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Abstract
The combination of finite-element models with medical imaging has been a valuable contribution to our understanding 
of tissue mechanics. In recent years, diffusion tensor imaging has aided in modeling axonal tracts in the brain to measure 
mechanical stresses related to traumatic brain injuries. Other biological systems and diagnostic techniques can benefit from 
this approach. Dynamic elastography is a phase contrast imaging technique, where contrast is linked to the mechanical proper-
ties (elasticity and viscosity) of the imaged tissue. Mechanical properties are obtained from solving an inverse system based 
on mechanical wave motion, typically under the assumption that the tissue is homogeneous, isotropic and without initial 
(pre) stresses or strains. Biological tissues, however, rarely have all three of these properties and the degree to which these 
assumptions are inaccurate can lead to poor estimates. Muscle typically violates all three major assumptions and requires 
more refined approaches for elastic moduli estimation. using magnetic resonance-based diffusion tensor (DT) imaging to 
inform the generation of subject-specific finite-element (FE) models addresses this problem by explicitly accommodating 
for variations in muscle architecture. This allows for a more robust analysis of prestressed wave motion while compensating 
for situational geometric changes induced by the loading. The presented work demonstrates a pipeline from DT imaging to 
FE models and the resulting comparisons with analogous MR elastography experiments. This work will help in developing 
anisotropic and prestressed relevant inversion algorithms, therefore, improving the accuracy of muscle elastic and viscous 
moduli estimates.

Keywords  Elastography · Finite-element analysis · Diffusion tensor imaging · Acoustics · Computational Modeling · 
Skeletal muscle

1  Introduction

1.1 � Background and motivation

Elastography is an emerging contrast method that is applied 
to ultrasound (US), magnetic resonance (MR) imaging and 
optical coherence tomography (OCT) and aims to provide a 
quantitative value of the mechanical properties of tissue by 
measuring and interpreting deformation caused by complex 
waves. The elasticity tensor is an important component of 

pathology as pathogenesis is often accompanied by strong 
microstructural changes within the tissue, which is evident 
in histological examination [1–3]. Core tenants in structural 
engineering provide the case that elastic moduli are products 
of material structure, and therefore, it should be possible to 
infer structural changes through measuring material property 
changes [3–6]. Elastography-based viscoelastic estimations 
of biological tissue have often assumed isotropy, homoge-
neity, and no (zero) loading, or prestress. In recent years, 
however, groups have been expanding dynamic elastogra-
phy measurements to include anisotropy [7–10]. Despite 
this addition, the field still neglects prestress effects, which 
may impact the characteristics of wave propagation and lead 
to error. Previous analytical models have shown that wave 
speed is dependent on prestress in isotropic media [11]. 
These effects are expected to be greater in anisotropic media 
and may explain variation within current reported estimates, 
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especially when looking at the inaccuracies of fast shear 
wave estimation [7, 12]. Typically, assumptions of unloaded 
material were made for larger organs located in the viscera, 
such as the liver. However, tissues, such as muscle, or even 
more complex states of liver measurements, are under vary-
ing static or quasistatic loads that are non-negligible in value 
as compared to their elastic moduli, making it important to 
account for prestress in their material property estimation.

In 2007 the Radiological Society of North America 
(RSNA) formed a group dedicated to “improve the value and 
practicality of quantitative imaging biomarkers by reduc-
ing variability across devices, sites, patients and time” as 
described in their mission statement [13]. Key factors that 
determine the quality of quantitative biomarker are as fol-
lows [14]:

1.	 There is demonstrable validation for the precision and 
accuracy of a biomarker

2.	 There is an associated clinical endpoint
3.	 There is consistency with repeated measurements of the 

same sample
4.	 There is consistency between the measurements by sepa-

rate groups, machines or other operation dependent con-
ditions

5.	 There is satisfactory performance of the biomarker for 
its intended purpose

Elastography is well on its way to becoming a viable and 
useful biomarker, but it currently falls short when evaluating 
it based on these guidelines.

Specifically looking at points 3–4 above, it is necessary 
to understand the construction of an elastogram. As an engi-
neering concept, there exists a system with user input of a 
known harmonic function that acts on a material resulting in 
deformation. The forward problem of this scenario asks what 
the deformation is given a set of material properties, while 
the inverse problem asks what the material properties are 
given a set of deformations over the body. The elastogram 
is an attempt to solve the latter, and aptly named the ‘inver-
sion’ process. Elastography as we see in clinical practice, 
widely uses a form of inversion, where the phase speed of a 
wave is proportional to the square root of the shear modu-
lus. This proportionality is dependent on the tissue structure 
being isotropic, homogeneous, and without any preloading, 
which is a weak assumption for almost every organ or dis-
ease process.

Due to this, the measurements obtained using these 
assumptions can are classified as an effective modulus 
and may vary based on the operating conditions and could 
explain the wide variability in measurements. For example, 
differing regions of the same muscle may have differing 
group fiber directions. If the actuated motion is the same 
direction in both measurements, the same muscle will have 

different wave characteristics depending on where the meas-
urement is taken. This could alternatively be a good finding 
for specificity, but only in the appreciation of how anisotropy 
influence waves. Without that appreciation, variability will 
exist. It is important to move from effective measurements 
to more robust ones as the use of the technology expands, 
which is fortunately the case in anisotropic elastography 
[7–10, 15–17].

Structure is not the only source of variation in material 
properties though. Prestress is present in many biological 
systems as induced pressure from the cardiac cycle [18], 
compression from surrounding structures [19] and tension 
from lengthening–shortening cycles of motion. As another 
example, portal hypertension may cause a buildup of pres-
sure within the liver parenchyma; finding a nominal shear 
modulus for one group under specific conditions (presence 
of non-alcoholic fatty liver disease (NAFLD), no portal 
hypertension) may not be the same for another group with 
slightly altered conditions (presence of NAFLD, with portal 
hypertension). Several studies already show that there are 
measurable and highly correlated differences with hepatic 
venous pressure and measured stiffness within these patients 
and more severe progressions of the disease [20, 21]. With-
out appreciation for prestress, distinct groups such as these 
could ruin standardization of liver stiffness due to the clear 
confounding factor of pressure changes, but with proper 
appreciation, there could be potential for high specificity 
screening.

As stated previously, several groups have breached the 
subject of anisotropy in elastography, but none have built 
anatomically accurate FE models to explore its effects as it 
relates to prestress. In non-elastography based groups that 
study trauma of the brain and spine, there has been an effort 
to combine DT imaging with FE models [24–26]; however, 
within these models, it is difficult to simulate harmonic wave 
sources at specific locations, and the resolution and sampling 
intervals do not meet the requirements for signal processing 
[27].

Combining anisotropy and prestress further complicates 
the problem as the way stress distributes is necessary to 
understand and prevent it from becoming a confounding 
factor [22]. Complex, dynamic tissues, such as muscle non-
uniformly disperses stress throughout, leading to variation 
in the prestressed wave patterns based on location of the 
measurement [23]. Hence, two major questions arise: to 
what level does prestress effect shear wave propagation in 
different tissue architectures and how should one remove, or 
account for, the effect.

1.2 � Objectives

This research aims to begin answering these questions 
through the design of an algorithm that converts diffusion 
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tensor (DT) imaging data into finite-element (FE) models 
that satisfy criteria for simulations of elastography. Extend-
ing on the methods of DT–FE algorithms used in other 
fields, but satisfying wave processing requirements, will 
allow for more in-depth analysis of wave propagation in 
complex tissues.

2 � Methods

Figure 1 shows the overall steps taken from image acquisi-
tion to simulation. Each step will be broken down for further 
explanation.

2.1 � Image segmentation

The model was first built using DT images obtained from the 
open-source database created by Bolsterlee et al. [28] MR 
magnitude images of the human lower leg from this database 
were taken on a 3 T scanner using the following parameters: 
TR/TE of 1842/8 ms, with a 288 × 215 data matrix for a 
voxel size of 0.1875 × 0.1875x5mm. DT images had a TR/
TE of 8522/63 ms, voxel size of 1.875 × 1.875 × 5 mm, 16 
directions with 2 averages and a b value of 500 s/mm2. After 
the algorithm was designed, it was later tested on in-house 
scans, where additional MR wave images could be captured 
to verify the process. In-house scans were done on fresh 
chicken breast obtained from a local butcher shop (see verifi-
cation of finite-element simulation for imaging parameters). 
All MR magnitude images were initially converted to 3D 

models using a commercially available software, ITK–SNAP 
[29], which output stereolithography (STL) files. The choice 
in using this method allows for any ‘MRI-to-3D model’ tool 
to be used as the initial step in segmenting anatomy. STL 
files are built upon trigonal meshing, which convolutes the 
original slice planes, as any mesh face can span multiple 
slices. If the resolution of the scan slice thickness is not fine 
enough, the 3D model will be blocky, as shown in Figs. 2a 
and 3a. This also will create an issue, where there is no logi-
cal ordering to the vertices, making it difficult to process 
any further.

Slices are first reconstructed through a filtering technique 
aimed at identifying ‘Mach edges’ [30, 31], where pseu-
docode of the algorithm is shown in Appendix A.1. A ‘Mach 
edge’ is defined as an edge between two contrasting values 
in a gradient (Fig. 2a, b). Assuming that the in-plane vertices 
are closer than slice planes, the mesh vertices transitioning 
between slice planes create the gradient, while edges of the 
blocky slice create the ‘Mach edge’.

First, the Euclidean distance of each vertex from the cen-
troid of the model is calculated using Eq. 1, where D is a 
vector of each vertex’s distance, A is the original n × 3 point 
matrix, and C is the 1 × 3 centroid coordinate. Reordering the 
nodes, based on their distance, D and taking the square of third 
derivative, or geometric torsion, of this newly ordered data 
set will then produce spikes at regions, where the slice plane 
jumps to the next (Fig. 2c). Simply filtering out all vertices 
lower than 1% of the max peak will get rid of most ‘gradient’ 
vertices. The vertices are filtered a second time by keeping 
only the slices that contain vertex counts within 1 standard 

Fig. 1   Pipeline from Image to 
3D model. Flow diagram show-
ing the major processes taken to 
convert a basic DT scan session 
into a finite-element model in 
ANSYS. MR magnitude images 
are segmented in an image seg-
mentation software, imported 
into MATLAB, where nodes 
are refactored and interpolated 
for masking. DT information is 
processed using DSI Studio and 
then imported into MATLAB 
for masking. After registering 
the DT images and MR magni-
tude images, the fiber model is 
then masked and interpolated 
to the desired resolution and 
discretized for finite-element 
simulation
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deviation from the mean count of vertices within each unique 
potential slice plane created from the previously filtered set 
(Fig. 3b). This is possible due to the number of nodes within 
each actual slice being substantially greater than any erroneous 
values elsewhere (Fig. 2d). Finally, to obtain the maximum 
density of nodes per slice, the original trigonal mesh faces are 
projected onto the doubly filtered slices (Fig. 3c):

(1)D =

�������(A − C)2

⎧⎪⎨⎪⎩

1

1

1

⎫⎪⎬⎪⎭
.

2.2 � Node refactoring

The end goal is to create a discretized model with regu-
lar meshing that corresponds to the acquired DT images. 
Regular meshing requires two properties from the data 
set: the data has equally spaced vertices, and the corre-
sponding faces are equal (i.e., all quads or all tris) [32]. 
We go further to include voxelwise meshing to get the 
closest correlation without excessive interpolation of the 
data. Therefore, complex approximations of non-convex 
hulls are not applicable. Parametric, linear, or polyno-
mial approximations can be used for each slice shape. 
However, this requires logical ordering. Ordering of non-
convex shapes can be difficult, so a recursive approach 
was applied as shown in the flow diagram, Fig. 4, and 
outlined in pseudocode in Appendix A.2. For each slice, a 
minimum of two points are found based off another chosen 

0

0.5

1

1.5

2

2.5

3

X-coordinate [mm]

Y-
co

or
di

na
te

 [m
m

]

Vertex Number

Di
st

an
ce

 [m
m

]

Vertex Number

To
rs

io
n

Y-coordinate [mm]

Ve
rt

ex
 C

ou
nt

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

-5

0

5

10

15

20

25

30

-1 -0.5 0 0.5 1 1.5 2

0 10 20 30 40 50 60 70 80 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

BA

DC

Fig. 2   Representation of Mach Edge Decomposition. A Sampled 
vertices from two slices at y = 1 and y = 2. Vertices fill in the space 
between slices creating a blocky model. The red point at (− 1, 3) rep-
resents an arbitrary centroid used to calculate the distance between 
it and each vertex. B Plotted distance between the centroid and each 
vertex with slight peaks at the mach edge, representing the begin-
ning of a slice. C Third derivative of the distances plotted against 

each vertex visualizes, where the slices begin (at either the peak or 
valley). Vertex 20 and 22 represent a band at which the first mach 
edge exists, the corresponding y coordinates for each are 0.095 and 1, 
respectively. D All points in the original model are counted that lie at 
potential mach edges, where it becomes clear that y = 1 and y = 2 are 
the slice planes
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or random starting point by closest proximity. This gives 
the minimum number of points needed to create a shape; 
if this fails, the slice is considered a line or a point and 
is disregarded. A data matrix is created with these three 
points, and the last point is used to find the next nearest 
point, which is then added to the matrix. This continues 
until the last point to be found is the same as the first point. 
Any points that are not within the constructed data matrix 
are stored in an ‘odd’ matrix and sent through the same 
ordering process. This continues until every point has been 
ordered into sets. This leaves several ‘odd’ matrices that 
correspond to segments of the boundary and one ‘shape’ 
matrix roughly defines slice as a convex hull (Fig. 5b). The 
point of concavity will mark the end of a segment. Each 
segment is then connected by another recursive process. 
The end point of the ‘shape’ matrix is used to find the clos-
est point within one of the ‘odd’ sets. The selected ‘odd’ 
set is then reordered based off the nearest point and the 
reordered nodes are connected to the starting shape, while 
any missed nodes are added back into the collection of 
‘odd’ sets (Fig. 5c). This process then repeats until every 
set is connected. Due to the recursive nature, this process 

may repeat several times and break previously created seg-
ments, until a combination of points is reached such that 
every node has an optimal neighbor (Fig. 5d).

To decrease computational time, the number of nodes in 
each slice can be forced using Chebyshev spacing, which 
postulates a more optimal data set for approximation tech-
niques [33]. This is outlined in pseudocode in Appendix 
A.3. Equations (2) and (3) give the kth node in Chebyshev 
space (written as c ) on the interval [a, b], where k is every 
positive integer from 1 to the desired number of nodes, n:

Coordinates of the above optimized nodes are found 
using a Lagrange approximation shown in Eqs.  (4, 5). 
The original data set is first parameterized, where t  is the 
original number of nodes, Y  corresponds to the in-plane 
slice coordinates of the original node, Y ′ is the optimized 
coordinates, and an x with a subscript represents the cur-
rent ith and jth original node:

(2)ck = (b − (b − a)∕2) + cos
(
�k
)
∗ (b − a)∕2,

(3)�k =
k − 1

n − 1
�.

Fig. 3   Back calculating slices from a segmentation of an in vivo scan 
of a human lower limb. A Original point cloud of the segmented 
soleus muscle created by ITK-Snap using a data set published by 
Bolsterlee et  al. This shows rough transitions between slices, where 
nodes are not exclusively within slice planes. B Slice planes are fil-
tered out using a third-order derivative signal processing filtration, 

to clear out remaining noise, only z values with corresponding ver-
tex count within one standard deviation from the mean z value ver-
tex count are kept. C Maximization of vertices is achieved by taking 
the filtered z values and projecting all vertices from the original point 
cloud to the new z’s, setting up the best initial state for node refactor-
ing
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2.3 � Diffusion tensor image processing

DSI studio was used to reconstruct fibers using a determin-
istic algorithm [34] and imported into MATLAB for fur-
ther processing. Imported files had at least two associated 
data sets corresponding to a 3 by 1 vector containing the 
DT data matrix size, and a 1 by 3*n array that specifies the 
decomposed directions in the x, y and z dimensions, where 
each vector’s x-coordinate are the 1 + 3(n − 1)th data point, 
y is the 2 + 3(n + 1)th data point, and z is the 3 + 3(n − 1)th 
data point (n being the vector node); all of which is outlined 
in more detail in the DSI studio manual [34]. Muscle has 
relatively strong anisotropy, so the main direction from the 
data set was assumed to be the direction of the fiber. Since 
the directional data set is based on a volumetric image of a 
size given by the dimensional vector, this subroutine simply 

(4)Y �(c) =

t∑
i=0

Yili(c),

(5)li(c) =

t∏
j,j≠i

c − xj

xi − xj
.

reshapes the directional data set into a n by 6 array using the 
dimensional vector, where n is the number of data points 
and the columns correspond to the coordinates of the fiber 
vector’s origin (x, y, z) and the normalized direction (u, v, 
w). In this way, the first three columns fit a standard finite-
element point matrix.

2.4 � Image registration

A custom interface was developed to co-register the DT and 
segmented data sets. Being that the segmented data set is a 
derivative of the magnitude image data set, an affine linear 
transformation is all that is needed to register the two sets. 
Both the magnitude image and DT sets are multiplied by 
their pixel size to obtain their physical sizes, which itself 
registers DT and the magnitude images. The segmented data 
set can then be registered to the magnitude image set, which 
indirectly aligns it with the DT image. This step is necessary 
due to image segmentation software outputting their own 
coordinate systems for the vertices, which may or may not 
be stretched or rotated compared to the actual MR system.

Transformation was done using Eqs. (6–8). In affine image 
registration problems, one coordinate system can be trans-
formed into another by stretching and rotating the elementary 
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Fig. 4   Flow diagram of ordered points algorithm. Each slice is input 
into the algorithm, where a vertex is chosen corresponding to the 
lowest y coordinate and middle x coordinate in the default 2D orien-
tation. From this vertex, two nearest vertices are found to guarantee 
the slice can fit a shape. If two other vertices are not found within 
the entire slice, then it is rejected. From there, a recursive process 
finds all nearest vertices from the last active vertex until the shape is 
connected back to the initial vertex. All non-connected vertices are 

stored in a separate segment data set and repeat the process, with the 
exception of rejecting the entire slice. Once all vertices are connected 
via the segment they are in, the segments are connected to each other 
through a nearest neighbors’ algorithm and their vertices are reor-
dered, where the starting point is now the connecting vertex between 
segments. This process repeats until every segment is connected, pro-
ducing a shape with ordered vertices
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vectors that make up the basis, and by translating the origin. 
Equation (6) shows p′ as the registered point that undergoes a 
transformation T and translation t. To simplify the solution, T 
and t can be combined into a matrix by concatenating colum-
nwise and adding a row of zeros under the rotational part, and 
1 to the translational part. In such a way, T and t can be solved 
simultaneously by solving a system of equations, where p  and 
p

′ are concatenated forms as shown in Eq. (8). In order for this 
method to work, n + 1 equations must be used, since T is an 
n-by-n matrix and t is an n by 1 matrix, where n is the number 
of degrees of freedom. For example, in a 3D system, there are 
12 unknowns (3 × 3 from T and 3 × 1 from t) and each equa-
tion has 3 knowns ( px ,  py and pz ), so 4 points will be needed 
to have 12 total equations. At least n points must be linearly 
independent to create an orthogonal basis in the transforma-
tion matrix. This means for the algorithm; each point must be 

manually selected from at least two different slices in a 3D data 
set. Figure 6 shows the selection process for a sample soleus. 
To ensure precision, the middle slice and one end slice in both 
image sets were selected and the contours were compared. 
Once the corresponding slices were found, landmark points 
are selected and used for the affine transformation:

(6)p
�

= Tp + t,Q =

[
T t

0 1

]
, p

�

= Qp,
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Fig. 5   Ordering points in a concave shape. A Starting point cloud, 
where all points are assumed to create a shape with no intersecting 
lines. B After one round of the node ordering algorithm, three seg-
ments are created: one main segment and two smaller segments. The 
smaller segments are created and ordered by undergoing sub-rounds 
of the ordering process until all points are assigned a segment and 
ordered within its respective segment. In this example, one off set 

consisting of 3 points was created, followed by another off set consist-
ing of a single point (indicated by an arrow). C After a second round, 
segments 1 and 2 are connected based on the two vertices closest to 
each other. The new set is reordered starting from these two verti-
ces. The third segment remains an off set. D Final round connects the 
third segment to the larger one and all points are reordered, giving the 
final shape of the slice



	 Engineering with Computers

1 3

2.5 � Shape interpolation

The correct resolution in the z direction is obtained by inter-
polating the shape from one slice to another. The parametric 
interpolation technique used during the optimization process 
can be reused here in a modified manner. In the previous 
use, each slice was forced to have an equal number of nodes 
while also having each slice ordered in the same way from 
the ordering algorithm. This creates a system, where every 
slice has corresponding counterpart vertices amongst all 
slices, and therefore, counterparts can be set as data points 
on a curve from the minimum slice to the maximum. Inter-
polation of each curve based on a predefined resolution for z, 
results in interpolated slices. An example from the soleus is 
given in Fig. 7, interpolating two primary slices to six, where 
the lower is a circle and the upper is a square.

2.6 � Fiber masking and interpolation

If the region of interest is smaller than the full specimen, the 
registered segmented data can be used as a mask using an 

(8)

⎛⎜⎜⎜⎝

p�x
p�y
p�z
1

⎞
⎟⎟⎟⎠
=

⎡
⎢⎢⎢⎣
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T21 T22 T23 ty
T31 T32 T33 tz
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⎤
⎥⎥⎥⎦

⎛⎜⎜⎜⎝

px
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pz
1

⎞
⎟⎟⎟⎠
.

efficient implementation of the winding numbers in polygon 
point algorithm as described by Hormann and Agathos in 
[35]; which samples points from one data set to determine 
if they are within another’s boundary and outputs a logical 
array that meets the condition. The origins of the fiber direc-
tions in the DT data set are input as the query set and the 
segmented model is input as the boundary set. The output 
is then a voxelwise data set of only the DT data within the 
desired boundary. After masking, both the fiber origin coor-
dinates and direction vectors are saved as a new n × 6 matrix.

Due to the regularity of the data points, trilinear inter-
polation techniques are all that is needed to create artifi-
cial vectors at alternate resolutions. Here, the directional 
components, u, v, and w, of the fiber vector are considered 
separately in the system and what will be interpolated as 
such. Equations (4 and 5) are used in this process, where one 
dimension is interpolated at a time. Here, Y’ is now a matrix 
of the desired coordinates, c, for the respective dimension, x 
is the original respective dimension’s coordinates, and Y is 
the original matrix. The second and third round consists of c 
being the desired coordinates of their respective dimension, 
but Y is now the previous round’s output, Y’.

2.7 � Model discretization

Ansys® Academic Research Mechanical, Release 19 was 
used as the targeted finite-element analyzing software. 

Fig. 6   Point selection for co-
registration. Top left: segmented 
data model of a human soleus 
cross section with three of the 
four registration points shown 
in red. Top right: T1-weighted 
image of the corresponding 
lower leg with superimposed 
data model stretched, rotated, 
and mirrored to align registra-
tion points. Lower left: DT fiber 
map of the lower leg, where 
colors are mixed in an RGB 
color scheme depending on 
the overall contribution to the 
fiber direction. Lower right: 
superimposed co-registered data 
model onto the DT fiber map, 
outlining the diffusion vectors 
belonging to the soleus. Custom 
Affine image registration allows 
for the segmented data model to 
be registered to the magnitude 
image. Superimposing this onto 
the DT image allows for mask-
ing based on anatomy
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As defined by the accompanied documentation element 
index, anisotropy can be implicitly applied to hexahedral 
SOLID185/186 or tetrahedral SOLID187/285 elements 
by setting the axes of anisotropy parallel to one of the 
directions of the local coordinate system (Fig. 8). Local 
coordinate systems can be rotated relative to the global 
coordinate system, allowing for each element to have a 
unique axis of anisotropy for transversely isotropic mate-
rials. To capitalize on this and preserve the base model’s 

fiber directionality, as well as fine control during simula-
tion setup and post processing, voxelwise discretization 
procedures were opted for over standard solid meshing 
algorithms. The procedure is an adaptation of the march-
ing cubes algorithm by Lorensen and Cline [36], where 
an iterative process moves through all voxels over the 
data set and marks any nodes that are at the 8 corners of 
the voxel. The adapted portion is to include solid cubes 
and tetrahedrons in the look-up table, rather than output 
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Fig. 7   Shape interpolation. Example of interpolating two slices of the soleus in eight steps. First, Chebyshev approximation is applied to the cir-
cle and square slices to ensure corresponding vertices. Then, each vertex pair is interpolated to include seven inner slices
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Fig. 8   Marching cubes algorithm implementation. (Left) ANSYS 
node classification of hexahedral elements and orientation. (Right) 
Modified marching cubes includes tetrahedral elements based on 
node combinations. Currently showing 5 tetrahedral combinations 
that fit within a single hex element. By running a voxelwise mesh-

ing, the regular spacing of DT fiber coordinates can have a 1:1 fiber 
to element setup. For tetrahedral elements, any fiber that would have 
fit in the hex element is duplicated to fit in each of the tetrahedral ele-
ments
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a mesh. Due to the interpolation of the earlier model, all 
nodes will lie at a corner. This simplifies the algorithm to 
handle every combination of nodes within a voxel based 
on a predefined set of orientations. The voxel is then 
labeled as ‘In’, ‘Out’, or ‘Border’, where ‘Out’ voxels are 
disregarded as there are no matched nodes, ‘In’ voxels 
have all their corners matched to nodes within the model, 
and ‘Border’ voxels have partial matches that can either 
be disregarded, or broken down into a combination of 
tetrahedrons that connect nodes in the model, as shown 
in Fig. 8.

2.8 � Mesh refinement

Post processing of harmonic waves in elastography require 
that there are at least 4–8 datapoints per wavelength [27]. 
This requirement, along with the increased boundary errors 
from a voxelwise mesh mean that the model has a restricted 
resolution, typically weighted more towards the wave data 
than the geometric boundary. To avoid having needlessly 
fine resolutions over the entire model (and increasing com-
putational time), the mesh is refined only at the region of 
interest near the wave source, while the rest of the model is 
set to a resolution restricted by the geometry. The two reso-
lutions are connected using transition elements as outlined in 
Fig. 9a, b. This gives the advantage of having lower compu-
tational times while maintaining the necessary thresholds to 
reach convergence in nonlinear analyses. This style of mesh 
refinement is based on levels, where each nth level of refine-
ment results in a reduction of 2n in size of each dimension, 
or 23n more elements.

2.9 � Verification of finite‑element simulations

Verification of the model was done using experimental data 
collected in house. Experiments consisted of two testing pre-
strains, 0% and 6% total strain on the sample, each of which 
was evaluated with DT imaging for fiber information and 
MR elastography scans for wave response. Samples con-
sisted of store-bought fresh (not frozen) chicken breast and 
scans were performed on an Agilent 9.4 T 30 cm horizontal 
bore preclinical scanner. DT imaging values for TR/TE were 
3200/10 ms with a b value of 900 and 12 sampling direc-
tions with 3 averages. Sagittal scans were taken with a pixel 
size of 0.75 × 0.75 mm and data matrix of 128 × 128 and 40, 
1.5 mm thick vertical slices.

Wave motion was applied at a frequency of 600  Hz 
and captured using a Sample Interval Modulation (SLIM) 
[37] MR elastography sequence with TR/TE values of 
1600/16 ms for 30 axial slices with an isotropic voxel size 
of 0.75 × 0.75 × 0.75 mm and data matrix size of 64 × 64. 
Eight (8) time steps with 180° offsets were taken for better 
unwrapping. A motion encoding gradient cycle count of 10 
with a power of 250mT/m were used. Both static pre-stress 
and strain, overlayed with small amplitude harmonic actua-
tion were achieved using a custom-built experimental setup 
that fixes one end of the sample and adds an adjustable static 
tension to the other end while simultaneously actuating the 
sample in the middle with a harmonic input. This actua-
tion was driven by a piezo-ceramic stack (P842.10, PI USA 
LP) oscillating at approximately 10 μm, where motion is 
then transferred to a ring concentrically binding the roughly 
cylindrical-shaped sample with motion polarized in the axial 
direction, as shown in Fig. 10b.

Fig. 9   Transition elements in a voxelwise discretized model. A 
Approach to mesh refinement starting first with dividing the z dimen-
sion in half and placing a node at half the x dimension, allowing for 
hex and tetrahedral elements to still be used and keep regularity as 
the mesh subdivides. B One level below the x and z subdivision, y is 
subdivided, so that all levels downstream of the subdivision now have 

8 × the elements as the original. The process is reversed at the end of 
the high-resolution region. C Visual representation of an attenuated 
wave with regular sampling. At 2.2 pixels per wavelength, the wave 
is poorly estimated. At 8.8 pixels per wavelength, the wave is well 
defined, and any higher resolution has diminishing returns
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Experimental wave images were analyzed to estimate 
the initial material properties for the sample. Wave analy-
sis consisted of sampling the mean of 20 cross-sectional 
axial slices of the volumetric wave image produced by the 
wave source, which was 15 mm. Vibrating the sample on 
its outer cylindrical boundary using a ring with axially 
polarized motion creates a radially convergent wavefront 
as described by Guidetti and Royston [17], and so axial 
motion was measured along 128 radial line profiles, from 
the outer cylindrical boundary (actuator location) to the 
central point of convergence, as shown in Fig. 10a. Out of 
the 128 samples, a smaller section of 32 wave profiles that 
showed consistent quality in all experiments was used for 
the analysis. Each wave profile was fit to the wave equa-
tion, Eq. (9) to obtain the complex wave number, K, using 
a Bessel fit method which is described in detail by Yasar 
et al. [38] and shown in Eq. (10). Where u0 is the initial 
amplitude, i is 

√
−1 , u is the responding displacement, 

x is the distance along the traveling wave, t is time, J0 is 
the Bessel function of the first kind, zeroth order, and ω 
is angular frequency. Equation (10) was fit using a least 
squares method, where the phase shift, wave number, and 
amplitude are free variables that can change with each 
wave profile. It is expected that the wave number, K, will 
remain relatively consistent, while the phase shifts depend-
ing on confounding factors. Doing so, the mean K of all 
sampled wave profiles was taken as the estimated value 
for that experiment. The experimental MR elastography 
estimates were then used to determine all other material 
property values used in all FE simulations:

If fibers are oriented parallel to the axis of the cylindrical 
sample, both simulation and experiment are inducing “fast” 
(not “slow”) shear waves in transversely isotropic materi-
als, since the motion polarization is also along the cylinder 
axis and thus, not perpendicular to the axis of isotropy. The 
uniaxial static pre-stress is also parallel to the axis of isot-
ropy in this case. Based on this, Eq. (12) describes fast shear 
wave speed by relating it to the density of the material, ρ 
(assumed 1000 mg/ml for soft tissue), and the perpendicular 
shear modulus, µ⊥. Wave speed is estimated from K using 
Eq. (11). The fast wave speed is a phase speed, and hence the 
connection to K as an evaluative number. All other material 
properties are then found using Eqs. (13–16), which assume 
near incompressibility and transverse isotropy. The shear 
and tensile anisotropic ratio, φ and ζ were assigned values of 
0.668 and 1.37, respectively, as estimated by Guertler et al. 
[10] for the transversely isotropic chicken breast:

The FE model mimicked the experimental MR elastog-
raphy study, where the corresponding end of the model 
that was clamped is held fixed, while the opposing end was 
set with a given displacement equal to the length change 
obtained in the experiments. Harmonic displacements with 
axial polarization equaling 10 µm amplitude at 600 Hz 
were applied to nodes on the outer cylindrical boundary at 
the same location as the actuating ring in the experimental 
setup. Nodes at the fixed and displaced ends were allowed 
to rotate freely, move axially at the desired strain level and 
were fixed for translational motion perpendicular to the axis 
of tension.

First, a nonlinear static analysis was performed on the 
model, with ten sub steps per strain to ensure convergence, 
until the desired strain levels were reached. The solution was 

(9)u = u0e
i(
[
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Fig. 10   Experimental Setup and Wave Sampling. A Example of a 
masked cross-sectional wave image produced by MR elastography. 
Red dotted lines indicate 16 sampled waves. B Diagram of setup. 
Blue represents the cylindrical-shaped sample (chicken breast), while 
red represents the harmonically actuated ring that gripped the sam-
ple approximately 1/3 of the way up. Actuation location is based on a 
balance of torque on the piezo, and distance from the fixed (bottom) 
end. Axial slice images were obtained at the axial center of the ring 
for the strongest wave source. Tension T is applied at one end, while 
the other end remained fixed
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then linearized and saved for harmonic analysis. Within the 
harmonic analysis, the linearized solution was loaded as a 
prior state so that the stiffness matrix reflected the changed 
material and the harmonic motion applied as an additional 
perturbation (solution step) in Ansys.

Due to assumption of no prestress and isotropy in using a 
Bessel function to solve the wave equation, ‘pre’ simulations 
were ran and compared to the experimental wave images and 
material properties adjusted iteratively to define the material 
properties for the final FE simulations. Comparison con-
sisted of first analyzing the MR elastography, running a sim-
ulation, and then qualitatively matching wavelengths of the 
MR elastography to the generated FE samples and adjust-
ing material values as needed until there was a satisfactory 
match both by qualitative assessment and the estimated K.

The initial material properties at 600 Hz with 0% pre-
strain are given in Table 1.

2.10 � Data analysis

Wave profiles of the FE simulations were obtained as 
explained for the MR elastography experiments. Each 
wave profile was fitted using a least squares method to the 
closed form equation of an axially polarized wave propagat-
ing transversely in a cylinder, given by Eq. (10). The MR 

elastography experimental estimates were used as reference 
and each simulation estimation evaluated against it with a 
relative error.

3 � Results

Figure 11a–-c shows the stress distributions along the entire 
sample and at the evaluated axial cross sections. It is impor-
tant to note that sharp variations in stress manifest in the 
wave image as deviations from the concentric wave pattern. 
Tractography of the sample at 0% total strain is shown in 
Fig. 11a. The color scheme indicates the fiber track’s pri-
mary direction: magenta corresponding to the positive x 
direction, green to the z direction, and blue to the y direction. 
It is important to note that the fibers are not uniform across 
the whole sample but are relatively uniform at a 57-degree 
tilt from the main axis in the actuated region.

Figure 12 shows the wave analysis done on the MR elas-
tography acquisition (subfigures a–f) and DT informed FE 
(subfigures g–l), respectively, where the first and third rows 
correspond to 0% total strain, and second and fourth rows 
correspond to 6% total strain. The second and third columns 
show the real and imaginary fits, respectively (shown as a 
red line), over the sampled displacements along each wave 

Table 1   Estimated initial 
material properties of chicken 
breast

φ ζ µ|| µ⊥ E|| E⊥ Damping

Transversely isotropic (DT informed) 0.668 1.37 14,178 8500 72,080 30,414 0.635

Fig. 11   Stress analysis of finite-element solutions at 6% Total Strain. 
A Tractography of the chicken breast sample. Color scheme indicates 
the fiber track’s primary direction: magenta corresponding to the pos-
itive x direction, green to the z direction, and blue to the y direction. 
Mean fiber angle from the z direction is 57 degrees within the actu-
ated region. B, C Axial stress estimates of the DT informed FE simu-

lations have a complex distribution of stress and highlight how aniso-
tropic muscle affects this, even when material properties are uniform. 
All stresses shown in the color scale are in Pascals. B Sagittal cross 
section of the muscle sample, while (C) shows axial cross sections at 
the same location as the analyzed wave images (outlined in red on B). 
Sharp variations in stress regionally alter the wave patterns
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Fig. 12   Wave analysis of MR wave image (A–F) and FE simulations 
(G–L). (A–C, G–I) Visualization at 0% total strain and (D–F, J–L) 
visualization at 6% total strain. A, D, G, J Plotted wave image with 
a circular mask applied. B, C, H, I Bessel fit (red line) overlayed on 
sampled wave profiles plotted as displacements along the radius (A) 
(gray dots). B Represents the real part of the complex wave, while C 
represents the imaginary part. E, F, K, L Bessel fit of the 6% strained 
case. The Bessel fit accounts for shift in phase (manifesting as over-

lapping sinusoids that are clearest, where the gray dots are most 
dense). Fits for the wave number, K, remain stable by allowing the 
phase to change with each sample. Sample lines are taken from the 
curved outer boundary of the cylindrical cross section to the center 
of the converging wave. Samples are then culled to a region with the 
most uniformity among all experiments to avoid high variance when 
fitting
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profile (shown as gray dots). Two significant notes are that 
the wave profiles are not uniform due to the non-axisym-
metric geometry and from confounding factors within the 
sample (assumed to be prestress, anisotropy, and standing 
wave patterns). The first column shows the wave images, 
where a curl was applied to remove longitudinal waves, and 
a circular mask applied at the boundary to better align wave 
profiles. Of note, sharp changes in stress shown in Fig. 11c 
aligns well with the MR elastography wave image deviations 
on the right side of the cross section. The boundaries of the 
FE models have a significant impact on the wave phase as is 
clear in Fig. 12j on the lower right bounds.

Table 2 shows estimates of K for the MR elastography 
experimental data and DT informed FEA based off the 
closed form solution to a cylindrical boundary as described 
above. Relative error values are given in parentheses. At 
0% total strain, the DT informed model had relative errors 
of 10% and 20% for the real and imaginary components. 
For the 6% total strain, DT informed model had 12% and 
47% error.

4 � Discussion

This paper lays out a design and application of a DT 
informed FE model for studying wave propagation in com-
plex biological tissue. Figure 11 shows the complex distri-
bution patterns of stress in a DT informed FE simulation, 
furthering the notion asserted by Blemker et al. of nonu-
niform muscle stress distribution due to fiber orientation. 
Qualitative analysis of the wave images compared to the 
stress distribution support the notion that stress effects wave 
propagation. Where there are deviations in stress on the 
cross-sectional images, there are also deviations from a con-
centrically propagating wave. Wave analysis showed that the 
DT informed model had much higher relative errors in the 
6% strain cases than 0% cases. This is believed to be partly 
caused by the geometric boundary effects at 6% total strain, 
which were greater than at 0% total strain. This outcome is 
expected due to the derived equation’s assumptions of isot-
ropy, zero prestress, and infinite boundaries. Most current 
methods make the same assumptions and are expected to 

lead to high levels of error, as well. Currently it is not known 
how heterogeneous strain distributions effect wave propaga-
tion, and these differences seen in the finite-element simula-
tions can help determine this through parametric studies.

Further research is needed to address some limitations 
of the current study. Affine linear transforms could be 
improved upon using quaternion methods [39] for registra-
tion, as affine based registration tends to experience ‘gimble 
lock’. Registration could also be improved upon by imple-
menting an iterative image matching algorithm to increase 
reproducibility. Currently, the user must select points that 
match in each model, while the interface provides visual 
feedback, where the user then adjusts the points until the 
feedback is correct. Although this is sufficient for the task, 
matching algorithms take away user variability and pro-
vide more accurate results and have a wide usage, making 
it better for use beyond proof of concept [40]. Due to the 
scope of this paper and the issue of matching two differ-
ent data types, such algorithms were not implemented, but 
room was given for future work. Another limitation is within 
the voxelwise meshing used, which will result in bound-
ary errors in the finite-element analysis. By maintaining 
a smaller voxel size and tetrahedral elements, these errors 
are limited, but a better meshing algorithm that fills in the 
border should be implemented to improve robustness. Sev-
eral limitations arise from wave analysis, which this paper 
defines in the Introduction. First, wave propagation should 
be interrogated from multiple polarization and propagation 
direction to accurately characterize material properties [7, 
8, 10, 27]. The setup used in this paper preferentially creates 
axially polarized wave motion, which is in line with the axis 
of tension. Further work is currently being undertaken to 
develop other polarization and propagation options, where 
the algorithm will be leveraged in design due to its ability 
to induce multiple wave types in FE simulation. Waveguide 
(finite boundary) effects are also neglected here in the inver-
sion algorithm, these effects may alter effect the relation-
ship between wavelength, frequency, and material proper-
ties [12]. The Bessel fit method accounts for standing waves 
from the convergent cross section, but does not account for 
interference from other slices. This limitation means that 
estimates of the material properties will be inaccurate; how-
ever, iterative solutions have been used with success [41], 
and therefore, the previously described iterative method used 
as the base comparison was a way to limit the error from 
these limitations. Other physical limitations exist in ex vivo 
sample integrity. Over time, muscle samples can dry out and 
their material properties will change. Due to the long acqui-
sition time of the experiments, rehydration of the muscle 
could only take place every 45 min. To address this, a water 
impermeable membrane was placed over the sample to limit 
evaporation. Finally, this paper focuses on the design and 
application of a finite-element model, not on wave theory, 

Table 2   Wave number (K) comparisons between FE approaches

Kreal (error) Kimag (error)

0%
 MR elastography 833 242
 FE DT informed 750 (0.10) 296 (0.22)

6%
 MR elastography 1061 369
 FE DT informed 933 (0.12) 194 (0.47)
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only one frequency was used to compare the finite-element 
models to an experiment. The material properties obtained 
from a single frequency will be dependent on that frequency. 
As discussed by Papazoglou et al. [42], multiple frequencies 
should be measured to estimate the frequency independent 
material properties.

5 � Conclusions

This work shows promising proof of concept for an algo-
rithm that fully utilizes DT imaging to build finite-element 
models of complex, anisotropic structures. While the pre-
sented algorithm and methodology provide a foundation for 
exploration of the interplay between anisotropy, prestress 
and elastic moduli, and their impact on the resultant mechan-
ical wave behavior, a number of avenues for future improve-
ment of the overall approach are identified. Future work will 
leverage such FE models to interrogate the limitations listed, 
primarily different actuation motions, waveguide effects, and 
differing boundary conditions, such as radial distance, exter-
nal compression, and smoother borders.
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