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Abstract

The combination of finite-element models with medical imaging has been a valuable contribution to our understanding
of tissue mechanics. In recent years, diffusion tensor imaging has aided in modeling axonal tracts in the brain to measure
mechanical stresses related to traumatic brain injuries. Other biological systems and diagnostic techniques can benefit from
this approach. Dynamic elastography is a phase contrast imaging technique, where contrast is linked to the mechanical proper-
ties (elasticity and viscosity) of the imaged tissue. Mechanical properties are obtained from solving an inverse system based
on mechanical wave motion, typically under the assumption that the tissue is homogeneous, isotropic and without initial
(pre) stresses or strains. Biological tissues, however, rarely have all three of these properties and the degree to which these
assumptions are inaccurate can lead to poor estimates. Muscle typically violates all three major assumptions and requires
more refined approaches for elastic moduli estimation. using magnetic resonance-based diffusion tensor (DT) imaging to
inform the generation of subject-specific finite-element (FE) models addresses this problem by explicitly accommodating
for variations in muscle architecture. This allows for a more robust analysis of prestressed wave motion while compensating
for situational geometric changes induced by the loading. The presented work demonstrates a pipeline from DT imaging to
FE models and the resulting comparisons with analogous MR elastography experiments. This work will help in developing
anisotropic and prestressed relevant inversion algorithms, therefore, improving the accuracy of muscle elastic and viscous
moduli estimates.

Keywords Elastography - Finite-element analysis - Diffusion tensor imaging - Acoustics - Computational Modeling -
Skeletal muscle

1 Introduction
1.1 Background and motivation

Elastography is an emerging contrast method that is applied
to ultrasound (US), magnetic resonance (MR) imaging and
optical coherence tomography (OCT) and aims to provide a
quantitative value of the mechanical properties of tissue by
measuring and interpreting deformation caused by complex
waves. The elasticity tensor is an important component of
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pathology as pathogenesis is often accompanied by strong
microstructural changes within the tissue, which is evident
in histological examination [1-3]. Core tenants in structural
engineering provide the case that elastic moduli are products
of material structure, and therefore, it should be possible to
infer structural changes through measuring material property
changes [3-6]. Elastography-based viscoelastic estimations
of biological tissue have often assumed isotropy, homoge-
neity, and no (zero) loading, or prestress. In recent years,
however, groups have been expanding dynamic elastogra-
phy measurements to include anisotropy [7—10]. Despite
this addition, the field still neglects prestress effects, which
may impact the characteristics of wave propagation and lead
to error. Previous analytical models have shown that wave
speed is dependent on prestress in isotropic media [11].
These effects are expected to be greater in anisotropic media
and may explain variation within current reported estimates,
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especially when looking at the inaccuracies of fast shear
wave estimation [7, 12]. Typically, assumptions of unloaded
material were made for larger organs located in the viscera,
such as the liver. However, tissues, such as muscle, or even
more complex states of liver measurements, are under vary-
ing static or quasistatic loads that are non-negligible in value
as compared to their elastic moduli, making it important to
account for prestress in their material property estimation.

In 2007 the Radiological Society of North America
(RSNA) formed a group dedicated to “improve the value and
practicality of quantitative imaging biomarkers by reduc-
ing variability across devices, sites, patients and time” as
described in their mission statement [13]. Key factors that
determine the quality of quantitative biomarker are as fol-
lows [14]:

1. There is demonstrable validation for the precision and
accuracy of a biomarker

2. There is an associated clinical endpoint

3. There is consistency with repeated measurements of the
same sample

4. There is consistency between the measurements by sepa-
rate groups, machines or other operation dependent con-
ditions

5. There is satisfactory performance of the biomarker for
its intended purpose

Elastography is well on its way to becoming a viable and
useful biomarker, but it currently falls short when evaluating
it based on these guidelines.

Specifically looking at points 3—4 above, it is necessary
to understand the construction of an elastogram. As an engi-
neering concept, there exists a system with user input of a
known harmonic function that acts on a material resulting in
deformation. The forward problem of this scenario asks what
the deformation is given a set of material properties, while
the inverse problem asks what the material properties are
given a set of deformations over the body. The elastogram
is an attempt to solve the latter, and aptly named the ‘inver-
sion’ process. Elastography as we see in clinical practice,
widely uses a form of inversion, where the phase speed of a
wave is proportional to the square root of the shear modu-
lus. This proportionality is dependent on the tissue structure
being isotropic, homogeneous, and without any preloading,
which is a weak assumption for almost every organ or dis-
ease process.

Due to this, the measurements obtained using these
assumptions can are classified as an effective modulus
and may vary based on the operating conditions and could
explain the wide variability in measurements. For example,
differing regions of the same muscle may have differing
group fiber directions. If the actuated motion is the same
direction in both measurements, the same muscle will have
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different wave characteristics depending on where the meas-
urement is taken. This could alternatively be a good finding
for specificity, but only in the appreciation of how anisotropy
influence waves. Without that appreciation, variability will
exist. It is important to move from effective measurements
to more robust ones as the use of the technology expands,
which is fortunately the case in anisotropic elastography
[7-10, 15-17].

Structure is not the only source of variation in material
properties though. Prestress is present in many biological
systems as induced pressure from the cardiac cycle [18],
compression from surrounding structures [19] and tension
from lengthening—shortening cycles of motion. As another
example, portal hypertension may cause a buildup of pres-
sure within the liver parenchyma; finding a nominal shear
modulus for one group under specific conditions (presence
of non-alcoholic fatty liver disease (NAFLD), no portal
hypertension) may not be the same for another group with
slightly altered conditions (presence of NAFLD, with portal
hypertension). Several studies already show that there are
measurable and highly correlated differences with hepatic
venous pressure and measured stiffness within these patients
and more severe progressions of the disease [20, 21]. With-
out appreciation for prestress, distinct groups such as these
could ruin standardization of liver stiffness due to the clear
confounding factor of pressure changes, but with proper
appreciation, there could be potential for high specificity
screening.

As stated previously, several groups have breached the
subject of anisotropy in elastography, but none have built
anatomically accurate FE models to explore its effects as it
relates to prestress. In non-elastography based groups that
study trauma of the brain and spine, there has been an effort
to combine DT imaging with FE models [24-26]; however,
within these models, it is difficult to simulate harmonic wave
sources at specific locations, and the resolution and sampling
intervals do not meet the requirements for signal processing
[27].

Combining anisotropy and prestress further complicates
the problem as the way stress distributes is necessary to
understand and prevent it from becoming a confounding
factor [22]. Complex, dynamic tissues, such as muscle non-
uniformly disperses stress throughout, leading to variation
in the prestressed wave patterns based on location of the
measurement [23]. Hence, two major questions arise: to
what level does prestress effect shear wave propagation in
different tissue architectures and how should one remove, or
account for, the effect.

1.2 Objectives

This research aims to begin answering these questions
through the design of an algorithm that converts diffusion
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tensor (DT) imaging data into finite-element (FE) models
that satisfy criteria for simulations of elastography. Extend-
ing on the methods of DT-FE algorithms used in other
fields, but satisfying wave processing requirements, will
allow for more in-depth analysis of wave propagation in
complex tissues.

2 Methods

Figure 1 shows the overall steps taken from image acquisi-
tion to simulation. Each step will be broken down for further
explanation.

2.1 Image segmentation

The model was first built using DT images obtained from the
open-source database created by Bolsterlee et al. [28] MR
magnitude images of the human lower leg from this database
were taken on a 3 T scanner using the following parameters:
TR/TE of 1842/8 ms, with a 288 X 215 data matrix for a
voxel size of 0.1875x0.1875x5mm. DT images had a TR/
TE of 8522/63 ms, voxel size of 1.875%1.875X5 mm, 16
directions with 2 averages and a b value of 500 s/mm?. After
the algorithm was designed, it was later tested on in-house
scans, where additional MR wave images could be captured
to verify the process. In-house scans were done on fresh
chicken breast obtained from a local butcher shop (see verifi-
cation of finite-element simulation for imaging parameters).
All MR magnitude images were initially converted to 3D

Fig. 1 Pipeline from Image to

3D model. Flow diagram show-
ing the major processes taken to
convert a basic DT scan session

Anatomic MR Images

models using a commercially available software, ITK-SNAP
[29], which output stereolithography (STL) files. The choice
in using this method allows for any ‘MRI-to-3D model’ tool
to be used as the initial step in segmenting anatomy. STL
files are built upon trigonal meshing, which convolutes the
original slice planes, as any mesh face can span multiple
slices. If the resolution of the scan slice thickness is not fine
enough, the 3D model will be blocky, as shown in Figs. 2a
and 3a. This also will create an issue, where there is no logi-
cal ordering to the vertices, making it difficult to process
any further.

Slices are first reconstructed through a filtering technique
aimed at identifying ‘Mach edges’ [30, 31], where pseu-
docode of the algorithm is shown in Appendix A.1. A ‘Mach
edge’ is defined as an edge between two contrasting values
in a gradient (Fig. 2a, b). Assuming that the in-plane vertices
are closer than slice planes, the mesh vertices transitioning
between slice planes create the gradient, while edges of the
blocky slice create the ‘Mach edge’.

First, the Euclidean distance of each vertex from the cen-
troid of the model is calculated using Eq. 1, where D is a
vector of each vertex’s distance, A is the original nX 3 point
matrix, and C is the 1 X3 centroid coordinate. Reordering the
nodes, based on their distance, D and taking the square of third
derivative, or geometric torsion, of this newly ordered data
set will then produce spikes at regions, where the slice plane
jumps to the next (Fig. 2¢). Simply filtering out all vertices
lower than 1% of the max peak will get rid of most ‘gradient’
vertices. The vertices are filtered a second time by keeping
only the slices that contain vertex counts within 1 standard
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Fig.2 Representation of Mach Edge Decomposition. A Sampled
vertices from two slices at y=1 and y=2. Vertices fill in the space
between slices creating a blocky model. The red point at (—1, 3) rep-
resents an arbitrary centroid used to calculate the distance between
it and each vertex. B Plotted distance between the centroid and each
vertex with slight peaks at the mach edge, representing the begin-
ning of a slice. C Third derivative of the distances plotted against

deviation from the mean count of vertices within each unique
potential slice plane created from the previously filtered set
(Fig. 3b). This is possible due to the number of nodes within
each actual slice being substantially greater than any erroneous
values elsewhere (Fig. 2d). Finally, to obtain the maximum
density of nodes per slice, the original trigonal mesh faces are
projected onto the doubly filtered slices (Fig. 3c):
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each vertex visualizes, where the slices begin (at either the peak or
valley). Vertex 20 and 22 represent a band at which the first mach
edge exists, the corresponding y coordinates for each are 0.095 and 1,
respectively. D All points in the original model are counted that lie at
potential mach edges, where it becomes clear that y=1 and y=2 are
the slice planes

2.2 Node refactoring

The end goal is to create a discretized model with regu-
lar meshing that corresponds to the acquired DT images.
Regular meshing requires two properties from the data
set: the data has equally spaced vertices, and the corre-
sponding faces are equal (i.e., all quads or all tris) [32].
We go further to include voxelwise meshing to get the
closest correlation without excessive interpolation of the
data. Therefore, complex approximations of non-convex
hulls are not applicable. Parametric, linear, or polyno-
mial approximations can be used for each slice shape.
However, this requires logical ordering. Ordering of non-
convex shapes can be difficult, so a recursive approach
was applied as shown in the flow diagram, Fig. 4, and
outlined in pseudocode in Appendix A.2. For each slice, a
minimum of two points are found based off another chosen
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Fig.3 Back calculating slices from a segmentation of an in vivo scan
of a human lower limb. A Original point cloud of the segmented
soleus muscle created by ITK-Snap using a data set published by
Bolsterlee et al. This shows rough transitions between slices, where
nodes are not exclusively within slice planes. B Slice planes are fil-
tered out using a third-order derivative signal processing filtration,

or random starting point by closest proximity. This gives
the minimum number of points needed to create a shape;
if this fails, the slice is considered a line or a point and
is disregarded. A data matrix is created with these three
points, and the last point is used to find the next nearest
point, which is then added to the matrix. This continues
until the last point to be found is the same as the first point.
Any points that are not within the constructed data matrix
are stored in an ‘odd’ matrix and sent through the same
ordering process. This continues until every point has been
ordered into sets. This leaves several ‘odd’ matrices that
correspond to segments of the boundary and one ‘shape’
matrix roughly defines slice as a convex hull (Fig. 5b). The
point of concavity will mark the end of a segment. Each
segment is then connected by another recursive process.
The end point of the ‘shape’ matrix is used to find the clos-
est point within one of the ‘odd’ sets. The selected ‘odd’
set is then reordered based off the nearest point and the
reordered nodes are connected to the starting shape, while
any missed nodes are added back into the collection of
‘odd’ sets (Fig. 5c¢). This process then repeats until every
set is connected. Due to the recursive nature, this process
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to clear out remaining noise, only z values with corresponding ver-
tex count within one standard deviation from the mean z value ver-
tex count are kept. C Maximization of vertices is achieved by taking
the filtered z values and projecting all vertices from the original point
cloud to the new z’s, setting up the best initial state for node refactor-
ing

may repeat several times and break previously created seg-
ments, until a combination of points is reached such that
every node has an optimal neighbor (Fig. 5d).

To decrease computational time, the number of nodes in
each slice can be forced using Chebyshev spacing, which
postulates a more optimal data set for approximation tech-
niques [33]. This is outlined in pseudocode in Appendix
A.3. Equations (2) and (3) give the kth node in Chebyshev
space (written as ¢) on the interval [a, b], where k is every
positive integer from 1 to the desired number of nodes, n:

e =b—=(b=-a)/2)+cos(6;) * (b—a)/2, )
k—1
0, = 1" 3)

Coordinates of the above optimized nodes are found
using a Lagrange approximation shown in Eqs. (4, 5).
The original data set is first parameterized, where ¢ is the
original number of nodes, Y corresponds to the in-plane
slice coordinates of the original node, Y’ is the optimized
coordinates, and an x with a subscript represents the cur-
rent i and j™ original node:
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Fig.4 Flow diagram of ordered points algorithm. Each slice is input
into the algorithm, where a vertex is chosen corresponding to the
lowest y coordinate and middle x coordinate in the default 2D orien-
tation. From this vertex, two nearest vertices are found to guarantee
the slice can fit a shape. If two other vertices are not found within
the entire slice, then it is rejected. From there, a recursive process
finds all nearest vertices from the last active vertex until the shape is
connected back to the initial vertex. All non-connected vertices are
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2.3 Diffusion tensor image processing

DSI studio was used to reconstruct fibers using a determin-
istic algorithm [34] and imported into MATLAB for fur-
ther processing. Imported files had at least two associated
data sets corresponding to a 3 by 1 vector containing the
DT data matrix size, and a 1 by 3*n array that specifies the
decomposed directions in the x, y and z dimensions, where
each vector’s x-coordinate are the 14 3(n — 1)th data point,
y is the 2+ 3(n+ 1)th data point, and z is the 3+3(rn—1)th
data point (n being the vector node); all of which is outlined
in more detail in the DSI studio manual [34]. Muscle has
relatively strong anisotropy, so the main direction from the
data set was assumed to be the direction of the fiber. Since
the directional data set is based on a volumetric image of a
size given by the dimensional vector, this subroutine simply
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stored in a separate segment data set and repeat the process, with the
exception of rejecting the entire slice. Once all vertices are connected
via the segment they are in, the segments are connected to each other
through a nearest neighbors’ algorithm and their vertices are reor-
dered, where the starting point is now the connecting vertex between
segments. This process repeats until every segment is connected, pro-
ducing a shape with ordered vertices

reshapes the directional data set into a n by 6 array using the
dimensional vector, where n is the number of data points
and the columns correspond to the coordinates of the fiber
vector’s origin (x, y, z) and the normalized direction (u, v,
w). In this way, the first three columns fit a standard finite-
element point matrix.

2.4 Image registration

A custom interface was developed to co-register the DT and
segmented data sets. Being that the segmented data set is a
derivative of the magnitude image data set, an affine linear
transformation is all that is needed to register the two sets.
Both the magnitude image and DT sets are multiplied by
their pixel size to obtain their physical sizes, which itself
registers DT and the magnitude images. The segmented data
set can then be registered to the magnitude image set, which
indirectly aligns it with the DT image. This step is necessary
due to image segmentation software outputting their own
coordinate systems for the vertices, which may or may not
be stretched or rotated compared to the actual MR system.
Transformation was done using Egs. (6-8). In affine image
registration problems, one coordinate system can be trans-
formed into another by stretching and rotating the elementary
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Fig.5 Ordering points in a concave shape. A Starting point cloud,
where all points are assumed to create a shape with no intersecting
lines. B After one round of the node ordering algorithm, three seg-
ments are created: one main segment and two smaller segments. The
smaller segments are created and ordered by undergoing sub-rounds
of the ordering process until all points are assigned a segment and
ordered within its respective segment. In this example, one off set

vectors that make up the basis, and by translating the origin.
Equation (6) shows p' as the registered point that undergoes a
transformation 7 and translation ¢. To simplify the solution, T
and ¢ can be combined into a matrix by concatenating colum-
nwise and adding a row of zeros under the rotational part, and
1 to the translational part. In such a way, T and ¢ can be solved
simultaneously by solving a system of equations, where p and
p’ are concatenated forms as shown in Eq. (8). In order for this
method to work, n+ 1 equations must be used, since 7 is an
n-by-n matrix and ¢ is an n by 1 matrix, where n is the number
of degrees of freedom. For example, in a 3D system, there are
12 unknowns (3% 3 from 7 and 3 X 1 from ¢) and each equa-
tion has 3 knowns (p,, p,and p,), so 4 points will be needed
to have 12 total equations. At least n points must be linearly
independent to create an orthogonal basis in the transforma-
tion matrix. This means for the algorithm; each point must be

consisting of 3 points was created, followed by another off set consist-
ing of a single point (indicated by an arrow). C After a second round,
segments 1 and 2 are connected based on the two vertices closest to
each other. The new set is reordered starting from these two verti-
ces. The third segment remains an off set. D Final round connects the
third segment to the larger one and all points are reordered, giving the
final shape of the slice

manually selected from at least two different slices in a 3D data
set. Figure 6 shows the selection process for a sample soleus.
To ensure precision, the middle slice and one end slice in both
image sets were selected and the contours were compared.
Once the corresponding slices were found, landmark points
are selected and used for the affine transformation:

' T '
p=Tp+t,Q=[Oi],p=Qp, (6)

X
v @)
Z
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Fig.6 Point selection for co-

registration. Top left: segmented
data model of a human soleus
cross section with three of the
four registration points shown
in red. Top right: T1-weighted
image of the corresponding
lower leg with superimposed
data model stretched, rotated,
and mirrored to align registra-
tion points. Lower left: DT fiber
map of the lower leg, where
colors are mixed in an RGB
color scheme depending on

the overall contribution to the
fiber direction. Lower right:
superimposed co-registered data
model onto the DT fiber map,
outlining the diffusion vectors
belonging to the soleus. Custom
Affine image registration allows
for the segmented data model to
be registered to the magnitude
image. Superimposing this onto
the DT image allows for mask-
ing based on anatomy

Whole Leg DTI

Soleus Data Model

Whole Leg MRI

B x-component
= y-component
m z-component

P Ty Ty, Tiz 1 | P
2 _ Ty, Ty Ths 1, || Py . ®)
P, T3 Ty T t, || P,
1 0O 0 0 1 1

2.5 Shape interpolation

The correct resolution in the z direction is obtained by inter-
polating the shape from one slice to another. The parametric
interpolation technique used during the optimization process
can be reused here in a modified manner. In the previous
use, each slice was forced to have an equal number of nodes
while also having each slice ordered in the same way from
the ordering algorithm. This creates a system, where every
slice has corresponding counterpart vertices amongst all
slices, and therefore, counterparts can be set as data points
on a curve from the minimum slice to the maximum. Inter-
polation of each curve based on a predefined resolution for z,
results in interpolated slices. An example from the soleus is
given in Fig. 7, interpolating two primary slices to six, where
the lower is a circle and the upper is a square.

2.6 Fiber masking and interpolation

If the region of interest is smaller than the full specimen, the
registered segmented data can be used as a mask using an
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efficient implementation of the winding numbers in polygon
point algorithm as described by Hormann and Agathos in
[35]; which samples points from one data set to determine
if they are within another’s boundary and outputs a logical
array that meets the condition. The origins of the fiber direc-
tions in the DT data set are input as the query set and the
segmented model is input as the boundary set. The output
is then a voxelwise data set of only the DT data within the
desired boundary. After masking, both the fiber origin coor-
dinates and direction vectors are saved as a new n X 6 matrix.

Due to the regularity of the data points, trilinear inter-
polation techniques are all that is needed to create artifi-
cial vectors at alternate resolutions. Here, the directional
components, u, v, and w, of the fiber vector are considered
separately in the system and what will be interpolated as
such. Equations (4 and 5) are used in this process, where one
dimension is interpolated at a time. Here, Y’ is now a matrix
of the desired coordinates, c, for the respective dimension, x
is the original respective dimension’s coordinates, and Y is
the original matrix. The second and third round consists of ¢
being the desired coordinates of their respective dimension,
but Y is now the previous round’s output, Y.

2.7 Model discretization

Ansys® Academic Research Mechanical, Release 19 was
used as the targeted finite-element analyzing software.
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Fig. 7 Shape interpolation. Example of interpolating two slices of the
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soleus in eight steps. First, Chebyshev approximation is applied to the cir-

cle and square slices to ensure corresponding vertices. Then, each vertex pair is interpolated to include seven inner slices

As defined by the accompanied documentation element
index, anisotropy can be implicitly applied to hexahedral
SOLID185/186 or tetrahedral SOLID187/285 elements
by setting the axes of anisotropy parallel to one of the
directions of the local coordinate system (Fig. 8). Local
coordinate systems can be rotated relative to the global
coordinate system, allowing for each element to have a
unique axis of anisotropy for transversely isotropic mate-
rials. To capitalize on this and preserve the base model’s

Fig.8 Marching cubes algorithm implementation. (Left) ANSYS
node classification of hexahedral elements and orientation. (Right)
Modified marching cubes includes tetrahedral elements based on
node combinations. Currently showing 5 tetrahedral combinations
that fit within a single hex element. By running a voxelwise mesh-

fiber directionality, as well as fine control during simula-
tion setup and post processing, voxelwise discretization
procedures were opted for over standard solid meshing
algorithms. The procedure is an adaptation of the march-
ing cubes algorithm by Lorensen and Cline [36], where
an iterative process moves through all voxels over the
data set and marks any nodes that are at the 8 corners of
the voxel. The adapted portion is to include solid cubes
and tetrahedrons in the look-up table, rather than output

M Tetrahedron 1 P

M Tetrahedron 2 =

M Tetrahedron 3 Potacd i g 1N
Tetrahedron 4 n_ "~

M Tetrahedron5 . 7 / AN o

0.6 + " L
04—1

0.2 4

ing, the regular spacing of DT fiber coordinates can have a 1:1 fiber
to element setup. For tetrahedral elements, any fiber that would have
fit in the hex element is duplicated to fit in each of the tetrahedral ele-
ments
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a mesh. Due to the interpolation of the earlier model, all
nodes will lie at a corner. This simplifies the algorithm to
handle every combination of nodes within a voxel based
on a predefined set of orientations. The voxel is then
labeled as ‘In’, ‘Out’, or ‘Border’, where ‘Out’ voxels are
disregarded as there are no matched nodes, ‘In’ voxels
have all their corners matched to nodes within the model,
and ‘Border’ voxels have partial matches that can either
be disregarded, or broken down into a combination of
tetrahedrons that connect nodes in the model, as shown
in Fig. 8.

2.8 Mesh refinement

Post processing of harmonic waves in elastography require
that there are at least 4—8 datapoints per wavelength [27].
This requirement, along with the increased boundary errors
from a voxelwise mesh mean that the model has a restricted
resolution, typically weighted more towards the wave data
than the geometric boundary. To avoid having needlessly
fine resolutions over the entire model (and increasing com-
putational time), the mesh is refined only at the region of
interest near the wave source, while the rest of the model is
set to a resolution restricted by the geometry. The two reso-
lutions are connected using transition elements as outlined in
Fig. 9a, b. This gives the advantage of having lower compu-
tational times while maintaining the necessary thresholds to
reach convergence in nonlinear analyses. This style of mesh
refinement is based on levels, where each nth level of refine-
ment results in a reduction of 2" in size of each dimension,
or 23" more elements.

Level n=1 (1/2 along one dimension, 8x elements)

2.9 Verification of finite-element simulations

Verification of the model was done using experimental data
collected in house. Experiments consisted of two testing pre-
strains, 0% and 6% total strain on the sample, each of which
was evaluated with DT imaging for fiber information and
MR elastography scans for wave response. Samples con-
sisted of store-bought fresh (not frozen) chicken breast and
scans were performed on an Agilent 9.4 T 30 cm horizontal
bore preclinical scanner. DT imaging values for TR/TE were
3200/10 ms with a b value of 900 and 12 sampling direc-
tions with 3 averages. Sagittal scans were taken with a pixel
size of 0.75x0.75 mm and data matrix of 128 x 128 and 40,
1.5 mm thick vertical slices.

Wave motion was applied at a frequency of 600 Hz
and captured using a Sample Interval Modulation (SLIM)
[37] MR elastography sequence with TR/TE values of
1600/16 ms for 30 axial slices with an isotropic voxel size
of 0.75%0.75x0.75 mm and data matrix size of 64 X 64.
Eight (8) time steps with 180° offsets were taken for better
unwrapping. A motion encoding gradient cycle count of 10
with a power of 250mT/m were used. Both static pre-stress
and strain, overlayed with small amplitude harmonic actua-
tion were achieved using a custom-built experimental setup
that fixes one end of the sample and adds an adjustable static
tension to the other end while simultaneously actuating the
sample in the middle with a harmonic input. This actua-
tion was driven by a piezo-ceramic stack (P842.10, P USA
LP) oscillating at approximately 10 pm, where motion is
then transferred to a ring concentrically binding the roughly
cylindrical-shaped sample with motion polarized in the axial
direction, as shown in Fig. 10b.

2.22 ppw

4.44 ppw

8.86 ppw

17.76 ppw.

A X B

Fig.9 Transition elements in a voxelwise discretized model. A
Approach to mesh refinement starting first with dividing the z dimen-
sion in half and placing a node at half the x dimension, allowing for
hex and tetrahedral elements to still be used and keep regularity as
the mesh subdivides. B One level below the x and z subdivision, y is
subdivided, so that all levels downstream of the subdivision now have
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8 x the elements as the original. The process is reversed at the end of
the high-resolution region. C Visual representation of an attenuated
wave with regular sampling. At 2.2 pixels per wavelength, the wave
is poorly estimated. At 8.8 pixels per wavelength, the wave is well
defined, and any higher resolution has diminishing returns
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Fig. 10 Experimental Setup and Wave Sampling. A Example of a
masked cross-sectional wave image produced by MR elastography.
Red dotted lines indicate 16 sampled waves. B Diagram of setup.
Blue represents the cylindrical-shaped sample (chicken breast), while
red represents the harmonically actuated ring that gripped the sam-
ple approximately 1/3 of the way up. Actuation location is based on a
balance of torque on the piezo, and distance from the fixed (bottom)
end. Axial slice images were obtained at the axial center of the ring
for the strongest wave source. Tension T is applied at one end, while
the other end remained fixed

Experimental wave images were analyzed to estimate
the initial material properties for the sample. Wave analy-
sis consisted of sampling the mean of 20 cross-sectional
axial slices of the volumetric wave image produced by the
wave source, which was 15 mm. Vibrating the sample on
its outer cylindrical boundary using a ring with axially
polarized motion creates a radially convergent wavefront
as described by Guidetti and Royston [17], and so axial
motion was measured along 128 radial line profiles, from
the outer cylindrical boundary (actuator location) to the
central point of convergence, as shown in Fig. 10a. Out of
the 128 samples, a smaller section of 32 wave profiles that
showed consistent quality in all experiments was used for
the analysis. Each wave profile was fit to the wave equa-
tion, Eq. (9) to obtain the complex wave number, K, using
a Bessel fit method which is described in detail by Yasar
et al. [38] and shown in Eq. (10). Where u, is the initial
amplitude, i is \/—_1, u is the responding displacement,
x is the distance along the traveling wave, ¢ is time, J;, is
the Bessel function of the first kind, zeroth order, and @
is angular frequency. Equation (10) was fit using a least
squares method, where the phase shift, wave number, and
amplitude are free variables that can change with each
wave profile. It is expected that the wave number, K, will
remain relatively consistent, while the phase shifts depend-
ing on confounding factors. Doing so, the mean K of all
sampled wave profiles was taken as the estimated value
for that experiment. The experimental MR elastography
estimates were then used to determine all other material
property values used in all FE simulations:

U= uoei( [k,eal+ikimag]x—wt)’ (9)
Jo(Kx) .
u (X, 1) = iy JO(Kr)e ’ (10)

If fibers are oriented parallel to the axis of the cylindrical
sample, both simulation and experiment are inducing “fast”
(not “slow”) shear waves in transversely isotropic materi-
als, since the motion polarization is also along the cylinder
axis and thus, not perpendicular to the axis of isotropy. The
uniaxial static pre-stress is also parallel to the axis of isot-
ropy in this case. Based on this, Eq. (12) describes fast shear
wave speed by relating it to the density of the material, p
(assumed 1000 mg/ml for soft tissue), and the perpendicular
shear modulus, u,. Wave speed is estimated from K using
Eq. (11). The fast wave speed is a phase speed, and hence the
connection to K as an evaluative number. All other material
properties are then found using Egs. (13—16), which assume
near incompressibility and transverse isotropy. The shear
and tensile anisotropic ratio, ¢ and { were assigned values of
0.668 and 1.37, respectively, as estimated by Guertler et al.
[10] for the transversely isotropic chicken breast:

G =140, (12)
wy = 11+ ), (13)
§=G"/G, (14)
Ey = u (4¢+3), (15)
Ey=E ((+1). (16)

The FE model mimicked the experimental MR elastog-
raphy study, where the corresponding end of the model
that was clamped is held fixed, while the opposing end was
set with a given displacement equal to the length change
obtained in the experiments. Harmonic displacements with
axial polarization equaling 10 pm amplitude at 600 Hz
were applied to nodes on the outer cylindrical boundary at
the same location as the actuating ring in the experimental
setup. Nodes at the fixed and displaced ends were allowed
to rotate freely, move axially at the desired strain level and
were fixed for translational motion perpendicular to the axis
of tension.

First, a nonlinear static analysis was performed on the
model, with ten sub steps per strain to ensure convergence,
until the desired strain levels were reached. The solution was
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then linearized and saved for harmonic analysis. Within the
harmonic analysis, the linearized solution was loaded as a
prior state so that the stiffness matrix reflected the changed
material and the harmonic motion applied as an additional
perturbation (solution step) in Ansys.

Due to assumption of no prestress and isotropy in using a
Bessel function to solve the wave equation, ‘pre’ simulations
were ran and compared to the experimental wave images and
material properties adjusted iteratively to define the material
properties for the final FE simulations. Comparison con-
sisted of first analyzing the MR elastography, running a sim-
ulation, and then qualitatively matching wavelengths of the
MR elastography to the generated FE samples and adjust-
ing material values as needed until there was a satisfactory
match both by qualitative assessment and the estimated K.

The initial material properties at 600 Hz with 0% pre-
strain are given in Table 1.

2.10 Data analysis

Wave profiles of the FE simulations were obtained as
explained for the MR elastography experiments. Each
wave profile was fitted using a least squares method to the
closed form equation of an axially polarized wave propagat-
ing transversely in a cylinder, given by Eq. (10). The MR

elastography experimental estimates were used as reference
and each simulation estimation evaluated against it with a
relative error.

3 Results

Figure 11a—-c shows the stress distributions along the entire
sample and at the evaluated axial cross sections. It is impor-
tant to note that sharp variations in stress manifest in the
wave image as deviations from the concentric wave pattern.
Tractography of the sample at 0% total strain is shown in
Fig. 11a. The color scheme indicates the fiber track’s pri-
mary direction: magenta corresponding to the positive x
direction, green to the z direction, and blue to the y direction.
It is important to note that the fibers are not uniform across
the whole sample but are relatively uniform at a 57-degree
tilt from the main axis in the actuated region.

Figure 12 shows the wave analysis done on the MR elas-
tography acquisition (subfigures a—f) and DT informed FE
(subfigures g-1), respectively, where the first and third rows
correspond to 0% total strain, and second and fourth rows
correspond to 6% total strain. The second and third columns
show the real and imaginary fits, respectively (shown as a
red line), over the sampled displacements along each wave

Table 1 Estimated initial
material properties of chicken

@ ¢ My My Ey E, Damping

breast

Transversely isotropic (DT informed)

0.668 1.37 14,178 8500 72,080 30,414 0.635

5mm

Fig. 11 Stress analysis of finite-element solutions at 6% Total Strain.
A Tractography of the chicken breast sample. Color scheme indicates
the fiber track’s primary direction: magenta corresponding to the pos-
itive x direction, green to the z direction, and blue to the y direction.
Mean fiber angle from the z direction is 57 degrees within the actu-
ated region. B, C Axial stress estimates of the DT informed FE simu-
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lations have a complex distribution of stress and highlight how aniso-
tropic muscle affects this, even when material properties are uniform.
All stresses shown in the color scale are in Pascals. B Sagittal cross
section of the muscle sample, while (C) shows axial cross sections at
the same location as the analyzed wave images (outlined in red on B).
Sharp variations in stress regionally alter the wave patterns
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Fig. 12 Wave analysis of MR wave image (A-F) and FE simulations
(G-L). (A-C, G-I) Visualization at 0% total strain and (D-F, J-L)
visualization at 6% total strain. A, D, G, J Plotted wave image with
a circular mask applied. B, C, H, I Bessel fit (red line) overlayed on
sampled wave profiles plotted as displacements along the radius (A)
(gray dots). B Represents the real part of the complex wave, while C
represents the imaginary part. E, F, K, L Bessel fit of the 6% strained
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most uniformity among all experiments to avoid high variance when
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profile (shown as gray dots). Two significant notes are that
the wave profiles are not uniform due to the non-axisym-
metric geometry and from confounding factors within the
sample (assumed to be prestress, anisotropy, and standing
wave patterns). The first column shows the wave images,
where a curl was applied to remove longitudinal waves, and
a circular mask applied at the boundary to better align wave
profiles. Of note, sharp changes in stress shown in Fig. 11c
aligns well with the MR elastography wave image deviations
on the right side of the cross section. The boundaries of the
FE models have a significant impact on the wave phase as is
clear in Fig. 12j on the lower right bounds.

Table 2 shows estimates of K for the MR elastography
experimental data and DT informed FEA based off the
closed form solution to a cylindrical boundary as described
above. Relative error values are given in parentheses. At
0% total strain, the DT informed model had relative errors
of 10% and 20% for the real and imaginary components.
For the 6% total strain, DT informed model had 12% and
47% error.

4 Discussion

This paper lays out a design and application of a DT
informed FE model for studying wave propagation in com-
plex biological tissue. Figure 11 shows the complex distri-
bution patterns of stress in a DT informed FE simulation,
furthering the notion asserted by Blemker et al. of nonu-
niform muscle stress distribution due to fiber orientation.
Qualitative analysis of the wave images compared to the
stress distribution support the notion that stress effects wave
propagation. Where there are deviations in stress on the
cross-sectional images, there are also deviations from a con-
centrically propagating wave. Wave analysis showed that the
DT informed model had much higher relative errors in the
6% strain cases than 0% cases. This is believed to be partly
caused by the geometric boundary effects at 6% total strain,
which were greater than at 0% total strain. This outcome is
expected due to the derived equation’s assumptions of isot-
ropy, zero prestress, and infinite boundaries. Most current
methods make the same assumptions and are expected to

Table 2 Wave number (K) comparisons between FE approaches

K., (error) Kimag (erTOr)

0%

MR elastography 833 242

FE DT informed 750 (0.10) 296 (0.22)
6%

MR elastography 1061 369

FE DT informed 933 (0.12) 194 (0.47)
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lead to high levels of error, as well. Currently it is not known
how heterogeneous strain distributions effect wave propaga-
tion, and these differences seen in the finite-element simula-
tions can help determine this through parametric studies.
Further research is needed to address some limitations
of the current study. Affine linear transforms could be
improved upon using quaternion methods [39] for registra-
tion, as affine based registration tends to experience ‘gimble
lock’. Registration could also be improved upon by imple-
menting an iterative image matching algorithm to increase
reproducibility. Currently, the user must select points that
match in each model, while the interface provides visual
feedback, where the user then adjusts the points until the
feedback is correct. Although this is sufficient for the task,
matching algorithms take away user variability and pro-
vide more accurate results and have a wide usage, making
it better for use beyond proof of concept [40]. Due to the
scope of this paper and the issue of matching two differ-
ent data types, such algorithms were not implemented, but
room was given for future work. Another limitation is within
the voxelwise meshing used, which will result in bound-
ary errors in the finite-element analysis. By maintaining
a smaller voxel size and tetrahedral elements, these errors
are limited, but a better meshing algorithm that fills in the
border should be implemented to improve robustness. Sev-
eral limitations arise from wave analysis, which this paper
defines in the Introduction. First, wave propagation should
be interrogated from multiple polarization and propagation
direction to accurately characterize material properties [7,
8, 10, 27]. The setup used in this paper preferentially creates
axially polarized wave motion, which is in line with the axis
of tension. Further work is currently being undertaken to
develop other polarization and propagation options, where
the algorithm will be leveraged in design due to its ability
to induce multiple wave types in FE simulation. Waveguide
(finite boundary) effects are also neglected here in the inver-
sion algorithm, these effects may alter effect the relation-
ship between wavelength, frequency, and material proper-
ties [12]. The Bessel fit method accounts for standing waves
from the convergent cross section, but does not account for
interference from other slices. This limitation means that
estimates of the material properties will be inaccurate; how-
ever, iterative solutions have been used with success [41],
and therefore, the previously described iterative method used
as the base comparison was a way to limit the error from
these limitations. Other physical limitations exist in ex vivo
sample integrity. Over time, muscle samples can dry out and
their material properties will change. Due to the long acqui-
sition time of the experiments, rehydration of the muscle
could only take place every 45 min. To address this, a water
impermeable membrane was placed over the sample to limit
evaporation. Finally, this paper focuses on the design and
application of a finite-element model, not on wave theory,
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only one frequency was used to compare the finite-element
models to an experiment. The material properties obtained
from a single frequency will be dependent on that frequency.
As discussed by Papazoglou et al. [42], multiple frequencies
should be measured to estimate the frequency independent
material properties.

5 Conclusions

This work shows promising proof of concept for an algo-
rithm that fully utilizes DT imaging to build finite-element
models of complex, anisotropic structures. While the pre-
sented algorithm and methodology provide a foundation for
exploration of the interplay between anisotropy, prestress
and elastic moduli, and their impact on the resultant mechan-
ical wave behavior, a number of avenues for future improve-
ment of the overall approach are identified. Future work will
leverage such FE models to interrogate the limitations listed,
primarily different actuation motions, waveguide effects, and
differing boundary conditions, such as radial distance, exter-
nal compression, and smoother borders.
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