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Cellular materials widely exist in natural biologic systems such as honeycombs, bones, and woods. With advances in

additive manufacturing, research on cellular metamaterials is emerging due to their unique mechanical performance.

However, the design of on-demandcellularmetamaterials usually requires solving a challenging inversedesignproblem

for exploring complex structure–property relations of microstructured representative volume elements (RVEs) in the

design domain. Here, we propose an experience-free and systematic methodology for exploring a parametrized system

for microstructures of cellular mechanical metamaterials using a multiobjective genetic algorithm (GA). Globally, by

considering the importance of the initial population selection for a population-based heuristic optimizationmethod, we

study the impact of the populations initialized by the different sampling methods on the optimal solutions. Locally, we

develop ourmethod by using amicro-GAwith a new searching strategy, which requires the standard genetic algorithm

to be conditionally run for a sufficient number of times with a small population size during the global searching process.

Wehave applied ourmethod to explore optimal solutions for applicationsmapped on two different parameter spaces of

the cellular mechanical metamaterials with periodic and nonperiodic RVEs effectively and accurately.

Nomenclature

A = direction index of node set 1
Anodal = area of representative volume element front surface
B = direction index of node set 2
C = direction index of reference point
E = Young’s modulus
Fnodal = nodal force in index direction
f = objective function
fbest = best objective function value
H = height of the representative volume element
Kbest = fittest individual
L = side length of unit cell
Ltolr = distance tolerance in geometric constraint
N = population size
r = polar radius
U = nodal displacement
W = width of representative volume element
Δζi = difference of ith porous parameter
ζ = porous parameter
ζi;j = ith porous parameter of jth cycle of genetic algorithm
ζj;max = maximum side length of reduced parameter space

ζj;min = minimum side length of reduced parameter space

ζ0;max = maximum side length of initial parameter space

ζ0;min = minimum side length of initial parameter space

ζL = lower bound of porous parameter

ζU = upper bound of porous parameter

θ = polar angle
ν = Poisson’s ratio
ϕ = porosity

I. Introduction

C ELLULAR materials nowadays have become one of the most
promising materials owing to their high strength and light

weight [1]. Due to their unique features, these materials have
widespread applications in aerospace [2,3] and transportation [4,5]
industries as structural panels. In recent years, the advent of additive
manufacturing has allowed the realization of high-performance and
high-precision industrial parts and products built with cellular
mechanical metamaterials (CMMs). The CMMs are assembled with
representative volume elements (RVEs) in repeating patterns.
Mechanical effective properties of the cellular metamaterials mainly
depend on the geometric patterns of RVEs rather than the materials’
own chemical composites [6,7]. Consequently, the design of cellular
materials is simplified as optimizing the geometric patterns of RVEs,
which are periodically distributed within the design domain. To meet
varied industrial requirements and realize the corresponding meta-
materials, there is a need for efficient multiobjective design
approaches to exploit the implicit relationship between the geometric
patterns of RVEs and their corresponding properties.
In our study, the microstructure of the CMMs is parametrized,

enabling a designer to tune geometric variables for specific applica-
tions in industries, corresponding to particular material properties
such asYoung’smodulus, Poisson’s ratio, porosity, etc. Traditionally,
the investigation of the optimal microstructures requires repeated
attempts for combinations of the geometric parameters. Without any
prior information, the search is time consuming due to complex
simulations or experimental approaches to evaluate the structural
responses of every test microstructure [8,9]. Therefore, with the
increased complexity requirements in material design, a design must
have an effectivemethod for finding a feasible set of parameter values
that defines the microstructures of newmaterials. Recently, advances
in deep learning have been beneficial for the design of new materials
using various neural networks (NNs) [10,11]. However, there are
several potential issues arising from using NNs for materials design:
1) the high computational expenses of building an extensive database
for structure–property relations [12], 2) the number of trails and tests
in constructing the architectures of NNs to avoid overfitting issues
while maintaining high accuracy, and 3) difficulties in interpreting
the physical meaning of the connection between the hidden neurons
of NNs [13].
Considering the preceding issues, we outline an experience-free

and systemic methodology using a multiobjective genetic algorithm
(GA) rather than deep learning. Unlike deep learning, this GA-based
computationalmethodology is independent of prior knowledge about
the structure–property relations and searches for the optima among
the realistic microstructures of RVEs. Moreover, our method
employs a micro-GA with a relatively small population size as
compared with a traditional GA. To avoid premature convergence
in the local optimum, the optimization process will restart the GA
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when the low diversity of the populations over several generations

appears. With our newly designed search algorithm, the parameter

space will be conditionally reduced based on the optimal solutions

from the previous runs of the GA to increase global search efficiency.

Besides, the works of Maaranen et al. [14,15] indicate that initial

populations may significantly influence the optimization results in

the GA over several generations. In addition to the pseudorandom

numbers applied in a traditional GA,we also study several alternative

ways to generate the initial population of theGAwithin the parameter

space. With hundreds of experiments, we can check whether the

initial population has significant effects on the best objective function

value found for several generations in our design scenarios, including

RVEs with periodic and nonperiodic unit cells. The flowchart in

Fig. 1 demonstrates the overall procedures of our systematic frame-

work, consisting of 1) alternative point generators for sampling the

initial population, 2) a genetic algorithm for searching optimal global

results with objective properties, and 3) homogenization methods for

estimating the effective properties of the CMMs.

II. Methodology

A. Definition of Geometric Patterns

In this study, we choose two-dimensional (2-D) porous cellular

solids to demonstrate the inverse design framework for cellular

mechanical metamaterials. It is a special but widely used class of

CMMs for which the geometric patterns are defined by unit cells

within periodically distributed RVEs. The unit cells are characterized

by the shape of the pore. The study focuses on the four-fold sym-

metrical pore, for which the contour is defined as [17]

r�θ� � ro�1� ζ1 cos�4θ� � ζ2 cos�8θ�� (1)

ro � L

�������������������������������
2ϕ

π�ζ21 � ζ22 � 2�

s
(2)

where r is the polar radius; θ is the polar angle in [0,2] π;L is the side

length of the unit cell; ϕ is the porosity of the pore shape; and ζ �
�ζ1; ζ2� shows the porous parameters, which directly define the

family of different pores illustrated in Fig. 2.

B. Computation of Elastic Properties

To evaluate the linear mechanical properties of 2-D CMMs, this
study applies computational homogenization to the RVEs of CMMs

using the finite element method. Recently, Omairey et al. [18] devel-
oped an plugin of Complete ABAQUS Environment called EasyPBC

to determine the homogenized (effective) mechanical properties of
user-defined periodic RVEs. The concept of this plugin is similar to the

asymptotic homogenization method. It aims to evaluate the effective

properties of RVEs by imposing uniform strains on a microscale RVE
while ensuring that the deformed external surfaces of the RVE remain

periodic [18]. In addition to the computational efficiency and conven-
ience of the commercial finite element software (ABAQUS), this

plugin is able to model the composite materials and the materials with

void inclusions, hence holding the potential for broader applications in
material design [18]. InEasyPBC, the node-to-node periodic boundary

conditions (PBCs) are applied at which deformed boundary surfaces
can distort and no longer remain plain [18]. Based on the concepts of

unified periodic RVE homogenization [19], these PBCs are imple-
mented using linear constraint equations to link nodal degrees of

freedom (DOFs) as illustrated in Eq. (3) and Fig. 3 [18]:

AxUDOF
set1 � BxUDOF

set2 � CxUDOF
RP�i� � 0 (3)

whereA,B, andC are thedirection indices (0,−1, and1); set 1 and set 2
are two opposite or associated sets defined in Fig. 3, U is the nodal
displacement of the sets (Fig. 3), DOF are the degrees of freedom that

are up to two in the 2-D case, and RP(i) is the reference point that
assigns the x and y directions to impose boundary displacements on the

RVE and to accommodate ridge body motion. We refer to table 1 in
Ref. [18] for assigning the terms in the linear constraint equation.
This study primarily focuses on the two mechanical properties of

the effective Young’s modulus and the effective Poisson’s ratio,
which are obtained in postprocessing and determined by Eqs. (4)

and (5):

E11 �
Axial tensile

Axial strain
� ΣFnodal∕Afront

ΔW∕W
(4)

ν12 �
−Transverse strain

Axial strain
� ΔH∕H

ΔW∕W
(5)

where E11 and v12 are the Young’s modulus and Poisson ratio,

respectively; Fnodal is the nodal force in the x and y directions;

Afront is the front surface area that is equal to the height H of the

Fig. 1 Schematic for the presented inverse design approach for CMMs [16].

Fig. 3 Classification of node sets on the RVE’s boundary.

Fig. 2 The sample pore shapes generated by the formulation given in
Eqs. (1) and (2).
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RVE multiplied by the unit thickness in the 2-D case; and W is the
width of the RVE as shown in Fig. 4.

C. Optimization Formulation

In this study, the inverse design ofmicrostructuredmaterials can be
formulated as a multiobjective optimization problem tominimize the
difference between the objective and predicted effective properties of
the RVEs. The mathematical formulation of the optimization prob-
lem reads as follows:

Minimize f�ζ� � �w1�ν12 − ν0��2 � �w2�E11 − E0��2
Find ζ � ��ζ1; ζ2�; : : : ; �ζn−1; ζn��
subject to ζL ≤ ζn ≤ ζU�n � 1; 2; : : : ; 8�

Ltolr ≤
L

2
− r sin�θ�; Ltolr ≤

L

2
− r cos�θ� (6)

where ζ denotes the porous parameters;wi is a weighted coefficient to
scale the two effective properties in the same numerical level; n is the

number of porous parameters, which is equal to twice asmany unit cells

within the RVE (see Fig. 5); ζL and ζU are the lower and upper bounds
of the porous parameters,which are equal to−0.2 and 0.2, respectively;
andf is the fitness function of themicro-GA,which is the summationof
the absolute errors between the target (v0,E0) and the predicted proper-
ties (v12, E11). The geometric constraint ensures the continuity of
structures. It eliminates the convergence issues in the FE simulations
when thedistance from the edge of the pore shape to the boundary of the
unit cell is minimal. Within 0 ≤ θ ≤ 2π, the minimum distance should
be larger than Ltolr, as shown in Fig. 6.

D. Generation of Initial Population

Following the works of Maaranen et al. [14,15], various random
point processes have been studied to understand their impacts on the
final objective function values over several generations of the GA.
Two inhibition point processes studied in the works of Maaranen
et al., which are the simple sequential inhibition process and non-
aligned systemic sampling, have a disadvantage in either the compu-
tational seed or usability. The simple sequential inhibition process
requires a number of trails points to satisfy a predefined distance
metric. Besides, nonaligned systemic sampling does not allow users
to freely control the sampling size, which is determined by the grid
size and dimension of the parameter space. Therefore, considering
their efficiency and usability, we will not study the two inhibition
processes in this paper. Latin hypercube sampling (LHS) is a simple
but efficient approach to distribute the sample points evenly across
the parameter space [20]. It can be an alternative random point
process to initialize the GA population. It will also be compared to
other random point processes studied in theworks ofMaaranen et al.,
including a pseudorandom number generator and two quasi-random
sequence generators (Sobol andNiederreiter). Overall, our studywill
explore and compare the effects on the final objective function values
using the four different point processes given earlier in this paper, and
it will select the best processes for our design scenarios. Figure 7
illustrates examples of the 2-D initial populations with 16 individuals
generated using the four random point processes.

E. Methodology for Microgenetic Algorithm

The structural topological optimization solved by gradient-based
methods, such as the standard optimality criteria method [21],
requires sensitivity calculations and numerical derivatives. Figure 8
illustrates two contours of the objective function values (in loga-
rithm), corresponding to two different on-demand combinations of
the objective properties, in a 2-D parameter space. Because the
gradient-based method is dependent on an initial guess [22], the high
complexity of the contours in Fig. 8 has a high possibility of failure,
such as convergence to an undesired local optimal solution. Besides,
the stochastic search algorithms, such as the standard genetic algo-
rithm, are time consuming due to the iterated process of expensive
fitness function evaluations [23]. The deep learning method has
recently attracted interest in material design applications. It has the
ability to learn and model nonlinear and complex relationships, such
as geometry–property relations. There is no doubt that a well-trained
neural network accelerates the design of materials [24]. However, in

Fig. 4 Deformation of the RVE under tensile strain test.

Fig. 5 Baseline geometries of RVEs: a) 1 × 1 RVE and b) 2 × 2 RVE.

Fig. 6 Distance tolerance in the geometric constraint.

Fig. 7 Sample 2-D initial population generated by a) pseudorandomnumber generator, b) Sobol sequence generator, c) Niederreiter sequence generator,
and d) Latin hypercube sampling.
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the meantime, it has the following few drawbacks that need to be

considered:
1) Building sufficient datasets of geometry–property relations and

training neural networks are exhaustive processes.
2) Coverage of the material property predictions is not guaranteed

by the limited range of datasets, and thus the fidelity of NNs is
affected.
3)Achieving the desiredRVEgeometry that provides the objective

properties cannot be guaranteed due to the discontinuities in the
prediction ranges.
4) Interpretability of the predictions is limited due to the implicit

link between the inputs and outputs.
Here, we propose an experience-free and heuristic searching strat-

egy based on amicrogenetic algorithm (μGA) to address the preceding
issues. Without a database, our method has the capability to discover

the complex nonlinear relationships between the geometries of RVEs

and their corresponding properties by evolutionary algorithms. Con-

sidering the computational expense of the standard genetic algorithm

(SGA), we employ μGA, which undergoes SGA operators including

tournament selection, crossover, uniform mutation, and elitism but

requires a small population size in each cycle. Obviously, with a small

population size, the SGA has difficulty maintaining diversity over

several generations.Moreover, it could induce premature convergence

due to the presence of a local optimum solution. To avoid this problem,

the basic idea of μGA is to restart the SGAwith a small population size

(N) inmultiple cycles.Once the diversity of the current cycle is low, the

fittest individual is kept as a reference individual and N − 1 new

individuals from the initial population are introduced to the next cycle

of the SGA. Meanwhile, the range of the parameter space remains the

same. The diversity of the generations in the μGA is evaluated by the

overall change of fitness values among the stall generation limits.

The basic idea allows the μGA to continuously search for global

optimum solutions and avoid the current searching step trapping in

the local minima of our optimization problem.
In the μGA, the searching strategy continuously processes a new

cycle of the SGAwhile introducing the new fittest individual until the

maximum iteration number or error tolerance is reached, where the

error tolerance is the maximum relative error between the objective

and optimal properties. The fittest individual in the early stages of the

searching process may already have outstanding values of the objec-

tive (fitness) function, but it may not satisfy the error tolerance of the

stopping criteria. Less strict stopping criteria of the successive cycles,

such as large maximum iteration number and large function toler-

ance, induce the increase in the total number of generations of the

SGA. It might allow the iterative search process of the SGA has

the possibility to optimize the current fittest individual approaching

the objective value due to the large generation number. With the

restart of the SGA sufficient times, the iterated search process has the

possibility to optimize the current fittest individual approaching the

objective value. However, for a large number of restarts in the SGA,

the iterated search process is time consuming, even with the small

population size. Here, we assume that the current fittest individuals

(local minima) achieved in the case of no improvement in the

optimum solution over several cycles have a significant possibility

of being located near the global minima. The assumption was proved

by the experiments with RVEs containing one periodic unit cell

(Fig. 5a). In the parameter space, we evaluated the Euclidean dis-

tances between 50 local minima (determined by 50 runs of the SGA)

and global minima, which were defined by a known geometric

pattern ofRVEswith corresponding homogenized properties. Table 1

shows 10 identical global minima with the average distance of their

50 local minima. In Table 1, the average distances for all the cases are

less than 50% of the width of the parameter space of 0.4, which is

determined based on the predefined range of porous parameters from

−0.2 to 0.2 in Sec. II.C. The average distance in case 4 even reaches
4% of the width. Inspired by the results, we can reduce the parameter

space based on the current fittest individuals of the SGA to decrease

the computational cost. Considering a more complex design sce-

nario, like the one with a higher-dimensional parameter space and a

Pareto optimal set, a new parameter space cannot simply be reduced

based on a single local minimum and a specifically designated width.

The SGAwith a new reduced space should be determined by referring

to at least two local minima, which allows us to obtain the new fittest

individuals with extremely high accuracy that satisfy the error toler-

ance to stop the searching process. The statement is validated by the

results in Sec. IV.C.

Table 1 Summary of Euclidean distances between local minima and
one global minimum

Example
index Global minima

Corresponding
properties �ν0; E0�

Average
Euclidean

distance of 50
local minima

1 [0.1800 −0.1367] [0.1843 1111.87 MPa] 0.1393
2 [−0.1435 0.0048] [0.1939 1417.06 MPa] 0.0527
3 [0.0885 0.1715] [0.1571 994.75 MPa] 0.0772
4 [0.0928 0.0999] [0.1853 1137.40 MPa] 0.0765
5 [−0.0371 −0.1042] [0.2020 1289.35 MPa] 0.0481
6 [0.1370 0.0652] [0.1896 1107.50 MPa] 0.1165
7 [0.1011 −0.0013] [0.2095 1274.87 MPa] 0.0248
8 [0.0188 −0.0388] [0.2152 1372.35 MPa] 0.0174
9 [−0.1572 0.0897] [0.1680 1357.84 MPa] 0.0278
10 [−0.1060 −0.0404] [0.2049 1393.67 MPa] 0.0288

Fig. 8 Contours of the objective function values (in logarithm) with two different combinations of the objective properties in 2-D parameter space.
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Therefore, the new range of the n-dimensional parameter space is
determined based on the current fittest individual (the first local mini-
mum) with �ζ1;0; ζ2;0; : : : ζn;0� and the new fittest individual (the

second localminimum)with �ζ1;1; ζ2;1; : : : ζn;1�, achieving by running
a new cycle of the SGAwithout any reference individuals in the initial
population. The width of the new n-dimensional parameter space is
determined as twice the absolute difference of the porous parameters in
each dimension, 2 × jζn;0 − ζn;1j, as demonstrated as Fig. 9. Once the

side lengths of a reduced parameter space Ci in each dimension are
determined, the new cycle of the SGAwill be processed without any
reference individual in the initial population. The fittest individual in
the new cycle can be continuously optimized by following the basic
idea of the μGA in the reduced parameter space. The following
pseudocode illustrates the detailed procedure of our global searching
strategy:
function micro-GA
begin
Define porous parameters ζ ∈ �ζ0;min; ζ0;max� and the number of

cycles of SGA�i� � 0.
Case 1: 1) Initialize the population P with size N.

2) Optimize the initial population by the SGA.
3) Save the fittest individual Kbest and its objective

function value fbest.
4) i = i + 1.

while fbest > tolerance or i≤ maximum iteration, then
Case 2: 1) Introduce Kbest and initialize P with N-1.

2) Optimize the initial population by the SGA.
3) Save the fittest individual Kbest and its objective

function value fbest.
4) i = i + 1.

if fbest ≤ tolerance or i> maximum iteration, then
end function

else
repeat
begin
Run case 2.
i = i + 1
if fbest ≤ tolerance or i > maximum iteration, then
end function

end
end

until fbest of the current cycle of SGA = fbest of the previous
cycle of the SGA

Save fbest of the current cycle f0;best with �ζ1;0; ζ2;0; : : : ζN;0�
Run case 1.
Save fbest of the new cycle of the SGA f0;bestwith �ζ1;1; ζ2;1;

: : : ζN;1�.
Case 3: 1) Define new range of ζN in N dimensions

begin
while j ≤ N

Determine absolute difference between ζj;0 and
ζj;1 in jth dimension, Δζj � jζj;0 − ζj;1j.

if ζj;1 � Δζj ≥ ζ0;max

ζj;max � ζ0;max

else
ζj;max � ζj;1 � Δζj

end
if ζj;1 − Δζj ≤ ζ0;min

ζj;min � ζ0;min

else
ζj;min � ζj;1 − Δζj

end
end
2) Run case 1with a new parameter space defined by

ζj;max and ζj;min.

3) Save the fittest individual Kbest and its objective
function value fbest.

4) i = i + 1.
5) if fbest ≤ tolerance or i>maximum iteration, then

end function
else

repeat
begin
Run case 2.
i = i + 1.

end
until fbest ≤ tolerance or i > maximum iteration

end
end function.

III. Numerical Examples and Results

A. Preliminary Settings

In this section, the effectiveness of the inverse design method is
demonstrated by testing two numerical examples: RVEs with peri-
odic unit cells, and RVEs with nonperiodic unit cells. The para-
metrization describes the unit cells of the RVEs in Eqs. (1) and (2).
In the first numerical example (2-D study case), the geometric
patterns of the RVEs consist of 1 × 1 periodical unit cells, which
are defined by the 1 × 2 geometric vector �ζ1; ζ2� shown in Fig. 5a.
The second numerical example [eight-dimensional (8-D) study case]
has RVEs consisting of 2 × 2 nonperiodic unit cells, for which
the geometric patterns are defined by the 2 × 4 geometric matrix
(�ζ1; ζ2��ζ3; ζ4�; �ζ5; ζ6��ζ7; ζ8�) shown in Fig. 5b. The chosen sizes of
the RVEs in the two numerical examples are large enough
to represent the microstructure without introducing nonexisting
properties [25], and they are small enough to reduce the computa-
tional expense in finite element analysis. In our study, the RVEs
in the two numerical examples are assigned to an isotopic and
linear elastic material called unfilled polyetherimide (Young’s
modulus � 3580 MPa, and Poisson’s ratio � 0.35 [26]). The range
of porous parameters ζ is identical in each dimension, from −0.2 to
0.2. The size of the unit cell is defined by the side length of
L � 10 mm. The smallest distance Ltolr between the edge of the
pore shape and the boundary of the unit cell is designated as 0.5 mm.
The porosity of the unit cells ϕ is equal to 0.4. Besides, the optimi-
zation problem in this section is solved using the μGAwith the same
mutation rate of 0.1, a crossover rate of 0.8, a population size of 16,

Fig. 9 Construction of the new reduced parameter space.
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and a stall generation limit of 32. In the inner loops of our searching

methodology, all cycles of the SGA have the same stopping criteria:
1) The change of the optimal value of the fitness function during

restarting of the micro-GA should be less than 1e-4.
2) The maximum iteration number should be smaller than 50.
In addition, there are two stopping criteria for the outer loops of our

searching methodology:
1) the maximum number of cycles should be less than 10.
2) The final optimal properties should satisfy a certain relative

error between the objective and optimal properties.
The two objective properties for this study were chosen to be the

effective Young’s modulus of the CMMs and its effective Poisson’s

ratio. In addition, we intend to select combinations of objective

properties that cover the design spaces of the 2-D and 8-D study

cases, and meanwhile ensure the diversity of the expected geometric

patterns of the RVEs, which have various curvatures of the porous

surfaces in the unit cells. The following numerical examples dem-

onstrate that the presented approach successfully identified all these

different geometries while optimizing the geometric patterns with

preferred combinations of the two effective properties.

B. RVEs with Periodic Unit Cells

Suppose a geometric pattern of the 1 × 1RVEwith the periodic unit

cell is desired that exhibits an objective effective Young’s modulus as

well as Poisson’s ratio. It corresponds to a 2-D study case with two

design parameters �ζ1; ζ2�. In the 2-D study case, the tolerance of the

relative error with respect to the objective properties is defined as

0.05% in comparison to the objective properties. In the beginning of

our optimization framework, there is no prior information about the

local or global minima available for initializing the population of the

SGA. Therefore, uniformly distributed sample points with diverse

values and locations might be useful for searching optimum solutions

throughout the 2-D parameter space [15]. Traditionally, the initial

population of the SGA is generated by a pseudorandom number

generator (PRNG) [14]. Our study compares its effect on the objective

function values to three alternative random point generators, including

the Sobol sequence generator (SSG), the Niederreiter sequence gen-

erator (NSG), and Latin hypercube sampling. The empirical empty

space statistics (ESS) function evaluates their goodness for the uniform

distribution property, which is defined as [14]

ESS�r� � 1 − Pr�B�x; r� is empty� (7)

where x is a randomly chosen point in the feasible region, B�x; r� is a
ball centered at x with radius r, and Pr denotes the probability [14].

The function randomly assigned the ball B with the radius r at the

center x in the feasible region. Then, the probability of the function is
the likelihood of having no sample points in the ball B. Figure 10a
illustrates the relationship between the radius of the ball B and the

average ESS function values of hundreds of point generations. As the

radius increases, the ball B is less likely to be empty, leading to an

increase in the ESS function. If the emptiness of the ball B is more

sensitive to the change of radius and depends less on its center x, the
curve tends to be steep. In other words, the generator withmore evenly

distributed sample points within the parameter space has a steeper
curve of the ESS function. Hence, the sequence from the highest to the
lowest in the uniformity of the sample distribution is LHS, NSG, SSG,
and PRNG, respectively. In Fig. 10a, LHS first converges to the
maximum value of the ESS function, representing that it has the
highest uniformity among the four generators.
In addition to the uniformity, we check the accuracy of the four

random point generators. The accuracy is evaluated by solving the
optimization problemwith 20 different objectiveproperties, shown in
Table 2. Due to the minimization problem, the smaller the objective
function value is, the higher the accuracy of the optimum solution
accuracy is.We solve each problemwith four variants of the SGA100
times. The benchmark results in Fig. 10b are the objective function
values obtained with the PRNG. The heights of the bars in Fig. 10b
represent the decrease in the objective functionvalues as compared to
the benchmark. Table 2 summarizes the results from Fig. 10b, includ-
ing the average decrease in the objective function values in percent-
age, the number of improved objective function values, and the
variance of the decreases in the objective function values in the
percentage of all tested objective properties. Generally, the objective
function values can be successfully improved by replacing any of the
three alternative generators with the benchmark. Although LHS
reduces a large number of objective function values in percentage,
its performance or stability varies considerably from case to case by
referring to the relatively large values of the variance in Table 2. The
overall results from Fig. 10b and Table 2 prove that the distributions
of the initial population have an important effect on the objective
function values in the 2-D case. However, the comparison of the
variance in Table 2 indicates that the highest uniformity of the initial
population does not necessarily contribute to the best performance in
optimizing the geometric patterns of the RVEs. Overall, based on the
comprehensive evaluations from Table 2, we choose either the NSG
or the SSG as the randompoint generator of the SGA in our searching
strategy.
After evaluating the four random point generators, we process our

complete searching strategy with a quasi-random point generator,
such as the SSG, to solve the optimization problem with 20 different
objective properties, shown in Table 3. Table 3 numerically summa-
rizes the optimization results, including the objective properties, the
order of the SGA cases from the pseudocode in Sec. II.E, the relative
errors in percentage as compared to the objective properties, and the
total number of generations in the SGA. Owing to the benefits of the
quasi-random point sampling, the objective properties in the several
examples can be achieved only in a single cycle, shown in examples

Fig. 10 Comparison of the four randompoint generators in 2-D parameter space: a) ESS function vs radius, and b) decrease in objective function values.

Table 2 Summary of results from Fig. 10b (2-D)

Random
point
generator

Average
decrease in
objective

function, %

Number of the
improved objective

function

Variance in
objective
function

SSG 65.32 16 0.8878
NSG 63.55 17 0.7621
LHS 114.97 14 5.6341
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5, 6, 16, and 19. Figure 11 visually demonstrates the collective

converging histories of all cycles of the SGAwithin thewhole process

of the μGA. The history shows the logarithm of the objective function

values over the generations (iteration steps). In Fig. 11, the solid

vertical lines split the history into several sections, representing a

cycle of the SGA and denoted with the corresponding case index

from the pseudocode. Some of the example problems in Table 3 (such

as examples 1, 2, 7, 12, and 17) can be directly solved by the basic

idea of the μGA combined with cases 1 and 2 from the pseudocode.

Some of the example problems (such as examples 4, 9, 11, 15, 18, and

20) require restarting the SGAwithout any reference individual after

the several cycles. Some other example problems (such as examples

3, 8, 10, 13, and 14) require reducing the initial parameter space to
improve the fittest individual further, which is stuck at the local
optimum using case 1, case 3, and case 2 if necessary. Thus, the
results shown in Table 3 and Fig. 11 numerically and visually prove
the effectiveness of our searching strategy, respectively.

C. RVEs with Nonperiodic Unit Cells

Suppose a geometric pattern of the 2 × 2 RVEwith the nonperiodic
unit cell is desired that exhibits the objective effective Young’s modu-
lus and Poisson’s ratio. It is a 2-D study case with eight design
parameters �ζ1; ζ2; ζ3; ζ4; ζ5; ζ6; ζ7; ζ8�. Because the higher complex-
ity results in more significant variances in material properties, we set
the tolerance of the relative error in the 8-D study case as 0.01% to
increase the reliability of our optimum results. Before processing our
searching strategy within the optimization problem, we first evaluate
the uniformity of the four randompoint generators by the ESS function
in Fig. 12a. The population size of the SGA is assigned as 16, which is
the same as the 2-D study case. In Fig. 12a, we find that the converging
behaviors of the four random point generators are very similar, and
their converging history plots are almost overlapping. These results are
caused by the small population size chosen in the high-dimensional
parameter space. Consequently, the changes in the random point
generators in the SGA slightly affect the initial population’s point
distribution; thus, their uniformity is nearly identical. Moreover, by
processing a single cycle of the SGA with 20 different objective
properties, we determine whether the sample distribution affects the
accuracy of the objective functionvalues in the high-dimensional study
case. Table 4 summarizes the results from Fig. 12b and shows that the
four random point generators have similar performances in optimizing
the geometric patterns of theRVEs. Therefore,we conclude that, in our
case scenario, changing the random point generators hardly influences
the objective function values of the SGAwith a small population size
and a large number of design parameters. Therefore, we could choose
any of the four random point generators to process our searching
strategy in this study case.
The next step is to perform our complete searching strategy to

solve the optimization with 20 different objective properties, shown

Table 3 Summary of the optimization results (2-D)

Example
index

Objective properties
�ν0; E0�

Order of
SGA
cases

Relative error
�%ν;%E�

Total number
of generations

1 [0.1755, 1068.33 MPa] 12 [0.010%, 0.037%] 84
2 [0.1968, 1442.13 MPa] 122 [0.045%, 0.027%] 108
3 [0.2171, 1408.04 MPa] 1213 [0.002%, 0.011%] 111
4 [0.2059, 1251.02 MPa] 121 [0.020%, 0.015%] 134
5 [0.2120, 1378.09 MPa] 1 [0.004%, 0.001%] 32
6 [0.1932, 1401.69 MPa] 1 [0.033%, 0.008%] 47
7 [0.2175, 1349.87 MPa] 12 [0.002%, 0.012%] 78
8 [0.1917, 1240.80 MPa] 12213 [0.001%, 0.000%] 186
9 [0.1838, 1069.64 MPa] 121 [0.010%, 0.007%] 81
10 [0.2116, 1440.36 MPa] 12132 [0.002%, 0.033%] 160
11 [0.1731, 1363.41 MPa] 1221 [0.000%, 0.000%] 128
12 [0.2077, 1431.43 MPa] 12 [0.001%, 0.000%] 38
13 [0.2077, 1326.66 MPa] 12132 [0.005%, 0.050%] 177
14 [0.1591, 1273.32 MPa] 12132 [0.002%, 0.000%] 185
15 [0.1845, 1110.27 MPa] 121 [0.002%, 0.000%] 92
16 [0.1910, 1129.32 MPa] 1 [0.000%, 0.000%] 35
17 [0.1857, 1180.21 MPa] 122 [0.037%, 0.033%] 104
18 [0.1522, 1184.82 MPa] 121 [0.000%, 0.000%] 87
19 [0.1731, 1189.14 MPa] 1 [0.000%, 0.000%] 45
20 [0.1866, 1140.06 MPa] 121 [0.000%, 0.000%] 86

Fig. 11 Combined converging history of four sample examples in Table 3: a) example 2, b) example 4, c) example 14, and d) example 20.
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in Table 4. Like Table 2, the optimization results are summarized in

Table 4, including the objective properties, the order of the SGAcases

from the pseudocode in Sec. II.E, the percentage errors as compared

to the objective properties, and the total number of generations in the

SGA. The growth of the complexities of the geometric patterns of the

RVEs provides sufficient freedom to design the microstructures of

the CMMs. It results in the possibility that the RVEs with different

geometric patterns share nearly identical effective properties. With a

limited amount of candidate solutions, it is not difficult for the SGA in

an 8-D study case to achieve optimal solutionswith a small error. This

is shown by the results of examples 4, 7, 8, 11, 19, and 20. Even

without the updated method to generate the initial population, the

increased freedom for material design allows these examples to

achieve satisfactory results within a single cycle. Some of the exam-

ple problems in Table 5 (such as examples 1, 10, 14, 15, 16, and 18)

can continuously reduce the objective functionvalues simply through

the basic idea of the μGA combined with cases 1 and 2 from the

pseudocode. Some of the example problems (such as examples 5, 9,

and 13) require dealing with premature convergence by neglecting

the results from previous cycles instead of starting a new SGAwith-
out any reference individual. Some other example problems (such as
examples 2, 3, 6, 12, and 17) have the fittest individual, which is stuck
at the local optimum over several cycles of the SGA. Reducing the
initial parameter space allows the problem to improve the individual
further using case 1, case 3, and case 2 if necessary. Moreover, the
collective converging histories in Fig. 13 demonstrate the optimiza-
tion process over several cycles of the SGA in a straightforward way.
The histories clearly illustrate the issue of premature convergence,
the restarts of the SGA for a new fitness individual, and the continu-
ous decrease in the objective function values. Overall, both the
numerical and visual results in the 8-D study case indicate the
effectiveness of our searching strategy.

IV. Discussion

The results from the numerical examples demonstrate the effec-
tiveness and reliability of our proposed inverse designmethod. In this
section,we further illustrate themotivations for employing themicro-
genetic algorithm with the new searching strategy instead of the
traditional/standard genetic algorithm. To make comparisons of
the two optimization methods, we set up one control group with
the μGA and two experimental groups with the SGA. All test runs
were performed on a laptop computer with a 2.60 Hz Intel Core
i7-10750H processor and 16 GB DDR4 (Double Data Rate Fourth
Generation) memory at 2133 MHz. All groups intend to solve the
same inverse design problem with 20 objective properties from
the previous section for 2-D and 8-D numerical cases. We define
the control group as the same tests processed in Sec. III and directly
refer to Table 3 (2-D) and Table 5 (8-D) as the control group’s results.
In the experimental group, every setting of the GA and the choice of
the random point generators are the same as in Sec. III, except for the
population size and the stopping criteria. The first experimental
group maintains a population size of 16. The second experimental
group doubles the population size from 16 to 32 in the 2-D study case
and quadruples the size from 16 to 64 in the 8-D study case. Mean-
while, we appropriately adjust the stopping criteria for all the exper-
imental groups, such as the maximum iteration number and the
default fitness tolerance. It aims to avoid the optimization process
stopping early with unsatisfactory results caused by the relatively
strict stopping criteria in Sec. III. Besides, all study cases have the
same error tolerance defined in Sec. III. The errors in the 2-D case
have an error tolerance, for which both the Young’s modulus and
Poisson’s ratio should be less than 0.05%. In the 8-D case, the errors
should be less than 0.01%. The following tables summarize the
comparison results between the control and experimental groups,
containing the population size, the stopping criteria, the average error
between the optimal and objective properties in percentage, the
number of optimal results satisfying the error tolerances, and the
average running time in hours. All table results are achieved by
solving the 20 inverse design problems in Tables 3 and 5 for 2D-
and 8D-study cases, respectively.
In Tables 6 and 7, the first experimental group, with the same

population size and the relatively lenient stopping criteria as com-
pared to the control group, is unable to achieve the optimal solutions

Fig. 12 Comparison of the four randompoint generators in 8-D parameter space: a) ESS function vs radius, and b) decrease in objective function values.

Table 4 Summary of results from Fig. 12b (8-D)

Random
point
generator

Average
decrease in
objective

function, %

Number of the
improved objective

function

Variance in
objective
function

SSG 0.16 8 0.1261
NSG 0.20 7 0.1546
LHS 0.18 7 0.1372

Table 5 Summary of the optimization results (8-D)

Example
index

Objective properties
�ν0; E0�

Order of
SGA
cases Error �%ν;%E�

Total number
of generations

1 [0.1965, 1203.59 MPa] 122 [0.000%, 0.000%] 93
2 [0.1802, 1217.30 MPa] 12132 [0.007%, 0.001%] 174
3 [0.1902, 1181.81 MPa] 122132 [0.004%, 0.010%] 200
4 [0.1684, 1149.97 MPa] 1 [0.001%, 0.007%] 50
5 [0.1838, 1282.16 MPa] 121 [0.006%, 0.003%] 117
6 [0.1783, 1175.81 MPa] 12132 [0.001%, 0.008%] 171
7 [0.1891, 1151.91 MPa] 1 [0.008%, 0.008%] 36
8 [0.1817, 1094.37 MPa] 1 [0.005%, 0.001%] 54
9 [0.1470, 1062.27 MPa] 1221 [0.006%, 0.007%] 140
10 [0.1504, 1144.93 MPa] 122 [0.001%, 0.010%] 101
11 [0.1606, 1101.14 MPa] 1 [0.002%, 0.010%] 47
12 [0.1670, 1235.14 MPa] 122131 [0.007%, 0.005%] 201
13 [0.1826, 1372.53 MPa] 1221 [0.004%, 0.008%] 139
14 [0.1954, 1293.73 MPa] 12 [0.001%, 0.007%] 92
15 [0.2031, 1169.70 MPa] 1222 [0.007%, 0.003%] 141
16 [0.2088, 1212.85 MPa] 12 [0.007%, 0.006%] 74
17 [0.2187, 1119.45 MPa] 12132 [0.007%, 0.007%] 188
18 [0.2031, 1073.87 MPa] 12222 [0.002%, 0.004%] 189
19 [0.1882, 1028.95 MPa] 1 [0.003%, 0.002%] 47
20 [0.1845, 1165.72 MPa] 1 [0.008%, 0.006%] 44
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that satisfy the error tolerance defined in Sec. III. Then, we double the

population size in the 2-D case and even quadruple the population

size in the 8-D case. The increases in the population size cause the

increased amount of candidate solutions in a single cycle of the SGA,

leading to a large possibility of achieving feasible individuals. In

Tables 8 and 9, the large population size is found to improve the

accuracy in the optimal solutions of the SGA. In both 2-D and 8-D

cases, the number of counts in the feasible solutions is increased.

Moreover, both cases demonstrate a certain level of improvement in

the average errors; however, they still do not satisfy the tolerance.

Nevertheless, this improvement causes a substantial growth in the

computational expense.

Thus, our proposed inverse design framework has the capability to

obtain the optimal solution with high accuracy while maintaining

Fig. 13 Combined converging history of four sample examples in Table 5: a) example 3, b) example 5, c) example 9, and d) example 15.

Table 6 Comparison of results between the control group and the first experimental group (2-D)

Group Population size Maximum iteration number Fitness tolerance Average error �%ν;%E� Counts (satisfied) Average time, h

Control 16 50 1e-5 [0.009%, 0.012%] 20 2.49
Experimental 1 16 50 1e-5 [0.389%, 0.334%] 6 1.74

Table 7 Comparison of results between the control group and the first experimental group (8-D)

Group Population size Maximum iteration number Fitness tolerance Average error �%ν;%E� Counts (satisfied) Average time, h

Control 16 50 1e-5 [0.004%, 0.006%] 20 2.86
Experimental 1 16 50 1e-5 [0.093%, 0.084%] 3 2.19

Table 8 Comparison of results between the control group and the first experimental group in 2-D

Group Population size Maximum iteration number Fitness tolerance Average error �%ν;%E� Counts (satisfied) Average time, h

Control 16 50 1e-5 [0.009%, 0.012%] 20 2.49
Experimental 2 32 100 1e-7 [0.069%, 0.131%] 12 3.42

Table 9 Comparison of results between the control group and the first experimental group in 8-D

Group Population size Maximum iteration number Fitness tolerance Average error �%ν;%E� Counts (satisfied) Average time, h

Control 16 50 1e-5 [0.004%, 0.006%] 20 2.86
Experimental 2 64 300 1e-7 [0.004%, 0.011%] 13 16.9
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outstanding computational efficiency in solving the inverse design
problem with a few objective properties. For a large number of
objective properties, a well-trained neural network definitely has a
considerable advantage in computational efficiency over ourmethod.
On the other hand, the users of our approach do not need to build an
extensive database of NNs that can exhaust computational resources.
During the training process of the NN, the lack of data limits the
design space of the materials while reducing the accuracy of the
predicted results. Moreover, we solve the inverse design problem
over physically explainable optimization in the geometric patterns of
the RVEs. There is no guarantee that the properties of the CMMs are
smoothly distributed in the material property closure. Therefore, it
questions the reliability of regression in deep learning. In a neural
network, the implicit connections between the input and output layers
hinder its versatility and scalability. Instead, our proposed method
can deal with different material types by directly modifying the
underlying physics-based model in our programming.

V. Conclusions

This paper developed an experience-free and systemic methodol-
ogy for exploring the parameter space of cellular mechanical meta-
materials using the multiobjective genetic algorithm. It opens new
avenues to harness genetic algorithms to realize user-defined proper-
ties. The method adopts the representative volume element homog-
enization method for the multiscale material system to predict its
effective properties in ABAQUS. The homogenization method is not
only compatible with isotropic materials but also with anisotropic
composite materials. The broad application of the homogenization
method provides possible future research as an extension of the
current work. In addition, the geometric patterns of the RVEs are
evolved using the new searching strategy based on the microgenetic
algorithm. The current experimental results illustrate that the strategy
avoids premature convergence in solving an inverse design problem
using the μGA, and it maintains high accuracy in optimal results
while requiring no prior information about the pattern–property
pairs. In the meantime, as compared to the standard exhaustive
genetic algorithm, it achieves relatively low computational expense
with the small population size and the conditionally reduced param-
eter space.Moreover, this study examines four different randompoint
generators in the standard genetic algorithm. In a high-dimensional
parameter space, the small population size minimizes the impact on
the objective function values with any alternative generators men-
tioned in this paper. Besides, owing to theGA’s capability of imitating
the natural evolution, the proposed method can easily be applied to
the inverse design of other cellular metamaterials with high-
dimensional discrete design parameters, such as trusslike structures
and other cellular metamaterials where the geometric patterns of
RVEs are defined by an ensemble of binary values (genes).
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