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Separation of Spacecraft Noise From Geomagnetic Field
Observations Through Density-Based Cluster Analysis and
Compressive Sensing
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Abstract The use of magnetometers for space exploration is inhibited by magnetic noise generated by
spacecraft electrical systems. Mechanical booms are traditionally used to extend magnetometers away from
noise sources. If a spacecraft is equipped with multiple magnetometers, signal processing algorithms can

be used to compare magnetometer measurements and remove stray magnetic noise signals. We propose the
use of density-based cluster analysis to identify spacecraft noise signals and compressive sensing to separate
spacecraft noise from geomagnetic field data. This method assumes no prior knowledge of the number,
location, or amplitude of noise signals, but assumes that they have minimal overlapping spectral properties. We
demonstrate the validity of this algorithm by separating high latitude magnetic perturbations recorded by the
low-Earth orbiting satellite, SWARM, from noise signals in simulation and in a laboratory experiment using a
mock CubeSat apparatus. In the case of more noise sources than magnetometers, this problem is an instance of
underdetermined blind source separation (UBSS). This work presents a UBSS signal processing algorithm to
remove spacecraft noise and minimize the need for a mechanical boom.

Plain Language Summary Magnetometers are instruments designed to measure magnetic fields.
They are used for a variety of purposes such as monitoring the magnetic field of the Earth from spacecraft.
Spacecraft systems such as solar panels and reaction wheels generate magnetic noise that interferes with
magnetometer readings. If the spacecraft has multiple magnetometers, each noise source will have a different
magnitude at each magnetometer depending on the location of the noise source. The system which describes
the magnitude of each noise source at each magnetometer is called a mixing matrix. We propose the use of
unsupervised machine learning to estimate the mixing matrix. Once the mixing matrix is estimated, the Earth's
magnetic field can be separated from spacecraft magnetic noise using a method called Compressive Sensing.
Spacecraft often have many more noise sources than magnetometers, which complicates noise cancellation. The
proposed method has the ability to clean noisy magnetometer measurements when there are more noise signals
present than magnetometers.

1. Introduction

Spacecraft equipped with magnetometers can be used to capture in situ measurements of magnetic phenomena
in the geospace environment. These measurements are necessary to answer key questions about the nature of the
Earth's magnetosphere and its interaction with interplanetary magnetic fields. Understanding how the heliosphere
directs the flow of energy, mass, and momentum between the Sun and Earth is critical for applications such as
space weather modeling, space exploration, and climate science. A number of missions use spacecraft equipped
with magnetometers to measure magnetic fields. For example, The European Space Agency's SWARM mission
uses a constellation of three satellites to provide high fidelity magnetic field measurements used to model the
Earth's magnetic field and study the Earth's dynamo (Fratter et al., 2016). Magnetometers provide invaluable data
for space science research, however, the quality of the data are often limited by magnetic noise generated by the
spacecraft. Electrical systems onboard a spacecraft generate stray magnetic fields that interfere with magnetic
field measurements. The strength of magnetic fields in the geospace environment ranges several orders of magni-
tude with natural phenomena such as the interplanetary magnetic field occurring on the order of 6 nT to the
Earth's magnetosphere in low-Earth orbit measuring on the order of 60,000 nT. Spacecraft subsystem magnetic
fields may completely eclipse the perturbations in natural magnetic fields which are of interest to understanding
waves and currents in the solar wind and magnetosphere. The presence of these stray magnetic fields is a signifi-
cant obstacle for missions that utilize magnetic field data (Ludlam et al., 2009; Russell, 2004).
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On satellites, stray magnetic fields can be generated by subsystems such as solar panels, reaction wheels, battery
currents, and magnetorquers. The magnetometer on the CubeSat, Ex-Alta 1, recorded magnetic field noise gener-
ated by a magnetorquer which exceeded 7,500 nT peak-to-peak (Miles et al., 2016). Satellite magnetometers are
typically fixed at the end of a mechanical boom to reduce the magnitude of noise generated by the spacecraft.
For example, the mission SWARM uses two magnetometers mounted on a 4.3 m boom (McMahon et al., 2013).
However, the use of a boom is not always possible in designs such as rovers and CubeSats where gravity and cost
are limiting factors. Additionally, the implementation of a boom does not always guarantee the elimination of
spacecraft noise from magnetic field measurements. The spacecraft, DMSP, employs a single magnetometer on
the end of a 5 m boom, but still faces issues with spacecraft noise (Kilcommons et al., 2017).

The use of a single magnetometer on a spacecraft requires a careful magnetic cleanliness design and characteriza-
tion of the spacecraft's magnetic signature in order to minimize stray magnetic fields. In the case of the spacecraft
Cassiope, a software update changed the behavior of the spacecraft's fluxgate magnetometer (MGF). Special
spacecraft maneuvers to decrease the spacecraft's noise signature were required in order to recalibrate the MGF
(Miles et al., 2019). Algorithms to autonomously identify spacecraft noise would allow Cassiopie to do in situ
MGEF calibration without special spacecraft maneuvers.

In spacecraft with multiple magnetometers, the traditional way to cancel stray magnetic field noise is to perform
gradiometry. Gradiometry is a technique which compares magnetometer signals from two spatially separated
sensors and calculates the gradient of between them. Ness et al. (1971) uses the gradient to fit a dipole to the
spacecraft noise and formulate a coupling matrix. The coupling matrix is then used to subtract the spacecraft
noise from the magnetometer measurements. This method can also be applied to higher order magnetic fields
but requires arduous pre-flight characterization of the spacecraft's magnetic signature. Ream et al. (2021) uses
gradients in the frequency domain to identify and suppress spacecraft noise. However, this method assumes that
the spectra of the ambient magnetic field and the spacecraft noise do not overlap. Pope et al. (2011) uses the axial
gradients and fuzzy logic to identify spacecraft noise according to the subsystem that generates it. The identified
noise segments are then corrected in the time domain using information about the noise generated by the subsys-
tem. This method is successful at identifying and removing many different individual noise sources, however, it
is not designed to correct multiple concurrent noise sources.

Other noise cancellation methods employ state estimation of the magnetic fields generated by spacecraft subsys-
tems by examining spacecraft housekeeping data. Deshmukh et al. (2020) uses a supervised machine learning
algorithm in order to estimate the transfer function of housekeeping currents to stray magnetic fields. Total knowl-
edge of a spacecraft's magnetic signature would allow for perfect interference cancellation, however, housekeep-
ing telemetry provides an incomplete mapping of a spacecraft's current distribution. Additionally, housekeeping
data are often sampled at a low cadence and may not have the appropriate bandwidth to identify higher frequency
noise. For low cost applications with a large number of spacecraft, such as CubeSat constellations, it is advan-
tageous to use an algorithm that does not require a boom, rely on prior knowledge of the spacecraft's magnetic
signature, or requires human analysis.

Recent progress has been made in magnetometer noise cancelation through the application of blind source sepa-
ration (BSS) algorithms. BSS is the separation of a mixture of source signals without prior knowledge of the
signal type or magnetometer location. Constantinescu et al. (2020) use maximum variance analysis (MVA) to
clean spacecraft magnetometer data. The MVA algorithm finds an orthogonal set of axes to maximize the vari-
ance of the measured signals. These axes represent the principle components which are used to identify and
remove noise sources. This application of MVA requires that the variance in the noise sources is larger than
the variance in the background magnetic field, and can only identify a limited number of noise signals. Imajo
et al. (2021) proposed the use of independent component analysis (ICA) to separate geomagnetic field data,
captured by the satellite Michibiki-1, from stray magnetic field noise. This algorithm separates signals based
on statistical independence, and works well when the number of noise sources are not more than the number of
magnetometers (Naik & Kumar, 2009). The MVA and ICA algorithms both separate signals through optimizing
statistical quantities, however, they are limited by the number of noise signals they can identify. Sheinker and
Moldwin (2016) proposed a novel BSS algorithm that uses an analytical formulation to estimate the gain of a
single noise source between magnetometers. This method is designed for the case in which a single noise source
is present, and does not account for the presence of multiple noise sources. Although, the method may be adapted
to remove multiple noise sources by adding more magnetometers.
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In this work, we present the application of an underdetermined blind source separation (UBSS) algorithm
based on the unsupervised machine learning algorithm, Density Based Spatial Clustering of Applications with
Noise (DBSCAN), and compressive sensing to separate the ambient magnetic field from spacecraft noise.
UBSS is a class of problems in which there are M sensors and N unknown source signals such that M < N.
The M sensors, defined by the complex signals B(k) € CM, contain a mixture of the N source signals, defined
by S(k) € CN. At the frequency bin, k, the source signals combine in an unknown mixing matrix K € CM*V,
In UBSS, no prior knowledge of the source signals is assumed and the number of source signals that can be
separated is not limited by the number of sensors. The system used to model UBSS is defined by the following
relationship.

B(k) = KS(k) €]

UBSS is a topic that has been thoroughly researched in other fields such as acoustics and radar signal process-
ing. In the field of acoustics, this problem is famously referred to as the cocktail party problem. In the cocktail
party problem, there is a room full of people each having conversations. An array of microphones is placed in
the room to record the concurrent conversations. The microphone recordings are then used to separate each
individual voice. Guo et al. (2017) demonstrate the identification of four human voices using three microphones.
He et al. (2021) also demonstrate the separation of six flutes recorded by three microphones using the DBSCAN
algorithm.

Due to the spatial structure of magnetic fields, the same algorithms developed to solve the cocktail party problem
cannot be directly applied to magnetic noise cancelation. When considering a dipole noise source, the vector
magnetic field will have a different magnitude and polarity depending on the magnetic latitude and radial distance
of the magnetometer. In this work, we model the spatial structure of magnetic fields with a phase, although
magnetic noise signals mix instantaneously. The structure of the magnetic noise signal is not always dipolar,
and will change depending on the geometry of the noise source. In magnetic UBSS, the mixing matrix, K, is a
complex matrix representing the gain and phase of each signal at each magnetometer. In radar signal processing,
Bai et al. (2021) apply a similar approach by using complex mixing matrices to model time-delayed radar signals
with different directions of arrival. In this work, we use DBSCAN to estimate the mixing matrix, K. Once K is
known, compressive sensing is used to restore the geomagnetic field signal from the noisy magnetometer data.

We present two experiments to validate this algorithm. The first experiment separates four computer-simulated
noise signals from an ambient magnetic field signal. The second experiment separates the same ambient magnetic
field signal using real magnetic field data recorded using an experimental CubeSat apparatus with copper
coil-generated signals and three PNI RM3100 magnetometers (Regoli et al., 2018). The aim of this work is to
develop a robust signal processing algorithm to remove spacecraft noise and minimize the need for a mechanical
boom or a magnetically clean spacecraft. This work focuses on developing a noise cancellation algorithm for
geomagnetic field data, but can also be applied to remove noise in measurements of planetary magnetospheres
and interplanetary magnetic fields.

2. Methodology

We apply a two step approach to removing spacecraft noise and reconstructing the ambient magnetic field.
The first step is to discover the mixing matrix, K, defined in Equation 1. This is achieved by preprocessing the
magnetometer data into a clusterable form and applying a clustering algorithm. The second step is to reconstruct
the ambient magnetic field and noise signals using compressive sensing. In this step, the mixing matrix, K, is
used to demix the magnetometer signals via convex optimization. This two-step process is designed to be applied
to each magnetometer axis separately.

2.1. Signal Preprocessing

The separation of magnetic field signals from stray magnetic fields is analogous to a problem thoroughly
researched in other fields such as acoustics and is called UBSS. This problem has been heavily investigated for
microphone and radar arrays, but the unique spatial structure of magnetic fields introduces new complications
which have not been well-researched. When considering a dipole noise source, the placement of magnetome-
ters at different magnetic latitudes alters the magnitude and polarity of the noise signal. We model this effect
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as a phase, despite the noise sources mixing instantaneously. The time-frequency (TF) domain mixing model,
B(t,k) = KS(t,k), is defined by the following system:

B\ (t,k) 1 kinZpiz ki3Z¢pi3 kinZpin Si(t, k)
By(t, k) B 1 konlen  knstps ... konlon S$a(t, k) @
Bm(ta k) 1 km24¢m2 km3 Ld)m} cee kmné¢mn Sn(t’ k)

In this mixing system, the signals Sz, k) are the source signals at time  and frequency k. The ambient magnetic
field signal we seek to recover, S,(t, k), is assumed to be identical at each magnetometer and is represented by a
column of ones in the mixing matrix. In the geospace environment, this allows us to observe phenomena such as
ultralow frequency (ULF) waves which have frequencies less than 5 Hz (Jacobs et al., 1964). The phases, ¢ = {0,
x}, in the mixing matrix, K, account for the difference of a signal seen by magnetometers at different magnetic
latitudes. The phase, ¢, is determined by the spatial structure of the noise signal, which depends on the geometry
of the noise source. This model does not require that noise sources be dipolar. The value in the mixing matrix
k;Z¢; represents the complex value k; ;e/%i. This value defines presence of the signal S,(t, k) at magnetometer
B(t, k).

Sparsity is a precondition of both mixing matrix estimation and compressive sensing, however, spacecraft noise
signals are not often sparse in the time domain. The magnetometer signals, b(f), are transformed into the TF
domain using a Fourier transform in order to increase signal sparsity. Typically, the Short-Time Fourier Trans-
form (STFT) is used because signals that are present in multiple time windows will provide more data points
to be clustered [id = Revision Two]. As a result, periodic signals are easier to identify and remove than aperi-
odic signals. However, aperiodic signals can be separated with sufficient TF resolution. In this work, we use
the Non-Stationary Gabor Transform (NSGT) to transform magnetometer signals into the TF domain. NSGT
has advantages over the STFT because it allows the user to evolve the window size with respect to frequency
(Holighaus et al., 2013). As a result, high and low frequencies are not limited to the same window size, and
frequency resolution is constant across the frequency spectrum. In order to apply the NSGT, the user specifies
a quality, Q, and the lowest frequency they would like to observe. The parameter, Q, is used to automatically
calculate the window size with respect to the desired frequency resolution. In comparison to the STFT, the
NSGT provides finer frequency resolution at low frequencies and better time resolution at higher frequencies.
We perform the NSGT to obtain the UBSS model B(z, k) = KS(z, k). The mixing system of a sparse TF bin where
only the signal, S(1.k), is present can be defined by a single mixing vector:

| Bi(t, k)| kij
[ Ba(2, k)| ka;

=| 7 |Isiwhl 3)
|Bm(ta k)' kmj

The operator la + jbl applied to the complex value a + jb returns the magnitude of complex value, \/a? + b>.
Equation 3 can be rewritten element-wise as:

1B _ 1B, l)| _ _ |But,k)|
k]j kzj kmj

|S; @, k)| = (C)

Equation 4 is equivalent to the symmetric form of a line with slope defined by the mixing vector of the noise
signal. In order to find the mixing vector of a noise signal, we define a TF space H € R?” in which each phase
and magnitude of the m magnetometer signals are an axis. Sparse TF points will draw straight lines through the
origin in the H-domain with a slope proportional to the signal's mixing vector. Figure 1 shows an example of a
scatter plot of three mixed TF signals composed of six source signals. The mixed signals form straight lines with
slopes defined by Equation 4.
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Sensor 3 [nT]

Figure 1. Three magnetometer measurements of six computer-simulated
sinusoidal noise signals. Each magnetometer signal is transformed into the
time-frequency (TF) domain using the STFT. The magnitude of the three
resulting TF signals are taken and plotted against each other in a scatter
plot. The scattered TF points from each magnetometer form straight lines
due to Equation 4. This figure does not include the phase subdomain of the
H-domain.

2.2. Mixing Matrix Estimation

The slope of the lines drawn through the H-domain are not easily clusterable
in their current form as a collection of scattered data points. We transform
the scattered data points in H-domain into a clusterable form by projecting
the magnitude subdomain onto a unit hypersphere. The H-domain magnitude
data are projected onto a half-unit hypersphere by normalizing the TF
magnetometer data via the following equation.

| B, k)|

BB =150l

(&)

When the scattered data points have been normalized, they collapse into
compact clusters. This is illustrated by the projection of the scattered data
points representing six computer generated signals in Figure 1 onto a
half-unit hypersphere in Figure 2. The centroid of a cluster is proportional to
the mixing vector of a noise signal as defined in Equation 2.

The majority of the frequency space is filled with negligible energy points
that will project randomly onto the unit hypersphere (Sun et al., 2016). We
attempt to cleanse the data of these points using a magnitude filter. The filter
is applied by finding the average signal magnitude and removing data points
below a factor, A, of the average signal magnitude. The magnitude filter is
applied by removing data points that do not satisty the following criterion:

|B(1, k)| > A - avg(| Bz, k)]) 6

The projected data points form tightly clustered groups on the unit hypersphere that allow us to discover the rela-
tive gain between noise signals at different magnetometers. However, we need to find the relative phases between

noise signals of magnetometers at different positions. To account for this we join each projected TF point to its

relative argument. The relative argument is defined by the following transformation:

arg B(t,k) = { arg B;(t, k) —arg (B (¢, k)|j € [0,m] } @)

Sensor 3 [B*(t,k)]

Figure 2. The scattered time-frequency mixed signals in Figure 1 are
projected onto a half-unit hypersphere through normalization. The six
scattered straight lines collapse into six compact clusters. The centroid of each
cluster is proportional to each source signals' mixing vector in the mixing
matrix, K, due to Equation 4.

Using the result of Equation 7, we define a new data format, H(z,k), by
concatenating the projected magnitude data with the argument of the TF data.

H(t, k) = (B*(t,k), arg (B (t,k)) ®)

The magnetometer data, H(t,k), are now in a format that can be clustered to
discover the gain and phase of each signal described in the mixing matrix,
K. Figure 3 shows an example of two magnetometer signals transformed into
the H-Domain.

Now that the projected magnitude and relative phases are joined, a vari-
ety of clustering algorithms can be applied to find the mixing matrix, K.
In this work, we use the Density Based Spatial Clustering for Applications
with Noise (DBSCAN) algorithm because it does not require user input to
discern the number of clusters present, and it will ignore noise points (Ester
et al., 1996). As a result, the number of noise signals does not need to be
defined prior to the application of DBSCAN. DBSCAN has two essential
parameters, eps and minPts, that allow this functionality. The maximum
distance for two points to become neighbors is the value, eps. If a point has
minPts number of neighbors, it is called a core point. Core points are used to
define each cluster. If a point is more than eps distance away from any point
in a cluster, it is labeled as noise. We use DBSCAN to cluster H(z,k) and use
each cluster's centroid as the noise signal's mixing vector. Once the mixing
vector of each noise signal is known, the mixing vectors are joined to form
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Radians

Figure 3. An illustration of noise signals in the full H-domain for a two
magnetometer system. The horizontal axes represent the magnitude of the
time-frequency magnetometer signals projected onto a unit hypersphere.
The vertical axis represents the relative argument of Sensor 2 in radians as

the mixing matrix, K. The mixing matrix is used to separate the noise signals
from the ambient magnetic field via compressive sensing.

2.3. Signal Reconstruction

Compressive sensing is a method used to reconstruct sparse signals with
a sampling rate below two times a signal's bandwidth (Baraniuk, 2007).
Reconstructing a signal of length N from a sampled signal of length M, where
M < N, is an analogous problem to UBSS. Ordinarily, the system b = K,
where K is a wide matrix, has infinitely many solutions because if b = Ksis a
solution, b = K(s + s') is also a solution for any vector s’ in the null space of
K. Compressive sensing can exactly recover sparse signals and approximate
near-sparse signals through minimizing the L1 norm of S with respect to
b — Ks < ¢. The algorithm works with O(N?) complexity.

We use CVXPY, A Python-Embedded Modeling Language for Convex
Optimization, to reconstruct the signals with the estimated mixing matrix,

K (Diamond & Boyd, 2016). The formulation used to recover the signal, s,
from b is:

Minimize w’|s|
. ©))
Subject to Ks=b

defined by Equation 7. The data points are projected onto a plane at Z = —2.5

to distinguish the difference in magnitudes. The phase and magnitude of each
noise signal at each magnetometer is discovered by clustering the data in this

format.

Traditionally, compressive sensing minimizes the L1 norm of the source
signals, ||s||,, with respect to Ks = b in order to recover the source signals.
Instead of minimizing the L1 norm, we utilize a weighted L1 norm defined
by the weighting vector, w = [wy, 1, 1, ..., 117, where w, > 1. The param-
eter, w,, is multiplied with the ambient magnetic field signal, s,, in order to deter the attribution of energy from
other noise signals to it. In the case that the source signals, s, are not sparse at a TF bin, the additional weight
increases the cost of attributing energy from other signals to the ambient magnetic field, s,. The optimal value of
the weight, w,, depends on the signature of noise signals. Candés et al. (2008) apply a similar approach by itera-
tively adjusting the weight of each signal with respect to the magnitude of the signal. In this work, we found the
optimal weight, w,, experimentally by comparing the reconstructed signal, §,, to the true signal, s,.

This system defined in Equation 9 is solved using the Embedded Conic Solver (ECOS) (Domahidi et al., 2013).
The ECOS algorithm is a convex optimization algorithm that transforms the problem defined in Equation 9 into
a Second Order Cone Problem (SOCP). SOCP problems are convex optimization problems that minimize linear
functions with respect to second order cone constraints (Alizadeh & Goldfarb, 2003). The ECOS algorithm
applies an interior point solver to converge on the sparse solution of the problem defined by Equation 9.

3. Experimental Data and Results

We test the proposed method of signal and noise separation through two experiments. The first experiment
demonstrates the separation of SWARM magnetic field data from computer-simulated signals using virtual
magnetometers. The second experiment demonstrates the separation of SWARM magnetic field data from real
magnetic noise signals generated with copper coils. The coil-generated magnetic fields were measured using the
PNI RM3100 magnetometer and a mock CubeSat described by Deshmukh et al. (2020).

Figure 4 details the process of identifying noise signals and reconstructing the ambient magnetic field. First (i),
the signal offsets are subtracted to center the signals around O nT. Second (ii), the signals are transformed into
the TF domain using the NSGT to increase signal sparsity. Third (iii), low energy points are filtered out using
Equation 6. Fourth (iv), the signals are transformed into H(z,k) by projecting the magnitude, |B(z, k)| onto the unit
hypersphere and concatenating it with the phase, arg B(t, k), via Equations 5, 7 and 8. Fifth (e), the data, H(z,k),
are clustered using DBSCAN and the cluster centroids are found. Finally, in the last step (vi), compressive sens-
ing is used to reconstruct the ambient magnetic field. The minimum magnitude, 2 in step (iii), and the parameters
eps and MinPts in step (v) may need to be adjusted depending on the length and magnitude of the signals being
analyzed.
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Raw Signal

iii. Remove Low

i. Detrend i ii. NSGT Energy

v. Cluster with iv. Transform to
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Figure 4. Flow of processes involved in using cluster analysis to discover noise signals and compressive sensing to separate
the ambient magnetic field from noise signals.

Signal Offset

We evaluate the separation of noise signals via three metrics. The metrics are calculated point-wise using the
reconstructed signal, x and the true signal, y, over N data points. The first metric is the Pearson Correlation Coef-
ficient. This measurement gives the covariance between the normalized input and recovered signals.

. Th iD=
VEL I -0 25 10— 9P

The second metric evaluated is the root mean squared error (RMSE). This metric is proportional to the magnitude
of the squared error. As a result, the RMSE is very sensitive to large errors.

10)

Zijigl (xi _yi)2 (11)
N

RMSE =

The final metric is the normalized RMSE (NRMSE). This metric yields the RMSE as a percentage of the magni-
tude of the signal being measured. It is used to compare the relative error between signals on different orders of
magnitude. We calculate the NRMSE by dividing the RMSE of the signal by the max amplitude of the absolute
value of the true, detrended signal, |y — J|max-

RMSE

NRMSE = —
[y = Plmax

12)

3.1. Experiment 1: Computer Simulation

In this experiment, we use four simulated noise signals, s(7) D [s,(), 55(2), 5,(2), 55()], and three virtual magnetom-
eters b(1) = Ks(t) = [b,(1), by(1), b4(1)]. The signal, s,(?), is residual magnetic field data created by subtracting data
generated by the IGRF model from SWARM magnetic field data. This process leaves only magnetic perturbations
present in the magnetosphere. The magnetic perturbation data we use were measured by the SWARM A satellite
on 17 March 2015 between 8:53 and 8:55 UTC. This part of the orbit passes between the 69th and 76th parallel
south and was selected to capture perturbations in the southern auroral zone. The proposed algorithm detailed
in Figure 4 is tested on 100 s of data, although it may be applied to a signal of any length provided that there are
enough data points to cluster. The signals are combined through the complex mixing matrix in Equation 13 with
phases given in radians.
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Figure 5. 10 s of four source signals used to simulate spacecraft noise and one signal to simulate the ambient magnetic field. (a) The ambient magnetic field signal
using SWARM A data starting from 17 March 2015 at 8:53 UTC. (b) A 2 Hz sine wave with amplitude of 50 nT. (c) A 3 Hz square wave with a magnitude of 100 nT.
(d) A sine wave with a frequency of 5 Hz and amplitude of 50 nT. (e) A sawtooth wave with an amplitude of 110 nT and frequency of 0.7 Hz.

120 0.99240 0.09240 0.70£0 0.02£0
K= 120 0092z 09920 0.7020 0.05z% (13)
120 0.124z7 0.12zz7  0.1324zx 0.994x

The values in the first column represent the ambient magnetic field signal which appears identically at every
magnetometer. Figure 5 shows the five source signals used in this simulation. Two of the noise signals are sine
waves with frequencies of 2 and 5 Hz. Sine waves are sparse signals that can be represented by a single point in
the frequency domain. This makes them easily identifiable by cluster analysis. The two remaining noise signals
used are a sawtooth wave with a frequency of 0.7 Hz, and a square wave with a frequency of 3.0 Hz. These signals
inhabit a broad frequency spectrum and diminish the sparsity of the mixed signals.

The signals are combined in the mixing system b(f) = Ks(f) with the mixing matrix K from Equation 13. The
resulting signals are sampled by the virtual magnetometers at a rate of 50 samples per second. Different noise
signals, such as noise generated by reaction wheels, may have higher frequency components and require a higher
sampling rate in order to avoid aliasing (Miles et al., 2016; Pope et al., 2011). A random normal signal with
a standard deviation of 6 nT is added to each virtual magnetometer in order to simulate instrument noise. This
noise level corresponds to the rated instrument resolution of the PNI RM3100 magnetometer at 50 Hz used in
Experiment 2. Figure 6 shows the sampled signals.

Following the procedure in Figure 4, the signals were detrended and transformed into the TF domain using the
NSGT. The NSGT is a type of constant-Q transform, so it requires the parameter Q which specifies window size.
In this experiment, we used Q = 10 and a lower frequency bound of 30 mHz. In step (iv), low energy points were
removed using a 4 = 0.5. The resulting data were transformed into H(#,k) and clustered by DBSCAN with param-
eters eps = 0.3 and MinPts = 4. These parameters were optimized experimentally using trial and error, however
it may be possible to automate parameter selection based on the signals being analyzed. With this configuration,
DBSCAN discovered the five clusters corresponding to each noise source. The clusters, shown below in the
columns of K, closely match the original mixing matrix.
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Figure 6. Plots (a, b, and c) show one hundred seconds of three magnetometer signals, b(f), created by mixing the five source
signals in Figure 5 though the mixing matrix defined in Equation 13.

120 0.99£0.00  0.697£0.00  0.10£0.00 0.05£0.00
K=| 120 0.102-002 0.69720.14 0.99.0.06 0.14£3.10 (14)
120 0.122-3.10 0.135£3.14 0.122-3.10 0.982-3.16

Finally, in step (vi), the mixed signals were separated by compressive sensing using the recovered mixing matrix,
R, in Equation 14. The data, H(z,k), are discarded and the raw Fourier transform of the mixed signals are sepa-
rated by applying the ECOS algorithm to the problem defined in Equation 9 with a weight of w; = 1.5. The
reconstructed SWARM perturbation signal is shown in Figure 7, as well as a histogram of the reconstruction
error and spectrograms of the noisy, cleaned, true SWARM signal. A breakout of the reconstructed noise signals
is included as Figure S1.

The reconstructed ambient magnetic field signal resembles the original signal with some additional error. In order
to evaluate the reconstruction noise, the Pearson correlation coefficient, RMSE, and NRMSE of each source
signal are calculated. The ambient magnetic field was reconstructed with a RMSE of 2.75 nT. The results for the
reconstruction of each source signal are shown in Table 1. The experiment was repeated without the addition of
the 6 nT instrument noise to evaluate the effect of the random noise on the total reconstruction error.

3.2. Experiment 2: Magnetic-Coil-Generated Signal Separation

In this experiment, we demonstrate the utility of the proposed algorithm on real magnetic field data. We use three
PNI RM3100 magnetometers to record copper coil-generated noise signals. Four copper coils are driven by signal
generators to create the source signals, s(¢) D [s,(7), s5(2), 5,(1), s5(t)]. The signals are combined in the unknown
mixing system, b(f) = Ks(t) = [b,(1), by(?), b;(t)]. The SWARM residual magnetic field data, which is used in
experiment one, is added to each magnetometer recording to generate the ambient magnetic field signal, s, ().

The proposed algorithm detailed in Figure 4 is tested on 100 s of recorded data. The signals, s,(¢) and s,(7), are
sine waves with frequencies of 0.4 and 0.8 Hz. The signals, s,(¢) and s4(7), are square waves with frequencies of
1 and 2 Hz. The three PNI RM3100 magnetometers and four copper coils are placed on the CubeSat apparatus
as shown in Figure 8. Due to the location and orientation of the four copper coils and three magnetometers,
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Figure 7. The top plot (a) shows the cleaned magnetometer signal in blue with the ambient magnetic field signal overlayed in orange. Plot (b) shows a spectrogram of
the uncleaned signal from magnetometer (a) in Figure 6. Plot (c) shows a spectrogram of the reconstructed ambient magnetic field signal. Plot (d) shows a spectrogram
of the true ambient magnetic field signal. The spectrograms were created using wavelet analysis. The shaded areas indicate where the wavelet does not produce valid

results. The bottom plot (d) shows a histogram of the signal reconstruction error, s; — §;.

Table 1
Summary of Experiment 1 Results
Metric SWARM Sine A Square Sine B Sawtooth
With noise P 0.9988 0.9934 0.9983 0.9941 0.9982
RMSE 2.75 nT 4.11 nT 5.77 nT 6.39 nT 2.54 nT
NRMSE 1.21% 8.23% 5.77% 6.39% 5.35%
Without noise P 0.9988 0.9927 0.9987 0.9941 0.9974
RMSE 2.84 nT 4.33 nT 7.06 nT 6.38 nT 3.42nT
NRMSE 0.81% 8.68% 7.06% 6.38% 7.21%
HOFFMANN AND MOLDWIN 10 of 17
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Figure 8. Mock CubeSat Apparatus with three PNI RM3100 magnetometers
and four copper coils driven by signal generators. The magnetometers are
placed within the mock CubeSat. In this study, we do not examine the effect of
surface mounted sensors or sensors placed on a boom. The Apparatus is placed
inside a mu-metal lined copper room that acts as a large magnetic shield can.

each noise signal will appear at each magnetometer with a different magni-
tude and magnetic latitude induced phase. Additionally, this experiment
was performed in a copper room lined with mu-metal in order to screen out
magnetic fields from the surrounding environment.

The PNI RM3100 is a magneto-inductive magnetometer that measures the
magnetic field by counting hysteresis loops with a comparator circuit, called
a Schmitt Trigger, in an ASIC. The ASIC records magnetic field measure-
ments by adding to a register every time the Schmitt trigger is saturated.
This measurement renders the magnetic field when integrated with respect
to time. The ASIC has a cycle count register that controls how many clock
cycles pass between integrations. The error of the magnetometer will change
with respect to the cycle count. In this experiment, each magnetometer
is sampled at a rate of 50 Hz with a cycle count of 200 cycles. The PNI
RM3100 is rated to have a resolution of 6 nT in this configuration. The
mixed signals recorded by the PNI RM3100 magnetometers are shown in
Figure 9 below.

The proposed algorithm was run on data from the magnetometers' z-axis
following the same steps as in Figure 4 and Section 3.1. The signals were
detrended and transformed into the TF domain using the NSGT with a quality
factor of Q = 20 and a lower frequency bound of 30 mHz. In step 4, low
energy points were removed using a 4 = 2.5. The resulting data were trans-
formed into H(z,k) and clustered by DBSCAN with parameters eps = 0.4 and
MinPts = 4. DBSCAN discovered the following five clusters shown below
in the columns of K.

Mixed Signals
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Figure 9. Plots (a, b, and c) show 18.5 s of three mixed signals recorded by PNI RM3100 magnetometers' z-axis. The five
signals present are two sine waves, two square waves, and the added residual magnetic field data. The noise signals have
amplitudes between 50 and 500 nT compared to the ambient magnetic field signal with a max amplitude near 300 nT.
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Figure 10. Reconstructed Sine and Square wave signals from 50 Hz mixed signals in Figure 9.
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The PNI RM3100 magnetometer was experimentally found to have a lower noise floor when sampled at a higher
rate and decimated to a lower rate versus only being sampled at a lower rate. We evaluated this effect by recon-
structing the original 50 Hz data in step 6, then downsampling the reconstructed ambient magnetic field signal to
10 Hz, 1 Hz, and averaging the data with a moving mean (N = 10). The magnetometer signals were downsampled
by applying an eighth order Chebyshev type I anti-aliasing filter and resampling the resulting signal. The mixed
signals were separated via weighted compressive sensing using a weight of w, = 3. The four noise signals recon-
structed from the 50 Hz raw data are shown in Figure 10.

The reconstructed coil-generated signals closely resemble square and sine waves with some additional noise. The
recovered residual magnetic field data are shown in the top plot of Figure 11. The recovered signal is overlayed
with the true residual magnetic field signal. The residual data in Figure 11 were reconstructed using the mixed
signals sampled at the full 50 Hz cadence. The plots below show the reconstructed signal, spectrograms of the
noisy, cleaned, and true SWARM signal created using wavelet analysis, and a histogram of the signal reconstruc-
tion error.

The reconstructed signal closely follows the true geomagnetic perturbation signal with some high frequency
noise present. As a result of the geomagnetic field signal being artificially inserted into the magnetometer read-
ings, we are able to calculate the RMSE and Pearson Correlation Coefficient with respect to the original signal.
The results for the original, decimated, and moving-mean signals are shown in Table 2. These results are also
compared to the uncleaned magnetometer data from magnetometer (a) in Figure 9.

4. Discussion

In this study, we introduced a signal processing algorithm based on UBSS and demonstrated the separation of
magnetic noise from geomagnetic field data. In the first experiment, we separated four simulated noise signals
from SWARM residual magnetic field data. The noise signals contained both sparse sine wave signals and wide-
band sawtooth and square wave signals. The algorithm was able to restore the residual magnetic field signal with
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Figure 11. The top plot (a) shows the cleaned magnetometer signal in blue with the ambient magnetic field signal overlayed in orange. Plot (b) shows a spectrogram of
the uncleaned signal from magnetometer (a) in Figure 9. Plot (c) shows a spectrogram of the reconstructed ambient magnetic field signal. Plot (d) shows a spectrogram
of the true ambient magnetic field signal. The spectrograms were created using wavelet analysis. The shaded areas indicate where the wavelet does not produce valid
results. The bottom plot (d) shows a histogram of the signal reconstruction error, s; — §;.

Table 2
Summary of Experiment 2 Results
Metric 50 Hz 10 Hz 1 Hz Moving mean (N = 10)
Recovered signal P 0.9947 0.9958 0.9952 0.9955
RMSE 7.94 nT 7.23 nT 7.41 nT 7.45 nT
NRMSE 2.26% 2.08% 2.13% 2.11%
Noisy signal P 0.2126 0.2286 0.9139 0.2871
RMSE 328.08 nT 300.53 nT 30.63 nT 239.33 nT
NRMSE 93.31% 86.69% 8.84% 68.0%
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a correlation coefficient of p = 0.9988 and RMSE of 2.75 nT. When the experiment was repeated without arti-
ficial instrument noise, the algorithm reconstructed the ambient magnetic field signal with a RMSE of 2.84 nT.
In the second experiment, we created four magnetic noise signals using copper coils to generate real magnetic
field data and placed PNI RM3100 magnetometers within the bus of a mock CubeSat apparatus. The same
SWARM magnetic residual data were artificially inserted into the magnetometer measurements. This experiment
mimicked the computer-simulated experiment, with two sparse noise signals and two wideband noise signals.
At a sampling rate of 50 Hz, the ambient magnetic field signal was reconstructed with a RMSE of 7.94 nT as
opposed to 2.75 nT in simulation. The signal separation algorithm was executed using several additional preproc-
essing techniques such as decimating the sampling rate and applying a moving mean to the magnetometer data. A
RMSE of 7.41 nT was achieved by decimating the sample rate to 1 Hz. At 1 Hz, the PNI RM3100 magnetometer
is rated to have a measurement error of 2.7 nT due to instrument noise (Regoli et al., 2018). This result places
the reconstruction error near the measurement resolution of the magnetometer. When the noisy magnetometer
data were decimated, it reduced the RMSE of the signal measured by magnetometer (a) in Figure 9 from 328.1
to 30.6 nT. In contrast, the decimation of the ambient magnetic field signal reconstructed from the proposed
algorithm did not significantly improve the RMSE. The reconstructed signal decimated to 1 Hz had an RMSE
of 7.41 nT compared to 7.94 nT at 50 Hz, however, the UBSS algorithm was able to improve the RMSE by over
20 nT compared to simple downsampling. These results show that the proposed UBSS algorithm is effective at
removing spacecraft noise from magnetic field data.

In general, it is not feasible to adaptively cancel spacecraft noise when a single magnetometer is used. Adaptive
noise cancellation requires the removal of noise signals that are time variable. The use of a single magnetom-
eter requires that spacecraft noise be carefully characterized before launch. Otherwise, a change in spacecraft
behavior may require special maneuvers to re-characterize noise signatures in situ (Miles et al., 2019). The use of
multiple magnetometers allows for the discovery of noise signals through the comparison of magnetometer data.
Sheinker and Moldwin (2016), Deshmukh et al. (2020), and Imajo et al. (2021) each propose algorithms for noise
cancellation using multiple magnetometers. The algorithm proposed by Sheinker and Moldwin (2016) is effec-
tive at removing a single noise signal, but is not designed for multiple noise signals. Imajo et al. (2021) propose
the use of ICA which is also limited by how many noise signals it can remove. BSS algorithms require that the
number of source signals be less than or equal to the number of mixed signals. Spacecraft contain many electrical
systems that could generate magnetic interference, so this condition is rarely met. For example, Pope et al. (2011)
identified seven common types of noise signals on Venus Express, which is equipped with two magnetometers.
The advantage of the proposed UBSS algorithm over Imajo et al. (2021) and Sheinker and Moldwin (2016) is
that it can cancel noise signals in an underdetermined system. This means that there are more noise signals pres-
ent than magnetometers. This property of the algorithm provides the flexibility necessary to be applied to many
different spacecraft without prior characterization of spacecraft noise. The algorithm also does not require knowl-
edge of magnetometer location and orientation, except that the axis of each magnetometer are aligned. Finally,
Deshmukh et al. (2020) designed a state estimation algorithm to transform housekeeping data to magnetic noise
signals. Housekeeping currents provide an incomplete mapping of the distribution of currents within a spacecraft.
Additionally, housekeeping data are often sampled at a low cadence and may not have the appropriate bandwidth
to identify higher frequency noise. The advantage of the proposed UBSS algorithm over this approach is that
it is a blind signal processing algorithm. It requires no housekeeping data to identify and remove noise signals.

The proposed algorithm functions on the assumption that the noise signals are sparse, meaning that only one
noise signal is present at a given frequency. Multiple noise signals may be active at the same time, however, if
a signal is not sparse in the frequency domain, then its mixing vector cannot be accurately estimated by clus-
ter analysis. Compressive sensing also requires sparsity in order to accurately reconstruct the separate signals.
Compressive sensing can fully reconstruct sparse signals, and approximately reconstruct near-sparse signals.
In this work, we do not exhaustively explore the minimum sparsity required for accurate reconstruction of the
ambient magnetic field.

The proposed algorithm requires that several parameters be set by the user. In this study, the parameters were
manually selected based on the signals being analyzed, but this process could also be automated. The first param-
eter is the quality factor, Q. This parameter adjusts the window size used in the NSGT. We experimentally
selected it, but it may be chosen based on the length of the signal being processed. The parameter, 4, is used to
remove low energy noise signals. Data points that are below a fraction, 4, of the average energy data point are
removed before clustering occurs. We selected this parameter by analyzing the data projected onto the half-unit
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hypersphere in Figure 2, and visually observing if the signals were clusterable. If 1 is too small, then the hyper-
sphere will be completely filled with data points, and the noise signals will not be separable. If 4 is too large,
then small noise signals may not appear at all. Lastly, DBSCAN requires that two parameters, eps, and MinPts,
be selected. The parameter, eps, represents the maximum distance allowed for two data points to be considered
neighbors. The parameter, MinPts, represents the number of neighbors required for a data point to be considered
a core. MinPts may be selected based on the length of signal being processed. A disadvantage of using NSGT and
DBSCAN together is that more data points are created for higher frequency signals because the window size is
altered based on frequency. Therefore, MinPts should be selected based on the lower frequency signals.

Most heliophysics missions require magnetic field accuracies of better than 1 nT (e.g., the NASA MMS mission
(Russell et al., 2016)). Using the PNI RM3100 magnetometer, the algorithm reconstructed the ambient magnetic
field signal with an RMSE of 7.94 nT. This error is near the expected measurement noise for the PNI RM3100
magnetometer at 50 Hz, indicating that the accuracy of the algorithm is limited to the total error budget of the
magnetometer. Nevertheless, the experiments performed show the successful reconstruction of magnetic pertur-
bation signals measured from within the bus of a mock CubeSat. These results demonstrate the utility of boom-
less CubeSats for scientific investigation of magnetic field phenomena in the geospace environment. In turn, the
low cost of CubeSats enables the use of large constellations of small satellites to measure the geomagnetic field
with high temporal and spatial resolution.

5. Conclusions and Future Work

In this study, we propose an algorithm for separating spacecraft generated magnetic noise from geomagnetic field
data using multiple magnetometers. The algorithm does not require knowledge of the characteristics (location,
orientation, amplitude, or spectral signature) and allows the number of noise sources to exceed the number of
magnetometers (n > m). The algorithm identifies signals by looking at the relative gain and phase of the magneto-
meter data in the TF domain. If a noise signal is sparse in this domain, the relative gain and phase is found using
cluster analysis. Following the same assumption of sparsity, the signal can be separated from the noisy data using
the cluster centroids in compressive sensing.

The algorithm is designed for underdetermined systems in which there are more noise sources than magnetome-
ters. An advantage of this approach is that the UBSS algorithm can be integrated onto any satellite since no prior
characterization of noise signals is required. This design eases the assimilation of magnetometers into spacecraft
designs by reducing the need for strict magnetic cleanliness requirements and long mechanical booms.

There are several avenues of future development for this algorithm. The most immediate step to be taken is for
the selection of parameters to be automated. We present an algorithm to automate the noise cancellation process,
but some rudimentary analysis is still required to select parameters for clustering and preprocessing. We think
the selection of parameters could be entirely automated. Another avenue of development is to test the limits
of the sparsity assumption. Sparsity is a very strict assumption that may not always be met. In this work, we
tested the algorithm using several wideband signals. However, the threshold for minimum sparsity is unknown.
This assumption can be examined through examining signals with partially overlapping spectra to find a point of
failure. Finally, an interesting scenario to investigate is where several magnetometers are mounted within the bus
of a spacecraft, but one magnetometer is mounted on a short boom, such as on the spacecraft Dellingr (Kepko
et al., 2017). In this scenario, the measurements of one magnetometer may be more accurate than the others. It
would be counterproductive if the reconstructed magnetometer signal had more noise than the signal measured
by the magnetometer on the boom. It may be possible to account for this by designing a programmable “trust”
parameter at the compressive sensing stage. This parameter would indicate an elevated degree of trust in one
magnetometer over the others.

In this work, we performed two experiments to validate the algorithm. The first experiment separated SWARM
magnetic perturbation data from four computer-simulated signals. The algorithm was able to reconstruct the
ambient magnetic field signal with an RMSE near 3 nT and a correlation of p ~ 0.9988. The reconstruction errors
are less than the 6 nT intrinsic instrument noise that was added to each virtual magnetometer. The second exper-
iment used real magnetic noise signals generated by copper coils, and the same SWARM geomagnetic field data.
This experiment was able to separate four noise signals and reconstruct the background magnetic perturbation
signal with a RMSE of 7.23 nT and a correlation of p = 0.9958 at a 10 Hz cadence.
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These results show the potential of signal processing algorithms to identify and remove magnetic noise from
spaceborne magnetometer data. The proposed algorithm diminishes the need to place a magnetometer on a boom
or enables significantly shorter booms. This enables the possibility of low cost, boomless spacecraft to capture
high fidelity magnetic field measurements.
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