
Marta Dore
Richard and Loan Hill Department of

Biomedical Engineering,

University of Illinois Chicago,

851 South Morgan Street, MC 063,

Chicago, IL 60607

Aime Luna
Richard and Loan Hill Department of

Biomedical Engineering,

University of Illinois Chicago,

851 South Morgan Street, MC 063,

Chicago, IL 60607

Thomas J. Royston1
Richard and Loan Hill Department of

Biomedical Engineering,

University of Illinois Chicago,

851 South Morgan Street, MC 063,

Chicago, IL 60607

e-mail: troyston@uic.edu

Biaxial Tensile Prestress
and Waveguide Effects
on Estimates of the Complex
Shear Modulus Using Optical-
Based Dynamic Elastography
in Plate-Like Soft Tissue
Phantoms
Dynamic elastography attempts to reconstruct quantitative maps of the viscoelastic prop-
erties of biological tissue, properties altered by disease and injury, by noninvasively
measuring mechanical wave motion in the tissue. Most reconstruction strategies that
have been developed neglect boundary conditions, including quasi-static tensile or com-
pressive loading resulting in a nonzero prestress. Significant prestress is inherent to the
functional role of some biological tissues, such as skeletal and cardiac muscle, arterial
walls, and the cornea. In the present article a novel configuration, inspired by corneal
elastography but generalizable to other applications, is studied. A polymer phantom layer
is statically elongated via an in-plane biaxial normal stress while the phantom’s response
to transverse vibratory excitation is measured. We examine the interplay between biaxial
prestress and waveguide effects in this plate-like tissue phantom. Finite static deforma-
tions caused by prestressing coupled with waveguide effects lead to results that are pre-
dicted by a novel coordinate transformation approach previously used to simplify
reconstruction of anisotropic properties. Here, the approach estimates material visco-
elastic properties independent of the nonzero prestress conditions without requiring
advanced knowledge of those stress conditions. [DOI: 10.1115/1.4056103]
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1 Introduction

Dynamic elastography methods—based on optical, ultrasonic,
and magnetic resonance imaging modalities—aim to quantita-
tively map the shear viscoelastic properties of biological tissue,
which are often altered by disease and injury. Most initial studies
have focused on larger organs, such as the liver or brain, where
boundary effects were assumed negligible. But, as elastography
expands to other anatomical regions where dimensions in at least
one direction are smaller or of comparable length to bulk shear
wavelengths—such as in slender skeletal muscles, blood vessels,
the heart wall, and the cornea—boundary effects become non-
negligible and must be considered. Researchers using optical elas-
tography to assess the viscoelastic properties of the cornea have
long recognized this, adapting models to include waveguides by
treating the cornea as a plate-like structure. Here, transverse wave
motion on the cornea is modeled as Rayleigh–Lamb waves [1].
Blood vessels, as well, have been modeled using cylindrical shell
equations considering fluid-structure interaction and Lamb wave
dispersion [2–4]. Limited studies on cardiac elastography have
also acknowledged the frequency-dependent (i.e., wavelength-
dependent) waveguide behavior of the heart wall [5,6].

Often, when elastography studies are done under varying non-
zero quasi-static prestress conditions, observed changes in
mechanical wave behavior are attributed solely to the nonlinear
property of the tissue: it has been suggested that its shear and vis-
cous constants are highly dependent on the tensile load and asso-
ciated deformation. A recent article provides a summary of the
literature relevant to this issue, in particular for uni-axially pre-
stressed cylindrically-shaped structures, as well as biaxially pre-
stressed plate-like structures [7]. In another article, the impact of
neglecting the prestress effect in cornea elastography is quantified
[8].

In the present study, focused on biaxially prestressed plate-like
structures, the confounding effects of finite dimensions and pre-
stress are further explored, analytically and experimentally. Fur-
thermore, we articulate and evaluate a strategy for decoupling
prestress and waveguide effects from estimates of material shear
viscoelastic properties.

2 Theory

2.1 Transverse Wave Motion in a Prestressed Viscoelastic
Material. Dynamic elastography methods are based on the
assumption that the measured transverse wave speed or wave-
length for small amplitude (linear theory) motion is directly
related to the material’s elastic or viscoelastic properties [9].
Assuming isotropy, homogeneity, and neglecting boundary effects
or variation in density q in a viscoelastic material, the frequency-
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dependent shear wave phase speed, c x½ �, for harmonic excitation
at circular frequency, x, is

c ¼ x=Real ksh x½ �½ � ¼
1=

ffiffiffi
q

p

Real 1=
ffiffiffiffiffiffiffiffiffi
l x½ �

ph i (1)

Here, ksh x½ � is the complex-valued, frequency-dependent shear
wave number and l x½ � is the complex-valued, frequency-
dependent shear modulus, comprised of the shear storage modu-
lus, lR x½ �, and the shear loss modulus, lI x½ �, such that l x½ � ¼
lR x½ � þ jlI x½ � where j ¼

ffiffiffiffiffiffiffi
�1

p
. The attenuation rate of the wave

as it propagates is governed by the imaginary part of the wave-
number: Imag ksh x½ �½ �. In a viscoelastic material, both the shear
storage and loss moduli affect both the phase speed and attenua-
tion rate. In a purely elastic material, lI ¼ 0, there is no attenua-
tion and the phase speed is independent of frequency
(nondispersive) and reduces to c ¼

ffiffiffiffiffiffiffiffi
l=q

p
. While some studies

have assumed pure elasticity (no viscosity), often their analyses
are generalizable to the linear viscoelastic problem for harmonic
motion by adding the imaginary shear loss modulus to form the
complex shear modulus.

Consider the introduction of a biaxial static prestress,
r ¼ r̂i þ r̂j , that exists in the x� y or r � u plane, perpendicular
to the z axis, as illustrated in Fig. 1. Both Cartesian x; y; zð Þ and
polar r;u; zð Þ coordinate systems are used in this study. If the
static deformation due to the prestress is assumed to be small or
incremental, infinitesimal strain theory can be used to incorporate
r into the equations of motion leading to the following [10,11]

qu;tt ¼ jþ 4l
3

� �
u;xx þ lu;yy þ l� r

2

� �
u;zz þ jþ l

3

� �
v;xy

þ jþ l
3
þ r

2

� �
w;xz (2)

qv;tt ¼ jþ 4l
3

� �
v;yy þ lv;xx þ l� r

2

� �
v;zz þ jþ l

3

� �
u;xy

þ jþ l
3
þ r

2

� �
w;yz (3)

qw;tt ¼ jþ 4l
3

� �
w;zz þ lþ r

2

� �
w;yy þ lþ r

2

� �
w;xx

þ jþ l
3
� r

2

� �
u;xz þ jþ l

3
� r

2

� �
v;yz (4)

Here u, v, and w refer to the displacement component in the x, y,
and z direction, respectively, and subscripted x; y; z; and t after a
comma refer to partial derivatives with respect to that spatial or
time dimension. The term j is the bulk modulus of the material,
which will affect compression wave behavior, but not shear wave
behavior. In biological soft tissue or other “nearly incom-
pressible” materials, j is more than a few orders of magnitude
greater than l such that the Poisson’s ratio for the isotropic mate-
rial approaches, but does not equal 0.5.

The prestress alters the otherwise isotropic, direction-invariant,
nature of the medium. Taking the case of harmonic excitation at
circular frequency, x, solving the above equations leads to

expressions for two shear waves where motion polarization is per-
pendicular to the direction of wave propagation. For one of the
shear waves, referred to here as the slow shear wave with phase
speed in the elastic case given as cs, the motion polarization, and
direction of propagation, while perpendicular to each other, both
lie within the x-y plane. The other shear wave, referred to here as
the fast shear wave cf , will have its propagation direction and
polarization direction forming a plane aligned with the z-axis and
perpendicular to the x-y plane. Expressions for these phase speeds
squared are as follows:

c2
s ¼

l
q

(5)

c2
f h½ � ¼ l

q
1 � r

2l
cos 2h½ �

� �
(6)

Here, h is the angle between the direction of propagation and the
z-axis.

The above analysis based on infinitesimal strain theory loses
accuracy as the strain caused by r becomes significant, in other
words beyond a few percent. As prestrain increases it may be nec-
essary to use finite strain theory, also known as large deformation
theory, to account for changed geometry, and with it use a hypere-
lastic model of the material properties that may introduce material
nonlinearity into the static analysis. If the harmonic waves
imposed upon the finitely deformed medium are, themselves, of
small amplitude oscillatory motion, it may still be reasonable to
use a linearized analysis to describe wave motion, with linearized
parameter values dependent on the degree of static deformation.
In the analysis of small amplitude wave motion imposed upon
finitely deformed hyperelastic materials, it is common to employ
a finite strain energy function w to describe the material’s proper-
ties as static prestress or strain is applied. Many different material
models and functions have been introduced and used to describe
the behavior of nearly incompressible materials, like soft biologi-
cal tissue [12–17]. For the present study, limiting our focus to
biaxial prestress of a nearly incompressible isotropic material and
considering finite strains of no more than 20%, we will use a Gent
hyperelastic model, which can be defined using the following
finite strain energy function [18]

w ¼ �lJm
2

ln 1 �
�I1 � 3

Jm

� �
þ j

2

J2 � 1

2
� ln J½ �

� �
(7)

where �I1 ¼ J�
2
3I1, with I1 ¼ tr C½ �, C ¼ FTF, J ¼ Det F½ �, and Jm

is a limiting parameter for �I1 � 3. Here, F is the deformation gra-
dient, C is the right Cauchy-Green tensor, and J ¼ 1 if the mate-
rial is incompressible. The first term of the strain energy function
is based on the isochoric deformation of the isotropic material,
and the second term only exists if the material is compressible.
The shear modulus is given by 2 @w

@I1
, which in the incompressible

limit is equal to l and is consistent with infinitesimal strain
theory. Consequently, Eqs. (5) and (6), governing planar shear
wave phase speed should remain valid here for nearly incompres-
sible materials. Utilization of other strain energy functions is left
for future study. It is also possible to incorporate the prestress field
directly into the strain energy function [19,20]. If it is assumed
that the superimposed wave motion on top of the finite deforma-
tion is small, one may still recover Eqs. (5) and (6) for planar
shear wave phase speed.

2.2 Two-Dimensional Waveguide With Polar Wave Front
Without Prestress. We adapt Meral et al. [21], with the geometry
shown in Fig. 1. We have a cylindrical homogeneous, isotropic
viscoelastic specimen of radius R and thickness h, with free
boundary conditions on the top and bottom flat surfaces at
z ¼ 6h=2. It is axisymmetrically driven in the axial “z” direction
at its curved outer radial surface, r¼R, with a harmonic

Fig. 1 Plate of thickness h and radius R under biaxial tensile
stress r subject to harmonic z-direction displacement wzRe

jxt
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displacement (nonhomogeneous boundary condition) of amplitude
wzR such that:

wz R; z; tð Þ ¼ wzRe
jxt (8)

We have the following steady-state solution for the antisymmetric
wave case depicting Rayleigh–Lamb wave behavior throughout
the phantom:

wz r; z; tð Þ ¼ A
�a

�b
2 � �a2

cos �azð Þ � 2k2
RL

k2
RL � �b

2

cos �ah=2ð Þ
cos �bh=2

� �cos �bz
� �( )

J0 kRLrð Þejxt

(9)

Here, A is an unknown constant to be determined based on bound-
ary conditions, and J0 denotes a zeroth order Bessel function of
the first kind. Also, we define

�a2 ¼ k2
p � k2

RL (10)

�b
2 ¼ k2

sh � k2
RL (11)

kp ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2lð Þ=q

p
(12)

ksh ¼ x=
ffiffiffiffiffiffiffiffi
l=q

p
(13)

Here, kp, ksh, and kRL are the compression, shear and
Rayleigh–Lamb wavenumbers. Possible solutions for kRL are
obtained by satisfying the following equation [22]

tan �bh=2
� �

tan �ah=2ð Þ ¼
k4
sh

4k2
RL�a�b

(14)

Applying the nonhomogeneous boundary condition, Eq. (9), we
expect only the lowest order solution from Eq. (14) to be mechani-
cally driven, and the corresponding wavenumber kRL will be close
in value to, but slightly larger than ksh, associated with a slightly
slower wave propagation speed and shorter wavelength.

On the central plane of the plate normal z motion is governed
by Eq. (9), evaluated at z ¼ 0, and is given by

wz r; z ¼ 0; tð Þ ¼ A
k2
p � k2

RL

k2
sh � k2

p

k2
sh

k2
sh � 2k2

RL

( )
J0 kRLrð Þejxt

¼ wza
J0 kRLrð Þ
J0 kRLRð Þ e

jxt (15)

Note, in this equation the only “r” dependence is within J0 kRLrð Þ.

2.3 Accounting for in-Plane Biaxial Stress Using Transfor-
mation Acousto-Elastography. A novel approach is proposed to
account for biaxial prestress aligned in the plane of the plate. In
previous studies on transversely isotropic materials not under pre-
stress [23–26] the last author has shown that, by distorting the
geometry based on direction and polarization-dependent planar
phase speeds one can then solve an equivalent isotropic problem.
This approach to the transversely isotropic problem was called
“Transformation Elastography”. Biaxial prestress causes a similar,
though not identical, direction and polarization dependence of the
planar shear wave phase speed, as exhibited in particular in Eq.
(6). The same approach is adapted to the acoustoelastic problem
here. Note, different geometric distortions are needed depending
on whether the wave motion of interest is a slow or a fast shear
wave, based on propagation direction and polarization. The out-
of-plane axisymmetric wave motion detailed in the previous sub-
jection matches the criteria for a fast shear wave.

Referring to Eq. (6), the phase speed in the direction of the pre-
stress (radial direction) divided by the phase speed in the

unstressed medium is
cf h¼90�½ �ffiffiffiffiffiffi

l=q
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r

2l

q
and for propagation per-

pendicular to the stress plane is
cf h¼0�½ �ffiffiffiffiffiffi

l=q
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � r

2l

q
. Approximating

the material as incompressible, the prestress results in a static
strain changing its radius to R 1 þ r

6l

� � ¼ R 1 þ �Rð Þ and its thick-

ness to H= 1 þ �Rð Þ2
. Here, �R is the radial strain due to the biaxial

prestress acting in the radial direction. The equivalent isotropic
unstressed plate of thickness He and radius Re needs to have its
dimensions adjusted so that the planar shear wave phase speed isffiffiffiffiffiffiffiffi

l=q
p

in all directions. This results in:

Re ¼ R 1 þ r
6l

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r

2l

r
¼ R 1 þ �Rð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3�R

p
(16)

He ¼ H= 1 þ �Rð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r

2l

r
¼ H= 1 þ �Rð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 3�R

p
(17)

When the formulas are expressed in terms of �R, it is clear that
one does not need to know r or l a priori in order to calculate the
equivalent dimensions. One only needs know the radial strain. If
the compressibility is non-negligible, Eqs. ((16) and (17)) will
need some adjustment.

3 Numerical Case Study—Transformation

Acousto-Elastography Validation

A numerical case study was conducted to understand the inter-
actions between biaxial prestress and waveguide behavior, as well
as to validate the proposed transformation acousto-elastography
(TAE) approach proposed above. Case study geometric and mate-
rial property values are provided in Table 1. These material prop-
erty and geometry values are chosen to match those for the
material and fixture used in experimental studies described later in
this article.

An axisymmetric finite element (FE) nonlinear static deforma-
tion study followed by a time-harmonic analysis based on lineari-
zation of the stiffness matrix after deformation was conducted
using ANSYS Mechanical APDL 2020 revision 2 (ANSYS, Canons-
burg, PA). A plate-shaped structure with radius R¼ 25.4mm and
thickness H¼ 8.5mm was defined using Plane183 eight-node ele-
ments with individual element side dimensions of �0.1 mm. This
resulted in 16,341 nodes and 5,334 elements. (Use of different ele-
ment dimensions confirmed resolution was sufficient for these
studies.) A mixed u-P (displacement-pressure) solution approach
was used due to the near-incompressibility of the element material
properties, given in Table 1, in order to avoid locking, which can
occur when using a displacement formulation that is dependent on
volumetric strain calculations that are difficult to accurately calcu-
late when Poisson’s ratio is near 0.5. In this formulation, as
opposed to a more efficient formulation based only on displace-
ments, the hydrostatic pressure or volume change rate is interpo-
lated on the element level and solved on the global level
independently in the same way as displacements. The material
elasticity was defined using a Gent model, which only requires
specification of the shear storage lR and bulk j moduli (specified
in ANSYS as a compressibility factor 2=j), as well as the parameter
Jm. With the nonlinear deformation analysis enabled, a radial dis-
placement boundary condition was applied to the nodes on the
outer edge of the model, with displacements in the r direction of
0, 0.635, 1.27, 2.54, and 5.08 mm in five separate simulations,
resulting in percentage strains in the radial direction of 0%, 2.5%,
5%, 10%, and 20%, respectively. After application of each defor-
mation, a time-harmonic perturbation analysis was performed by
applying a displacement to the same nodes on the outer edge of
the phantom, but in the out-of-plane z direction with amplitude of
10 microns and at a frequency f¼ 300 Hz. For the harmonic
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(dynamic) analysis, in addition to shear storage and bulk moduli,
it is also necessary to specify density q and shear loss modulus lI ,
which is specified via beta damping in ANSYS, where the beta
damping term will equal the ratio of shear loss to storage moduli,
g, divided by the frequency in radians/second, 2pf . The static dis-
placement and stress conditions due to the initial radial deforma-
tion, and the dynamic displacement, due to the harmonic
excitation, were output for every node into text files, which were
imported into MATLAB for analysis.

In MATLAB, the “lsqcurvefit” command was used to optimize the
fit of Eq. (15) to the FEA-generated out-of-plane harmonic dis-
placement along a radial line. Specifically, it was necessary to
identify best-fit values for complex-valued kRL and wza that result
in Eq. (15) matching the in-phase (real part) and out-of-phase
(imaginary part) simulated response along a radial line. Once
kRL is determined the Rayleigh–Lamb wavelength kRL ¼
2p=Real kRL½ �: Next, both kRL and kRL can be scaled to estimate the
undeformed case via TAE by a distortion of the dimensions as
given in Eqs. ((16) and (17)). Specifically

kRL=TAE ¼ kRL
Re

R 1 þ �Rð Þ ¼ kRL=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3�R

p
(18)

kRL=TAE ¼ kRL
R 1 þ �Rð Þ

Re
¼ kRL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3�R

p
(19)

The complex-valued shear wave number ksh=TAE and the shear wave-
length ksh=TAE in the undeformed state then are estimated via solu-
tion of Eq. (14) with He from Eq. (17) in place of H, again using a
least squares optimization algorithm. From ksh=TAE an estimate of the
material’s complex shear modulus, lR þ jlI , is found since

ksh ¼ 2pf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q= lR þ jlIð Þ

q
(20)

In summary, we have articulated here a strategy to estimate the
material’s shear storage and loss moduli based on elastography
measurements acquired in the presence of a known static deforma-
tion, but potentially unknown prestress condition and unknown
material moduli. Equations ((16) and (17)) are expressed in terms
of the prestrain, independent of the prestress and material
properties.

Predictions based on the TAE concept to estimate material
shear viscoelastic property values at 300 Hz, lR þ jlI , independ-
ent of prestress conditions are in Table 2. The case of no prestress
(0% prestrain) serves as a check on the accuracy of the finite ele-
ment model and MATLAB -based least squares curve fit in the pro-
cess given above in this section. In other words, this level of error
in estimate is independent of the TAE approach. Whereas the
actual value of the complex shear modulus is
lR þ jlI ¼ 39:840 þ j6:542 kPa, the prediction at 0% prestrain is
40:1 þ j6:78 kPa. The “Estimate Error” shown in the table is the
difference of the calculated and actual complex moduli, divided
by the actual complex modulus. It is 0.78% and 0.47% for esti-
mates of the shear storage and lost moduli, respectively. For
2.5%, 5%, 10%, and 20% radial prestrain cases, the TAE
approach yields calculations of the complex shear modulus
with the error in the shear storage and loss moduli predictions
usually within 2%, except reaching 2.15% in the case of 10%
prestrain.

The subsequent estimate of the biaxial stress using the TAE
approach is

rTAE ¼ 6�RlR (21)

This is compared to the biaxial stress value rFEAð Þ determined
from the finite element simulation, which is the averaged radial
stress in all elements of the model. For the given loading condi-
tion, the stress was uniform throughout the model. Here, the

Table 1 Parameter values for case studies

Parameter Nomenclature Value(s)

Bulk modulus j 2 GPa
Shear storage modulus in plane of isotropy lR 39.840 kPa
Limiting parameter Jm 50
Ratio of shear loss to storage moduli g ¼ lI =lR 0.1642
Undeformed plate thickness H 8.5 mm
Undeformed phantom radius R 25.4 mm
Biaxial tensile strain �R 0, .025, .05, 0.1, 0.2
Density q 1070 kg=m3

Frequency f 300 Hz

Table 2 Shear storage and loss moduli estimates with unknown prestress conditions using TAE

Prestrain 0% 2.5% 5% 10% 20%

ksh0� ðmmÞ 20.408 20.15 19.89 19.36 18.35
ksh90� ðmmÞ 20.408 20.66 20.91 21.40 22.36
RE ðmmÞ 25.4 25.1 24.9 24.5 24.1
HE ðmmÞ 8.50 8.41 8.36 8.40 9.33
kRL ðm�1Þ 368�j24.9 355�j24.3 343�j23.8 322�j22.9 285�j21.3
kRL ðmmÞ 17.1 17.7 18.3 19.5 22.0
kRL=TAE ðm�1Þ 368�j24.9 368�j25.2 368�j25.5 367�j26.1 361�j26.9
kRL=TAE ðmmÞ 17.1 17.1 17.1 17.1 17.4
ksh=TAE ðm�1Þ 305�j25.6 304�j25.9 304�j26.3 302�j26.9 304�j27.6
ksh90�=TAE ðmmÞ 20.6 20.7 20.7 20.8 20.7
lR þ jlI=TAE ðkPaÞ 40.1þj6.78 40.2þj6.90 40.3þj7.03 40.6þj7.27 40.3þj7.38
l Estimated error (%) 0.78þj0.47 1.02þj0.74 1.39þj1.00 2.15þj1.48 1.34þj1.89
rTAE ðkPaÞ 0 6.06 12.2 24.7 49.3
rFEA ðkPaÞ 0 6.03 12.1 24.4 48.3
r Estimated error (%) 0 0.49 0.82 1.21 2.03
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percent error in prestress prediction stays within a few percent
reaching a maximum of 2.03% when the radial prestrain reaches
20%.

4 Numerical Case II and Experiment: Transformation

Acousto-Elastography Adaptation and Evaluation for

“Curved Plate”

4.1 Test Configuration and Methods. To experimentally
evaluate TAE-based estimates of material viscoelastic proper-
ties, a test configuration similar to, though not the same as
the numerical study of Sec. 3 was constructed. This configura-
tion was inspired by earlier studies of our group that
identified the confounding effect of intraocular pressure (IOP)
on estimates of cornea shear elasticity properties based on opti-
cal coherence elastography measurements [8]. It was shown
that in-plane biaxial tensile stress in the cornea due to nonzero
IOP affected measured Rayleigh–Lamb wave motion induced
on the cornea, independent of the cornea shear elastic
properties.

The experimental configuration, shown in Fig. 2, includes a cir-
cular plate-like phantom 8.5 mm thick and with 25.4 mm radius
made of a moldable polymer, Ecoflex-30TM. The polymer plate is
fixed around its perimeter to a cylindrical container that is
vibrated axially to create a radially converging, ideally axisym-
metric, flexural wave pattern on the phantom material, similar to
the FEA study in Sec. 2. Simultaneously, the cylindrical container
is statically pressurized, which both creates some curvature of the
phantom and places it under a nonzero axisymmetric multi-axial
and nonhomogeneous prestress field. A scanning laser Doppler
vibrometer (SLDV; PSV-400, Polytec, Waldbronn, Germany), is
used to measure out-of-plane flexural motion on the phantom, as
described in previous studies [21,27].

Our group has characterized the dynamic shear viscoelastic
properties of Ecoflex materials under infinitesimal (0% prestrain)
conditions over a wide frequency range [28]. Previous publica-
tions focused on Ecoflex-10TM, a similar polymer, with greater
viscosity, as compared to Ecoflex-30. For harmonic excitation of
both materials using small perturbations about the unstressed
state, we’ve found that a “fractional Voigt” rheological model
best describes the frequency-dependent shear storage and loss
moduli of the material. The 3-parameter fractional Voigt model is
comprised of a purely elastic element of strength l0 in parallel
with a fractional order springpot that is defined by a and la such
that, at frequency, x ¼ 2pf rad=sð Þ, the shear storage lR and loss
lI moduli are given by the following equations.

lR ¼ l0 þ lax
acos pa=2ð Þ (22)

lI ¼ lax
asin pa=2ð Þ (23)

From the Ref. [28], it was found that for Ecoflex-10, the following
values accurately describe shear viscoelastic properties over the
range of 200 Hz to 7.75 kHz: l0 ¼ 13:3 kPa, la ¼ 2 kPa � sa, and
a ¼ 1=3. For Ecoflex-30, measurements conducted over the range
of 200 Hz–1 kHz yielded: l0 ¼ 27 kPa, la ¼ 1:5 kPa � sa, and
a ¼ 0:3. Thus, while Ecoflex-30 is “stiffer” (higher l0) under
static conditions, due to its lower viscosity the magnitude of its
complex shear modulus increases at a slower rate with frequency
(a ¼ 0:3), as compared to that of Ecoflex-10 (a ¼ 1=3).

The measured flexural wave motion on the phantom material
using the SLDV system is exported and read into MATLAB for fur-
ther analysis. Typical experimental measurements of the
Rayleigh–Lamb wave motion are shown in Fig. 3. As in the
numerical study of Sec. 3, the “lsqcurvefit” command was used to
optimize the fit of Eq. (15) to the experimentally-measured out-
of-plane harmonic displacement along a radial line of the phantom
(averaged from measurements along 40 radial lines spaced 9
degrees apart). Unlike in the previous numerical study, it is recog-
nized that in the experimental case, the curvature of the plate
means that the SLDV is not measuring motion exactly normal to
the plate surface at all locations. The SLDV “imposes” a planar
geometry with a radius R that is constant, not changing with
increasing pressure-induced prestrain. To account for this in the
TAE analysis the initial least squares curve fit to determine kRL is
multiplied by 1 þ �Rð Þ. In the experimental case the radial strain,
�R, is estimated based on its correlation to the out-of-plane defor-
mation caused by the static pressure, which is measured using a
micrometer. This relationship is established via finite element
studies using the phantom geometry. (The experimental measure-
ment of vertical displacement with the micrometer was judged to
be accurate to the nearest 0.1 mm with confidence, though the
micrometer precision was 0.01 mm. We believe this translates to
estimates of radial deformation of the order of 0.1 mm, which in
turn provides strain precision and accuracy to 0.4%.)

Next, dynamic small amplitude axisymmetric excitation is
applied to the phantom along its outer boundary and dynamic dis-
placement profiles along 20 equally angularly spaced diameters
were averaged, and then used to identify best-fit values for kRL
and wza.

Once kRL is determined, the Rayleigh–Lamb wavelength kRL ¼
2p=Real kRL½ �: Next, as in the numerical study both kRL and kRL are
scaled to estimate the undeformed case via TAE using Eqs. ((18)
and (19)). The complex-valued shear wave number ksh=TAE and

Fig. 2 Experimental setup: (a) pressure-backed phantom plate vibrated by shaker, with SLDV measurement of flex-
ural wave motion on surface; (b) no static pressure; and (c) 75 cm H2O static pressure (note surface bulging)
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the shear wavelength ksh=TAE in the undeformed state then are esti-
mated via solution of Eq. (14) with He from Eq. (17) in place of
H, again using a least squares optimization algorithm. From
ksh=TAE an estimate of the material’s complex shear modulus,
lR þ jlI , is found using Eq. (20).

In summary, this is a strategy to estimate the material’s shear
storage and loss moduli based on elastography measurements
acquired in the presence of a known static deformation, but
unknown prestress conditions and unknown material moduli.
Once the material moduli are estimated, then this information can
be used to estimate the averaged biaxial stress in the phantom,
based on the measured estimate of the radial strain, �R.

The approach described in this section to estimate the complex
shear modulus and biaxial stress is first tested using a finite ele-
ment simulation that mimics the experiment by applying a pres-
sure load to one side of the plate that is statically fixed at its
perimeter. It is then applied to experimental data.

4.2 Results and Evaluation of Transformation Acousto-
Elastography. Predictions based on the TAE concept applied to
the “curved surface” numerical study to estimate material shear
viscoelastic property values at 300 Hz, lR þ jlI , independent of
prestress conditions are in Table 3. (As in the “flat surface” studies
summarized in Table 2, the “ground truth” value for the complex
shear modulus is lR þ jlI ¼ 39:840 þ j6:542 kPaÞ: As compared
to the flat surface numerical study of Sec. 3, the TAE approach
does not do quite as well in enabling estimates of the complex
shear modulus independent of the preload condition, with the

error reaching 6% when the preload pressure reaches 100 cm
H2O, which induces a radial prestrain of �R ¼ 7:03%. Also, it is
found that estimates of the radial biaxial prestress, rTAE, based on
Eq. (21), are not directly relatable to the actual prestress condi-
tion, as the actual condition is not simply biaxial and is not
homogenous; it varies with both radial and axial location. In addi-
tion, the prestress field is not simply in the radial r direction or in
the local tangential plane of the phantom; there is a significant

Fig. 3 SLDV measurement showing the real (in-phase) Rayleigh–Lamb wave on the phantom at 300Hz with
(a) 0 and (b) 25 cm H2O static pressure

Table 3 TAE estimates for numerical curved surface study

Air pressure (cm H20) 0 25 50 75 100

Radial strain �R %ð Þ 0 0.75 2.52 4.71 7.03
RE ðmmÞ 25.4 25.3 25.1 24.9 24.7
HE ðmmÞ 8.50 8.47 8.41 8.37 8.35
kRL ðm�1Þ 368�j24.9 366�j25.1 361�j25.6 353�j26.4 345�j25.8
kRL ðmmÞ 17.1 17.2 17.4 17.8 18.2
kRL=TAE ðm�1Þ 368�j24.9 370�j25.4 374�j26.6 377�j28.2 380�j28.4
kRL=TAE ðmmÞ 17.1 17.0 16.8 16.7 16.6
ksh=TAE ðm�1Þ 305�j25.6 306�j26.1 310�j27.3 312�j28.9 315�j29.2
ksh90�=TAE ðmmÞ 20.6 20.5 20.3 20.1 19.9
lR þ jlI=TAE ðkPaÞ 40.1þj6.78 39.6þj6.79 38.7þj6.87 38.0þj7.11 37.3þj6.97
Estimated difference % 0.78þj0.47 0.47þj0.70 2.76þj1.29 4.27þj2.12 5.99þj2.05
rTAE ðkPaÞ 0 1.78 5.85 10.7 15.7
r1 ðkPaÞ 0 2.52 5.70 9.16 12.8

Fig. 4 Finite element prediction of the first principle stress
under 100cm H2O static pressure applied on its bottom surface.
This is a cross section of the axisymmetrically stressed phan-
tom from its center (left) to its fixed perimeter (right). Color
scale is in kPa.
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through-plane predominantly z component, as well as a significant
x-z shear stress component. Figure 4 is a plot of the principle
stress obtained from the FE static simulation that is predominantly
aligned with the radial direction but follows the local tangential
plane of the phantom.

Predictions based on the TAE concept applied to experimental
data to estimate material shear viscoelastic property values at
300 Hz, lR þ jlI , independent of prestress condition are in
Table 4. For pressure-induced radial prestrain cases, the TAE
approach yields calculations of the complex shear modulus with the
error in the shear storage and loss moduli predictions of no more
than 6% and 16%, respectively, over a range of pressure-induced
prestrains up to 11.3%. And, as in the numerical studies, the biaxial
radial stress rTAEð Þ is estimated using Eq. (21), though in light of the
curved surface numerical study, the unknown actual prestress field
for this case is expected to be more complex and not simply biaxial.

5 Discussion and Conclusions

The numerical finite element and experimental studies of the
previous two sections have quantified the confounding effects of
finite dimensions, surface curvature and nonzero prestress on the
elastography approach to estimating material viscoelastic proper-
ties in an isotropic plate-like structures under biaxial normal stress
within the plane of the plate and under more complex but still axi-
symmetric stress conditions. Additionally, a novel coordinate
transformation approach, TAE, has been introduced that, in
theory, enables one to estimate material viscoelastic properties
independent of the nonhomogeneous prestress conditions without
requiring a priori knowledge of those stress conditions. Rather,
only the amount of deformation, or strain, from the unstressed
condition is required. If the prestress field is uniform, the method
can then estimate the prestress.

The numerical and experimental studies show the promise of
the TAE approach. In the flat surface numerical study, the mate-
rial shear storage lR and loss lI moduli were determined with
accuracy from less than 0.5% up to 2.15% error as prestrain levels
increased to 20%. Subsequent estimates of the uniform radial
stress field r were comparably accurate over this prestrain range,
reaching 2.03% error at 20% prestrain. The TAE approach does
not account for geometric nonlinear effects that increase with
deformation and thus, this may be a significant source of the error
in estimates of both the shear moduli and the prestress. Another
source of error or discrepancy is an incompressibility assumption
used to formulate the approach. Because the bulk modulus is
about five orders of magnitude greater than the shear moduli, we
believe the assumption of incompressibility is justified. Though,
the approach could be reformulated to account for compressibil-
ity. Accounting for geometric and material nonlinearity, which
increase as prestrain increases, is left for future development of
the TAE approach. Also left for future numerical simulation stud-
ies, is the robustness of the TAE approach when confronted with
simulated noise in the measurements.

In the curved surface numerical study, which more closely
approximates the experimental study, estimates of the complex
shear modulus independent of prestress condition reach 6% error
at the highest pressure considered—100 cm H2O, which generated
a 7% radial strain. The estimate of a biaxial prestress value is less
meaningful in this case, as the finite element study shows that the
stress field is not simply biaxial and is not homogeneous. Rather,
there is variation as a function of both radial r and axial z position
(Fig. 4).

Finally, in the experimental study, one must also consider that
the static shear modulus governing the initial deformation due to
the prestress, is typically different from the frequency-dependent
shear storage modulus that will govern response to harmonic exci-
tation. This, and the fact that there may be some residual stress
even in the unstressed condition, is why the deformation induced
by the pressure loading is significantly greater than that in the
curved surface numerical study. Despite this, estimates of the
complex shear modulus under nonzero prestress conditions up to
11% prestrain, generally stayed close to each other and within
10% of the expected value. The value predicted in the unstressed
case had the greatest difference and it is thought this may be due
to unmodeled residual stresses caused by the assembly of the
experimental fixture. Based on finite element simulations, we do
not believe that the fact that the SLDV measured motion of the
surface of the plate as opposed to the centerline was a major
source of discrepancy in estimating wave numbers.

Logical next steps for the strategy introduced here for decou-
pling prestress from material shear stiffness estimates include con-
sideration of more complex geometry and stress conditions, as
well as anisotropic and nonuniform material properties. Conduct-
ing studies at multiple frequencies would enable identification of
a rheological model that could help discern static (constant) versus
frequency-dependent components of the shear storage and loss
moduli. Use of torsional excitation of waves polarized in the plane
of the plate, would excite the slow shear waves (Eq. (5)), which
would provide an additional means of estimating the shear modulus
[29]. Finite element models based on medical images that can pro-
vide detailed geometry [30], deformation under varying loading
conditions and, if needed, measures of anisotropy and inhomogene-
ity, may provide a way to advance the TAE technique beyond sim-
ple geometries and assumptions of isotropy and homogeneity.
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Table 4 TAE estimates for experimental study

Air pressure (cm H20) 0 25 50 75 100

Radial strain �R %ð Þ 0 6.42 8.35 9.97 11.3
RE ðmmÞ 25.4 24.8 24.7 24.6 24.5
HE ðmmÞ 8.5 8.35 8.36 8.40 8.44
kRL ðm�1Þ 348�j30.4 333�j39.2 324�j40.3 319�j37.8 312�j30.0
kRL ðmmÞ 18.1 18.8 19.4 19.7 20.1
kRL=TAE ðm�1Þ 348�j30.4 364�j42.8 362�j45.1 363�j43.0 361�j34.7
kRL=TAE ðmmÞ 18.1 17.3 17.4 17.3 17.4
ksh=TAE ðm�1Þ 283�j31.3 299�j44.0 297�j46.4 299�j44.3 298�j35.7
ksh90�=TAE ðmmÞ 22.2 21.0 21.1 21.0 21.2
lR þ jlI=TAE ðkPaÞ 45.6þj10.2 39.8þj12.0 40.0þj12.8 39.9þj12.1 41.3þj10.1
Estimated difference % 15.6þj6.63 2.09þj13.3 2.88þj15.2 2.48þj13.6 5.09þj8.07
rTAE ðkPaÞ 0 15.3 20.0 23.9 28.0
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