⇢t

⇢
w

2 +
w

2

⇢
(Dpb

ij ·D⇢)uij +
w

⇢
b
ij(wi⇢j + wj⇢i + w⇢ij)

+ b
ij
b
kl
ukiulj � wDu ·Dc+

cw

⇢
Du ·D⇢ 6 0.

Now,

b
ij
pl
= � �iluj

"2 + |Du|2 � �jlui

"2 + |Du|2 +
2uiujul

("2 + |Du|2)2 ,

and thus,

w(Dpb
ij ·D⇢)uij = w

✓
� ⇢iujuij

"2 + |Du|2 � ⇢juiuij

"2 + |Du|2 +
2uiujul⇢luij

("2 + |Du|2)2

◆

= �2Dw ·D⇢+ 2(Du ·D⇢)(Du ·Dw)

w2
.

Hence,

w(Dpb
ij ·D⇢)uij + b

ij
wi⇢j + b

ij
wj⇢i

=
2(Du ·D⇢)(Du ·Dw)

w2
� uiujwi⇢j

w2
� uiujwj⇢i

w2
= 0.

All in all, at (x1, t1) 2 argmax⌦⇥(0,T ] ⇢w with x1 2 B ⇢ ⌦, the inequality

� ⇢t

⇢
w

2 +
⇢ij

⇢
b
ij
w

2 + b
ij
b
kl
ukiulj � wDu ·Dc+

cw

⇢
Du ·D⇢ 6 0 (3.8)

holds. Note that ⇢t = 0 here, but we keep this term in the above formula for
the usage in the proof of Theorem 2.3 later.

Using the Cauchy-Schwarz type inequality as in the above, we obtain

1

n
(ut � c(x1)w)

2 6 b
ij
b
kl
uilukj 6 �w

2

⇢
b
ij
⇢ij + wDu ·Dc� cw

⇢
Du ·D⇢

6 2C0

K0

w
2

⇢

✓
n� |Du|2

"2 + |Du|2

◆
+ |Dc|w2 + C0|c|w2

13



6
✓
2nC0

K0
+ |Dc(x1)|+ C0|c(x1)|

◆
w

2
.

By (1.4),

1

n
c(x)2 � |Dc(x)|� C0|c(x)|�

2nC0

K0
> � > 0 for all x 2 ⌦

for some � > 0, we see that w(x1, t1) 6
2MkckL1(⌦)

n� . Thus,

w(x0, t0) 6 ⇢(x1)w(x1, t1) 6
✓
C0K0

4
+ 1

◆
2MkckL1(⌦)

n�
.

Now, we handle the case when C0 = 0. We consider a multiplier

⇢(x) = � �1

K0
|x� xc|2 +

�1K0

4
+ 1 for x 2 ⌦,

where

�1 =
�

2(kckL1 + 2n
K0

)
> 0.

Then, at (x0, t0),
@w

@~n
6 C0

|Du|2

w
= 0,

and
@ 

@~n
=
@(⇢w)

@~n
= ⇢

@w

@~n
+ w

@⇢

@~n
6 w

@⇢

@~n
< 0.

Following the same argument as above with �1 in place of C0, we see that

1

n
(ut � c(x1)w)

2 6
✓
2n�1
K0

+ |Dc(x1)|+ C0|c(x1)|
◆
w

2
.

This inequality, together with the fact that

1

n
c(x)2 � |Dc(x)|� �1|c(x)|�

2n�1
K0

> � � 1

2
� =

1

2
� > 0 for all x 2 ⌦,

implies (3.4).
By (3.4) and Lemma 3.1, Du

" and u
"
t are uniformly bounded in ⌦⇥ [0, T ]

for all " 2 (0, 1) and T > 0. Note that the bound depends only on ku0kC2(⌦),
kckC1(⌦), the constants n, C0, K0, and � from (1.4). By approximations, we

see that the same result holds true in the case that @⌦ 2 C
2,✓ and c 2 C

1(⌦).
From the uniform convergence of u" to the unique viscosity solution u of
(1.1)–(1.3), we conclude that u satisfies (1.5).

14



We remark for later usage that for any smooth function ⇢ > 0, (3.8) is
valid at (x1, t1) 2 argmax (⇢w) \ (⌦⇥ (0, T ]).

Remark 1. Let us discuss a bit the case where c ⌘ 0 and ⌦ is convex and
bounded. Then, w satisfies

wwt � w(Dpb
ij ·Dw)uij � wb

ij
wij + b

ij
b
kl
ukiulj = 0.

And, on @⌦⇥ [0, T ],

@w

@~n
=

D
2
uDu

w
· ~n = �D~nDu ·Du

w
6 0.

By the usual maximum principle, we yield that

max
⌦⇥[0,T ]

w = max
⌦

w(·, 0) 6 C.

We thus recover the gradient bound in [9]. It is worth to note that in this
specific situation, condition (1.4) is not needed.

Proof of Theorem 2.3. Let u = u
" and w =

p
"2 + |Du"|2 as in the proof of

Theorem 1.2. As above, we may assume @⌦ is smooth and c 2 C
1(⌦). Pick

M >
2n(|C0|+ 1)

K0
+ kDckL1(⌦) + (|C0|+ 1)kckL1(⌦)

and (x0, t0) 2 argmax⌦⇥[0,T ] e
�Mt

w(x, t). If t0 = 0, then we have that for

(x, t) 2 ⌦⇥ [0, T ],

w(x, t) 6 e
MT

⇣
kDu0kL1(⌦) + 1

⌘
.

Consider next the case that t0 > 0. If x0 2 ⌦, then by (3.8) with ⇢ = e
�Mt,

at (x0, t0),
Mw

2 + b
ij
b
kl
uilukj � wDu ·Dc 6 0.

As Mw
2 � wDu ·Dc > 0 by the choice of M and b

ij
b
kl
uilukj > 0, we arrive

at a contradiction. Thus, x0 2 @⌦.
We repeat the proof of Theorem 1.2. Since x0 2 argmax⌦ w(·, t0) \ @⌦,

we see as before that C0 > 0. We use a new multiplier

⇢(x, t) = e
�Mt

✓
�C0 + 1

K0
|x� xc|2 +

(C0 + 1)K0

4
+ 1

◆
for (x, t) 2 ⌦⇥[0,1).

15



Here, B = B(xc, K0/2) is inside ⌦ and tangent to the boundary @⌦ at x0.
Put wM = e

�Mt
w and note that wM(x0, t0) = max⌦ wM , @wM

@~n 6 C0wM

on @⌦⇥ [0, T ], and

⇢w =

✓
�C0 + 1

K0
|x� xc|2 +

(C0 + 1)K0

4
+ 1

◆
wM .

Observe as in the proof of Theorem 1.2 that @(⇢w)
@~n (x0, t0) < 0, ⇢w 6 wM on�

⌦ \B
�
⇥ [0, T ], and therefore, argmax (⇢w) ⇢ B ⇥ [0, T ]. Then, there is a

point (x1, t1) 2 argmax⌦⇥[0,T ] ⇢w with (x1, t1) 2 B⇥ [0, T ]. Consider the case

t1 = 0. For all (x, t) 2 ⌦⇥ [0, T ],

wM(x, t) 6 wM(x0, t0) = (⇢w)(x0, t0) 6 (⇢w)(x1, 0)

6
✓
(C0 + 1)K0

4
+ 1

◆⇣
kDu0kL1(⌦) + 1

⌘
.

Thus, for (x, t) 2 ⌦⇥ [0, T ],

w(x, t) 6 e
MT

✓
(C0 + 1)K0

4
+ 1

◆⇣
kDu0kL1(⌦) + 1

⌘
. (3.9)

Next, we consider the case t1 > 0. At (x1, t1), thanks to (3.8), we have

Mw
2 +

⇢ij

⇢
b
ij
w

2 + b
ij
b
kl
ukiulj � wDu ·Dc+

cw

⇢
Du ·D⇢ 6 0.

From this, recalling the choice of M , we obtain, as before,

0 6 b
ij
b
kl
ukiulj 6

✓
�M +

2n(C0 + 1)

K0
+ |Dc(x1)|+ (C0 + 1)|c(x1)|

◆
w

2
< 0,

which is absurd. Thus, the case t1 > 0 does not occur, and (3.9) holds true.
Lemma 3.1 and (3.9) then complete the proof.

Remark 2. We note that Theorems 1.1 and 1.2 are still valid when @⌦ 2
C

2, c 2 C
1(⌦), and u0 2 C

2(⌦) by approximations as the Lipschitz bounds
depend only on ku0kC2(⌦), kckC1(⌦), the constants n, C0, K0, and T > 0 in
case of Theorem 1.1, and � from (1.4) in case of Theorem 1.2 .
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4. Large time behavior of the solution

In this section, we prove the large time behavior of u, which is globally
Lipschitz continuous thanks to Theorem 1.2. Let L be the spatial Lipschitz
constant of u" for " 2 (0, 1) given by the proof of Theorem 1.2.

Proof of Theorem 1.3. Although the proof is almost same as that of [12,
Theorem 1.2], we give it for completeness.

We consider the following Lyapunov function

I
"(t) =

Z

⌦

p
"2 + |Du"|2 dx.

By calculation,

d

dt

Z

⌦

p
"2 + |Du"|2 dx =

Z

⌦

Du
" ·Du

"
tp

"2 + |Du"|2
dx = �

Z

⌦

u
"
t div

 
Du

"

p
"2 + |Du"|2

!
dx,

and thus,

d

dt

Z

⌦

p
"2 + |Du"|2 dx = �

Z

⌦

u
"
t

 
u
"
tp

"2 + |Du"|2
� c(x)

!
dx

= �
Z

⌦

 
(u"

t)
2

p
"2 + |Du"|2

� c(x)u"
t

!
dx

6 � 1p
"2 + L2

Z

⌦

(u"
t)

2
dx+

Z

⌦

c(x)u"
t dx.

Rearranging the terms,

d

dt

✓Z

⌦

p
"2 + |Du"|2 dx�

Z

⌦

c(x)u"
dx

◆
6 � 1p

"2 + L2

Z

⌦

(u"
t)

2
dx.

Integrating the inequality above, we have

Z T

0

Z

⌦

(u"
t)

2
dxdt 6

p
"2 + L2

Z

⌦

c(x)(u"(x, T )� u
"(x, 0)) dx

+
p
"2 + L2

Z

⌦

⇣p
"2 + |Du"|2(x, 0)�

p
"2 + |Du"|2(x, T )

⌘
dx.

17



Note that kukL1(⌦⇥[0,1)) 6 ku0kL1(⌦). Therefore,

lim sup
"!0

Z T

0

Z

⌦

(u"
t)

2
dxdt 6 C,

where C is a constant independent of " 2 (0, 1) and T > 0. Hence, we get
that u"

t * ut weakly in L
2(⌦⇥ [0, T ]) as "! 0 for each T > 0.

By weakly lower semi-continuity,

Z T

0

Z

⌦

(ut)
2
dxdt 6 lim inf

"!0

Z T

0

Z

⌦

(u"
t)

2
dxdt 6 C.

Since the constant C is independent of ", T , we see that
Z 1

0

Z

⌦

(ut)
2
dxdt 6 C. (4.1)

For every {tk} ! 1, by the Arzelà-Ascoli theorem, there exist a subsequence
{tkj} and a Lipschitz continuous function v such that

ukj(x, t) = u(x, t+ tkj) ! v(x, t),

locally uniformly on ⌦⇥ [0,1). In particular,

ukj(x, t) = u(x, t+ tkj) ! v(x, t), (4.2)

uniformly on ⌦ ⇥ [0, T ], for every T > 0. By stability results of viscosity
solutions, v satisfies

8
<

:
vt = |Dv|div

⇣
Dv
|Dv|

⌘
+ c|Dv| in ⌦⇥ (0,1),

@v

@~n
= 0 on @⌦⇥ [0,1).

Thanks to (4.1), we have

Z 1

0

Z

⌦

(ukj)
2
t dxdt =

Z 1+tkj

tkj

Z

⌦

(ut)
2
dxdt ! 0,

as j ! 1. This shows that
(ukj)t * 0,

18



weakly in L
2(⌦⇥ [0, 1]) as j ! 1. On the other hand, (4.2) implies that

(ukj)t * vt,

weakly in L
2(⌦ ⇥ [0, 1]) as j ! 1. Consequently, vt = 0 weakly, and v is

constant in t. Thus, v is a solution of (1.6), that is, v solves

8
<

:
|Dv| div

⇣
Dv
|Dv|

⌘
+ c(x)|Dv| = 0 in ⌦,

@v

@~n
= 0 on @⌦.

Equation (1.6) has many viscosity solutions in general. For example, as v is
a solution, v + C is also a solution for any C 2 R. Therefore, v may depend
on the choice of subsequence {tk}k.

At last, we prove that v is independent of the choice of subsequence {tk}k.
Since ukj converges uniformly to v on ⌦⇥ [0, 1], for every " > 0 there exists
j large enough such that

|ukj(x, t)� v(x)| < ", for all (x, t) 2 ⌦⇥ [0, 1].

In particular, v(x) � " < ukj(x, 0) = u(x, tkj) < v(x) + " for all x 2 ⌦. By
the comparison principle,

v(x)� " 6 u(x, t) 6 v(x) + " for (x, t) 2 ⌦⇥ [tkj ,1).

This implies that u(·, t) converges uniformly to v on ⌦ without taking a
subsequence.

5. The large time profile in the radially symmetric setting

In this section, we study the radially symmetric setting and illustrate
some examples of multiplicity of solutions to the stationary problem (1.6).
We always assume here (1.7), that is,

8
><

>:

⌦ = B(0, R) for some R > 0,

c(x) = c(r) for |x| = r 2 [0, R],

u0(x) = u0(r) for |x| = r 2 [0, R].
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Here, c 2 C
1([0, R], [0,1)), and u0 2 C

2([0, R]) with u
0
0(R) = 0 are given.

In this setting, (1.6) reduces to the following Hamilton-Jacobi equation with
Neumann boundary condition

(
�n�1

r �r � c(r)|�r| = 0, in (0, R),

�r(R) = 0.
(5.1)

It is worth noting that no boundary condition is needed at r = 0, and that
the Hamiltonian is concave and maybe noncoercive. Clearly, every constant
is a solution to (5.1). Also, if � is a solution to (5.1), then so is C� for any
given constant C > 0.

We have the following proposition.

Proposition 5.1. Let A =
�
r 2 (0, R] : c(r) = n�1

r

 
. Denote by

rmin =

(
min{r : r 2 A} > 0 if A 6= ;,
R if A = ;.

Let � be a Lipschitz solution to (5.1). Then, � is constant on each connected
component of (0, R) \ int(A). In particular, � is constant on [0, rmin].

Proof. Factoring (5.1) into
�
�n�1

r ± c(r)
�
�r(r) = 0, we see that either�n�1

r ±
c(r) = 0 or �r(r) = 0 at each point of di↵erentiability of �.

Take (a, b) ⇢ ((0, R) \ int(A)) for some a < b. By the above, we have
that �r(r) = 0 for a.e. r 2 (a, b), and thus, � is constant on [a, b].

Example 5.2 (A toy model). We consider the case that c(r) is of the
form

c(r) =

8
<

:

n�1
a , 0 6 r < a,

n�1
r , a 6 r 6 b,

n�1
b , b < r 6 R,

for some 0 < a < b < R, then the stationary problem (5.1) admits multiple
solutions of the form

�(r) =

8
<

:

c1, 0 6 r 6 a,

g(r), a 6 r 6 b,

c2, b 6 r 6 R,

where c1 > c2 are constants, g(r) is any nonincreasing function on [a, b] with
g(a) = c1, g(b) = c2. Here, the function g can be discontinuous if we extend
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the definition of viscosity solutions to discontinuous functions (see [5] for
instance).

Example 5.2 shows further the multiplicity of solutions to (5.1) besides
the constant functions noted above. Thus, it is important to address how
the large-time limit �1 depends on the initial data u0. In this radially
symmetric setting, we are able to characterize the limiting profile and specify
its dependence on the initial data.

Equations (1.1)–(1.3) become

8
><

>:

�t � n�1
r �r � c(r)|�r| = 0 in (0, R)⇥ (0,1),

�r(R, t) = 0 for t > 0,

�(r, 0) = u0(r) for r 2 [0, R].

Here, u(x, t) = �(|x|, t) for (x, t) 2 B(0, R)⇥ [0,1). Note that this is a first-
order Hamilton-Jacobi equation with a concave Hamiltonian. The associated
Lagrangian L = L(r, q) to the Hamiltonian H(r, p) = �n�1

r p� c(r)|p| is

L(r, q) = inf
p2R

⇢
p · q �

✓
�n� 1

r
p� c(r)|p|

◆�

= inf
p2R

⇢✓
q +

n� 1

r

◆
p+ c(r)|p|

�

=

⇢
0, if

��q + n�1
r

�� 6 c(r),
�1, otherwise.

Therefore, we have the following representation formula for � = �(r, t)

�(r, t) = sup {u0(�(0)) : (�, v, l) 2 SP(r, t)} ,

where we denote by SP(r, t) the Skorokhod problem. For a given r 2
(0, R], v 2 L

1([0, t]), the Skorokhod problem seeks to find a solution (�, l) 2
Lip((0, t))⇥ L

1((0, t)) such that

8
>>>>><

>>>>>:

�(t) = r, �([0, t]) ⇢ (0, R],
l(s) > 0 for almost every s > 0,
l(s) = 0 if �(s) 6= R,����v(s) + n�1

�(s)

��� 6 c(�(s)),

v(s) = ��̇(s) + l(s)n(�(s)),
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and the set SP(r, t) collects all the associated triples (�, v, l). Here, n(R) = 1
is the outward normal vector to (0, R) at R. See [16, Theorem 4.2] for the
existence of solutions of the Skorokhod problem and [16, Theorem 5.1] for the
representation formula. See [7] for a related problem on large time behavior
and large time profile.

Example 5.3. Consider Example 5.2. To recall, c(r) is defined in the
following way

c(r) =

8
<

:

n�1
a , 0 6 r < a,

n�1
r , a 6 r 6 b,

n�1
b , b < r 6 R.

for some 0 < a < b < R. We analyze the velocity condition
����̇(s) + n�1

�(s)

��� 6
c(�(s)). Note that c(r) is less than n�1

r , equal to n�1
r , and greater than n�1

r
in the written order, respectively. In each case, then, the velocity condition
becomes

8
><

>:

�n�1
a � n�1

�(s) 6 �̇(s) 6 n�1
a � n�1

�(s) < 0, 0 < �(s) < a,

�2(n�1)
�(s) 6 �̇(s) 6 0, a 6 �(s) 6 b,

�n�1
b � n�1

�(s) 6 �̇(s) 6 n�1
b � n�1

�(s) , b 6 �(s) < R.

Focusing the right hand side in each case, we see that the point �(s) must
move left as time s increases, can stay still, and can go right in the written
order, respectively. This point of view in terms of the Lagrangian L(r, q)
and Proposition 5.1 explain the limit �1(r) of �(r, t) as t ! 1 in the above
illustration of Figure 1.

The description in Example 5.3 shows how to formulate and write the
limit �1 in terms of the initial data u0 in full generality. We note one more
thing on the boundary. If c(h) <

n�1
h for all h 2 (0, R], then the reversed

curve ⌘(s) := �(t � s) of an admissible curve � must go right, and it stays
on the boundary r = R once it reaches there. This is where the e↵ect
of the Skorokhod problem comes in, and it means that the solution �(r, t)
needs to be understood in the sense of viscosity solutions. We also note that
in this setting, we can prove that � is same as the value function of the
state constraint problem. Together with this observation on the boundary,
analyzing curves �(s) explains how the limit �1 depends on the initial data
u0, and indeed the analysis of admissible curves yields the proof of Theorem
1.4.
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Fig. 1: Stationary solution of (5.1)

We now give some preparation steps in order to prove Theorem 1.4.
Let ⌘(s) := �(t � s), s 2 [0, t], be the reversed curve of a curve � 2
AC ([0, t], (0, R]) with (�, v, l) 2 SP(r, t). Then, we have the following ve-
locity condition for ⌘

�c(⌘(s))+
n� 1

⌘(s)
6 ⌘̇(s) 6 c(⌘(s))+

n� 1

⌘(s)
for a.e. s 2 [0, t] with ⌘(s) 6= R.

(5.2)
The following lemma is a direct consequence of the comparison principle.

Lemma 5.4. Let r0 2 (0, R). Let ⌘1 2 AC ([0,1), (0, R]) be a curve satis-
fying

(
⌘̇1(s) = �c(⌘1(s)) +

n�1
⌘1(s)

, for s > 0 provided that ⌘1(s) < R,

⌘1(0) = r0.

If ⌘1(s0) = R for some s0 > 0, then we set ⌘1(s) = R for all s > s0.
For each t > 0, let ⌘ 2 AC ([0, t], (0, R]) be the reversed curve given above

with ⌘(0) > r0. Then, ⌘1(s) 6 ⌘(s) for all s 2 [0, t].

Lemma 5.5. Assume the settings of Theorem 1.4 and Lemma 5.4. Then,

lim
s!1

⌘1(s) = d(r0). (5.3)
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Proof. If r0 2 A, then ⌘1(s) = r0 for all s > 0, and hence (5.3) holds.
Next, we only need to consider the case that r0 2 A+ as the proof of the

case that r0 2 A� follows analogously. It is clear that ⌘1 is decreasing, and
by Lemma 5.4, ⌘1(s) > d(r0) for all s > 0. Therefore, lims!1 ⌘1(s) exists,
and

lim
s!1

⌘1(s) = r1 > d(r0).

This yields further that
lim sup
s!1

⌘̇1(s) = 0.

Hence,

�c(r1) +
n� 1

r1
= 0,

which implies that r1 = d(r0).

Proof of Theorem 1.4. For (r0, t) 2 (0, R)⇥ [0,1), we have

�(r0, t) = sup{u0(⌘(t)) : (�, v, l) 2 SP(r0, t), ⌘(s) = �(t� s), s 2 [0, t]}.

We say that ⌘ 2 AC ([0, t], (0, R]) is admissible if ⌘(s) = �(t�s), s 2 [0, t] for
some � with (�, v, l) 2 SP(r0, t). Let ⌘1 be the curve given in the statement
of Lemma 5.4. By Lemma 5.4, ⌘(s) > ⌘1(s) for s 2 [0, t] for any admissible
curve ⌘. From this fact, we see that

�(r0, t) 6 sup{u0(r) : r > ⌘1(t)},

and therefore, by Lemma 5.5,

lim sup
t!1

�(r0, t) 6 max{u0(r) : r > d(r0)}.

In order to complete the proof, it su�ces to show the other direction

lim inf
t!1

�(r0, t) > max{u0(r) : r > d(r0)}. (5.4)

To show this, let r1 2 [d(r0), R] be such that

u0(r1) = max{u0(r) : r > d(r0)}.
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We consider first the case r0 2 A. Then, r1 > r0. Let ⌘2 solve
(
⌘̇2(s) = c(⌘2(s)) +

n�1
⌘2(s)

, for s > 0,

⌘2(0) = r0.

Note that c(r) + (n � 1)/r > (n � 1)/R > 0 for all r 2 (0, R]. Then, there
is a unique number t2 > 0 such that ⌘2(t2) = r1. Now, for t > t2, let ⌘ be
defined as

⌘(s) =

(
r0, if s 6 t� t2,

⌘2(s� (t� t2)), if s > t� t2.

Then, ⌘ is admissible, and �(r0, t) > u0(⌘(t)) = u0(r1). Thus, (5.4) holds.
Next, we consider the case r0 2 A+. If r1 > r0, then we repeat the above

process to conclude. If r1 < r0, then r1 2 [d(r0), r0) necessarily, and in this
case, we use the curve ⌘1. We note that if r1 > d(r0), then there is a unique
number t1 > 0 such that ⌘1(t1) = r1. Now, for t > t1, let ⌘ be defined as

⌘(s) =

(
r0, if s 6 t� t1,

⌘1(s� (t� t1)), if s > t� t1.

Then, the curve ⌘ is admissible, and �(r0, t) > u0(⌘(t)) = u0(r1). If r1 =
d(r0), we take ⌘ = ⌘1 and recall that limt!1 ⌘1(t) = d(r0), which gives
�(r0, t) > u0(⌘(t)) ! u0(r1) as t ! 1. Therefore, (5.4) holds.

Finally, we study the case r0 2 A�. Let ⌘2, t2 be defined as above. There
exists a unique t3 > 0 such that ⌘2(t3) = d(r0). In this case, r1 > d(r0) and
t2 > t3. For t > t2, define

⌘(s) =

8
><

>:

⌘2(s), if 0 6 s 6 t3,

d(r0), if t3 6 s 6 t� (t2 � t3),

⌘2(s� (t� t2)), if t� (t2 � t3) 6 s 6 t.

Then, ⌘ is admissible, and ⌘(t) = r1, which yields (5.4).

Next, we prove Corollary 1.5, and discuss the sharpness of condition (1.4).

Proof of Corollary 1.5. The values of �1 are computed directly from Theo-
rem 1.4. This tells us the fact that the solution u = u(r, t) is not globally
Lipschitz because if it were globally Lipschitz, then the limit �1 would be
as well.
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Corollary 1.5 realizes a jump discontinuity in the limit, which indicates
that condition (1.4), which is needed for the globally Lipschitz continuity of
u, is almost optimal. As the domain ⌦ = B(0, R) is convex, C0 6 0, and
(1.4) becomes 1

nc(x)
2� |Dc(x)|�� > 0. Let us now assume that c(r) touches

n�1
r from below at a. Then,

c(a) =
n� 1

a
and c

0(a) = �n� 1

a2
.

At r = a, we see that

1

n
c(a)2 � |c0(a)| = (n� 1)2

na2
� n� 1

a2
= �n� 1

na2
< 0.

Moreover, we see that condition (1.4) is essentially optimal if we seek to find
su�cient conditions on the force c that are uniform in dimensions n and in
R because the left hand side of the above goes to zero as a ! 1.

6. The gradient growth as time tends to infinity in two dimensions

Let n = 2. Let the forcing term c be a positive constant in ⌦, that is,
c(x) = c for all x 2 ⌦ for some c > 0. Consider the following nonconvex
domain,

⌦ = {(x1, x2) 2 R2 : |x2| < f(x1)}, (6.1)

where f(x) = m
2 x

2 + k for fixed m > 0 and k > 0. Here, ⌦ is unbounded.
In this unbounded setting, let R0 > 0 be a su�ciently large constant. Let

e⌦ ⇢ Rn be a bounded C
2,✓ domain such that

⌦ \B(0, R0) ⇢ e⌦ ⇢ ⌦.

We say that u is a solution (resp., subsolution, supersolution) of (1.1)–(1.3)
on ⌦⇥ [0,1) if there exists ↵ 2 R such that

u� ↵ = u0 � ↵ = 0 on (⌦ \B(0, R0))⇥ [0,1), (6.2)

and u is a solution (resp., subsolution, supersolution) of (1.1)–(1.3) with e⌦
in place of ⌦.

Let u be the solution to (1.1)–(1.3). If a level set of u is a smooth curve,
then it is evolved by the forced curvature flow equation V = + c, where V

is the normal velocity and  is the curvature in the direction of the normal.
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Then, the classical Neumann boundary condition becomes the right angle
condition for the level-set curves with respect to @⌦, that is, if a smooth
level curve and @⌦ intersect, then their normal vectors are perpendicular at
the points of intersections.

We show that if c is too small and fails to satisfy (1.4), then there exist
discontinuous viscosity solutions to (1.6). In particular, we find that one such
discontinuous solution of (1.6) is stable in the sense that the solution of (1.1)–
(1.3) with a suitable choice of initial data converges to this discontinuous
stationary solution as time goes to infinity. This implies that the global
Lipschitz estimate for the solution of (1.1)–(1.3) does not hold. The following
is the main result of this section.

Theorem 6.1. Let ⌦ be the set given by (6.1), and c(x) = c for all x 2 ⌦
for c 2 (0, r�1

min), where rmin is defined by (6.7). Let u 2 C(⌦⇥ [0,1)) be the
solution of (1.1)–(1.3) with the given initial data u0 2 C

2,✓(⌦) satisfying that
@u0
@~n = 0 on @⌦ and there exist constants l1, l2,↵ and � such that l1 2 (0, a1),
l2 2 (0, a2 � a1), ↵ < �,

u0(x) =

(
� for x = (x1, x2) 2 U(a1 � l1),

↵ for x = (x1, x2) 2 ⌦ \ U(a1 + l2),
(6.3)

and ↵ 6 u0 6 �, where U(a) is defined by (6.6) for a > 0, and 0 < a1 < a2

is given in Theorem 6.4. Then,

lim
t!1

u(x, t) =

(
� if x 2 U(a1),

↵ if x 2 ⌦ \ U(a1).

6.1. Set-theoretic stationary solutions

For a > 0, consider a family of curves with constant curvature in ⌦,

X(a, ✓) = (X1(a, ✓), X2(a, ✓)) = p(a) + r(a)(cos ✓, sin ✓), |✓| < arctan(ma),
(6.4)

where we choose p(a), r(a) so that the curve

� := {(X1(a, ✓), X2(a, ✓)) : |✓| < arctan(ma)}
[

{(�X1(a, ✓), X2(a, ✓)) : |✓| < arctan(ma)}
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has a constant curvature, and is perpendicular to the boundary @⌦. Indeed,
set

p(a) :=

✓
a

2
� k

ma
, 0

◆
.

Then, we see that the tangent line for {(x1, x2) | x2 = f(x1)} at x1 = a goes
through p(a). Moreover, setting

r(a) :=

����

✓
a,

ma
2

2
+ k

◆
� p(a)

���� =
✓
a

2
+

k

ma

◆p
m2a2 + 1,

by elementary geometry, we can check that

�?@⌦.

See Figure 2. The parameter a will be specified so that

c =
1

r(a)

in Lemma 6.3.

Fig. 2: Illustrations of (6.4) and (6.6)

The following definition is taken from [5, Definition 5.1.1].

Definition 6.2. Let G be a set in Rn ⇥ J , where J is an open interval in
(0, T ). We say that G is a set-theoretic subsolution (resp., supersolution) of

V = + c on �t with �t?@⌦ (6.5)
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if �⇤
G is a viscosity subsolution (resp., (�G)⇤ is a viscosity supersolution) of

(1.1)–(1.2) in Rn ⇥ J , where �G(x, t) = 1 if (x, t) 2 G, and �G(x, t) = 0 if
(x, t) 62 G, and �⇤

G and (�G)⇤ denote the upper semicontinuous envelope and
the lower semicontinuous envelope of �G, respectively. If G is both a set-
theoretic subsolution and supersolution of (6.5), G is called a set-theoretic
solution of (6.5).

Set

U(a) := {(x1, x2) 2 ⌦ : |x1| < X1(a, ✓), |x2| < X2(a, ✓), |✓| < arctan(ma)},
(6.6)

and
rmin := inf{r(a) : a > 0}. (6.7)

Then, rmin is positive since r is a continuous positive function in (0,1) and

lim
a!0

r(a) = lim
a!1

r(a) = 1. (6.8)

Moreover, by direct computation, we have

r
0(a) =

1p
m2a2 + 1

✓
m

2
a
2 +

1

2
� k

ma2

◆
.

Therefore, r has only one critical point a⇤ =
1
2m

p
�1 +

p
1 + 16mk in (0,1)

and rmin = r(a⇤). In addition,

r
0(a) < 0 if a < a⇤, and r

0(a) > 0 if a > a⇤. (6.9)

Lemma 6.3. If c = 1
r(a) for some a > 0, then U(a) is a set-theoretic sta-

tionary solution of (1.1)–(1.2).

Proof. As a consequence of the nice characterization of set-theoretic solutions
in [5, Theorem 5.1.2], U(a) is a set-theoretic stationary solution of (6.5) if
and only if 0 = + c on @U(a)\⌦ and the right angle condition holds. The
equality follows from the fact that @U(a)\⌦ contains two arcs of two circles
of the same radius r(a) and curvature  = �r(a)�1 = �c.

On the other hand, these arcs intersect with @⌦ at four points (a,±f(a)),
(�a,±f(a)). By symmetry, it su�ces to prove the right angle condition at
(a, f(a)). Notice that

(a, f(a)) = (X1(a, arctan(ma)), X2(a, arctan(ma)))

29



= p(a) +
r(a)p

m2a2 + 1
· (1,ma).

Therefore, the line joining (a, f(a)) and p(a), the center of the arc, is tangent
to @⌦ at (a, f(a)). Thus, @U(a) \ ⌦ satisfies the right angle condition at
(a, f(a)).

Theorem 6.4. If c 2 (0, 1
rmin

), then there exist two positive constants a1 <

a2 such that U(ai) is a set-theoretic stationary solution of (6.5) for i = 1, 2.

Proof. Thanks to (6.7)–(6.9), there exist two positive constants a1, a2 with
a1 < a⇤ < a2 such that

r(a1) = r(a2) =
1

c
. (6.10)

By Lemma 6.3, U(ai) is a set-theoretic stationary solution of (6.5) for i =
1, 2.

6.2. Stability

Let ai be the constants given by Theorem 6.4 for i = 1, 2. In this section,
we prove that U(a1) given by (6.6) is a set-theoretic solution which is stable
in the sense of Theorem 6.1.

Lemma 6.5. Let l1 2 (0, a1), l2 2 (0, a2 � a1) and � > 0. Set a(t) :=
a1 � l1e

��t and a(t) := a1 + l2e
��t. There exists �0 = �0(m, k, l1, l2) such that

U(a(t)) and U(a(t)) are a set-theoretic subsolution and supersolution to (6.5)
for all � 2 (0, �0), respectively.

Proof. We only prove that U(a(t)) is a set-theoretic subsolution, since we
can similarly prove that U(a(t)) is a set-theoretic supersolution. Let X̃(t) :=
X(a(t), ✓). From the characterization of set-theoretic solutions in [5, Theo-
rem 5.1.2], it su�ces to show that for t > 0,

dX̃

dt
· ~n 6 � 1

r(a(t))
+ c for all t > 0, (6.11)

where ~n is the outward normal vector ~n of U(a(t)), that is, ~n = (cos ✓, sin ✓).
Note that

dX̃

dt
· ~n =

@a

@t

@X

@a
· ~n = �l1e

��t@X

@a
· ~n = �(a1 � a(t))

@X

@a
· ~n.
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Also, for any constant L > 0, there exists C = C(m, k, L) > 0 such that

@X

@a
(a, ✓) · ~n = p

0(a) · ~n+ r
0(a)  |p0(a)|+ r

0(a)

=
1

2
+

m
2
a
2 + 1

2p
m2a2 + 1

+
mk

m2a2 + 1 +
p
m2a2 + 1

 C

for all a 2 (0, L) and ✓ 2 (�⇡
2 ,

⇡
2 ). Therefore,

dX̃

dt
· ~n = �(a1 � a(t))

@X

@a
· ~n 6 C�(a1 � a(t)).

The observation (6.9) implies that r(a(t)) > r(a1) = c
�1 for all t > 0, and

thus we get
 
dX̃

dt
· ~n
!✓

� 1

r(a(t))
+ c

◆�1

6 �C
a1 � a(t)
1

r(a1)
� 1

r(a(t))

.

Thus, (6.11) holds for � 2 (0, �0), where

�0 :=

 
C sup

a2[a1�l1,a1+l2]
h(a)

!�1

.

Here the function h : [a1 � l1, a1 + l2] ! R is given by

h(a) :=

8
>>>><

>>>>:

a1 � a

1
r(a1)

� 1
r(a)

for a 2 [a1 � l1, a1 + l2] \ {a1},

�r
2(a1)

r0(a1)
for a = a1.

Since a1+ l2 < a2, by (6.9) we have r(a) 6= r(a1) in [a1� l1, a1+ l2]\{a1} and
r
0(a1) < 0. Therefore, h is well-defined and continuous in [a1 � l1, a1 + l2].
Thus, h is bounded in [a1 � l1, a1 + l2], and hence, �0 > 0 is well-defined,
which implies that (6.11) holds for all � 2 (0, �0).

Proof of Theorem 6.1. We let ↵ = 0 and � = 1 for simplicity. Set

u(x, t) := �U(a(t))(x) and u(x, t) := �U(a(t))(x)
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for (x, t) 2 ⌦⇥ [0,1), where a and a are the functions defined in Lemma 6.5.
By Lemma 6.5, we see that u and u are a subsolution and a supersolution of
(1.1)–(1.2), respectively. Due to (6.3), we get

u(·, 0) = �U(a(0)) 6 u0 6 �U(a(0)) = u(·, 0) on ⌦.

In addition, since

U(a) ⇢ V (a) := [�(|p(a)|+ r(a)), |p(a)|+ r(a)]⇥ [�f(a), f(a)]

by construction for p(a) and r(a) given in (6.4) and f(a) = m
2 a

2 + k, we
obtain

supp(u) ⇢
[

a2[a1�l1,a1]

V (a)⇥ [0,1) and supp(u) ⇢
[

a2[a1,a1+l2]

V (a)⇥ [0,1).

As |p(·)|+r(·) and f are continuous on [a1�l1, a1+l2], there exists a constant
R0 > 0 satisfying (6.2).

By the comparison principle for (1.1)–(1.3), Proposition 2.2, we get

u(·, t) 6 u(·, t) 6 u(·, t) on ⌦ for all t > 0.

On the other hand, since both a1 � l1e
��t and a1 + l2e

��t converge to a1 as t
goes to infinity,

lim
t!1

u(x, t) = lim
t!1

u(x, t) = 1 for x 2 U(a1),

and

lim
t!1

u(x, t) = lim
t!1

u(x, t) = 0 for x 2 ⌦ \ U(a1),

which finish the proof.
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