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Abstract

Here, we study a level-set forced mean curvature flow with the homogeneous
Neumann boundary condition. We first show that the solution is Lipschitz
in time and locally Lipschitz in space. Then, under an additional condition
on the forcing term, we prove that the solution is globally Lipschitz. We
obtain the large time behavior of the solution in this setting and study the
large time profile in some specific situations. Finally, we give two examples
demonstrating that the additional condition on the forcing term is sharp,
and without it, the solution might not be globally Lipschitz.

Résumé

Dans cet article on étudie, par la méthode des ensembles de niveau, le mou-
vement par courbure moyenne avec une condition de Neumann homogene au
bord. On montre d’abord que la solution est Lipschitz en temps et locale-
ment Lipschitz en espace. Ensuite, sous une condition supplémentaire sur le
terme de forcage, on montre que la solution est globalement Lipschitz. Dans
ce contexte, on obtient le comportement en temps long de la solution et on
étudie le profil asymptotique dans certaines situations. Enfin, on propose
deux exemples pour montrer que la condition additionnelle sur le terme de
forgage ne peut pas étre améliorée et que sans celle-ci la solution peut perdre
son caractere Lipschitz global.
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1. Introduction

In this paper, we study the level-set equation for the forced mean curva-
ture flow

u; = |Dul div (%) + c¢(x)|Du| in Q x (0, 00), (1.1)
% =0 on 02 x [0, 00), (1.2)
u(z,0) = up(x) on . (1.3)

The domain Q C R” with n > 2 is assumed to be bounded and C?? for some
0 € (0,1). Here, ¢ = c(z) is a forcing function, which is in C'(Q), and @ is
the outward unit normal vector to 02. Throughout this paper, we assume
that ug € C*%(€2), and 22 = 0 on 9 for compatibility.

We first notice that the well-posedness and the comparison principle for
(L.I)—(L.3) are well established in the theory of viscosity solutions (see [2| 4
10l [11] for instance). Our main interest in this paper is to go beyond the
well-posedness theory to understand the Lipschitz regularity and large time
behavior of the solution. The Lipschitz regularity for the solution is rather
subtle because of the competition between the forcing term and the mean
curvature term together with the constraint on perpendicular intersections of
the level sets of the solution with the boundary of 2. It is worth emphasizing
that the geometry of 9€) plays a crucial role in the analysis.

We now describe our main results. First of all, we show that w is Lipschitz
in time and locally Lipschitz in space.

Theorem 1.1. Let u be the unique wviscosity solution u of (1.1)—(1.3).
Then, there exists a constant M > 0 and for each T > 0, there exists a
constant Cr > 0 depending on T' such that

t . < M t - ) O
lu(x,t) — u(z, s)| | 5| for all x,y € Q, t,s € [0,T].
u(z,t) —u(y,t)| < Crle —yl,



We next show that if we put some further conditions on the forcing term
¢, then we have the global Lipschitz estimate in x of the solution. Denote by

Co := max{—\ : )\ is a principal curvature of 9 at zq for xy € 0N} € R,
Ky :=min{d : d is the diameter of an open ball inscribed in 2} > 0.

Theorem 1.2. Assume that there exists 6 > 0 such that

2an
Ko

“e(a)? ~ |De()] - § > max {0, Cole(a)] +

} forallz € Q. (1.4)

Let u be the unique viscosity solution to (1.1)—(1.3)). Then, there exist con-
stants M, L > 0 depending only on the forcing term ¢ and the initial data ug
such that

t) — < _
[u(, t) = ulw, s)] for all z,y € Q, t,s € [0,00). (1.5)
u(z, t) —u(y,t)| < Llz —yl,
Let us now explain a bit the geometric meaning of K. For each x € 0€2,
let
K, =max{2r >0 : B(x —rn(x),r) C Q}.

Then, Ky = mingepn K. We notice next that if Q is convex in Theorem [1.2]
then we clearly have Cy < 0. In this case, becomes Z¢(z)? — |De(z)| —
0 > 0, a kind of coercive assumption, which often appears in the usage of
the classical Bernstein method to obtain Lipschitz regularity (see [19] for
instance).

In the specific case where ¢ = 0 and € is convex and bounded, the global
Lipschitz estimate of the solution was obtained in [9]. See Remark |1} More-
over, a very interesting example was given in [9] to show that the solution
is not globally Lipschitz continuous if €2 is not convex. Motivated by this
example, we give two examples showing that u is not globally Lipschitz con-
tinuous if we do not impose ([1.4]). Furthermore, the examples demonstrate
that condition (|1.4)) is sharp.

Let us note that the graph mean curvature flow with the Neumann bound-
ary conditions has been studied much in the literature (see [13] [15] 20] and
the references therein).

We next study the large time behavior of u under condition ([1.4]).



Theorem 1.3. Assume (L.4)). Let u be the unique viscosity solution to

f. Then,

u(-,t) = v, ast— oo,

uniformly on Q for some Lipschitz function v, which is a viscosity solution

to 8U<dw (|D |> + c(x )) |Dv| =0 in €, w6
Prin 0 on 0f).

We prove Theorem by using a Lyapunov function, which is quite
standard. We say that v is the large time profile of the solution u. It
is important to note that the stationary problem may have various
different solutions, and thus, the question on how the large time profile v
depends on the initial data ug is rather delicate and challenging. We are
able to answer this question in the radially symmetric setting, and it is still
widely open in the general settings.

Theorem 1.4. Suppose that, by abuse of notions,

Q= B(0,R) for some R >0,
c(x) = c(r) for|z| =r €0, R], (1.7)
ug(x) = uo(r) for |z| =r € [0, R)].

Here, c € C*([0, R], [0,0)), and ug € C*([0, R]) with uj(R) = 0. Denote by

A::{ € (0,R] - 1}

Av={re s e > "2
A::{TE(O,R]:c(r)<n_1}.

r ifr e A,

dr) = max (AN (0,r)) ifr e Ay,
min (AN (r, R]) ifre A_ and AN (r,R] # 0,
R ifre A and AN (r,R] =10



Write u(x,t) = ¢(|x|,t) for x € Q = B(0,R) and t > 0. Then, the limiting
profile ¢oo(r) = limy_o @(7,t) can be written in terms of uy as: for each
ro € <O7 R];

Goo(ro) = max {ug(r) : r=d(rg)}. (1.8)

As a by-product, Theorem shows that the solution to (L.1)—(1.3)) is
not globally Lipschitz continuous with an appropriate choice of initial data
Uug.

Corollary 1.5. Consider the setting in Theorem [L.4 Assume that there
erist 0 < a < b < R such that a,b € A and (a,b) C A_. Assume further that
ug 15 a C? function on [0, R] such that

1 forr < a,
up(r) =< € (0,1) fora <r <b,
0 forb<r < R.

Then, u is not globally Lipschitz, and

¢oo(7’)={1 forr < a,

0 fora<r <R.

Lastly, we give another example to show the non global Lipschitz phe-
nomenon in Theorem [6.1l Since we deal with the situation where € is un-
bounded there, we leave the precise statement of Theorem and corre-
sponding adjustments to Section [6]

Our problem — basically describes a level-set forced mean curva-
ture flow with the homogeneous Neumann boundary condition. If a level set
of the unknown w is a smooth enough surface, then it evolves with the normal
velocity V(x) = k+c¢(x), where k equals (n — 1) times the mean curvature of
the surface at z, and it perpendicularly intersects S (if ever). What is really
interesting and delicate here is the competition between the forcing term c¢(z)
and the mean curvature term x coupled with the constraint on perpendicu-
lar intersections of the level sets with the boundary. It is worth emphasizing
that we do not assume () is convex, and the geometry of 02 plays a crucial
role in the behavior of the solution here. Indeed, analyzing the competition
between the two constraints, the force and the boundary condition subjected
to 0, as time evolves in viscosity sense is the main topic of this paper.



We now briefly describe our approaches to get the aforementioned results.
We use the maximum principle and rely on the classical Bernstein method
to establish a priori gradient estimates for the solution. The main difficulty
is when a maximizer is located on the boundary, which we cannot apply the
maximum principle directly. We deal with this difficulty by considering a
multiplier that puts the maximizer, with the homogeneous Neumann bound-
ary condition, inside the domain so that the maximum principle is applicable.
To the best of our knowledge, the idea of handling a maximizer in the proof
of Theorem for the level-set equation for forced mean curvature flows
under the Neumann boundary condition is new in the literature.

Once we get a global Lipschitz estimate for the solution, by using a stan-
dard Lyapunov function, we prove the convergence in Theorem Next,
the radially symmetric setting is considered, and — are reduced to
a first-order singular Hamilton-Jacobi equation with the homogeneous Neu-
mann boundary condition; see [7), [§] for a related problem on the whole
space. By using the representation formula for the Neumann problem (see,
e.g., [16]), we are able to obtain Theorem [1.4] and Corollary The situa-
tion considered in Theorem is related to that in [23] Section 4] with no
forcing term. As we have a constant forcing ¢ interacting with the boundary,
the construction in the proof of Theorem [6.1]is rather delicate and involved.
It is worth emphasizing that Corollary and Theorem demonstrate
that condition , which is needed for the global Lipschitz regularity of w,
is essentially optimal.

We conclude this introduction by giving a non exhaustive list of related
works to our paper. There are several asymptotic analysis results on the
forced mean curvature flows with Neumann boundary conditions [13] 21} 22|
24] or with periodic boundary conditions [3], but they are all for graph-like
surfaces. The volume preserving mean curvature flow, which is a different
type of forced mean curvature flows, was studied in [17, [18]. Recently, the
relation between the level set approach and the varifold approach for ([1.1)
with ¢ = 0 was investigated in [1]. We also refer to [8, [14] for some recent
results on the asymptotic growth speed of solutions to forced mean curvature
flows with discontinuous source terms in the whole space.

Organization of the paper
The paper is organized as follows. In Section [2, we give the notion of
viscosity solutions to the problem and some basic results. In Section (3| we



prove the local and global gradient estimates. Section 4| is devoted to the
study on large time behavior of the solution and its large time profile. We
give two examples that the spatial gradient of the solution grows to infinity
as time tends to infinity in Sections [5 and [6] if we do not impose assumption

(1.4) on the force c.

2. Preliminaries

In this section, we recall the notion of viscosity solutions to the Neumann
boundary problem (1.1)—(1.3) and give some related results.

Let S™ be the set of symmetric matrices of size n. Define F': Q x (R™\
{0}) x " = R by

F(z,p, X) = trace ((1 pﬁf) X) + o(z)|p).

We denote the semicontinuous envelopes of F by, for (z,p, X) € QxR" x S",

Foz,p,X)= liminf F(y,q,Y), F*(z,p,X)= limsup F(y,q,Y).
(¥:0Y) = (z.p.X) (4:¢:Y) = (@.p,X)

Definition 2.1. An upper semicontinuous function u : Q x [0,00) — R is
said to be a viscosity subsolution of f if u(-,0) < ug on Q, and, for
any ¢ € C*(Q x [0,00)), if (2,1) € Q x (0,00) is a mazimizer of u — p, and
if ¢ € Q, then

9015(3?7{) - F*<£7D(p<i.7£)aD290(i.7£)) < O;

if © € 0N), then
min {%(:@, t) — F*(2, Dp(,1), D*p(2,1)), —aﬁ(f;, E)} <0.
n

Similarly, a lower semicontinuous function u : Q x [0,00) — R is said to
be a viscosity supersolution of (|1.1] . - 1.3)) if u(-,0) > ug on Q, and, for any

@ € C*(Q x [0,00)), if (&,1) € Q x (0,00) is a minimizer of u — @, and if
T €€, then



if © € 0N), then
s { u(5.0) = F. (0 Dol 0, 00,0, S50, 0) | > 0.

Finally, a continuous function u is said to be a viscosity solution of (1.1)—
(1.3)) if u is both its viscosity subsolution and its viscosity supersolution.

Henceforth, since we are always concerned with viscosity solutions, the
adjective “viscosity” is omitted. The following comparison principle for so-
lutions to (1.1)—(1.3) in a bounded domain is well known (see, e.g., [10]).

Proposition 2.2 (Comparison principle for (1.1)—(1.3)). Let u and v
be a subsolution and a supersolution of (L.1)—(1.3)), respectively. Then, u < v
in Q0 x [0,00).

To obtain Lipschitz estimates, it is convenient to consider an approximate
problem of ([1.1))—(1.3]) by considering, for e > 0, T" > 0,

ui = /21 (D div (—\/%) T e(@)VETIDEE i Qx (0,7],

a £
8116_1’ =0 on 02 x [0, 77,

u(x,0) = up(x) on Q.

(2.1)
Equation describes the motion of the graph of “?E under the forced mean
curvature flow V' = k4 ¢ in Q with right contact angle condition on 9f2. The
following result on a priori estimates on the gradient of u® plays a crucial
role in our analysis.

Theorem 2.3 (A priori estimates). Assume that 98 is smooth and c €
C>=(Q2). For each e € (0,1) and T > 0, assume that u* € C=(2 x (0,T]) N
CH(Q2 x [0,T)) is the unique solution of (2.1)). Then, there exist a constant
M >0 and a constant Cp > 0 depending on T such that

||u§||L°°(§><[O,T]) <M and ||Due||L°0(§><[O,T]) < Or. (2.2)

Here, M and Cr are independent of € € (0,1).

The proof of Theorem is given in the next section. The a priori
estimates then allow us to get the existence and uniqueness of solutions to

2.



Proposition 2.4. For each ¢ € (0,1) and T > 0, equation (2.1) has a
unique continuous solution u®. Furthermore, u® € C*'(Q x (0,T]) N C*(Q x

[0,T]) and holds.

Proposition can be obtained by the classical parabolic PDE theory.
For instance, we refer to [22] for a similar form of Proposition The proof
of this proposition is quite standard, and hence, is omitted here.

Once we get , by the standard stability result of viscosity solutions,
and the uniqueness of viscosity solutions to —, we imply that

u® —u ase— 0 uniformly on Q x [0,7]

for each T' > 0. Moreover, Theorem and Proposition give us right
away Theorem |1.1

3. Lipschitz regularity

In this section, we prove Theorems [L.1], and [2.3] As noted, it is
actually enough to prove Theorems [1.2] and [2.3] First, we prove that the
time derivative of u° is bounded.

Lemma 3.1. Assume that 052 is smooth and ¢ € C*™(2). Suppose that
uf € C(Q x (0, T))NCHQ x [0,T)) is the unique solution of for each
e €(0,1) andT > 0. Then, there exists M > 0 depending only on the forcing
term ¢ and the initial data uy such that, for e € (0,1),

||U§||Loo(§x[o,ﬂ) < ||U§(‘a0)||Loo(ﬁ) < M.

Proof. Set b(p) = I, — p®p/(e + |p|*). Then (R.1)) is expressed as

uy — b7 (Duf)ug; — c(z)\/e2 + [Dus2 =0 in Q x (0,7]. (3.1)

Here, we use the Einstein summation convention, and we write f; = 88_:2 and
fi; = %aij fori,j =1,...,n, where f = f(x,t) is a given function. We now
show that

g1l oo @xporny < 1w (5 0) | ooy - (3.2)

To prove (3.2)), it is enough to obtain the upper bound

‘max u; = maxu;(+,0)
Qx1[0,7T] Q



as the lower bound can be obtained analogously.
Differentiating (3.1)) with respect to ¢ yields

€ ij/ € ij € (us)lue
(uf)s — 0" (ug)ij — (b)pus; — C(x)m =0
where
(uf)qus ug (us); 2ususuf (ug);

2+ [Dw2 22+ |Duf]? | (22 + |Duf?)?

Suppose, on the contrary, that uf(z,t) > maxgu;(-,0) for some (z,t) €
Q x (0,T). Then, there exist a small number § > 0 and (x,t,) € Q x (0,7
such that (zo,%0) € argmaxg, o 7(u; — 6t).

At (z0,19), we have Dui = 0, and note that the boundary case xy € 02
is included due to the homogeneous Neumann boundary condition. Thus,

(Ui)t — b”(uf)w = 0, at (ZE(), to) (33)

On the other hand, (u§ — d0t); > 0, —bY(uf);; = 0 at (xo,tp). Note that
the Neumann boundary condition is used for D?u < 0 at (x,ty) as well.
Since (u$); = ¢ > 0, we arrive at a contradiction in (3.3)). Thus, (3.2)) holds.

Choose
M = ”2||D2U0||Loo(ﬁ) + llev/ 1+ [Duo || 1o )
to complete the proof. O

We are now ready to prove Theorems and using the classical
Bernstein method. It is important emphasizing that the boundary behavior
needs to be handled rather carefully. We first give a proof of Theorem

Proof of Theorem[1.2. Assume first that 0 is smooth and ¢ € C*(Q). For
each ¢ € (0,1) and T > 0, let u* € C>=(Q x (0,T]) N CY(Q x [0,T]) be the

unique solution of (2.1)).
Let w® = /€2 + |Duf|?. In view of Lemma , we only need to show

that

‘max w° < C (3.4)
Qx[0,T

for some positive constant C' depending only on [u||c2@). llcllcr @), the con-
stants n, Cy, Ko, and 0 from (|1.4). The crucial point here is C' does not
depend on T" and e. Fix (z¢,%0) € argmaxg, o w®. If o =0, then

‘max w® < w(xp,0) < HDUOHL“’@) +1,
Qx1[0,7]

10



and (3.4) is valid. We next consider the case ¢, > 0.
We write u = v, w = w® in this proof for brevity. Differentiate (3.1)) in
x), and multiply the result by wu; to get

UgUipUy 0

e — (Dpb® - Dug )ugui; — b7 upug;j — upcpw — ¢ ”

Substituting ww; = upure, wwi = wuk and Ww;; = Upijug + bklukiulj, we get
wwt—w(prij-Dw)uij—wbijwij+bijbklukiulj—wDu-Dc—cDu-Dw =0. (3.5)

We divide the proof into two cases: xg € Q and zy € 0.

Case 1: the interior case zo € 2. We follow the computations of [6],
Lemma 4.1]. At (z9, 1), we have w; > 0, Dw = 0, D*w < 0, and thus

wDu - Dec > bijbkluk@-ulj.
We then use the Cauchy-Schwarz inequality
(traB)? < tr(a®)tr(5%)

for all o, 8 € 8", and put o = A2 BAz, 3 = I,,, where A = (b'9), B = (uy),
I, the n by n identity matrix to get tr(AB)? > (trAB)?/tr(I,).
Therefore, at (g, to),
(trAB)* 1

|De(wo)| w? = wDu - De = b6 upuy; = tr(AB)? > () n (= c(wo)w)”
(I, n

Since 1c(z)? — |De(xz)| = 6 > 0 by (L.4), we imply that at (o, to),

s < 2uclzo) 2M |c[| o @)
~X n ~X n(s 9

which confirms (3.4)).

Case 2: the boundary case z( € 9. As 9 is C*?, we assume that n is
defined as a C! function in a neighborhood of 9. Note that the Neumann
boundary condition Du -1l = 0 gives (D?*uni + DiiDu) - v =0 for all v € R"
perpendicular to i on 92 x [0,7]. Thus, on 92 x [0, 77,

Ao ‘n = S
on w w w

Ow  D*uDu DiiDu - Du | Du?
AP <o

)

11



where Cy = sup{—A\ : X is a principal curvature of 02 at xy for xy € 9Q}.
ow

If Cp < 0, then 3% < 0 on 92 x [0,7], and hence w cannot attain its
maximum on Q2 x [0,7]. Therefore, Cy > 0. We consider the case when
Co > 0 first, and deal with the case when Cy = 0 later. We note that if
Cy > 0, then )

a—qf < Go Dyl
on w

< C{)w.

Take z. € Q so that B := B(z., Ky/2) is inside 2 and tangent to the
boundary 0f) at zy. Consider a multiplier

CoK

e

p(z) = |z — z|* + +1 forz €.
Ko

Then, p > 1in B, p=1o0n 0B, and p < 1 on Q\ B. Besides, Cop(z0) +
Denote by 1) = pw. Then, at (zo, to),

Je= o) 2wl <cu (ot ) =0 @0

oi  oi  "on od o
By the choice of p, it is clear that
Y(z,t) <w(z,t) < w(zo, to) = ¥(zo,to) for (z,t) € (A\ B) x [0,T],
and, by ,

max pw = max pw > P(x,te) = w(xo,to). (3.7)
Qx1[0,7] Bx[0,T]

Let (z1,11) € argmaxg, o7 pw. If ¢1 = 0, then for all (z,t) € Q x (0,77,

w(z,t) < w(zo, o) = p(xo)w (o, o) < pl1)w(z1,0)
CoKy
< (1) (1Dl + 1),

and we are done. Thus, we may assume that t; > 0. In light of f
(3-7), we yield that z; € B C Q. At this point (z1,%1), we have ¢y > 0,
D1 = 0, D*) < 0. Consequently, as 1, = pyw + pwy, DY = wDp + pDw,
and 1;; = w;jp + w;p; + wip; + wp;;, we have at (xq,11),

12



Therefore, at (z1,t1), by (3.5)

w2 . w . ..
- %w2 " F(pr” - Dp)uij + ;bw (wip; + wjp; + wpi;)
+ b7V upuy; — wDu - De + Y pou- Dp <0.
p

Now,

ij_ Oy 01 2uu5u

PL g2 4 |Dul2 €2+ |Dul? (€2 + |Dul?)?’
and thus,

2+ [Du2 &2+ |Dul2 " (2 + | Duf?)?
2(Du - Dp)(Du - Dw)
w2

U)(prij . Dp)uzj = w ( Pilb Uiy LU U5 QUinUlPlUZ'j >

= —-2Dw-Dp+

Hence,

w(Dpb™” - Dp)usj + b7wip; + b wjp;

2(Du - Dp)(Du - Dw)  wujwip;  uwuw;p; 0

w? w? w?
Allin all, at (z1,11) € argmaxg, 7 pw With z; € B C €, the inequality

— &wQ + @biij + bijbklukiulj —wDu - Dc + @Du -Dp<0 (3.8)
p p

holds. Note that p; = 0 here, but we keep this term in the above formula for
the usage in the proof of Theorem [2.3|later.
Using the Cauchy-Schwarz type inequality as in the above, we obtain

2

1 . .
—(uy — c(z)w)? < b”bkluz‘ZUk;j < —w—b”pij +wDu - Dc — @Du -Dp
n p p

2C w? < | Dul?
< 07

< — ————— | +|Dclw* + C 2
Ko p n 52—|—|Du|2> | De|w olelw

13



2nC
< < oo |De(z4)| + C0|c(a:1)|) w?.

Ko
By (1.4,
1 2nC, _
—c(z)?® — |De(x)| — Cole(z)] — 05650 for all z € Q)
n Ko
2M||CHL<>O(§)
for some 6 > 0, we see that w(z1,t;) < ——5—=. Thus,
w(zo, to) < pla)w(zy, t) < 020 11 el @
4 no
Now, we handle the case when Cy = 0. We consider a multiplier
) 0K _
p(x) = ——|z — 2P+ —2+1 forzeQ,
Ko
where
) i >0
1= = :
2(Jlell = + 7
Then, at (xg, to),
2
0w Pl
on w

and

oY O(pw) ow op dp
R = p— <
oi  on Pon  “oa S"oh ©
Following the same argument as above with d; in place of Cj, we see that

L — el w)? < (2”51 4 |Deer)] + corc<x1>r) u?.

n KO
This inequality, together with the fact that
1 271(51

Ec(x)Q — |De(x)] — d1]e(z)| —

implies .

By and Lemma [3.1] Du® and u§ are uniformly bounded in  x [0, T
for all e € (0,1) and T' > 0. Note that the bound depends only on |[uo||c2),
el @), the constants n, Co, Ko, and ¢ from ([L.4). By approximations, we
see that the same result holds true in the case that 9Q € C?? and ¢ € C*(Q).
From the uniform convergence of u® to the unique viscosity solution u of

(1.1)—(L.3), we conclude that u satisfies ([1.5]). O

14
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We remark for later usage that for any smooth function p > 0, (3.8) is
valid at (z1,1;) € argmax (pw) N (2 x (0, 7).

Remark 1. Let us discuss a bit the case where ¢ = 0 and (2 is convex and
bounded. Then, w satisfies

ww, — w(prij - Dw)u;; — wbijwij + bijbklukiulj = 0.
And, on 99 x [0, 7],
ow D?*uDu DnDu - Du

— = n=———""""<0.
on w w =

By the usual maximum principle, we yield that

‘max w = maxw(-,0) < C.
Qx[0,T] Q

We thus recover the gradient bound in [9]. It is worth to note that in this
specific situation, condition ([1.4]) is not needed.

Proof of Theorem [2.3. Let u = u® and w = /€2 + [Duf|? as in the proof of
Theorem . As above, we may assume 0f) is smooth and ¢ € C*(12). Pick

2 1
_ 20(Gol + 1)

M
Ko

+1Dell e @y + (1C0] + Dle]l oo
and (zo,%0) € argmaxg, oy e Miy(x,t). If tg = 0, then we have that for
(z,t) € Q x [0,T],

w(z,t) < M’ <HDU0HLO<>(§) + 1) :

Consider next the case that to > 0. If 29 € Q, then by (3.§) with p = e,
at (SL’Q, to), B

Muw? + b”bkluilukj —wDu - Dec <0.
As Mw? —wDu - Dec > 0 by the choice of M and bbb u;uy; > 0, we arrive
at a contradiction. Thus, zy € 9.

We repeat the proof of Theorem . Since xy € argmaxgw(-,tg) N OS2,
we see as before that Cy > 0. We use a new multiplier

1 1)K —
pla,t) =e M (—C(}: |z — 2. |* + % + 1> for (z,t) € Q2x]0, 00).
0
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Here, B = B(z,, Ky/2) is inside €2 and tangent to the boundary 0f) at z.
Put wy, = e Mlw and note that wy(wo,ty) = maxgwyy, 85”&” < Cowpy
on 09 x [0,77], and

Co+1 Co+ 1)K,
K 4

Observe as in the proof of Theorem that 8(8‘75”) (xo,t0) < 0, pw < wy on
(Q\ B) x [0,T], and therefore, argmax (pw) C B x [0,T]. Then, there is a
point (z1,t1) € argmaxg, o 7y pw with (21,t1) € Bx [0, T]. Consider the case

t; = 0. For all (x,t) € Q x [0, 7],

wyr(,t) < war(zo, to) = (pw)(zo,t0) < (pw)(w1,0)

Co+ 1)K
< (% +1) (11Dl ey +1) -

Thus, for (x,t) € Q x [0,T7,

Co+ 1)K,
(e, 1) < MT (% n 1) (||Du0||m@ + 1) . (3.9)

Next, we consider the case t; > 0. At (xy,t1), thanks to (3.8]), we have

Muw? + P2y5? 4 iy, — wDu - De+ 2 Du - Dp <0.
p p

From this, recalling the choice of M, we obtain, as before,

g 2n(Cpo+1
0 < b6 upuy; < (—M + %
0

# D)+ (Co+ Dieta)]) w? <0,
which is absurd. Thus, the case t; > 0 does not occur, and (3.9)) holds true.

Lemma and (3.9) then complete the proof.
O

Remark 2. We note that Theorems and are still valid when 09 €
C?% c e CY(Q), and uy € C*(Q) by approximations as the Lipschitz bounds
depend only on [lugllc2), [lllc1(m, the constants n, Cy, Ko, and T > 0 in
case of Theorem and 0 from in case of Theorem m :
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4. Large time behavior of the solution

In this section, we prove the large time behavior of u, which is globally
Lipschitz continuous thanks to Theorem Let L be the spatial Lipschitz
constant of u® for € € (0,1) given by the proof of Theorem

Proof of Theorem[1.3. Although the proof is almost same as that of [12)
Theorem 1.2], we give it for completeness.
We consider the following Lyapunov function

t) = / €2+ |Duf|? dx.
Q

By calculation,

d Duf - Dug Du?
— [ Ve + |Dwe|tdx = Mdmz—/ufdiv N dx,
dt Jq Q Q

€2 4+ | Due|? V2 + | Dus|?
and thus,
d us
— | ez 4+ |DuEl2dxy = —/uS —t  _(x)] dx
dt Jo | | Q t( e2 + |Dus|? (@)
£\2
S
Q €2+’Due|2
1 9 /
—_ ui)dr + | c(z)u; dx

Rearranging the terms,

d 1
— | | Ve¥+|Dur2d —/ €d)<——/ 07 da.
P (/Q e2 + |Duf|? dx Qc(x)u x Sy Q(ut) x

Integrating the inequality above, we have
T
/ /(ui)2 drdt < V€2+L2/c(a:)(u€(x,T) —u(z,0)) dx
o Jo 0
v oVET L2/ (wg? | DwP(z,0) — /22 + |Dua|2(x,T)) dz.
0

17



Note that ||ull 1« @x[0,00)) < |20l 0o (@)- Therefore,

T
lim sup/ /(uf)z dxdt < C,
o Ja

e—0

where C' is a constant independent of € € (0,1) and 7' > 0. Hence, we get
that u — u; weakly in L*(Q x [0,7T]) as € — 0 for each T' > 0.
By weakly lower semi-continuity,

T T
/ /(ut)2 dxdt < lim inf/ /(ui)2 drdt < C.
o Jo =0 Jo Jo

Since the constant C' is independent of €, T', we see that

/OOO /Q(w)2 dxdt < C. (4.1)

For every {t;} — oo, by the Arzela-Ascoli theorem, there exist a subsequence
{tx,} and a Lipschitz continuous function v such that

ug, (z,t) = u(z,t +ty,) — v(z, 1),
locally uniformly on © x [0, c0). In particular,
ey (1) = u(a, + ;) = v(a, 1), (12

uniformly on Q x [0,7], for every T > 0. By stability results of viscosity
solutions, v satisfies

vy = |Dvldiv <|gf}|> + ¢|Dv| in  x (0, 00),
%:0 on 052 x [0, 00).

Thanks to (4.1f), we have

1 1+tkj
/ /(ukj)f dxdt = / /(ut)2 dxdt — 0,
0o Jo t, Q

as j — 00. This shows that
(ukj)t - 07

18



weakly in L*(Q x [0,1]) as j — co. On the other hand, (4.2)) implies that
(Uk:j)t — U,

weakly in L%(Q x [0,1]) as j — oo. Consequently, v; = 0 weakly, and v is
constant in ¢. Thus, v is a solution of ([1.6)), that is, v solves
| Dol div (ufg—|) te(@)|Dul=0  inQ,
ov
oR

0 on 0f).

Equation has many viscosity solutions in general. For example, as v is
a solution, v + C' is also a solution for any C' € R. Therefore, v may depend
on the choice of subsequence {t;}.

At last, we prove that v is independent of the choice of subsequence {t }.
Since uy, converges uniformly to v on Q x [0, 1], for every € > 0 there exists
j large enough such that

lug, (z,t) —v(z)| <e, forall (z,¢) € Qx[0,1].

In particular, v(z) — & < wg, (2,0) = u(z,ty,) < v(z)+¢ for all € Q. By
the comparison principle,

v(z) —e <ulz,t) <v(@)+e  for (z,t) € Q x [ty,,00).

This implies that u(-,t) converges uniformly to v on Q without taking a
subsequence. O

5. The large time profile in the radially symmetric setting

In this section, we study the radially symmetric setting and illustrate
some examples of multiplicity of solutions to the stationary problem ((1.6)).
We always assume here ([1.7)), that is,

1 = B(0, R) for some R > 0,
c(x) = c(r) for |z| =r € [0, R],
uo(z) = ug(r) for |z| = r € [0, R).
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Here, ¢ € C([0, R],[0,00)), and ug € C*([0, R]) with uj(R) = 0 are given.
In this setting, (1.6]) reduces to the following Hamilton-Jacobi equation with
Neumann boundary condition

_n;lqbr - C(T)|¢r| = 07 in (Oa R)7
6:(R) = 0.

It is worth noting that no boundary condition is needed at r = 0, and that
the Hamiltonian is concave and maybe noncoercive. Clearly, every constant
is a solution to . Also, if ¢ is a solution to , then so is C'¢ for any
given constant C' > 0.

We have the following proposition.

(5.1)

Proposition 5.1. Let A= {r € (0,R] : ¢(r) = ==1}. Denote by

S min{r : r € A} >0 if A0,
min — R ZfA:@

Let ¢ be a Lipschitz solution to (5.1). Then, ¢ is constant on each connected
component of (0, R) \ int(A). In particular, ¢ is constant on [0, 7).

Proof. Factoring into (=2 £ ¢(r)) ¢,(r) = 0, we see that either —2=+
c(r) =0 or ¢,(r) = 0 at each point of differentiability of ¢.

Take (a,b) C ((0,R) \ int(A)) for some a < b. By the above, we have
that ¢,(r) =0 for a.e. r € (a,b), and thus, ¢ is constant on [a, b]. O

Example 5.2 (A toy model). We consider the case that ¢(r) is of the

form .

"a, 0<r<a,
c(r) = ”;1, a<r<b,
el b<r<R,

b
for some 0 < a < b < R, then the stationary problem (/5.1) admits multiple
solutions of the form

C1, Ogrga,
o(r) =4 g(r), a<r<Db,
C2, b<r <R,

where ¢; > ¢y are constants, g(r) is any nonincreasing function on [a, b] with
g(a) = c1, g(b) = co. Here, the function g can be discontinuous if we extend
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the definition of viscosity solutions to discontinuous functions (see [5] for
instance).

Example shows further the multiplicity of solutions to besides
the constant functions noted above. Thus, it is important to address how
the large-time limit ¢, depends on the initial data ug. In this radially
symmetric setting, we are able to characterize the limiting profile and specify
its dependence on the initial data.

Equations (1.1)—(1.3) become

¢r — 2L —c(r)|dr| = 0 in (0, R) x (0, 00),
o-(R,t) =0 fort >0,
o(r,0) = ug(r) for r € [0, R).

Here, u(z,t) = ¢(|x|,t) for (z,t) € B(0, R) x [0,00). Note that this is a first-
order Hamilton-Jacobi equation with a concave Hamiltonian. The associated
Lagrangian L = L(r, q) to the Hamiltonian H(r,p) = —2p — c(r)|p| is

r

L) = ot {p-a— (<o - o)}

:;Qﬂg{(ﬁ nT_l)erC(?")\pl}

{ 0, if ‘q+"7’1} < ¢(r),

—00, otherwise.

Therefore, we have the following representation formula for ¢ = ¢(r,t)

¢(r7 t) = sup {UO(’Y(O)) : (77 v, l) € SP(T7 t)} )

where we denote by SP(r,t) the Skorokhod problem. For a given r €
(0, R], v € L>([0,1]), the Skorokhod problem seeks to find a solution (v,1) €
Lip((0,t)) x L>*((0,t)) such that

=, 7([0,2)) < (0, ],

>0 for almost every s > 0,
—0  ify(s) £ R,

—u(s) + 22| < cr(9)),

[ v(s) = =¥(s) + U(s)n(v(s)),
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and the set SP(r,t) collects all the associated triples (v, v, (). Here, n(R) =1
is the outward normal vector to (0, R) at R. See [16, Theorem 4.2] for the
existence of solutions of the Skorokhod problem and [16, Theorem 5.1] for the
representation formula. See [7] for a related problem on large time behavior
and large time profile.

Example 5.3. Consider Example 5.2, To recall, ¢(r) is defined in the
following way

n-l 0<r<a,
a
)= 2 as<r<h
";1, b<r<R.
for some 0 < a < b < R. We analyze the velocity condition |¥(s) + :@; <
n—1 n—1 n=1

c(v(s)). Note that c(r) is less than "—, equal to ™, and greater than "—
in the written order, respectively. In each case, then, the velocity condition
becomes

?
—
?
—
?
—

I _7(s)<7<8)<7_:(_8§<0’ O<’Y(S)<6L,
—2 ) <A(s) <0, a<7(s) <,
—i =i <) < i b<r(s) <R

Focusing the right hand side in each case, we see that the point v(s) must
move left as time s increases, can stay still, and can go right in the written
order, respectively. This point of view in terms of the Lagrangian L(r,q)
and Proposition |5.1| explain the limit ¢..(r) of ¢(r,t) as t — oo in the above
illustration of Figure [1}

The description in Example shows how to formulate and write the
limit ¢, in terms of the initial data wug in full generality. We note one more
thing on the boundary. If ¢(h) < % for all h € (0, R], then the reversed
curve 7(s) := y(t — s) of an admissible curve v must go right, and it stays
on the boundary r = R once it reaches there. This is where the effect
of the Skorokhod problem comes in, and it means that the solution ¢(r,t)
needs to be understood in the sense of viscosity solutions. We also note that
in this setting, we can prove that ¢ is same as the value function of the
state constraint problem. Together with this observation on the boundary,
analyzing curves 7(s) explains how the limit ¢, depends on the initial data
ug, and indeed the analysis of admissible curves yields the proof of Theorem

L4
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oo (1)

Fig. 1: Stationary solution of |i

We now give some preparation steps in order to prove Theorem [1.4]
Let n(s) := ~(t —s), s € [0,t], be the reversed curve of a curve 7y €
AC([0,¢], (0, R]) with (y,v,l) € SP(r,t). Then, we have the following ve-

locity condition for n

—c(n(s)) +

n—1 . n—1
W < 1(s) <e(n(s))+ (s)

for a.e. s € [0,t] with n(s) # R.
(5.2)

The following lemma is a direct consequence of the comparison principle.

Lemma 5.4. Letrg € (0,R). Let n, € AC(]0,00), (0, R]) be a curve satis-
fying

{771(3) = —c(m(s)) + 2= for s > 0 provided that n,(s) < R,

n(s)’
m(0) = ro.

If m1(so) = R for some s > 0, then we set ni(s) = R for all s > sq.
For each t > 0, let n € AC([0,¢], (0, R]) be the reversed curve given above
with n(0) = ro. Then, ni(s) < n(s) for all s € [0,1].

Lemma 5.5. Assume the settings of Theorem 1.4 and Lemmal5.4. Then,
slirgo m(s) = d(ro). (5.3)
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Proof. If rg € A, then n;(s) = rq for all s > 0, and hence holds.

Next, we only need to consider the case that ry € A, as the proof of the
case that ry € A_ follows analogously. It is clear that 7, is decreasing, and
by Lemma [5.4) n1(s) = d(ro) for all s > 0. Therefore, lim,_,o 71(s) exists,
and

lim n;(s) =1 = d(ro).

S§—00

This yields further that
lim sup 7 (s) = 0.
5—00
Hence,

—1
n _0,

—C(’I"l) + 7“1

which implies that ry = d(ro).

Proof of Theorem|[1.4. For (ro,t) € (0, R) x [0,00), we have

¢(ro,t) = sup{uo(n(t)) = (v,v,1) € SP(ro, 1), nls) = v(t = s), s € [0,¢]}.

We say that n € AC ([0, ¢], (0, R]) is admissible if n(s) = v(t—s), s € [0, t] for
some v with (v,v,1) € SP(rg,t). Let n; be the curve given in the statement
of Lemma By Lemma n(s) = m(s) for s € [0,t] for any admissible
curve 7. From this fact, we see that

¢(ro,t) < sup{uo(r) : r = m(t)},
and therefore, by Lemma [5.5

lim sup ¢(ro, t) < max{ug(r) : v > d(ro)}.

t—o0

In order to complete the proof, it suffices to show the other direction

li{n inf ¢(ro, t) = max{ug(r) : r = d(ro)}. (5.4)
—00
To show this, let r; € [d(rg), R] be such that

ug(r1) = max{ug(r) : v = d(ro)}.
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We consider first the case 1o € A. Then, r; > ry. Let 1y solve

{ m2(s) = c(na(s)) + :2—13), for s > 0,
12(0)

Note that ¢(r) + (n —1)/r = (n —1)/R > 0 for all » € (0, R]. Then, there
is a unique number ty > 0 such that ny(t3) = r1. Now, for t > to, let 1 be

defined as
o, if s <t —ty,
n(s) = _
(s —(t—tz)), ifs>=t—t.

Then, 7 is admissible, and ¢(ro,t) = uo(n(t)) = ug(r1). Thus, holds.
Next, we consider the case rqg € A,. If r; > r(, then we repeat the above
process to conclude. If r < 7o, then 1 € [d(rg), o) necessarily, and in this
case, we use the curve 7. We note that if 1 > d(r(), then there is a unique
number t; > 0 such that 7;(¢1) = r1. Now, for ¢ > 1, let n be defined as

To.

Then, the curve 7 is admissible, and ¢(rg,t) = ug(n(t)) = ue(ry). If ry =
d(rg), we take n = m; and recall that lim; .. 11(t) = d(r¢), which gives
d(ro,t) = uo(n(t)) = ug(ry) as t — oo. Therefore, holds.

Finally, we study the case rqg € A_. Let 1y, t5 be defined as above. There
exists a unique t3 > 0 such that 7y(t3) = d(ro). In this case, r; > d(ro) and
t2 2 tg. For ¢ 2 tQ, define

m2(s), if 0. < s <t
7](8) == d(’/’o), if t3 < Sgt-(tg—t:),),
ng(S—(t—tg)), ift—(tg—tg) <S<t
Then, 7 is admissible, and 7n(t) = r1, which yields (5.4]). O
Next, we prove Corollary and discuss the sharpness of condition ([1.4]).

Proof of Corollary[1.5, The values of ¢, are computed directly from Theo-
rem [1.4] This tells us the fact that the solution u = u(r,t) is not globally
Lipschitz because if it were globally Lipschitz, then the limit ¢., would be
as well. [
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Corollary realizes a jump discontinuity in the limit, which indicates
that condition , which is needed for the globally Lipschitz continuity of
u, is almost optimal. As the domain Q2 = B(0, R) is convex, Cy < 0, and
becomes +¢(x)? —|De(x)| — 8 > 0. Let us now assume that ¢(r) touches
”T_l from below at a. Then,

n—1 n—1
c(a) - and d(a) o
At r = a, we see that
I, , (n—172 n-1 n—1
~c(a)” = ¢ (a)l o o e

Moreover, we see that condition ([1.4]) is essentially optimal if we seek to find
sufficient conditions on the force ¢ that are uniform in dimensions n and in
R because the left hand side of the above goes to zero as a — oo.

6. The gradient growth as time tends to infinity in two dimensions

Let n = 2. Let the forcing term ¢ be a positive constant in €2, that is,
c(x) = ¢ for all z €  for some ¢ > 0. Consider the following nonconvex
domain,

Q= {(21,20) €ER? : |1n] < f(1)}, (6.1)

where f(x) = 2?4+ k for fixed m > 0 and k > 0. Here, Q2 is unbounded.
_In this unbounded setting, let Ry > 0 be a sufficiently large constant. Let
Q) C R™ be a bounded C?? domain such that

QN B(0,Ry) C 2 C Q.

We say that u is a solution (resp., subsolution, supersolution) of (1.1)~(1.3)
on 2 x [0,00) if there exists & € R such that

u—a=u—a=0 on(Q\ B0, Ry)) x [0,00), (6.2)

and u is a solution (resp., subsolution, supersolution) of — with
in place of 2.

Let u be the solution to f. If a level set of u is a smooth curve,
then it is evolved by the forced curvature flow equation V' = xk + ¢, where V'
is the normal velocity and x is the curvature in the direction of the normal.
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Then, the classical Neumann boundary condition becomes the right angle
condition for the level-set curves with respect to 02, that is, if a smooth
level curve and 0f) intersect, then their normal vectors are perpendicular at
the points of intersections.

We show that if ¢ is too small and fails to satisfy , then there exist
discontinuous viscosity solutions to . In particular, we find that one such
discontinuous solution of is stable in the sense that the solution of f
(1.3) with a suitable choice of initial data converges to this discontinuous
stationary solution as time goes to infinity. This implies that the global
Lipschitz estimate for the solution of f does not hold. The following

is the main result of this section.

Theorem 6.1. Let Q be the set given by (6.1)), and c(z) = ¢ for all x € Q
for c € (0,r1), where T is defined by (6.7). Let u € C(Q x [0,00)) be the
solution of f with the given initial data uy € C?%(Q) satisfying that
% =0 on 02 and there exist constants ly,ls, o and f such that l; € (0,a,),
ly € (O,CLQ — (11), a < p,
uo(z) = {B for x = (x1,29) € gm& (63)
a forx = (x1,22) € Q\ U(ay + l2),

and o < ug < B, where U(a) is defined by fora>0,and 0 < a; < as
is given in Theorem[0.4. Then,

fim (.0 =

5 if.l’EU(CLl),
a if v € Q\ Ulay).

6.1. Set-theoretic stationary solutions

For a > 0, consider a family of curves with constant curvature in €2,

X(a,0) = (X1(a,0), X2(a,0)) = p(a) +r(a)(cosb,sinf), |0 < arctan(ma),
(6.4)

where we choose p(a), r(a) so that the curve

I':={(X1(a,0), X2(a,0)) : |0] < arctan(ma)}
U {(=Xi(a,0), Xa(a,0)) : |0] < arctan(ma)}
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has a constant curvature, and is perpendicular to the boundary 0€2. Indeed,

set .
a

Then, we see that the tangent line for {(x1,z5) | o = f(x1)} at z1 = a goes
through p(a). Moreover, setting

(a, %“2 + k) — p(a)

by elementary geometry, we can check that

r(a) ==

k
:<2+_) m?a? + 1,
2 ma

r'Lo9.

See Figure [2| The parameter a will be specified so that

1
c=—
r(a)
in Lemma [6.3]
r(a) = (3a+ -
/0
p(a) = (30— 55.0)
/ X(a;ﬁ)
f@)=%a®>+k fz) = 2a®+k

Fig. 2: Tllustrations of (6.4) and

The following definition is taken from [5, Definition 5.1.1].

Definition 6.2. Let G be a set in R™ x J, where J is an open interval in
(0,T). We say that G is a set-theoretic subsolution (resp., supersolution) of

V=r+c onl, with T,L00 (6.5)
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if X& is a viscosity subsolution (resp., (xa)« 1S a viscosity supersolution) of
(1.1 f in R" x J, where xg(z,t) = 1 if (z,t) € G, and xg(z,t) = 0 if
(x,t) € G, and x& and (xg)« denote the upper semicontinuous envelope and
the lower semicontinuous envelope of xq, respectively. If G is both a set-
theoretic subsolution and supersolution of , G s called a set-theoretic

solution of (6.5]).

Set
Ua) = {(x1,22) € Q: |z1| < X1(a,0), |xe| < X2(a,8),]0] < arctan(ma)},
(6.6)
and
Tmin := inf{r(a) : a > 0}. (6.7)
Then, rmin is positive since r is a continuous positive function in (0, c0) and
(lll_r)r(l) r(a) = ah_g)lo r(a) = oco. (6.8)

Moreover, by direct computation, we have

1 1 k
r'(a) = ———— |m’d®+- - — | .
m2a? + 1 2 ma?

Therefore, r has only one critical point a, = ﬁ\/—l + v/ 1+ 16mk in (0, 00)
and 7y, = 7(ay). In addition,

r'(a) < 0if a < a,, and r'(a) > 0 if a > a,. (6.9)

Lemma 6.3. If ¢ = o for some a > 0, then U(a) is a set-theoretic sta-
tionary solution of (1.1} . .

Proof. As a consequence of the nice characterization of set-theoretic solutions
n [B, Theorem 5.1.2], U(a) is a set-theoretic stationary solution of if
and only if 0 = k+ ¢ on OU(a) N2 and the right angle condition holds. The
equality follows from the fact that U (a) N2 contains two arcs of two circles
of the same radius r(a) and curvature k = —r(a)™! = —c.

On the other hand, these arcs intersect with 02 at four points (a, £f(a)),
(—a,£f(a)). By symmetry, it suffices to prove the right angle condition at

(a, f(a)). Notice that
(a, f(a)) = (Xi(a,arctan(ma)), Xs(a, arctan(ma)))
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r(a)

T~(1,ma).
m2a® + 1

= pla) +
Therefore, the line joining (a, f(a)) and p(a), the center of the arc, is tangent
to 0 at (a, f(a)). Thus, OU(a) N Q satisfies the right angle condition at

(a, f(a)). 0

Theorem 6.4. Ifc e (0, ) then there exist two positive constants a; <
ay such that U(a;) is a set- theoretzc stationary solution of (6.5 . ) fori=1,2.

Proof. Thanks to (6.7)—(6.9), there exist two positive constants a1, as with
a1 < a, < ag such that

r(ay) = r(ag) = % (6.10)

By Lemma [6.3] U(a;) is a set-theoretic stationary solution of (6.5]) for i =
1,2. 0

6.2. Stability
Let a; be the constants given by Theorem [6.4] for 7+ = 1,2. In this section,

we prove that U(ay) given by is a set-theoretic solution which is stable
in the sense of Theorem [6.1]

Lemma 6.5. Let [} € (0,a;1), la € (0,a2 —ay) and 6 > 0. Set a(t) :=
ay — e and a(t) := ay + lae™®. There exists 0y = do(m, k, 11, l3) such that
U(a(t)) and U(a(t)) are a set-theoretic subsolution and supersolution to (6.5))
for all 6 € (0,0), respectively.

Proof. We only prove that U(a(t)) is a set-theoretic subsolution, since we
can similarly prove that U(a(t)) is a set-theoretic supersolution. Let X (t) :=
X(a(t),8). From the characterization of set-theoretic solutions in [5, Theo-
rem 5.1.2], it suffices to show that for ¢ > 0,

—

ﬁ-n<— 1
dt = r(a(t))

+c forallt >0, (6.11)

where 1 is the outward normal vector i1 of U(a(t)), that is, i = (cos#,siné).
Note that



Also, for any constant L > 0, there exists C' = C(m, k, L) > 0 such that

aX — / — / / /
%(aﬁ)-n:p(a)-rhkr(a) < |p'(a)| + 7' (a)
1 m2a2+% mk

=—+ + <C
2 m2a2+1 m2a?2+1+vVm2a2+1

for all a € (0,L) and 0 € (=%, %). Therefore,

X 0X
— = d(ay — Q(t))% -1 < Co(ag — a(t)).

The observation implies that r(a(t)) > r(a;) = ¢! for all t > 0, and

thus we get
- -1
r(a(t)) r(ar) — r(a(t)

Thus, (6.11) holds for 6 € (0, dp), where

~1
do:=1|C sup h(a) :
a€lar—l1,a1+12]

Here the function A : [a; — 13, a1 + l3] — R is given by

a —a

- for a € [a; —l1,a1 + Iy] \ {a1},
r(a1)  r(a)
h(a) =
.2
r*(a) for a = a;.
r'(ay)

Since a; + 1y < ag, by we have r(a) # r(ay) in [a; — 1, a1 + 5] \ {a1 } and
r’(a1) < 0. Therefore, h is well-defined and continuous in [a; — l1,a; + [3].
Thus, h is bounded in [a; — I3, a1 + l5], and hence, §y > 0 is well-defined,
which implies that holds for all § € (0, dy). O

Proof of Theorem[6.1. We let o = 0 and 8 = 1 for simplicity. Set

u(z,t) = XgEmy (@) and w2, t) = Xv(Ee)(2)
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for (z,t) € Qx [0, 00), where @ and @ are the functions defined in Lemma
By Lemma [6.5, we see that v and w are a subsolution and a supersolution of

(1.1)—(1.2), respectively. Due to (6.3]), we get
u(+0) = XggEp < % < Xu@) = u(-,0) on Q.

In addition, since

Ufa) C V(a) = [=(p(a)| + r(a)), [p(a)| + r(a)] x [ f(a), f(a)]
by construction for p(a) and r(a) given in and f(a) = Za®> + k, we
obtain
supp(u) C U V(a) x [0,00) and supp(u) C U V(a) x [0, 00).
a€lar—I1,a1] a€lar,a1+l2]

As |p(-)|+r(-) and f are continuous on [a; —ly, a; +13], there exists a constant
Ry > 0 satisfying (6.2]).
By the comparison principle for ([1.1)—(1.3]), Proposition we get

u(-t) <u(-,t) <u(,t) onQ forallt>0.

On the other hand, since both a; — l1e™% and a; + loe™%* converge to a; as t
goes to infinity,

lim u(z,t) = lim u(z,t) =1 for z € U(ay),

t—o0 t—o0
and
tli)rglog(x,t) = }H?oﬂ(x’t) =0 forzeQ\U(a),
which finish the proof. O
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