
1.  Introduction
Spacecraft equipped with magnetometers can be used to capture in situ measurements of magnetic phenomena 
in the geospace environment. These measurements are necessary to answer key questions about the nature of the 
Earth's magnetosphere and its interaction with interplanetary magnetic fields. Understanding how the heliosphere 
directs the flow of energy, mass, and momentum between the Sun and Earth is critical for applications such as 
space weather modeling, space exploration, and climate science. A number of missions use spacecraft equipped 
with magnetometers to measure magnetic fields. For example, The European Space Agency's SWARM mission 
uses a constellation of three satellites to provide high fidelity magnetic field measurements used to model the 
Earth's magnetic field and study the Earth's dynamo (Fratter et al., 2016). Magnetometers provide invaluable data 
for space science research, however, the quality of the data are often limited by magnetic noise generated by the 
spacecraft. Electrical systems onboard a spacecraft generate stray magnetic fields that interfere with magnetic 
field measurements. The strength of magnetic fields in the geospace environment ranges several orders of magni-
tude with natural phenomena such as the interplanetary magnetic field occurring on the order of 6 nT to the 
Earth's magnetosphere in low-Earth orbit measuring on the order of 60,000 nT. Spacecraft subsystem magnetic 
fields may completely eclipse the perturbations in natural magnetic fields which are of interest to understanding 
waves and currents in the solar wind and magnetosphere. The presence of these stray magnetic fields is a signifi-
cant obstacle for missions that utilize magnetic field data (Ludlam et al., 2009; Russell, 2004).

Abstract  The use of magnetometers for space exploration is inhibited by magnetic noise generated by 
spacecraft electrical systems. Mechanical booms are traditionally used to extend magnetometers away from 
noise sources. If a spacecraft is equipped with multiple magnetometers, signal processing algorithms can 
be used to compare magnetometer measurements and remove stray magnetic noise signals. We propose the 
use of density-based cluster analysis to identify spacecraft noise signals and compressive sensing to separate 
spacecraft noise from geomagnetic field data. This method assumes no prior knowledge of the number, 
location, or amplitude of noise signals, but assumes that they have minimal overlapping spectral properties. We 
demonstrate the validity of this algorithm by separating high latitude magnetic perturbations recorded by the 
low-Earth orbiting satellite, SWARM, from noise signals in simulation and in a laboratory experiment using a 
mock CubeSat apparatus. In the case of more noise sources than magnetometers, this problem is an instance of 
underdetermined blind source separation (UBSS). This work presents a UBSS signal processing algorithm to 
remove spacecraft noise and minimize the need for a mechanical boom.

Plain Language Summary  Magnetometers are instruments designed to measure magnetic fields. 
They are used for a variety of purposes such as monitoring the magnetic field of the Earth from spacecraft. 
Spacecraft systems such as solar panels and reaction wheels generate magnetic noise that interferes with 
magnetometer readings. If the spacecraft has multiple magnetometers, each noise source will have a different 
magnitude at each magnetometer depending on the location of the noise source. The system which describes 
the magnitude of each noise source at each magnetometer is called a mixing matrix. We propose the use of 
unsupervised machine learning to estimate the mixing matrix. Once the mixing matrix is estimated, the Earth's 
magnetic field can be separated from spacecraft magnetic noise using a method called Compressive Sensing. 
Spacecraft often have many more noise sources than magnetometers, which complicates noise cancellation. The 
proposed method has the ability to clean noisy magnetometer measurements when there are more noise signals 
present than magnetometers.

HOFFMANN AND MOLDWIN

©2022. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Separation of Spacecraft Noise From Geomagnetic Field 
Observations Through Density-Based Cluster Analysis and 
Compressive Sensing
Alex Paul Hoffmann1   and Mark B. Moldwin1 

1Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA

Key Points:
•	 �We present the first use of 

compressive sensing with cluster 
analysis to separate spacecraft noise 
from geomagnetic field data

•	 �We demonstrate the separation of 
wideband noise signals in simulation 
and in a lab experiment using SWARM 
residual geomagnetic field data

•	 �The method enables accurate 
magnetic field measurements from 
resource limited and magnetically 
noisy spacecraft such as boomless 
CubeSats

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
A. P. Hoffmann,
aphoff@umich.edu

Citation:
Hoffmann, A. P., & Moldwin, M. B. 
(2022). Separation of spacecraft noise 
from geomagnetic field observations 
through density-based cluster analysis 
and compressive sensing. Journal of 
Geophysical Research: Space Physics, 
127, e2022JA030757. https://doi.
org/10.1029/2022JA030757

Received 18 JUN 2022
Accepted 31 AUG 2022

Author Contributions:
Conceptualization: Alex Paul Hoffmann
Data curation: Alex Paul Hoffmann
Funding acquisition: Mark B. Moldwin
Investigation: Alex Paul Hoffmann
Methodology: Alex Paul Hoffmann
Project Administration: Mark B. 
Moldwin
Resources: Mark B. Moldwin
Software: Alex Paul Hoffmann
Supervision: Mark B. Moldwin
Validation: Alex Paul Hoffmann
Visualization: Alex Paul Hoffmann

10.1029/2022JA030757
RESEARCH ARTICLE

1 of 17

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2477-2761
https://orcid.org/0000-0003-0954-1770
https://doi.org/10.1029/2022JA030757
https://doi.org/10.1029/2022JA030757
https://doi.org/10.1029/2022JA030757
https://doi.org/10.1029/2022JA030757
https://doi.org/10.1029/2022JA030757
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022JA030757&domain=pdf&date_stamp=2022-09-15


Journal of Geophysical Research: Space Physics

HOFFMANN AND MOLDWIN

10.1029/2022JA030757

2 of 17

On satellites, stray magnetic fields can be generated by subsystems such as solar panels, reaction wheels, battery 
currents, and magnetorquers. The magnetometer on the CubeSat, Ex-Alta 1, recorded magnetic field noise gener-
ated by a magnetorquer which exceeded 7,500 nT peak-to-peak (Miles et al., 2016). Satellite magnetometers are 
typically fixed at the end of a mechanical boom to reduce the magnitude of noise generated by the spacecraft. 
For example, the mission SWARM uses two magnetometers mounted on a 4.3 m boom (McMahon et al., 2013). 
However, the use of a boom is not always possible in designs such as rovers and CubeSats where gravity and cost 
are limiting factors. Additionally, the implementation of a boom does not always guarantee the elimination of 
spacecraft noise from magnetic field measurements. The spacecraft, DMSP, employs a single magnetometer on 
the end of a 5 m boom, but still faces issues with spacecraft noise (Kilcommons et al., 2017).

The use of a single magnetometer on a spacecraft requires a careful magnetic cleanliness design and characteriza-
tion of the spacecraft's magnetic signature in order to minimize stray magnetic fields. In the case of the spacecraft 
Cassiope, a software update changed the behavior of the spacecraft's fluxgate magnetometer (MGF). Special 
spacecraft maneuvers to decrease the spacecraft's noise signature were required in order to recalibrate the MGF 
(Miles et al., 2019). Algorithms to autonomously identify spacecraft noise would allow Cassiopie to do in situ 
MGF calibration without special spacecraft maneuvers.

In spacecraft with multiple magnetometers, the traditional way to cancel stray magnetic field noise is to perform 
gradiometry. Gradiometry is a technique which compares magnetometer signals from two spatially separated 
sensors and calculates the gradient of between them. Ness et al. (1971) uses the gradient to fit a dipole to the 
spacecraft noise and formulate a coupling matrix. The coupling matrix is then used to subtract the spacecraft 
noise from the magnetometer measurements. This method can also be applied to higher order magnetic fields 
but requires arduous pre-flight characterization of the spacecraft's magnetic signature. Ream et al. (2021) uses 
gradients in the frequency domain to identify and suppress spacecraft noise. However, this method assumes that 
the spectra of the ambient magnetic field and the spacecraft noise do not overlap. Pope et al. (2011) uses the axial 
gradients and fuzzy logic to identify spacecraft noise according to the subsystem that generates it. The identified 
noise segments are then corrected in the time domain using information about the noise generated by the subsys-
tem. This method is successful at identifying and removing many different individual noise sources, however, it 
is not designed to correct multiple concurrent noise sources.

Other noise cancellation methods employ state estimation of the magnetic fields generated by spacecraft subsys-
tems by examining spacecraft housekeeping data. Deshmukh et al. (2020) uses a supervised machine learning 
algorithm in order to estimate the transfer function of housekeeping currents to stray magnetic fields. Total knowl-
edge of a spacecraft's magnetic signature would allow for perfect interference cancellation, however, housekeep-
ing telemetry provides an incomplete mapping of a spacecraft's current distribution. Additionally, house keeping 
data are often sampled at a low cadence and may not have the appropriate bandwidth to identify higher frequency 
noise. For low cost applications with a large number of spacecraft, such as CubeSat constellations, it is advan-
tageous to use an algorithm that does not require a boom, rely on prior knowledge of the spacecraft's magnetic 
signature, or requires human analysis.

Recent progress has been made in magnetometer noise cancelation through the application of blind source sepa-
ration (BSS) algorithms. BSS is the separation of a mixture of source signals without prior knowledge of the 
signal type or magnetometer location. Constantinescu et al. (2020) use maximum variance analysis (MVA) to 
clean spacecraft magnetometer data. The MVA algorithm finds an orthogonal set of axes to maximize the vari-
ance of the measured signals. These axes represent the principle components which are used to identify and 
remove noise sources. This application of MVA requires that the variance in the noise sources is larger than 
the variance in the background magnetic field, and can only identify a limited number of noise signals. Imajo 
et  al.  (2021) proposed the use of independent component analysis (ICA) to separate geomagnetic field data, 
captured by the satellite Michibiki-1, from stray magnetic field noise. This algorithm separates signals based 
on statistical independence, and works well when the number of noise sources are not more than the number of 
magnetometers (Naik & Kumar, 2009). The MVA and ICA algorithms both separate signals through optimizing 
statistical quantities, however, they are limited by the number of noise signals they can identify. Sheinker and 
Moldwin (2016) proposed a novel BSS algorithm that uses an analytical formulation to estimate the gain of a 
single noise source between magnetometers. This method is designed for the case in which a single noise source 
is present, and does not account for the presence of multiple noise sources. Although, the method may be adapted 
to remove multiple noise sources by adding more magnetometers.
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In this work, we present the application of an underdetermined blind source separation (UBSS) algorithm 
based on the unsupervised machine learning algorithm, Density Based Spatial Clustering of Applications with 
Noise (DBSCAN), and compressive sensing to separate the ambient magnetic field from spacecraft noise. 
UBSS is a class of problems in which there are M sensors and N unknown source signals such that M < N. 
The M sensors, defined by the complex signals 𝐴𝐴 𝐴𝐴(𝑘𝑘) ∈ ℂ

𝑀𝑀 , contain a mixture of the N source signals, defined 
by 𝐴𝐴 𝐴𝐴(𝑘𝑘) ∈ ℂ

𝑁𝑁 . At the frequency bin, k, the source signals combine in an unknown mixing matrix 𝐴𝐴 𝑲𝑲 ∈ ℂ
𝑀𝑀×𝑁𝑁 . 

In UBSS, no prior knowledge of the source signals is assumed and the number of source signals that can be 
separated is not limited by the number of sensors. The system used to model UBSS is defined by the following 
relationship.

𝐁𝐁(𝐤𝐤) = 𝐊𝐊𝐊𝐊(𝐤𝐤)� (1)

UBSS is a topic that has been thoroughly researched in other fields such as acoustics and radar signal process-
ing. In the field of acoustics, this problem is famously referred to as the cocktail party problem. In the cocktail 
party problem, there is a room full of people each having conversations. An array of microphones is placed in 
the room to record the concurrent conversations. The microphone recordings are then used to separate each 
individual voice. Guo et al. (2017) demonstrate the identification of four human voices using three microphones. 
He et al. (2021) also demonstrate the separation of six flutes recorded by three microphones using the DBSCAN 
algorithm.

Due to the spatial structure of magnetic fields, the same algorithms developed to solve the cocktail party problem 
cannot be directly applied to magnetic noise cancelation. When considering a dipole noise source, the vector 
magnetic field will have a different magnitude and polarity depending on the magnetic latitude and radial distance 
of the magnetometer. In this work, we model the spatial structure of magnetic fields with a phase, although 
magnetic noise signals mix instantaneously. The structure of the magnetic noise signal is not always dipolar, 
and will change depending on the geometry of the noise source. In magnetic UBSS, the mixing matrix, K, is a 
complex matrix representing the gain and phase of each signal at each magnetometer. In radar signal processing, 
Bai et al. (2021) apply a similar approach by using complex mixing matrices to model time-delayed radar signals 
with different directions of arrival. In this work, we use DBSCAN to estimate the mixing matrix, K. Once K is 
known, compressive sensing is used to restore the geomagnetic field signal from the noisy magnetometer data.

We present two experiments to validate this algorithm. The first experiment separates four computer-simulated 
noise signals from an ambient magnetic field signal. The second experiment separates the same ambient magnetic 
field signal using real magnetic field data recorded using an experimental CubeSat apparatus with copper 
coil-generated signals and three PNI RM3100 magnetometers (Regoli et al., 2018). The aim of this work is to 
develop a robust signal processing algorithm to remove spacecraft noise and minimize the need for a mechanical 
boom or a magnetically clean spacecraft. This work focuses on developing a noise cancellation algorithm for 
geomagnetic field data, but can also be applied to remove noise in measurements of planetary magnetospheres 
and interplanetary magnetic fields.

2.  Methodology
We apply a two step approach to removing spacecraft noise and reconstructing the ambient magnetic field. 
The first step is to discover the mixing matrix, K, defined in Equation 1. This is achieved by preprocessing the 
magnetometer data into a clusterable form and applying a clustering algorithm. The second step is to reconstruct 
the ambient magnetic field and noise signals using compressive sensing. In this step, the mixing matrix, K, is 
used to demix the magnetometer signals via convex optimization. This two-step process is designed to be applied 
to each magnetometer axis separately.

2.1.  Signal Preprocessing

The separation of magnetic field signals from stray magnetic fields is analogous to a problem thoroughly 
researched in other fields such as acoustics and is called UBSS. This problem has been heavily investigated for 
microphone and radar arrays, but the unique spatial structure of magnetic fields introduces new complications 
which have not been well-researched. When considering a dipole noise source, the placement of magnetome-
ters at different magnetic latitudes alters the magnitude and polarity of the noise signal. We model this effect 
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as a phase, despite the noise sources mixing instantaneously. The time-frequency (TF) domain mixing model, 
B(t,k) = KS(t,k), is defined by the following system:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐵𝐵1(𝑡𝑡𝑡 𝑡𝑡)

𝐵𝐵2(𝑡𝑡𝑡 𝑡𝑡)

⋮

𝐵𝐵𝑚𝑚(𝑡𝑡𝑡 𝑡𝑡)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 𝑘𝑘12∠𝜙𝜙12 𝑘𝑘13∠𝜙𝜙13 … 𝑘𝑘1𝑛𝑛∠𝜙𝜙1𝑛𝑛

1 𝑘𝑘22∠𝜙𝜙22 𝑘𝑘23∠𝜙𝜙23 … 𝑘𝑘2𝑛𝑛∠𝜙𝜙2𝑛𝑛

⋮ ⋮ ⋮ ⋱ ⋮

1 𝑘𝑘𝑚𝑚2∠𝜙𝜙𝑚𝑚2 𝑘𝑘𝑚𝑚3∠𝜙𝜙𝑚𝑚3 … 𝑘𝑘𝑚𝑚𝑚𝑚∠𝜙𝜙𝑚𝑚𝑚𝑚

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑆𝑆1(𝑡𝑡𝑡 𝑡𝑡)

𝑆𝑆2(𝑡𝑡𝑡 𝑡𝑡)

⋮

𝑆𝑆𝑛𝑛(𝑡𝑡𝑡 𝑡𝑡)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

� (2)

In this mixing system, the signals Si(t, k) are the source signals at time t and frequency k. The ambient magnetic 
field signal we seek to recover, S1(t, k), is assumed to be identical at each magnetometer and is represented by a 
column of ones in the mixing matrix. In the geospace environment, this allows us to observe phenomena such as 
ultralow frequency (ULF) waves which have frequencies less than 5 Hz (Jacobs et al., 1964). The phases, ϕij = {0, 
π}, in the mixing matrix, K, account for the difference of a signal seen by magnetometers at different magnetic 
latitudes. The phase, ϕij, is determined by the spatial structure of the noise signal, which depends on the geometry 
of the noise source. This model does not require that noise sources be dipolar. The value in the mixing matrix 
kij∠ϕij represents the complex value 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒

𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 . This value defines presence of the signal Sj(t, k) at magnetometer 
Bi(t, k).

Sparsity is a precondition of both mixing matrix estimation and compressive sensing, however, spacecraft noise 
signals are not often sparse in the time domain. The magnetometer signals, b(t), are transformed into the TF 
domain using a Fourier transform in order to increase signal sparsity. Typically, the Short-Time Fourier Trans-
form (STFT) is used because signals that are present in multiple time windows will provide more data points 
to be clustered [id = Revision Two]. As a result, periodic signals are easier to identify and remove than aperi-
odic signals. However, aperiodic signals can be separated with sufficient TF resolution. In this work, we use 
the Non-Stationary Gabor Transform (NSGT) to transform magnetometer signals into the TF domain. NSGT 
has advantages over the STFT because it allows the user to evolve the window size with respect to frequency 
(Holighaus et al., 2013). As a result, high and low frequencies are not limited to the same window size, and 
frequency resolution is constant across the frequency spectrum. In order to apply the NSGT, the user specifies 
a quality, Q, and the lowest frequency they would like to observe. The parameter, Q, is used to automatically 
calculate the window size with respect to the desired frequency resolution. In comparison to the STFT, the 
NSGT provides finer frequency resolution at low frequencies and better time resolution at higher frequencies. 
We perform the NSGT to obtain the UBSS model B(t, k) = KS(t, k). The mixing system of a sparse TF bin where 
only the signal, Sj(t,k), is present can be defined by a single mixing vector:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

|𝐵𝐵1(𝑡𝑡𝑡 𝑡𝑡)|

|𝐵𝐵2(𝑡𝑡𝑡 𝑡𝑡)|

⋮

|𝐵𝐵𝑚𝑚(𝑡𝑡𝑡 𝑡𝑡)|

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑘𝑘1𝑗𝑗

𝑘𝑘2𝑗𝑗

⋮

𝑘𝑘𝑚𝑚𝑚𝑚

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

|𝑆𝑆𝑗𝑗(𝑡𝑡𝑡 𝑡𝑡)|� (3)

The operator |a + jb| applied to the complex value a + jb returns the magnitude of complex value, 𝐴𝐴

√
𝑎𝑎2 + 𝑏𝑏2 . 

Equation 3 can be rewritten element-wise as:

|𝑆𝑆𝑗𝑗(𝑡𝑡𝑡 𝑡𝑡)| =
|𝐵𝐵1(𝑡𝑡𝑡 𝑡𝑡)|

𝑘𝑘1𝑗𝑗

=
|𝐵𝐵2(𝑡𝑡𝑡 𝑡𝑡)|

𝑘𝑘2𝑗𝑗

= ⋯ =
|𝐵𝐵𝑚𝑚(𝑡𝑡𝑡 𝑡𝑡)|

𝑘𝑘𝑚𝑚𝑚𝑚

� (4)

Equation 4 is equivalent to the symmetric form of a line with slope defined by the mixing vector of the noise 
signal. In order to find the mixing vector of a noise signal, we define a TF space 𝐴𝐴 𝐇𝐇 ∈ ℝ

2𝑚𝑚 in which each phase 
and magnitude of the m magnetometer signals are an axis. Sparse TF points will draw straight lines through the 
origin in the H-domain with a slope proportional to the signal's mixing vector. Figure 1 shows an example of a 
scatter plot of three mixed TF signals composed of six source signals. The mixed signals form straight lines with 
slopes defined by Equation 4.

 21699402, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JA

030757 by U
niversity O

f M
ichigan Library, W

iley O
nline Library on [02/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Journal of Geophysical Research: Space Physics

HOFFMANN AND MOLDWIN

10.1029/2022JA030757

5 of 17

2.2.  Mixing Matrix Estimation

The slope of the lines drawn through the H-domain are not easily clusterable 
in their current form as a collection of scattered data points. We transform 
the scattered data points in H-domain into a clusterable form by projecting 
the magnitude subdomain onto a unit hypersphere. The H-domain magni tude 
data are projected onto a half-unit hypersphere by normalizing the TF 
magnetometer data via the following equation.

𝐵𝐵
∗(𝑡𝑡𝑡 𝑡𝑡) =

|𝐵𝐵(𝑡𝑡𝑡 𝑡𝑡)|
‖𝐵𝐵(𝑡𝑡𝑡 𝑡𝑡)‖� (5)

When the scattered data points have been normalized, they collapse into 
compact clusters. This is illustrated by the projection of the scattered data 
points representing six computer generated signals in Figure  1 onto a 
half-unit hypersphere in Figure 2. The centroid of a cluster is proportional to 
the mixing vector of a noise signal as defined in Equation 2.

The majority of the frequency space is filled with negligible energy points 
that will project randomly onto the unit hypersphere (Sun et al., 2016). We 
attempt to cleanse the data of these points using a magnitude filter. The filter 
is applied by finding the average signal magnitude and removing data points 
below a factor, λ, of the average signal magnitude. The magnitude filter is 
applied by removing data points that do not satisfy the following criterion:

|𝐵𝐵(𝑡𝑡𝑡 𝑡𝑡)| > 𝜆𝜆 ⋅ avg(|𝐵𝐵(𝑡𝑡𝑡 𝑡𝑡)|)� (6)

The projected data points form tightly clustered groups on the unit hypersphere that allow us to discover the rela-
tive gain between noise signals at different magnetometers. However, we need to find the relative phases between 
noise signals of magnetometers at different positions. To account for this we join each projected TF point to its 
relative argument. The relative argument is defined by the following transformation:

arg𝐵𝐵(𝑡𝑡𝑡 𝑡𝑡) = { arg𝐵𝐵𝑗𝑗(𝑡𝑡𝑡 𝑡𝑡) − arg (𝐵𝐵0 (𝑡𝑡𝑡 𝑡𝑡)|𝑗𝑗 ∈ [0, 𝑚𝑚] }� (7)

Using the result of Equation  7, we define a new data format, H(t,k), by 
concatenating the projected magnitude data with the argument of the TF data.

𝐻𝐻(𝑡𝑡𝑡 𝑡𝑡) = (𝐵𝐵∗(𝑡𝑡𝑡 𝑡𝑡), arg (𝐵𝐵 (𝑡𝑡𝑡 𝑡𝑡))� (8)

The magnetometer data, H(t,k), are now in a format that can be clustered to 
discover the gain and phase of each signal described in the mixing matrix, 
K. Figure 3 shows an example of two magnetometer signals transformed into 
the H-Domain.

Now that the projected magnitude and relative phases are joined, a vari-
ety of clustering algorithms can be applied to find the mixing matrix, K. 
In this work, we use the Density Based Spatial Clustering for Applications 
with Noise (DBSCAN) algorithm because it does not require user input to 
discern the number of clusters present, and it will ignore noise points (Ester 
et al., 1996). As a result, the number of noise signals does not need to be 
defined prior to the application of DBSCAN. DBSCAN has two essential 
parameters, eps and minPts, that allow this functionality. The maximum 
distance for two points to become neighbors is the value, eps. If a point has 
minPts number of neighbors, it is called a core point. Core points are used to 
define each cluster. If a point is more than eps distance away from any point 
in a cluster, it is labeled as noise. We use DBSCAN to cluster H(t,k) and use 
each cluster's centroid as the noise signal's mixing vector. Once the mixing 
vector of each noise signal is known, the mixing vectors are joined to form 

Figure 1.  Three magnetometer measurements of six computer-simulated 
sinusoidal noise signals. Each magnetometer signal is transformed into the 
time-frequency (TF) domain using the STFT. The magnitude of the three 
resulting TF signals are taken and plotted against each other in a scatter 
plot. The scattered TF points from each magnetometer form straight lines 
due to Equation 4. This figure does not include the phase subdomain of the 
H-domain.

Figure 2.  The scattered time-frequency mixed signals in Figure 1 are 
projected onto a half-unit hypersphere through normalization. The six 
scattered straight lines collapse into six compact clusters. The centroid of each 
cluster is proportional to each source signals' mixing vector in the mixing 
matrix, K, due to Equation 4.
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the mixing matrix, K. The mixing matrix is used to separate the noise signals 
from the ambient magnetic field via compressive sensing.

2.3.  Signal Reconstruction

Compressive sensing is a method used to reconstruct sparse signals with 
a sampling rate below two times a signal's bandwidth (Baraniuk,  2007). 
Reconstructing a signal of length N from a sampled signal of length M, where 
M < N, is an analogous problem to UBSS. Ordinarily, the system b = Ks, 
where K is a wide matrix, has infinitely many solutions because if b = Ks is a 
solution, b = K(s + s′) is also a solution for any vector s′ in the null space of 
K. Compressive sensing can exactly recover sparse signals and approximate 
near-sparse signals through minimizing the L1 norm of S with respect to 
b − Ks < ɛ. The algorithm works with O(N 3) complexity.

We use CVXPY, A Python-Embedded Modeling Language for Convex 
Optimization, to reconstruct the signals with the estimated mixing matrix, 
K (Diamond & Boyd, 2016). The formulation used to recover the signal, s, 
from b is:

Minimize 𝑤𝑤
𝑇𝑇 |𝑠𝑠|

Subject to 𝐾𝐾𝐾𝐾 = 𝑏𝑏

� (9)

Traditionally, compressive sensing minimizes the L1 norm of the source 
signals, ‖s‖1, with respect to Ks = b in order to recover the source signals. 
Instead of minimizing the L1 norm, we utilize a weighted L1 norm defined 
by the weighting vector, 𝐴𝐴 𝐴𝐴 = [𝑤𝑤1, 1, 1, … , 1]

𝑇𝑇  , where w1 ≥ 1. The param-
eter, w1, is multiplied with the ambient magnetic field signal, s1, in order to deter the attribution of energy from 
other noise signals to it. In the case that the source signals, s, are not sparse at a TF bin, the additional weight 
increases the cost of attributing energy from other signals to the ambient magnetic field, s1. The optimal value of 
the weight, w1, depends on the signature of noise signals. Candès et al. (2008) apply a similar approach by itera-
tively adjusting the weight of each signal with respect to the magnitude of the signal. In this work, we found the 
optimal weight, w1, experimentally by comparing the reconstructed signal, 𝐴𝐴 𝐴𝐴𝐴1 , to the true signal, s1.

This system defined in Equation 9 is solved using the Embedded Conic Solver (ECOS) (Domahidi et al., 2013). 
The ECOS algorithm is a convex optimization algorithm that transforms the problem defined in Equation 9 into 
a Second Order Cone Problem (SOCP). SOCP problems are convex optimization problems that minimize linear 
functions with respect to second order cone constraints (Alizadeh & Goldfarb,  2003). The ECOS algorithm 
applies an interior point solver to converge on the sparse solution of the problem defined by Equation 9.

3.  Experimental Data and Results
We test the proposed method of signal and noise separation through two experiments. The first experiment 
demonstrates the separation of SWARM magnetic field data from computer-simulated signals using virtual 
magnetometers. The second experiment demonstrates the separation of SWARM magnetic field data from real 
magnetic noise signals generated with copper coils. The coil-generated magnetic fields were measured using the 
PNI RM3100 magnetometer and a mock CubeSat described by Deshmukh et al. (2020).

Figure 4 details the process of identifying noise signals and reconstructing the ambient magnetic field. First (i), 
the signal offsets are subtracted to center the signals around 0 nT. Second (ii), the signals are transformed into 
the TF domain using the NSGT to increase signal sparsity. Third (iii), low energy points are filtered out using 
Equation 6. Fourth (iv), the signals are transformed into H(t,k) by projecting the magnitude, |B(t, k)| onto the unit 
hypersphere and concatenating it with the phase, arg  B(t, k), via Equations 5, 7 and 8. Fifth (e), the data, H(t,k), 
are clustered using DBSCAN and the cluster centroids are found. Finally, in the last step (vi), compressive sens-
ing is used to reconstruct the ambient magnetic field. The minimum magnitude, λ in step (iii), and the parameters 
eps and MinPts in step (v) may need to be adjusted depending on the length and magnitude of the signals being 
analyzed.

Figure 3.  An illustration of noise signals in the full H-domain for a two 
magnetometer system. The horizontal axes represent the magnitude of the 
time-frequency magnetometer signals projected onto a unit hypersphere. 
The vertical axis represents the relative argument of Sensor 2 in radians as 
defined by Equation 7. The data points are projected onto a plane at Z = −2.5 
to distinguish the difference in magnitudes. The phase and magnitude of each 
noise signal at each magnetometer is discovered by clustering the data in this 
format.
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We evaluate the separation of noise signals via three metrics. The metrics are calculated point-wise using the 
reconstructed signal, x and the true signal, y, over N data points. The first metric is the Pearson Correlation Coef-
ficient. This measurement gives the covariance between the normalized input and recovered signals.

� =
∑�−1

�=0 (�� − �̄) (�� − �̄)
√

∑�−1
�=0 |(�� − �̄)|2

∑�−1
�=0 |(�� − �̄)|2

� (10)

The second metric evaluated is the root mean squared error (RMSE). This metric is proportional to the magnitude 
of the squared error. As a result, the RMSE is very sensitive to large errors.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

√
∑𝑁𝑁−1

𝑖𝑖=0
(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)

2

𝑁𝑁

� (11)

The final metric is the normalized RMSE (NRMSE). This metric yields the RMSE as a percentage of the magni-
tude of the signal being measured. It is used to compare the relative error between signals on different orders of 
magnitude. We calculate the NRMSE by dividing the RMSE of the signal by the max amplitude of the absolute 
value of the true, detrended signal, 𝐴𝐴 |𝑦𝑦 − 𝑦̄𝑦|max .

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

|𝑦𝑦 − 𝑦̄𝑦|max
� (12)

3.1.  Experiment 1: Computer Simulation

In this experiment, we use four simulated noise signals, s(t) ⊃ [s2(t), s3(t), s4(t), s5(t)], and three virtual magnetom-
eters b(t) = Ks(t) = [b1(t), b2(t), b3(t)]. The signal, s1(t), is residual magnetic field data created by subtracting data 
generated by the IGRF model from SWARM magnetic field data. This process leaves only magnetic perturbations 
present in the magnetosphere. The magnetic perturbation data we use were measured by the SWARM A satellite 
on 17 March 2015 between 8:53 and 8:55 UTC. This part of the orbit passes between the 69th and 76th parallel 
south and was selected to capture perturbations in the southern auroral zone. The proposed algorithm detailed 
in Figure 4 is tested on 100 s of data, although it may be applied to a signal of any length provided that there are 
enough data points to cluster. The signals are combined through the complex mixing matrix in Equation 13 with 
phases given in radians.

Figure 4.  Flow of processes involved in using cluster analysis to discover noise signals and compressive sensing to separate 
the ambient magnetic field from noise signals.
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𝐾𝐾 =

⎡
⎢
⎢
⎢
⎢
⎣

1∠0 0.99∠0 0.09∠0 0.70∠0 0.02∠0

1∠0 0.09∠𝜋𝜋 0.99∠0 0.70∠0 0.05∠𝜋𝜋

1∠0 0.12∠𝜋𝜋 0.12∠𝜋𝜋 0.13∠𝜋𝜋 0.99∠𝜋𝜋

⎤
⎥
⎥
⎥
⎥
⎦

� (13)

The values in the first column represent the ambient magnetic field signal which appears identically at every 
magnetometer. Figure 5 shows the five source signals used in this simulation. Two of the noise signals are sine 
waves with frequencies of 2 and 5 Hz. Sine waves are sparse signals that can be represented by a single point in 
the frequency domain. This makes them easily identifiable by cluster analysis. The two remaining noise signals 
used are a sawtooth wave with a frequency of 0.7 Hz, and a square wave with a frequency of 3.0 Hz. These signals 
inhabit a broad frequency spectrum and diminish the sparsity of the mixed signals.

The signals are combined in the mixing system b(t) = Ks(t) with the mixing matrix K from Equation 13. The 
resulting signals are sampled by the virtual magnetometers at a rate of 50 samples per second. Different noise 
signals, such as noise generated by reaction wheels, may have higher frequency components and require a higher 
sampling rate in order to avoid aliasing (Miles et al., 2016; Pope et al., 2011). A random normal signal with 
a  standard deviation of 6 nT is added to each virtual magnetometer in order to simulate instrument noise. This 
noise level corresponds to the rated instrument resolution of the PNI RM3100 magnetometer at 50 Hz used in 
Experiment 2. Figure 6 shows the sampled signals.

Following the procedure in Figure 4, the signals were detrended and transformed into the TF domain using the 
NSGT. The NSGT is a type of constant-Q transform, so it requires the parameter Q which specifies window size. 
In this experiment, we used Q = 10 and a lower frequency bound of 30 mHz. In step (iv), low energy points were 
removed using a λ = 0.5. The resulting data were transformed into H(t,k) and clustered by DBSCAN with param-
eters eps = 0.3 and MinPts = 4. These parameters were optimized experimentally using trial and error, however 
it may be possible to automate parameter selection based on the signals being analyzed. With this configuration, 
DBSCAN discovered the five clusters corresponding to each noise source. The clusters, shown below in the 
columns of 𝐴𝐴 𝐾̂𝐾 , closely match the original mixing matrix.

Figure 5.  10 s of four source signals used to simulate spacecraft noise and one signal to simulate the ambient magnetic field. (a) The ambient magnetic field signal 
using SWARM A data starting from 17 March 2015 at 8:53 UTC. (b) A 2 Hz sine wave with amplitude of 50 nT. (c) A 3 Hz square wave with a magnitude of 100 nT. 
(d) A sine wave with a frequency of 5 Hz and amplitude of 50 nT. (e) A sawtooth wave with an amplitude of 110 nT and frequency of 0.7 Hz.
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𝐾̂𝐾 =

⎡
⎢
⎢
⎢
⎢
⎣

1∠0 0.99∠0.00 0.697∠0.00 0.10∠0.00 0.05∠0.00

1∠0 0.10∠ − 0.02 0.697∠0.14 0.99∠0.06 0.14∠3.10

1∠0 0.12∠ − 3.10 0.135∠3.14 0.12∠ − 3.10 0.98∠ − 3.16

⎤
⎥
⎥
⎥
⎥
⎦

� (14)

Finally, in step (vi), the mixed signals were separated by compressive sensing using the recovered mixing matrix, 
𝐴𝐴 𝐾̂𝐾 , in Equation 14. The data, H(t,k), are discarded and the raw Fourier transform of the mixed signals are sepa-

rated by applying the ECOS algorithm to the problem defined in Equation 9 with a weight of w1 = 1.5. The 
reconstructed SWARM perturbation signal is shown in Figure 7, as well as a histogram of the reconstruction 
error and spectrograms of the noisy, cleaned, true SWARM signal. A breakout of the reconstructed noise signals 
is included as Figure S1.

The reconstructed ambient magnetic field signal resembles the original signal with some additional error. In order 
to evaluate the reconstruction noise, the Pearson correlation coefficient, RMSE, and NRMSE of each source 
signal are calculated. The ambient magnetic field was reconstructed with a RMSE of 2.75 nT. The results for the 
reconstruction of each source signal are shown in Table 1. The experiment was repeated without the addition of 
the 6 nT instrument noise to evaluate the effect of the random noise on the total reconstruction error.

3.2.  Experiment 2: Magnetic-Coil-Generated Signal Separation

In this experiment, we demonstrate the utility of the proposed algorithm on real magnetic field data. We use three 
PNI RM3100 magnetometers to record copper coil-generated noise signals. Four copper coils are driven by signal 
generators to create the source signals, s(t) ⊃ [s2(t), s3(t), s4(t), s5(t)]. The signals are combined in the unknown 
mixing system, b(t) = Ks(t) = [b1(t), b2(t), b3(t)]. The SWARM residual magnetic field data, which is used in 
experiment one, is added to each magnetometer recording to generate the ambient magnetic field signal, s1(t).

The proposed algorithm detailed in Figure 4 is tested on 100 s of recorded data. The signals, s2(t) and s3(t), are 
sine waves with frequencies of 0.4 and 0.8 Hz. The signals, s4(t) and s5(t), are square waves with frequencies of 
1 and 2 Hz. The three PNI RM3100 magnetometers and four copper coils are placed  on the CubeSat apparatus 
as shown in Figure 8. Due to the location and orientation of the four copper coils and three magnetometers, 

Figure 6.  Plots (a, b, and c) show one hundred seconds of three magnetometer signals, b(t), created by mixing the five source 
signals in Figure 5 though the mixing matrix defined in Equation 13.
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Figure 7.  The top plot (a) shows the cleaned magnetometer signal in blue with the ambient magnetic field signal overlayed in orange. Plot (b) shows a spectrogram of 
the uncleaned signal from magnetometer (a) in Figure 6. Plot (c) shows a spectrogram of the reconstructed ambient magnetic field signal. Plot (d) shows a spectrogram 
of the true ambient magnetic field signal. The spectrograms were created using wavelet analysis. The shaded areas indicate where the wavelet does not produce valid 
results. The bottom plot (d) shows a histogram of the signal reconstruction error, 𝐴𝐴 𝐴𝐴1 − 𝑠̂𝑠1 .

Metric SWARM Sine A Square Sine B Sawtooth

With noise ρ 0.9988 0.9934 0.9983 0.9941 0.9982

RMSE 2.75 nT 4.11 nT 5.77 nT 6.39 nT 2.54 nT

NRMSE 1.21% 8.23% 5.77% 6.39% 5.35%

Without noise ρ 0.9988 0.9927 0.9987 0.9941 0.9974

RMSE 2.84 nT 4.33 nT 7.06 nT 6.38 nT 3.42 nT

NRMSE 0.81% 8.68% 7.06% 6.38% 7.21%

Table 1 
Summary of Experiment 1 Results
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each noise signal will appear at each magnetometer with a different magni-
tude and magnetic latitude induced phase. Additionally, this experiment 
was performed in a copper room lined with mu-metal in order to screen out 
magnetic fields from the surrounding environment.

The PNI RM3100 is a magneto-inductive magnetometer that measures the 
magnetic field by counting hysteresis loops with a comparator circuit, called 
a Schmitt Trigger, in an ASIC. The ASIC records magnetic field measure-
ments by adding to a register every time the Schmitt trigger is saturated. 
This measurement renders the magnetic field when integrated with respect 
to time. The ASIC has a cycle count register that controls how many clock 
cycles pass between integrations. The error of the magnetometer will change 
with respect to the cycle count. In this experiment, each magnetometer 
is sampled at a rate of 50 Hz with a cycle count of 200 cycles. The PNI 
RM3100 is rated to have a resolution of 6  nT in this configuration. The 
mixed signals recorded by the PNI RM3100 magnetometers are shown in 
Figure 9 below.

The proposed algorithm was run on data from the magnetometers' z-axis 
following the same steps as in Figure 4 and Section 3.1. The signals were 
detrended and transformed into the TF domain using the NSGT with a quality 
factor of Q = 20 and a lower frequency bound of 30 mHz. In step 4, low 
energy points were removed using a λ = 2.5. The resulting data were trans-
formed into H(t,k) and clustered by DBSCAN with parameters eps = 0.4 and 
MinPts = 4. DBSCAN discovered the following five clusters shown below 
in the columns of 𝐴𝐴 𝐾̂𝐾 .

Figure 8.  Mock CubeSat Apparatus with three PNI RM3100 magnetometers 
and four copper coils driven by signal generators. The magnetometers are 
placed within the mock CubeSat. In this study, we do not examine the effect of 
surface mounted sensors or sensors placed on a boom. The Apparatus is placed 
inside a mu-metal lined copper room that acts as a large magnetic shield can.

Figure 9.  Plots (a, b, and c) show 18.5 s of three mixed signals recorded by PNI RM3100 magnetometers' z-axis. The five 
signals present are two sine waves, two square waves, and the added residual magnetic field data. The noise signals have 
amplitudes between 50 and 500 nT compared to the ambient magnetic field signal with a max amplitude near 300 nT.
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𝐾̂𝐾 =

⎡
⎢
⎢
⎢
⎢
⎣

1∠0 0.023∠0 0.22∠0 0.93∠0 0.02∠0

1∠0 0.55∠1.31 0.97∠3.09 0.35∠3.04 0.04∠6.04

1∠0 0.79∠4.58 0.001∠2.94 0.15∠0.255 0.82∠2.84

⎤
⎥
⎥
⎥
⎥
⎦

� (15)

The PNI RM3100 magnetometer was experimentally found to have a lower noise floor when sampled at a higher 
rate and decimated to a lower rate versus only being sampled at a lower rate. We evaluated this effect by recon-
structing the original 50 Hz data in step 6, then downsampling the reconstructed ambient magnetic field signal to 
10 Hz, 1 Hz, and averaging the data with a moving mean (N = 10). The magnetometer signals were downsampled 
by applying an eighth order Chebyshev type I anti-aliasing filter and resampling the resulting signal. The mixed 
signals were separated via weighted compressive sensing using a weight of w1 = 3. The four noise signals recon-
structed from the 50 Hz raw data are shown in Figure 10.

The reconstructed coil-generated signals closely resemble square and sine waves with some additional noise. The 
recovered residual magnetic field data are shown in the top plot of Figure 11. The recovered signal is overlayed 
with the true residual magnetic field signal. The residual data in Figure 11 were reconstructed using the mixed 
signals sampled at the full 50 Hz cadence. The plots below show the reconstructed signal, spectrograms of the 
noisy, cleaned, and true SWARM signal created using wavelet analysis, and a histogram of the signal reconstruc-
tion error.

The reconstructed signal closely follows the true geomagnetic perturbation signal with some high frequency 
noise present. As a result of the geomagnetic field signal being artificially inserted into the magnetometer read-
ings, we are able to calculate the RMSE and Pearson Correlation Coefficient with respect to the original signal. 
The results for the original, decimated, and moving-mean signals are shown in Table 2. These results are also 
compared to the uncleaned magnetometer data from magnetometer (a) in Figure 9.

4.  Discussion
In this study, we introduced a signal processing algorithm based on UBSS and demonstrated the separation of 
magnetic noise from geomagnetic field data. In the first experiment, we separated four simulated noise signals 
from SWARM residual magnetic field data. The noise signals contained both sparse sine wave signals and wide-
band sawtooth and square wave signals. The algorithm was able to restore the residual magnetic field signal with 

Figure 10.  Reconstructed Sine and Square wave signals from 50 Hz mixed signals in Figure 9.
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Figure 11.  The top plot (a) shows the cleaned magnetometer signal in blue with the ambient magnetic field signal overlayed in orange. Plot (b) shows a spectrogram of 
the uncleaned signal from magnetometer (a) in Figure 9. Plot (c) shows a spectrogram of the reconstructed ambient magnetic field signal. Plot (d) shows a spectrogram 
of the true ambient magnetic field signal. The spectrograms were created using wavelet analysis. The shaded areas indicate where the wavelet does not produce valid 
results. The bottom plot (d) shows a histogram of the signal reconstruction error, 𝐴𝐴 𝐴𝐴1 − 𝑠̂𝑠1 .

Metric 50 Hz 10 Hz 1 Hz Moving mean (N = 10)

Recovered signal ρ 0.9947 0.9958 0.9952 0.9955

RMSE 7.94 nT 7.23 nT 7.41 nT 7.45 nT

NRMSE 2.26% 2.08% 2.13% 2.11%

Noisy signal ρ 0.2126 0.2286 0.9139 0.2871

RMSE 328.08 nT 300.53 nT 30.63 nT 239.33 nT

NRMSE 93.31% 86.69% 8.84% 68.0%

Table 2 
Summary of Experiment 2 Results
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a correlation coefficient of ρ = 0.9988 and RMSE of 2.75 nT. When the experiment was repeated without arti-
ficial instrument noise, the algorithm reconstructed the ambient magnetic field signal with a RMSE of 2.84 nT. 
In the second experiment, we created four magnetic noise signals using copper coils to generate real magnetic 
field data and placed PNI RM3100 magnetometers within the bus of a mock CubeSat apparatus. The same 
SWARM magnetic residual data were artificially inserted into the magnetometer measurements. This experiment 
mimicked the computer-simulated experiment, with two sparse noise signals and two wideband noise signals. 
At a sampling rate of 50 Hz, the ambient magnetic field signal was reconstructed with a RMSE of 7.94 nT as 
opposed to 2.75 nT in simulation. The signal separation algorithm was executed using several additional preproc-
essing techniques such as decimating the sampling rate and applying a moving mean to the magnetometer data. A 
RMSE of 7.41 nT was achieved by decimating the sample rate to 1 Hz. At 1 Hz, the PNI RM3100 magnetometer 
is rated to have a measurement error of 2.7 nT due to instrument noise (Regoli et al., 2018). This result places 
the reconstruction error near the measurement resolution of the magnetometer. When the noisy magnetometer 
data were decimated, it reduced the RMSE of the signal measured by magnetometer (a) in Figure 9 from 328.1 
to 30.6 nT. In contrast, the decimation of the ambient magnetic field signal reconstructed from the proposed 
algorithm did not significantly improve the RMSE. The reconstructed signal decimated to 1 Hz had an RMSE 
of 7.41 nT compared to 7.94 nT at 50 Hz, however, the UBSS algorithm was able to improve the RMSE by over 
20 nT compared to simple downsampling. These results show that the proposed UBSS algorithm is effective at 
removing spacecraft noise from magnetic field data.

In general, it is not feasible to adaptively cancel spacecraft noise when a single magnetometer is used. Adaptive 
noise cancellation requires the removal of noise signals that are time variable. The use of a single magnetom-
eter requires that spacecraft noise be carefully characterized before launch. Otherwise, a change in spacecraft 
behavior may require special maneuvers to re-characterize noise signatures in situ (Miles et al., 2019). The use of 
multiple magnetometers allows for the discovery of noise signals through the comparison of magnetometer data. 
Sheinker and Moldwin (2016), Deshmukh et al. (2020), and Imajo et al. (2021) each propose algorithms for noise 
cancellation using multiple magnetometers. The algorithm proposed by Sheinker and Moldwin (2016) is effec-
tive at removing a single noise signal, but is not designed for multiple noise signals. Imajo et al. (2021) propose 
the use of ICA which is also limited by how many noise signals it can remove. BSS algorithms require that the 
number of source signals be less than or equal to the number of mixed signals. Spacecraft contain many electrical 
systems that could generate magnetic interference, so this condition is rarely met. For example, Pope et al. (2011) 
identified seven common types of noise signals on Venus Express, which is equipped with two magnetometers. 
The advantage of the proposed UBSS algorithm over Imajo et al. (2021) and Sheinker and Moldwin (2016) is 
that it can cancel noise signals in an underdetermined system. This means that there are more noise signals pres-
ent than magnetometers. This property of the algorithm provides the flexibility necessary to be applied to many 
different spacecraft without prior characterization of spacecraft noise. The algorithm also does not require knowl-
edge of magnetometer location and orientation, except that the axis of each magnetometer are aligned. Finally, 
Deshmukh et al. (2020) designed a state estimation algorithm to transform housekeeping data to magnetic noise 
signals. Housekeeping currents provide an incomplete mapping of the distribution of currents within a spacecraft. 
Additionally, housekeeping data are often sampled at a low cadence and may not have the appropriate bandwidth 
to identify higher frequency noise. The advantage of the proposed UBSS algorithm over this approach is that 
it is a blind signal processing algorithm. It requires no housekeeping data to identify and remove noise signals.

The proposed algorithm functions on the assumption that the noise signals are sparse, meaning that only one 
noise signal is present at a given frequency. Multiple noise signals may be active at the same time, however, if 
a signal is not sparse in the frequency domain, then its mixing vector cannot be accurately estimated by clus-
ter analysis. Compressive sensing also requires sparsity in order to accurately reconstruct the separate signals. 
Compressive sensing can fully reconstruct sparse signals, and approximately reconstruct near-sparse signals. 
In this work, we do not exhaustively explore the minimum sparsity required for accurate reconstruction of the 
ambient magnetic field.

The proposed algorithm requires that several parameters be set by the user. In this study, the parameters were 
manually selected based on the signals being analyzed, but this process could also be automated. The first param-
eter is the quality factor, Q. This parameter adjusts the window size used in the NSGT. We experimentally 
selected it, but it may be chosen based on the length of the signal being processed. The parameter, λ, is used to 
remove low energy noise signals. Data points that are below a fraction, λ, of the average energy data point are 
removed before clustering occurs. We selected this parameter by analyzing the data projected onto the half-unit 
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hypersphere in Figure 2, and visually observing if the signals were clusterable. If λ is too small, then the hyper-
sphere will be completely filled with data points, and the noise signals will not be separable. If λ is too large, 
then small noise signals may not appear at all. Lastly, DBSCAN requires that two parameters, eps, and MinPts, 
be selected. The parameter, eps, represents the maximum distance allowed for two data points to be considered 
neighbors. The parameter, MinPts, represents the number of neighbors required for a data point to be considered 
a core. MinPts may be selected based on the length of signal being processed. A disadvantage of using NSGT and 
DBSCAN together is that more data points are created for higher frequency signals because the window size is 
altered based on frequency. Therefore, MinPts should be selected based on the lower frequency signals.

Most heliophysics missions require magnetic field accuracies of better than 1 nT (e.g., the NASA MMS mission 
(Russell et al., 2016)). Using the PNI RM3100 magnetometer, the algorithm reconstructed the ambient magnetic 
field signal with an RMSE of 7.94 nT. This error is near the expected measurement noise for the PNI RM3100 
magnetometer at 50 Hz, indicating that the accuracy of the algorithm is limited to the total error budget of the 
magnetometer. Nevertheless, the experiments performed show the successful reconstruction of magnetic pertur-
bation signals measured from within the bus of a mock CubeSat. These results demonstrate the utility of boom-
less CubeSats for scientific investigation of magnetic field phenomena in the geospace environment. In turn, the 
low cost of CubeSats enables the use of large constellations of small satellites to measure the geomagnetic field 
with high temporal and spatial resolution.

5.  Conclusions and Future Work
In this study, we propose an algorithm for separating spacecraft generated magnetic noise from geomagnetic field 
data using multiple magnetometers. The algorithm does not require knowledge of the characteristics (location, 
orientation, amplitude, or spectral signature) and allows the number of noise sources to exceed the number of 
magnetometers (n > m). The algorithm identifies signals by looking at the relative gain and phase of the magneto-
meter data in the TF domain. If a noise signal is sparse in this domain, the relative gain and phase is found using 
cluster analysis. Following the same assumption of sparsity, the signal can be separated from the noisy data using 
the cluster centroids in compressive sensing.

The algorithm is designed for underdetermined systems in which there are more noise sources than magnetome-
ters. An advantage of this approach is that the UBSS algorithm can be integrated onto any satellite since no prior 
characterization of noise signals is required. This design eases the assimilation of magnetometers into spacecraft 
designs by reducing the need for strict magnetic cleanliness requirements and long mechanical booms.

There are several avenues of future development for this algorithm. The most immediate step to be taken is for 
the selection of parameters to be automated. We present an algorithm to automate the noise cancellation process, 
but some rudimentary analysis is still required to select parameters for clustering and preprocessing. We think 
the selection of parameters could be entirely automated. Another avenue of development is to test the limits 
of the sparsity assumption. Sparsity is a very strict assumption that may not always be met. In this work, we 
tested  the algorithm using several wideband signals. However, the threshold for minimum sparsity is unknown. 
This assumption can be examined through examining signals with partially overlapping spectra to find a point of 
failure. Finally, an interesting scenario to investigate is where several magnetometers are mounted within the bus 
of a spacecraft, but one magnetometer is mounted on a short boom, such as on the spacecraft Dellingr (Kepko 
et al., 2017). In this scenario, the measurements of one magnetometer may be more accurate than the others. It 
would be counterproductive if the reconstructed magnetometer signal had more noise than the signal measured 
by the magnetometer on the boom. It may be possible to account for this by designing a programmable ”trust” 
parameter at the compressive sensing stage. This parameter would indicate an elevated degree of trust in one 
magnetometer over the others.

In this work, we performed two experiments to validate the algorithm. The first experiment separated SWARM 
magnetic perturbation data from four computer-simulated signals. The algorithm was able to reconstruct the 
ambient magnetic field signal with an RMSE near 3 nT and a correlation of ρ ≈ 0.9988. The reconstruction errors 
are less than the 6 nT intrinsic instrument noise that was added to each virtual magnetometer. The second exper-
iment used real magnetic noise signals generated by copper coils, and the same SWARM geomagnetic field data. 
This experiment was able to separate four noise signals and reconstruct the background magnetic perturbation 
signal with a RMSE of 7.23 nT and a correlation of ρ = 0.9958 at a 10 Hz cadence.
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These results show the potential of signal processing algorithms to identify and remove magnetic noise from 
spaceborne magnetometer data. The proposed algorithm diminishes the need to place a magnetometer on a boom 
or enables significantly shorter booms. This enables the possibility of low cost, boomless spacecraft to capture 
high fidelity magnetic field measurements.

Data Availability Statement
The SWARM magnetometer data are available from https://swarm-diss.eo.esa.int under MAGx_HR in the Level 
1B data products folder. The noise signals generated in simulation and in the laboratory are available on the 
University of Michigan Deep Blue data repository (https://doi.org/10.7302/bz6v-6q52).
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