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Decoupling Uniaxial Tensile
Prestress and Waveguide Effects
From Estimates of the Complex
Shear Modulus in a Cylindrical
Structure Using Transverse-
Polarized Dynamic Elastography
Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical
modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of bio-
logical tissue, properties altered by disease and injury, by noninvasively measuring
mechanical wave motion in the tissue. Most reconstruction strategies that have been
developed neglect boundary conditions, including quasi-static tensile or compressive
loading resulting in a nonzero prestress. Significant prestress is inherent to the functional
role of some biological tissues currently being studied using elastography, such as skele-
tal and cardiac muscle, arterial walls, and the cornea. In the present article a configura-
tion, inspired by muscle elastography but generalizable to other applications, is
analytically and experimentally studied. A hyperelastic polymer phantom cylinder is stat-
ically elongated in the axial direction while its response to transverse-polarized vibratory
excitation is measured. We examine the interplay between uniaxial prestress and wave-
guide effects in this muscle-like tissue phantom using computational finite element simu-
lations and magnetic resonance elastography measurements. Finite deformations caused
by prestress coupled with waveguide effects lead to results that are predicted by a coordi-
nate transformation approach that has been previously used to simplify reconstruction of
anisotropic properties using elastography. Here, the approach estimates material visco-
elastic properties that are independent of the nonhomogeneous prestress conditions with-
out requiring advanced knowledge of those stress conditions.
[DOI: 10.1115/1.4056411]
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1 Introduction

Dynamic elastography methods—based on optical, ultrasonic,
and magnetic resonance imaging modalities—aim to quantita-
tively map the shear viscoelastic properties of biological tissue,
which are often altered by disease and injury. Most studies to date
have focused on larger organs, such as the liver or brain, where
boundary effects were assumed negligible. But, as elastography is
applied to other anatomical regions where dimensions in at least
one direction are smaller or of comparable length to bulk shear
wavelengths—such as in slender skeletal muscles, blood vessel
walls, the heart wall, and the cornea—boundary effects become
non-negligible and must be considered. Researchers using optical
elastography to assess the viscoelastic properties of the cornea
have long recognized this, adapting models to include waveguides
by treating the cornea as a plate-like structure. Here, transverse
wave motion on the cornea is modeled as Rayleigh–Lamb waves
[1]. Blood vessels, as well, have been modeled using cylindrical
shell equations considering fluid-structure interaction [2–4]. Lim-
ited studies on cardiac elastography have also acknowledged the

frequency-dependent (i.e., wavelength-dependent) waveguide
behavior of the heart wall [5].

Often, when elastography studies are done under varying non-
zero quasi-static prestress conditions, observed changes in
mechanical wave behavior are attributed solely to the nonlinear
property of the tissue: it’s been suggested that its shear and vis-
cous constants are highly dependent on the tensile load and asso-
ciated deformation. A recent article provides a summary of the
literature relevant to this issue, in particular for uniaxially pre-
stressed cylindrically-shaped structures, as well as biaxially pre-
stressed plate-like structures [6].

In the present study, focused on uniaxially prestressed cylindri-
cal structures, the confounding effects of finite dimensions and
prestress are further explored, analytically and experimentally.
Furthermore, we articulate and evaluate a strategy for decoupling
prestress and waveguide effects from estimates of material shear
viscoelastic properties.

2 Theory

2.1 Shear Wave Motion in a Uniaxially Prestressed Linear
Viscoelastic Material. Dynamic elastography methods are based
on the assumption that the measured transverse wave speed or
wavelength for small amplitude (linear theory assumption) motion
is directly related to the material’s elastic or viscoelastic proper-
ties [7]. Assuming isotropy, homogeneity and neglecting any
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boundary effects or variation in density q in a nearly incompressi-
ble viscoelastic material, the frequency-dependent shear wave
phase speed, c x½ �, for harmonic excitation at circular frequency,
x, is

c ¼ x=Real k x½ �½ � ¼
1=

ffiffiffi
q

p

Real 1=
ffiffiffiffiffiffiffiffiffi
l x½ �

ph i (1)

Here, k x½ � is the complex-valued, frequency-dependent shear
wave number and l x½ � is the complex-valued, frequency-
dependent shear modulus, comprised of the shear storage modu-
lus, lR x½ �, and the shear loss modulus, lI x½ �, such that l x½ � ¼
lR x½ � þ jlI x½ � where j ¼

ffiffiffiffiffiffiffi
�1

p
. The attenuation rate of the wave

as it propagates is governed by the imaginary part of the wave-
number: Imag k½ �. In a viscoelastic material, both the shear storage
and loss moduli affect both the phase speed and attenuation rate.
In a purely elastic material, lI ¼ 0, there is no attenuation and the
phase speed is independent of frequency (nondispersive) and
reduces to c ¼

ffiffiffiffiffiffiffiffi
l=q

p
. While some studies have assumed pure

elasticity (no viscosity), often their analyses can be generalized to
the linear viscoelastic problem for harmonic motion by simply
adding the imaginary shear loss modulus to form the complex
shear modulus.

Consider the introduction of a uniaxial static prestress, r ¼ rk̂ ,
that is parallel to the z-axis, as illustrated in Fig. 1. The z-axis is
chosen here since it is the same in both the Cartesian x; y; zð Þ and
polar r;u; zð Þ coordinate systems, and is the axis of the cylinder
that will be used in the present study. If the static deformation due
to the prestress is assumed to be small or incremental, infinitesi-
mal strain theory can be used to incorporate r into the equations
of motion leading to the following in Cartesian coordinates [8,9]

qu;tt ¼ jþ 4l
3

� �
u;xx þ lu;yy þ lþ r

2

� �
u;zz þ jþ l

3

� �
v;xy

þ jþ l
3
� r

2

� �
w;xz (2)

qv;tt ¼ jþ 4l
3

� �
v;yy þ lv;xx þ lþ r

2

� �
v;zz þ jþ l

3

� �
u;xy

þ jþ l
3
� r

2

� �
w;yz (3)

qw;tt ¼ jþ 4l
3

� �
w;zz þ l� r

2

� �
w;yy þ l� r

2

� �
w;xx

þ jþ l
3
þ r

2

� �
u;xz þ jþ l

3
þ r

2

� �
v;yz (4)

Here u, v, and w refer to the displacement component in the x, y,
and z direction, respectively, and subscripted x; y; z; and t after a
comma refer to partial derivatives with respect to that spatial or
time dimension. The term j is the bulk modulus of the material,
which will affect compression wave behavior, but not shear wave
behavior. In biological soft tissue or other nearly incompressible
materials, j is multiple orders of magnitude greater than l such
that the Poisson’s ratio for the material approaches, but does not
equal 0.5.

The prestress alters the otherwise isotropic, direction-invariant,
nature of the medium. Taking the case of harmonic excitation at
circular frequency, x, solving the above equations leads to expres-
sions for the compression (longitudinal) wave where motion
polarization is parallel to the direction of propagation, and to two
shear waves where motion polarization is perpendicular to the
direction of wave propagation. For one of the shear waves,
referred to as the slow shear wave with phase speed in the elastic
case given as cs, the motion polarization is perpendicular to the
plane created by the direction of propagation and the direction of
the uniaxial stress. The other shear wave propagating along the
same direction, but with polarization within the plane created by
the propagation direction and stress direction, is referred to as the
fast shear wave with phase speed in the elastic case given as cf .
Expressions for these phase speeds squared are as follows.

c2
s h½ � ¼ l

q
1 þ r

2l
cos2 h½ �

� �
(5)

c2
f h½ � ¼ l

q
1 þ r

2l
cos 2h½ �

� �
(6)

Here, h is the angle between the direction of propagation and the
axis of uniaxial stress.

The above analysis based on infinitesimal strain theory loses
accuracy as the strain caused by r becomes significant, e.g.,
beyond a few percent. As strain increases it may be necessary to
use finite strain theory, also known as large deformation theory, to
account for changed geometry, and with it use a hyperelastic
model of the material properties that may introduce nonlinearity
into the static analysis. If the harmonic waves imposed upon the
finitely deformed medium are, themselves, of small amplitude
oscillatory motion, it may still be reasonable to use a linearized
analysis to describe wave motion, with linearized parameter val-
ues dependent on the degree of deformation. In the analysis of
small amplitude wave motion imposed upon finitely deformed
hyperelastic materials, it is common to employ a finite strain
energy function w to describe the material’s properties as static
prestress or strain is applied. Many different material models and
functions have been introduced and used to describe the behavior
of nearly incompressible materials, like soft biological tissue
[10–15]. For the present study, limiting our focus to uniaxial pre-
stress of a nearly incompressible isotropic material and consider-
ing finite strains of no more than 20%, we will use a Gent
hyperelastic model, which can be defined using the following
finite strain energy function [16]

w ¼ � lJm
2

ln 1 �
�I1 � 3

Jm

� �
þ j

2

J2 � 1

2
� ln J½ �

� �
(7)

where �I1 ¼ J�
2
3I1, with I1 ¼ tr C½ �, C ¼ FTF, J ¼ Det F½ �, and Jm

is a limiting parameter for �I1 � 3. Here, F is the deformation gra-
dient, C is the right Cauchy-Green tensor, and J ¼ 1 if the mate-
rial is incompressible. The first term of the strain energy function

Fig. 1 Uniaxially prestressed cylinder. Shaded region (FOV)
shows location of images presented in Figs. 2 and 4. This is a
sagittal slice in the z-y plane. Deeper shaded blocks with trans-
verse (x-direction) black two-way arrows denote cross section
of rigid band surrounding the cylinder that delivers x-polarized
harmonic actuation.
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is based on the isochoric deformation of the isotropic material,
and the second term only exists if the material is compressible.
The shear modulus is given by 2 @w

@I1
, which in the incompressible

and small strain limit is equal to l and is consistent with infinitesi-
mal strain theory. Consequently, Eqs. (5) and (6), governing pla-
nar shear wave phase speed should remain valid here for nearly
incompressible materials. Utilization of other strain energy func-
tions that work for larger deformations is left for future study. It is
also possible to incorporate the prestress field directly into the
strain energy function [17,18]. If it is assumed that the superim-
posed wave motion on top of the finite deformation is small, one
will still recover Eqs. (5) and (6) for planar shear wave phase
speed.

2.2 Waveguide Effects. The above theoretical analyses do
not take into consideration the finite dimensions of the cylindrical
medium shown in Fig. 1, namely, its finite radius, R. Returning to
infinitesimal strain theory and neglecting axial prestress r, for so-
called flexural modes—transverse motion with displacement of
the rod central axis orthogonal to the axis—we restrict ourselves
to the case of n¼ 1 (transverse beam or lobar modes) in Eq.
8.2.22 of Graff (1991) [19] leading to the following coupled equa-
tions for determining displacement in radial, circumferential and
axial directions, respectively.

ur r; h; z; t½ � ¼ a
2
A J0 ar½ � � J2 ar½ �ð Þ þ 1

r
B3J1 br½ � þ n B1J0 br½ �ð

�

þB2J2 br½ �Þ
�

cos h½ �ej xt�nzð Þ

(8)

uh r; h; z; t½ � ¼ � 1

r
AJ1 ar½ � þ n B1J0 br½ � þ B2J2 br½ �ð Þ

�

�b
2
B3 J0 br½ � � J2 br½ �ð Þ

�
sin h½ �ej xt�nzð Þ (9)

uz r; h; z; t½ � ¼ b
2

B2J0 br½ � � B2J2 br½ � � B1J1 br½ �ð Þ � nAJ1 ar½ �
�

� 2

r
B1J0 br½ � þ B2J2 br½ �ð Þ

�
cos h½ �ej xt�nzð Þ

(10)

Here, J denotes a Bessel function of the first kind of #¼ 0th, 1st,
or 2nd order, and a and b are wavenumbers in the r (radial) direc-
tion. The wavenumber in the z (axial) direction, n, is determined
by satisfying a complex frequency equation found in the reference
(Eqs. 8.2. and 24-25) [19]. Note, n is in all three equations. In the
present study our focus is transverse wave motion, which with
respect to the polar coordinate system, will have motion polariza-
tion in the r and h direction. Our focus will be to measure the evo-
lution of that motion along the z direction in order to estimate n.
In the present study, we are interested in incorporating uniaxial
prestress r and, if possible, would like to identify simpler analyti-
cal expressions than the above analysis affords.

2.3 Prestressed One-Dimensional Thin Waveguide Under
Transverse Excitation. By assuming that the radius R of the cyl-
inder is small enough such that bR � 1, then so-called one-
dimensional beam theory approximations can be applied. The
simplest of these is the Euler–Bernoulli thin beam theory, which
easily allows incorporation of prestress r. Referring again to
Fig. 1, the pretensioned Euler–Bernoulli thin beam theory
described in Sec. 3.3.4 of Graff [19] for x-polarized transverse
wave propagation of the beam along its z-axis is the following:

EIu;zzzz � rAu;zz þ Aqu;tt ¼ 0 (11)

Here, I is the area moment of inertia about the y-axis (I ¼ p
4
R4 for

a circular cross section of radius R), and A is the cross-sectional
area in the x-y plane. The general solution form is u ¼ Uejðxt�cxÞ

where c has four possible solutions

c ¼ þ
� a;

þ
� jb (12a)

a ¼ �nþ n2 þ x2

a2

� �1=2
( )1=2

(12b)

b ¼ nþ n2 þ x2

a2

� �1
2

( )1
2

(12c)

n ¼ rA
2EkI

(12d)

a ¼
ffiffiffiffiffiffi
EI

qA

s
(12e)

We have two propagating waves (a) in theþ or �z direction, and
2 nonpropagating (near field or evanescent) waves (b) in theþ or
�z direction. For the propagating waves, the phase speed will be:

cph ¼ x
Real a½ �. Taking the limit that rA � 2EI we see that a ¼

x
a

� 	1=2
and thus for the elastic case cph ¼ x1=2 EI

qA


 �1=4
, which is

the classic thin (Euler–Bernoulli) beam transverse vibration solu-
tion. On the other hand, taking the limit of tension rA � 2EI we
then drop EIu;zzzz from Eq. (11) and reformulate the solution to

find that there are two propagating solutions with cph ¼ r
q

� 	1=2.

This is the classic transverse thin-string vibration solution. A case
between the extremes of either neglecting rA or EI still does not
match the phase speed of bulk shear waves, which is given by
Eq. (5).

2.4 Prestressed One-Dimensional Thick Waveguide Under
Transverse Excitation. The thin beam formulation presented in
Sec. 2.3 is only a reasonable approximation when the wavelength
of the propagating transverse waves is at least an order of magni-
tude greater than the beam’s cross-sectional radius R, or equiva-
lent radius for a noncircular cross-section. A formulation yielding
a valid approximation for shorter transverse waves is based on the
Timoshenko beam theory, which allows for shear deformation
and accounts for rotational inertia.

Incorporating prestress into the formulation for Timoshenko
beam theory given in Sec. 3.4 of Graff [19], we have the
following:

EIu;zzzz � rAu;zz þ Aqu;tt � Iq 1 þ E

jl

� �
u;zztt þ

q2I

jl
u;tttt ¼ 0

(13)

Here, j is the Timoshenko shear coefficient, equal to 10=9 for a
circular cross-section. Consider harmonic motion at frequency x
and the general solution form is: u ¼ Uejðxt�cxÞ and c has four pos-
sible solutions:

c4EI þ c2 rA� x2Iq 1 þ E

jl

� �� �
� x2 qA� x2 q

2I

jl

 !
¼ 0

(14a)

c ¼ þ
� �n

þ
� n2 þ x2

a2

� �1
2

( )1
2

(14b)
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n ¼ 8

D2
�L � x2 37q

60l
(14c)

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3l=q
16

D2
� x2 q

jl

vuuut (14d)

In this case, we cannot separate the wavenumber solutions into
propagating and nonpropagating pairs. Rather, there will be cer-
tain prestress-dependent frequency ranges where we have only
one propagating pair and others where we have two propagating
pairs.

2.5 Accounting for Uniaxial Prestress in the Three-
Dimensional Equations Using Transformation Acousto-Elas-
tography. If the dimensions of the cylinder are such that neither
thin nor thick beam approximations are sufficiently accurate, one
is left to somehow integrate the prestress condition introduced in
Sec. 2.1 into Eqs. ((8)–10)) of Sec. 2.2. A novel approach is pro-
posed to accomplish this with reduced mathematical complexity.
In previous studies on transversely isotropic materials not under
prestress [20–23] the last author has shown that, by distorting the
geometry based on direction and polarization-dependent planar
phase speeds, one can then solve an equivalent isotropic problem.
This approach to the transverse isotropic problem was called
transformation elastography. Uniaxial prestress causes a similar,
though not identical, direction and polarization dependence of the
planar shear wave phase speed, as exhibited in Eqs. (5) and (6).
The same approach is adapted to the acoustoelastic problem here.
Note, different geometric distortions may be needed depending on
whether the wave motion of interest is a slow or a fast shear wave,
based on propagation direction and polarization. The wave polar-
ization of interest here is perpendicular to the uniaxial stress direc-
tion and this is governed by slow shear waves.

Referring to Eq. (5), the phase speed in the direction of the pre-
stress axis divided by the phase speed in the unstressed medium is
cs h¼0�½ �ffiffiffiffiffiffi

l=q
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r

2l

q
and perpendicular to the stress axis is

cs h¼90�½ �ffiffiffiffiffiffi
l=q

p ¼ 1. Approximating the material as incompressible, the

prestress results in a static strain of the cylindrical phantom of
length L and radius R, changing its axial length to L 1 þ r

3l

� 	
and

its radius to R=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r

3l

q
. The equivalent isotropic cylindrical

phantom of length Le and radius Re needs to have its dimensions

adjusted so that the planar phase speed is
ffiffiffiffiffiffiffiffi
l=q

p
in all directions.

This results in:

Le ¼ L 1 þ r
3l

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r

2l

r
¼ L 1 þ �Lð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3

2
�L

r
(15)

Re ¼ R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r

3l

r !
¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ �L
p (16)

Here, �L is the axial strain. When the formulas are expressed in
terms of this, it’s clear that one does not need to know r and l a
priori in order to calculate the equivalent dimensions. One only
needs know the axial strain. If the compressibility is not negligible
Eq. (16) will need some adjustment.

3 Analytical/Numerical Case Study—Transformation

Acousto-Elastography Validation

An analytical and numerical case study was conducted to
understand the interactions between uniaxial prestress and wave-
guide behavior, as well as to validate the proposed transformation

acousto-elastography (TAE) approach proposed above. Case study
geometric and material property values are provided in Table 1.

Based on these values, equations in Secs. 2.3 and 2.4 can be
used to calculate the wavenumber c and wavelength k for trans-
verse motion based on thin and thick beam theory, respectively. In
order to numerically simulate the approach outlined in Sec. 2.5,
finite element analysis (FEA) was performed using ANSYS

Mechanical APDL Version 2022 R2. An axisymmetric mixed u-P
formulation was used with Solid273 8-node by three circumferen-
tial plane generalized axisymmetric elements with individual ele-
ment side dimensions in the axial and radial direction of 0.5 mm.
Nonlinear attributes of the element were enabled and the material
was defined by a hyperelastic Gent model, requiring specification
of the bulk modulus, the real part of complex shear modulus, a
limiting parameter, Jm, as well as the density. One end of the cyl-
inder was fixed and the other end was incrementally displaced in
the z-direction, solving the problem in steps until the desired end
displacement was reached that resulted in a uniform uniaxial
strain throughout the model.

Once the static analysis was done, the solution routine was
exited and then reentered this time specifying a harmonic solution
routine using the modified stiffness matrix acquired at the end of
the static solution routine and the frequency provided in Table 1
(600 Hz). Now, harmonic x-direction displacements were applied
to the nodes either on the entire end of the cylinder or just on the
nodes at the outer radial edge of the end of the cylinder represent-
ing a rigid transverse x-polarized oscillating end or ring in contact
with the end of the phantom (see Fig. 1). In addition to the mate-
rial properties specified for the static analysis, it is also necessary
to specify viscous (beta) damping, which was done by taking the
ratio of the imaginary to the real part of the shear modulus in
Table 1 and dividing by 2pf where f is the harmonic driving
frequency.

The in-phase steady-state response over a sagittal slice is shown
in Fig. 2 for selected cases in Tables 1 and 2. For the case that the
entire end is transversely oscillated (upper row in Fig. 2), the
response pattern is uniform and a line profile can be taken along
the axial direction at any radial position to estimate the complex

wavenumber c by fitting the profile to Ae�jcz. For the case that the
outer radial edge at the end has oscillated (lower row in Fig. 2),
the response is more complex near the excitation source, but far
enough away from the source begins to resemble the simpler case.
For this case, the complex wavenumber c is estimated by fitting

Ae�jcz to axial line profiles near the outer edge r ¼ Rð Þ. Once c is
estimated, the wavelength k ¼ 2p=Real c½ �. The TAE-adjusted val-

ues for these, cN=TAE and kN=TAE, are determined by first distorting

the axial z dimension according to Eq. (15). Specifically, the axial
location of the nodes (which have been extended already by

1 þ �L) is then divided by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3

2
�L

q
. This alters both the wave-

number and wavelength.
Table 2 summarizes results obtained for 0, 5, 10, and 20% axial

prestrain cases. The first four rows of the table provide the com-
plex shear modulus value used in the thin and thick beam theoreti-
cal calculations and in the finite element simulations, the
associated shear wavenumber ksh, and the calculated shear

Table 1 Parameter values for case studies

Parameter Nomenclature Value(s)

Bulk modulus j 2 GPa
Shear storage modulus lR 42.8 kPa
Limiting parameter Jm 50
Ratio of shear loss to storage moduli g ¼ lI =lR 0.1882
Undeformed phantom length L 100 mm
Undeformed phantom radius R 17.5 mm
Uniaxial tensile strain �L 0, .05, 0.1, 0.2
Density q 1070 kg

m3

Frequency f 600 Hz

021003-4 / Vol. 6, MAY 2023 Transactions of the ASME



wavelengths along the axis ks0� and perpendicular to the axis
ks90� , based on Eq. (5). Next, estimates of propagating wavenum-
ber and wavelength based on prestressed thin beam theory
(Sec. 2.3), cThin and kThin, are provided, followed by estimates
based on prestressed thick beam theory (Sec. 2.4), cThick and
kThick. Thin beam theory wavelengths and wavenumbers are in
error by more than a factor of 2, as compared to the true values in
the first two rows of Table 2. For thick beam theory, there are two
pairs of propagating wavenumber and wavelength values at this
frequency. For the pairs that are closer to truth, marked with an
asterisk*, the corresponding complex shear modulus is calculated
based on Eq. (1) and provided in the line below kThick. Its percent
difference from the true value of 42.8þj8.05 kPa is also provided,
showing a consistent bias of about 9–10% on the high side for the
shear storage modulus while being more accurate in estimating
the relative value of the shear loss to shear storage modulus. It is
expected that the thin or thick beam approximate theories will
yield estimates with higher shear moduli, or lower shear wave-
numbers, since such simplifying approximations provide greater
constraints on how the material will deform, as compared to the
full three-dimensional theory.

The next section of the table summarizes results of the numeri-
cal FEA simulation coupled with the TAE coordinate transforma-
tion that was introduced in Sec. 2.5. The wavenumber and
wavelength prior to the coordinate transformation are first pro-
vided, cN and kN , followed by their values after the TAE coordi-
nate transformation, cN=TAE and kN=TAE. The complex shear
modulus is subsequently calculated based on Eq. (1) and provided
in the line below kN=TAE, as well as its percent difference from the
true value. Consistently, this approach has outperformed thick
beam theory, with percentage differences in shear storage modu-
lus ranging from 1 to 7.5% and excellent estimates of the ratio of

shear loss to shear storage modulus. Note the importance of
undergoing the TAE coordinate transformation in that the wave-
number before and after transformation significantly diverges
with increasing prestrain.

4 Experiment

The setup was designed and tested on an Agilent 9.4 Tesla hori-
zontal, 30 cm bore, animal MR system. All fixture parts for the
setup were designed in Solidworks (Solidworks 2021) and printed
using a fused filament extrusion printer (Prusa Mk3, PRUSA
REF) on Polyethylene terephthalate glycol (PETG) to limit inter-
ference with signal and keep parts light enough to be moved effi-
ciently by the piezostack. Figure 3 shows the overall design,
which prioritizes versatility in sample type, from phantoms, to
muscle tissue or large structures that can be excised to fit the
dimensions of the gradient coil opening.

Samples are gripped by two clamp types: a fixed clamp at the
proximal end, and the tensioner clamp at the distal end. Both
clamp types are slotted to allow wooden skewers to penetrate the
sample, providing reasonably distributed tension, rather than sur-
face tension that would be only available with typical clamps. The
distal clamp is then attached to a reinforced nylon wire that is fed
out the back of the magnet bore and attached to a pulley system
where adjustable weight applies appropriate tension.

Simultaneous harmonic loading is achieved through a piezo-
stack (P842.10, PI-USA LP) located proximally to the entry of the
bore to limit interference from wiring, and attached to a Delrin
counterweight to force transference of motion toward the sample.
The sample is placed in a cylindrical tube, the actuator, which is
attached directly to the piezo-and slotted for adjustable rings that
uniformly and circumferentially grip the sample, providing a fixed

Fig. 2 Sagittal view of transverse (x)-polarized in-phase wave motion from FE simulation. ((a)–(c)) 0, 10, and 20%
axial prestrain, respectively. Note reduced radius with increased prestrain. Upper set of images is with transverse
oscillatory motion (indicated by arrow) applied to the entire end of the cylinder. Lower set of images, more akin to the
experiment, is with transverse oscillatory motion (indicated by arrows) applied only on the outer surface at the end of
the cylinder. Color indicates amplitude of x-polarized motion.
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location of the wave source that is 15 mm thick. While, schemati-
cally it appears that this setup would provide harmonic vibration
that is polarized along the z-axis, the axis of the cylindrical phan-
tom and of the tensile load, because of any small nonaxisymme-
tries, for example, due to gravity, the resulting excitation has both
z-axis and orthogonal x-axis components.

The phantom was made with EcoflexTM 00-30 (Smooth-On,
Inc., Macungie, PA) platinum-catalyzed silicone. Ecoflex silicone
bases were combined in a 1 A:1B ratio and cured at room tempera-
ture with minimum shrinkage. Air bubbles produced during the mix-
ing process were removed using a vacuum chamber (5305-1212,
Thermo Scientific-Nalgene, Rochester, NY) for 5 to 10 min to mini-
mize porosity and nonhomogeneous bulk material properties.

SLIM MRE [24] provided motion encoding in three orthogonal
directions, simultaneously. Sequence parameters were TR/

TE¼ 1600/25 ms with 8-time steps and corresponding 180 deg
offsets. A 250 mT/m MEG was used with ten cycles. The data
matrix size was 64� 64� 40 with a FOV of 48 mm� 48
mm� 30 mm for an isotropic voxel size of 0.75 mm. The piezo-
stack provided an input axial harmonic motion of 10lm peak
amplitude.

Transverse-polarized motion in the sagittal plane is shown in
Fig. 4 for the cases of 0, 5, and 10% axial prestrain. The measure-
ments reflect the fact that it is impossible to achieve a perfectly
symmetric setup, as in the numerical study. Additionally, some
slack in the system or uneven residual stresses may disproportion-
ally affect the system response under 0% prestrain, and lead to the
nonmonotonic trend in shear modulus estimates with respect to
prestrain, given in Table 2. Images were analyzed the same way
that numerical simulation data, shown in the lower half of Fig. 2,

Table 2 Wavenumber and wavelength estimates based on theory, numerical, and experimental studies

Prestrain �L 0% 5% 10% 20%

lR þ jl ðkPaÞ 42.8þj8.05
ksh (m�1)—actual 588.4�j54.9
ks0� (mm) 10.7 11.1 11.5 12.2
ks90� (mm) 10.7 10.7 10.7 10.7

cThin (m�1) 279�j13.0 277�j13.1 274�j13.2 270�j13.4
kThin (mm) 22.5 22.7 22.9 23.3
cThick (m�1) 565�j51.5* 564�j51.6* 563�j51.7* 561�j51.8*

329�j32.7 329�j32.6 330�j32.6 331�j32.5
kThick (mm) 11.1*/ 19.1 11.1*/ 19.1 11.2*/ 19.1 11.2*/ 19.0
lR þ jlI ðkPaÞ* 46.5þj8.56 46.6þj8.61 46.8þj8.66 47.1þj8.76
% Error 8.59þj0.43 8.92þj0.38 9.26þj0.32 9.93þj0.20

cN (m�1) 602�j57.6 571�j54.2 545�j51.7 498�j47.0
kN (mm) 10.4 11.0 11.5 12.6
cN=TAE (m�1) 602�j57.6 592�j56.1 585�j55.4 568�j53.6
kN=TAE (mm) 10.4 10.6 10.7 11.1
lR þ jlI ðkPaÞ 40.8þj7.90 42.2þj8.07 43.3þj8.28 45.9þj8.74
% Error 4.48þj0.48 1.35þj0.31 1.21þj0.31 7.27þj0.23
r ðkPaÞ 0 6.33 12.99 27.54
rFEA ðkPaÞ 0 6.43 12.89 26.02
r Est Error % 0 1.56 0.78 5.84

cE (mm�1) 559�j60.1 545�j87.7 518�j66.9 NA
kE (mm) 11.2 11.5 12.1 NA
cE=TAE (mm�1) 559�j60.1 559�j89.9 544�j70.1 NA
kE=TAE (mm) 11.2 11.2 11.6 NA
lR þ jlI ðkPaÞ 47.1þj10.3 45.1þj14.9 48.9þj12.9 NA
r ðkPaÞ 0 6.76 14.67 NA
rExp ðkPaÞ 0 4.33 8.55 NA
r Est Error % 0 56.1 71.6 NA

Fig. 3 Experimental setup. Diagram with top and side view, and photo from top showing cylindrical
polymer phantom and claw-grip tensioner. Color-coded view from side: (a) bore constraint, (b) piezo-
counter mass, (c) piezostack, (d) fixed phantom end clamp, (e) harmonic actuator, (f) image ROI, (g) pre-
stressed phantom, (h) claw-grip tensioner, (i) pulley (outside magnet), and (j) adjustable weight.
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was processed, as described in Sec. 2.5, to obtain estimates of the
shear wavenumber. Results are included in Table 2 and can be
compared directly to the numerical simulation results, except it
was not possible with our setup to achieve 20% prestrain.

The wavenumber and wavelength prior to the coordinate trans-
formation are first provided, cE and kE, followed by their values
after the TAE coordinate transformation, cE=TAE and kE=TAE. The
complex shear modulus is subsequently calculated based on Eq.
(1) and provided in the line below kE=TAE. What can be observed
is that the coordinate transformation results in wavenumber values
that deviate less with prestrain, since the TAE transformation is
designed to remove the effect of the prestrain. In that sense, the
TAE approach has succeeded. However, a direct comparison to
the true value used for the theoretical and numerical studies is not
as appropriate since the actual value for the complex shear modu-
lus of the material used in the experiment is not exactly known.
The theoretical value used is based on experiments conducted on
samples of Ecoflex-30 harmonically vibrated at 600 Hz, but there
can be some variation between samples.

5 Conclusions

The numerical finite element and experimental studies of the
previous sections have identified and quantified some of the con-
founding effects of finite dimensions and nonzero prestress on the
elastography approach to estimating material viscoelastic proper-
ties in an isotropic cylindrical structure under uniaxial normal
stress aligned with the cylinder axis. Additionally, a coordinate
transformation approach, transformation acousto-elastography
(TAE), has been introduced that enables one to estimate material
viscoelastic properties independent of the prestress condition
without requiring a priori knowledge of either the viscoelastic
properties or stress conditions. Rather, only the amount of defor-
mation, or strain, from the unstressed condition is required. A pri-
ori knowledge of prestrain is more easily available than prestress,
as medical images of geometry via MRI when doing MR Elastog-
raphy, or via ultrasound if doing ultrasound elastography, can be
acquired under varying prestrain conditions, with precise tracking
of anatomical landmarks that will establish prestrain levels during
a given measurement. These anatomical images provide no direct
information about the corresponding prestress. Once viscoelastic
properties are estimated under the known prestrain conditions,
then the prestress can also be estimated.

The numerical and experimental studies show the promise of
the TAE approach. In the numerical study of Sec. 3, the material
shear storage lR and loss lI moduli, as well as the uniaxial normal
stress r were determined within 5% for prestrains up to 10%, and
within 7.5% for a prestrain of 20%. Without the TAE adjustment
to the complex wavenumber, the error in the estimate of shear
modulus would reach 40% at 20% prestrain. Potential sources of
error or discrepancies that affect the estimates of both shear mod-
uli and stress are: (1) an incompressibility assumption used to

formulate the approach; (2) the assumption of linearity; and (3)
ignoring more complex wave patterns that exist in the 3-
dimensional structure. Since the bulk modulus is about five orders
of magnitude greater than the shear moduli, we believe the
assumption of incompressibility is justified. The approach could
be reformulated to account for compressibility. With regard to
nonlinearity, the numerical study was repeated assuming simple
linear elastic material properties and not enabling the geometric
nonlinearity feature in ANSYS. Results were the same, suggesting
that, at least in the numerical study, nonlinearity is not a factor for
the strain rates considered. The images in Fig. 2 show that, even
with the uniform transverse harmonic displacement across the
entire end of the cylinder, the steady-state wave pattern shows
some variation as a function of radial position. This variation
could result in the small variation seen in predictions based on the
TAE approach.

In the experimental study, another source of error is that one
must consider that the static shear modulus governing the initial
deformation due to the prestress is different from the frequency-
dependent shear storage modulus that will govern response to har-
monic excitation. To overcome this, one possible solution is to con-
duct studies at multiple frequencies and then fit a rheological model
that predicts the static shear storage modulus, as detailed in Sec. 4.

Logical next steps for advancing the strategy introduced here to
detangle prestress from material shear stiffness estimates include
consideration of more complex geometry and stress conditions, as
well as anisotropic and nonuniform material properties. Finite ele-
ment models based on medical images that can provide detailed
geometry and deformation information under varying loading con-
ditions and, if needed, measures of anisotropy and inhomogeneity,
may provide a way to advance the TAE technique beyond simple
geometries and assumptions of isotropy and homogeneity [25].
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