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ABSTRACT:
Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to

reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties that are altered by disease

and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that

have been developed neglect boundary conditions, including quasistatic tensile or compressive loading resulting in a

nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being

studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article,

we review how prestress alters both bulk mechanical wave motion and wave motion in one- and two-dimensional

waveguides. Key findings are linked to studies on skeletal muscle and the human cornea, as one- and two-

dimensional waveguide examples. This study highlights the underappreciated combined acoustoelastic and wave-

guide challenge to elastography. Can elastography truly determine viscoelastic properties of a material when what it

is measuring is affected by both these material properties and unknown prestress and other boundary conditions?
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I. INTRODUCTION

A. Background and motivation

Dynamic elastography methods–based on optical, ultra-

sonic, and magnetic resonance imaging modalities–aim to quan-

titatively map the shear viscoelastic properties of biological

tissue, which are often altered by disease and injury. Optical

methods, including early work using stroboscopy1 to more

recent, higher resolution methods using optical coherence

tomography2,3 or laser Doppler vibrometry,4 have the advantage

of the highest resolution of the three modalities but are con-

strained to the penetration depth of light, limiting their clinical

use to measurements at or near the surface, such as the skin or

cornea. Ultrasound (US)-based elastography using continuous or

transient excitation has greater penetration depth and maintains

high resolution near the surface (though not as high as optical

methods), while also being readily available, contributing to its

wide use in research since the late 1980s.5–9 Magnetic resonance

elastography (MRE), introduced in 1995,10 has the highest depth

of penetration, even behind hard tissue obstacles, such as the

skull, and the ability to encode oscillatory motion in all three

dimensions simultaneously;11 but it is limited in resolution as

compared to optical methods and near-surface US methods and

is the most expensive, as compared to all other modalities.

Regardless of the imaging modality, dynamic elastography

methods share common traits. They typically involve mechani-

cal stimulation followed by measurement and analysis of result-

ing transverse wave motion in order to estimate or reconstruct

the tissue’s shear viscoelastic properties.

Most initial studies focused on larger organs, such as the

liver or brain, where boundary effects were assumed negligible.

But as elastography expands to other anatomical regions where

dimensions in at least one direction are smaller or of compara-

ble length to bulk shear wavelengths–such as in slender skeletal

muscles, blood vessels, the heart wall, and the cornea–boundary

effects become non-negligible and must be considered.

Researchers using optical coherence elastography (OCE) to

assess the viscoelastic properties of the cornea have long recog-

nized this, adapting models to include waveguides by treating

the cornea as a plate-like structure that is fluid-loaded on one

side. Here, transverse wave motion on the cornea is modeled as

Rayleigh–Lamb waves.3 Blood vessels, as well, have been

modeled using cylindrical shell equations considering fluid–-

structure interaction.12–16 Limited studies on cardiac elastogra-

phy have also acknowledged the frequency-dependent (i.e.,

wavelength-dependent) waveguide behavior of the heart wall.17

Application of dynamic elastography to tissues with

aligned fibrous structure resulting in local transverse isotro-
pic mechanical properties, such as can be found in striated

skeletal and cardiac muscle, as well as brain white matter,

may benefit from analysis that takes into consideration

anisotropy of the tissue. Recognizing this, some groups have
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pioneered research in this direction over the past few deca-

des, using ultrasound (US)-based elastography,9,18–20 as

well as magnetic resonance (MR)-based elastography.21,22

Many of these studies have tried to tackle the associated

inversion problem. Multiple configurations or a multi-

directional shear wave excitation source may be needed in

order to generate and measure shear wave motion that will

be affected by its displacement polarization direction and

propagation direction in an anisotropic material.

In addition to a uniaxially aligned fibrous structure, a

layered nonfibrous or fibrous structure, such as in the cor-

nea, can also have a significant effect on shear wave behav-

ior. The cornea can be considered as a transversely isotropic

material where the axis of isotropy is perpendicular to the

plane of the cornea.23 Here, it has been shown that both an

in-plane and out-of-plane shear moduli are required to fully

describe the elastic properties of corneal tissue. This impor-

tant observation has provided a possible explanation for the

differences in magnitude seen with elastic moduli measured

using dynamic elastography techniques compared to tradi-

tional uniaxial tensile testing of cornea tissue.

Often, when elastography studies are done under varying

quasi-static pre-stress conditions, observed changes in mechani-

cal wave behavior are attributed solely to the nonlinear property

of the tissue: it has been suggested that its shear and viscous

constants are highly dependent on the tensile load and associ-

ated deformation. In previous muscle elastography studies, it

has been surmised that the shear elastic modulus increased with

passive muscle loading24–30 or with muscle activa-

tion.22,26,29,31–34 In other studies, it is simply observed that the

shear wave velocity increased with increased passive or active

loading of the muscle.35 While the latter is an indisputable

observation–the velocity increased with increased load–the for-

mer (change in moduli value) ascribes the wavelength change

solely to a change in tissue material properties, which we pro-

pose may or may not be responsible for a fraction of the

observed changes in measured transverse wave speed.

Some have recognized the influence of compressive forces

on elastography measurements of shear waves on phantoms

and organs.36–38 An early study39 using MR elastography rec-

ognized that both tensile load and material elastic moduli

affected transverse wave motion in skeletal muscle under ten-

sion. This was an in vivo study of the tibialis anterior (TA) and

lateral gastrocnemius (LG), showing that shear wavelength

increased when the muscle was stretched and when the muscle

was contracted. In the Discussion section, a linear equation

was put forth to account for both tensile and shear modulus

effects, as an explanation for the observed changes. A more

recent MR elastography study40 made a similar observation

but replaced the bulk shear wave expression with one based

on a Timoshenko beam under tension formulation; thus,

also accounting for waveguide effects, and implemented this

in an inversion strategy to assess tensile forces on the indi-

vidual muscles of the forearm.

B. Objectives

In the present study, we review the theoretical princi-

ples of mechanical wave motion in a normally prestressed

transversely isotropic material, and then consider two- and

one-dimensional “thin” waveguides subjected to tensile

loading, relating fundamental observations to applications in

cornea and muscle elastography. Some of the presented con-

cepts, without the supporting analyses detailed here, were

previously summarized by the last author in an invited

abstract and oral presentation at a recent meeting of the

Acoustical Society of America.41

II. PRE-STRESS UNDER SMALL DEFORMATION IN A
TRANSVERSE ISOTROPIC MATERIAL

Building upon Tweten et al.,42,43 we start with a linear elas-
tic nearly incompressible, transversely isotropic (NITI) material

as our model for biological tissue with aligned fibrous structure

subjected to deformation that is sufficiently small in amplitude to

justify the assumption of linearity. A linear elastic NITI material

may be fully described using bulkmodulus j and three additional

parameters which can be a combination of two tensile moduli,

E? and Ek; and two shear moduli, l? and lk, where the sub-

scripts denote whether the principle direction is perpendicular or

parallel to the fiber direction. In other words, E? and l? are in

the direction perpendicular to the fibers (parallel to the plane of

isotropy), and Ek and lk are in the direction parallel to the fibers
(parallel to the axis of isotropy). We define shear anisotropy

/ ¼ lk=l? � 1 and tensile anisotropy f ¼ Ek= E? � 1. Note

also that44 Ek ¼ l? 4fþ 3ð Þ; thus, there are only three indepen-
dent parameters.

The transverse isotropic elasticity matrix K using

nomenclature from Guidetti et al.45 and taking the z-axis at

the axis of isotropy is
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Adding only normal (no shear) static pre-stresses

rx; ry; and rz aligned with the x, y, and z directions, respec-

tively, leads to the following governing equations of

motion,46,47 where u, v, and w refer to the displacement

component in the x, y, and z direction, respectively, and

subscripted x; y; z; and t after a comma refer to partial deriv-

atives with respect to that spatial or time dimension:

qu;tt ¼ jþ l?
4

3
þ 4

9
f

� �� �
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2
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Consider plane wave propagation in the x, y, and z direc-

tions. Based on Eqs. (2)–(4) phase speeds for propagation in

these three directions with two possible polarizations for

shear waves, and one polarization for compression waves, is

provided in Table I. (Note, this formulation, based inher-

ently on a small strain assumption due to the applied stress

and linear elastic theory, can be made to match predictions

of phase speed in isotropic26,48 and transverse isotropic49

acoustoelastic models that allow for larger strain values by

appropriate choice of third order Landau coefficients. For

the isotropic case, this is achieved by setting the third order

coefficient A ¼ �6l, which is within the range of values

reported for agar-gelatin and polyvinyl alcohol soft tissue

phantom materials based on ultrasound elastography mea-

surements under compressive stress loading. For the trans-

verse isotropic case, three additional third order Landau

coefficients49 are set to specific values to match the small

strain assumption used here. See the Appendix for additional

explanation.)

III. ADDING BOUNDARY EFFECTS
IN THE 3-DIMENSIONAL PROBLEM

Let us consider a point force or torque acting at the geo-

metric center of a circular cylinder of a transversely isotro-

pic (TI) material under a uniaxial stress r aligned with both

the axis of the cylinder and the axis of isotropy of the TI

material, as shown in Figs. 1(a) and 2(a). For the case of

plane wave propagation in this material, taking rx ¼ ry ¼ 0

and taking rz ¼ r, slow and fast shear wave speeds squared,

respectively, are

c hð Þ2
s¼

l?
q

1þ / cos2 h½ � þ r
2l?

cos2 h½ �
� �

; (5)

c hð Þ2
f¼

l?
q

1þ /þ f� /ð Þ sin2 2h½ � þ r
2l?

cos 2h½ �
� �

:

(6)

Here, h is the angle between the direction of propagation

and the axis of isotropy and uniaxial stress.

A numerical integral solution for the response created

for the unbounded case of a harmonically oscillating point

force (infinitesimal dipole) in a TI material has been

found,50 as well as analytical approximations to it.51 The

authors are unaware if such a solution exists for the case

with uniaxial stress or for the case of a point torque, or for

any of these cases when the medium has finite boundaries.

Consequently, for the following study, a numerical finite

element (FE) approach is taken using ANSYS Mechanical

APDL Version 2019 R1 (Ansys, Canonsburg, PA). The FE

prediction was validated against the exact integral solution

for the unstressed point force and taking the radius of the

TABLE I. Phase speed squared � density qc2
� �

of planar waves as function of propagation and polarization directions.
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x direction y direction z direction# Propagation
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cylinder to be large enough that waves attenuate before

reaching the boundary. The case study parameters shown in

Table II are typical of soft biological tissue and match those

used previously by the last author,45,51–53 but with the addi-

tion of cases with a nonzero uniaxial tensile stress r (it is

either 0 or equal to l?R).

First, a cylinder 70mm in height and 40mm in diameter

was defined using an axisymmetric mixed u-P formulation

with Plane183 8-node elements with individual element side

dimensions of 0.1mm. A point force was applied in the ver-

tical “z” direction, parallel to the fiber and tensile load direc-

tion at the node located at the geometric center of the

cylinder. Given the “z” polarization of the source input, it

will predominantly drive fast shear waves. But, since this is

a point source, the propagating wave field is not planar and

thus, does not perfectly follow Eq. (2). The in phase steady

state response for cases without and with a nonzero tensile

load r are shown in Figs. 1(b) and 1(d). Next, the point force

is replaced by a point torque at the same location, oriented

in the “z” direction, so that it predominantly drives waves

that are polarized in the circumferential direction, which is

orthogonal to the axis of isotropy and thus, behave like slow

shear waves, approximately governed by Eq. (3). The in

phase steady state response for cases without and with a

nonzero tensile load r are shown in Figs. 2(b) and 2(d).

In the simulations described above in this section, for

the chosen material properties, cylinder diameter and excita-

tion frequency, we see more than 8 wavelengths going from

the excitation source (cylinder axis) to the cylinder free

outer boundary at a radius of 20mm. The effect of the free

boundary is not apparent in this case where wavelength is an

order of magnitude less than the characteristic cross-

dimension. But consider this exact same case with the cylin-

der radius R reduced from 20mm down to 5mm, in other

words, only a few wavelengths across. The simulations are

shown in Figs. 1(c), 1(e), 2(c), and 2(e), identical to the

cases in Figs. 1(b), 1(d), 2(b), and 2(d), respectively. While

the wave pattern in the immediate vicinity of the source is

FIG. 1. (Color online) Fast shear waves in the y-z plane generated by a harmonic point force at the origin polarized parallel to the axis of isotropy (z-axis)

and direction of uniaxial stress r, using material properties from our previous work (Refs. 45 and 51–53) that correspond approximately to passive muscle

with fibers along the z-axis (Table II). Simulations are for no pre-stress (b) and (c) or a uniaxial prestress from elongation along fiber direction that is equiva-

lent to the stress from a 10% MVC contraction (d) and (e). All axes in (b) and (e) are in mm. Cylinders with radii of R¼ 20mm (b) and (d) or R¼ 5mm (c)

and (e) are shown, each surrounded by a water-like material (low elastic moduli). Colors correspond to the amplitude of the shear waves, scaled by r2 (r is

the distance from the source), to compensate for attenuation away from the source. One quadrant is shown; the other three are mirror images. Here, h-motion

amplitudes (in the y-z plane) are plotted.

FIG. 2. (Color online) Slow shear waves in the y-z plane generated by a harmonic point torque at the origin polarized orthogonal to the axis of isotropy (z-

axis) and direction of uniaxial stress r, using material properties from our previous work (Refs. 45 and 51–53) that correspond approximately to passive

muscle with fibers along the z-axis (Table II). Simulations are for no pre-stress (b) and (c) or a uniaxial prestress from elongation along fiber direction that is

equivalent to the stress from a 10% MVC contraction (d) and (e). All axes in (b)–(e) are in mm. Cylinders with radii of R¼ 20mm (b) and (d) or R¼ 5mm

(c) and (e) are shown, each surrounded by a water-like material (low elastic moduli). Colors correspond to the amplitude of the shear waves, scaled by r2

(r is the distance from the source), to compensate for attenuation away from the source. One quadrant is shown; the other three are mirror images. Here,

x-motion amplitudes are plotted.
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similar, it has been substantially altered beyond a few wave-

lengths from the source. Differences caused by the presence

of the uniaxial stress r are still evident, but there are also

complex wave patterns further from the source. These pat-

terns are not described at all by Eqs. (5) and (6), although a

modified form (to account for r) of the equations in Sec.

8.2.2 of Graff54 might apply.

IV. TWO-DIMENSIONALWAVEGUIDE WITH IN-PLANE
BIAXIAL NORMAL STRESS

A. Theory

Next, we will consider a thin plate of thickness h in the

z-direction, with z still the axis of isotropy, but take: rx
¼ ry ¼ r and take rz ¼ 0, as shown in Fig. 3. We will focus

on shear waves in the x-y plane that are polarized in the z

direction. In an unbounded three-dimensional medium,

based on Eqs. (2)–(4) and Table I, the phase speed of plane

waves propagating in the x-y plane with z polarization are

c2f ¼
l?
q

1þ /þ r
2l?

� �
: (7)

However, we will employ the following assumptions based

on Mindlin’s first contribution that follow from assuming

that plate thickness h is less than the shear wavelengths of

interest (Sec. 8.3 of Ref. 54): u x; y; z; t½ � ¼ zux x; y; t½ �;
v x; y; z; t½ � ¼ zuy x; y; t½ �; w x; y; z; t½ � ¼ w x; y; t½ �. Furthermore,

we will assume that ux ¼ �w;x and uy ¼ �w;y, which is

consistent with Euler–Bernoulli thin-plate theory. Utilizing

Eq. (2.1) of Ref. 47, and inputting the above assumptions:

rxx;xþrxy;yþrxz;z�r
1

2
u;zzð Þ¼rxx;xþrxy;yþrxz;z¼qu;tt;

(8)

ryx;xþryy;yþryz;z�r
1

2
v;zzð Þ¼ryx;xþryy;yþryz;z¼qv;tt;

(9)

rzx;x þ rzy;y þ rzz;z þ r
1

2
w;xx � u;zx þ w;yy � v;zyð Þ

¼ rzx;x þ rzy;y þ rzz;z þ r w;xx þ w;yyð Þ ¼ qw;tt: (10)

Adapting Sec. 8.3 of Ref. 54, we multiply Eqs. (8) and (9)

by z and integrate across the plate thickness from

�h=2 toþ h=2, and we directly integrate Eq. (10) across

the plate thickness from �h=2 toþ h=2. Neglecting higher

order terms, this leads to

Mx;x þMyx;y � Qx þ q
h3

12
w;xtt ¼ 0; (11)

Mxy;x þMy;y � Qy þ q
h3

12
w;ytt ¼ 0; (12)

Qx;x þ Qy;y þ rh w;xx þ w;yyð Þ þ q ¼ qhw;tt; (13)

where Mx; My; Mxy; andMyx are bending moments about

the plate, Qx and Qy are shear forces, and q is an externally

applied force per unit area to the plate (Fig. 3). Expressions

for the bending moments are55

Mx ¼
E?h

3

12 1� �2xy
� � ux;x þ �xyuy;yð Þ

¼ � E?h
3

12 1� �2xy
� � w;xx þ �xyw;yyð Þ; (14)

My ¼
E?h

3

12 1� �2xy
� � uy;y þ �xyux;xð Þ

¼ � E?h
3

12 1� �2xy
� � w;yy þ �xyw;xxð Þ; (15)

Mxy ¼ Myx ¼
E?h

3

24 1þ �xyð Þ
uy;x þ ux;yð Þ

¼ �2
l?h

3

12
w;xyð Þ: (16)

Neglecting rotational inertia terms in Eqs. (11) and (12)

since h is small, taking partial derivatives with respect to x

and y, respectively, solving for Qx;x and Qy;y and substituting

into Eq. (13) leads to the following:

Mx;xxþ2Mxy;yxþMy;yyþrhw;xxþrhw;yyþq¼qhw;tt: (17)

This can be written as

Dw;xxxx þ 2Dxyw;xxyy þ Dw;yyyy þ qhw;tt

¼ rhw;xx þ rhw;yy þ q; (18)

whereFIG. 3. (Color online) Two-dimensional waveguide.

TABLE II. Parameter values for case studies.

Parameter Nomenclature Value(s)

Bulk modulus j 2.6 GPa

Shear storage modulus in plane

of isotropy

l?R 2.77 kPa

Ratio of shear loss to storage moduli g¼l?I =l?R ¼lkI=lkR 0.15

Shear anisotropy / 1

Tensile anisotropy f 2

Uniaxial tensile stress/l?R r=l?R 0 or 1

Density q 1000 kg/m3

Frequency f 1 kHz
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D ¼ E?h
3

12 1� �2xy
� � ; (19a)

Dxy ¼ D�xy þ
l?h

3

12
: (19b)

Neglecting external normal load per unit area q and assum-

ing a planar wavefront in the x direction, partial derivatives

with respect to y lead to zero and the equation simplifies to

the following:

Dw;xxxx þ qhw;tt ¼ rhw;xx: (20)

The general solution to Eq. (20) for harmonic motion is

given in the form w ¼ Weiðcx�xtÞ, leading to the following

set of solutions:

c ¼ 6a; 6ib; (21a)

a ¼ �nþ n2 þ x2

a2

� �1=2
( )1=2

; (21b)

b ¼ nþ n2 þ x2

a2

� �1=2
( )1=2

; (21c)

n ¼ rh
2D

; (21d)

a ¼
ffiffiffiffiffiffi
D

qh

s
: (21e)

Thus, we have two propagating waves (a) in the þ or – x

direction, and two non-propagating (near field or evanescent)

waves (b) in the þ or – x direction. For the propagating

waves, the phase speed will be: cph ¼ x=Real a½ �. Taking the

limit that rh � 2D; we see that a ¼ x=að Þ1=2 and thus, for

the elastic case cph ¼ x1=2 D=qhð Þ1=4. Note, there is disper-

sion even in the lossless elastic case (neglecting viscosity);

this is the classic unstressed thin transverse plate vibration

solution. On the other hand, taking the limit of tension

rh � 2D, we then drop Dw;xxxx from Eq. (20) and reformu-

late the solution to find there are two propagating solutions

in the þ or – x direction with cph ¼ r=qð Þ1=2. This is the clas-
sic thin membrane vibration solution. Note, none of these sol-

utions match the expression for shear wave propagation under

the same conditions but with h very large (3-dimensional

medium) which is provided in Eq. (7).

B. Application to cornea elastography

The eye can be modeled as an internally pressurized

spherical vessel where an increase in the internal pressure

strains the walls of the ocular tissue and induces a tensile,

circumferential hoop stress rhð Þ. The range of tensile stress

can be roughly estimated using Laplace’s law for a spherical

pressure vessel as rh ¼ Pr=2h, where P is the intraocular

(gage) pressure (IOP), r is the radius of the sphere, and h is

the thickness of the sphere walls. By assuming a radius of

10mm and thickness of 0.6mm, IOP values of 0, 5, 10, 15,

and 20mmHg will induce hoop stresses of 0, 5.56, 11.11,

16.67, and 22.22 kPa, respectively. For comparison, finite

element (FE) studies using more precise geometry have

reported hoop stresses within the range of roughly

15–25 kPa for around 15–18mmHg IOP.56,57

To evaluate whether tensile in-plane biaxial pre-stress,

being equated to hoop stress, within this range can influence

transverse wave motion on the cornea, we use equations from

Sec. IVA with q ¼ 1 g=cm3, h ¼ 0:6mm, E? ¼ 50 kPa and

�xy ¼ 0:499, yielding D ¼ 1:2� 10�6 Nm. Pre-stress was

incremented between 0 and 20 kPa to estimate the tensile

effect of IOP on wavenumber [Fig. 4(a)] and phase speed

[Fig. 4(b)]. For comparison, Young’s modulus E? was also

separately incremented between 15 and 75 kPa, with zero

hoop stress [Figs. 4(c) and 4(d)].

Simulation results shown in Fig. 4 suggest that increasing

both the tensile pre-stress (via increasing the IOP) and

Young’s modulus (a material property) can alter phase speed

similarly. The slope of the dispersion curves decreases as both

tension and material stiffness increase which corresponds to

an increase in phase velocities. Importantly, this indicates that

the high frequency asymptotes of the dispersion curves (above

�3 kHz) that are normally used to estimate corneal shear

moduli can be significantly influenced by both pre-stress and

Young’s modulus. While both effects are similar, differences

in the dispersion curves can be observed, particularly in the

lower frequency regions (below �1 kHz) from the approxi-

mate thin-plate model; tensile pre-stress appears to strongly

influence the low-frequency dispersion behavior, while the

effects of stiffness are more apparent at higher frequencies.

These results suggest that tensile pre-stresses within the range

predicted for normal and pathological IOP values can indeed

influence wave behavior and that differential analysis of low-

and high-frequency dispersion components may help to dis-

cern the effects of pre-stress and stiffness. It appears that if

these pre-stress effects are not accounted for, an overestima-

tion of corneal shear moduli may arise.

In Sun et al. (2021),58 analysis of the effect of tensile

pre-stress and a foundation stiffness is further explored by

integrating models for them into the full three-dimensional

theory introduced in Sec. II. Trends identified using the thin

plate theory are consistent with what is found using the

more precise model, in that failure to account for the effects

of pre-stress may result in overestimations of the corneal

elastic moduli, particularly at high IOPs.

V. ONE-DIMENSIONALWAVEGUIDE WITH UNIAXIAL
NORMAL STRESS

A. Theory

Starting with the transverse isotropic material model

introduced in Sec. II, consider a rod whose axis is aligned

with the z-axis, the axis of isotropy, with cross-sectional
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dimensions in the x and y direction that are significantly less

than wavelength. In other words, take the numerical study

of Sec. III but with r smaller. Also, as in Sec. III, set

rx ¼ ry ¼ 0 and rz ¼ r. Undertaking an analysis similar

to Sec. IV, we arrive at the pre-tensioned Euler–Bernoulli

thin beam described in Section 3.3.4 of Graff54 for

x-polarized transverse wave propagation of the beam along

its z-axis,

EkIu;zzzz � rAu;zz þ Aqu;tt ¼ 0: (22)

Here, I is the area moment of inertia about the y axis

(I ¼ p
4
r4 for a circular cross section of radius r), and A is the

cross-sectional area in the x-y plane. Note the similarity to

the Eq. (20) of Sec. IV.

Consider this an initial approximation for a thin muscle

under a tensile load along its axis. As before, the general

solution form is: u ¼ Ueiðcx�xtÞ, where i ¼
ffiffiffiffiffiffiffi
�1

p
, x is the

circular frequency in rad/s and c has four possible

solutions,

c ¼ 6a; 6ib; (23a)

a ¼ �nþ n2 þ x2

a2

� �1=2
( )1=2

; (23b)

b ¼ nþ n2 þ x2

a2

� �1=2
( )1=2

; (23c)

n ¼ rA
2EkI

; (23d)

a ¼

ffiffiffiffiffiffiffi
EkI

qA

s
: (23e)

Like in Sec. IVA, we have two propagating waves (a) in the

þ or – x direction, and two non-propagating (near field or eva-

nescent) waves (b) in the þ or – x direction. For the propagat-

ing waves, the phase speed will be: cph ¼ x=Real a½ �. Taking
the limit that rA � 2EkI; we see that a ¼ x=að Þ1=2 and thus

for the elastic case cph ¼ x1=2 EkI=qA
� �1=4

, which is the clas-

sic thin (Euler–Bernoulli) beam transverse vibration solution.

On the other hand, taking the limit of tension rA � 2EkI;

FIG. 4. (Color online) Thin-plate theory for comparing the effects of tensile prestress and stiffness on wave dispersion. (a) The linear wavenumber vs fre-

quency dispersion curves demonstrate that estimated prestress values rh incremented between 0 and 2.0� 104 Pa can alter wave behavior independently of

material stiffness (where E? ¼ 3.0� 104 Pa). (b) The corresponding phase velocity curves demonstrate that tension strongly influences low-frequency phase

velocities while high-frequency waves are also affected. (c) Dispersion curves demonstrate that stiffness affects wave behavior similar to tension when incre-

mented between 1.5 and 7.5� 104 Pa (where rh ¼ 0 Pa), though its effects at high frequencies are more apparent. Additionally, when comparing (a) and (c),

the low-frequency components below �1 kHz are affected less by stiffness than tension. (d) This is reflected in the corresponding phase velocity curves

where low frequency phase velocities are less influenced by stiffness. Further comparison of (b) and (d) show that both tension and stiffness can change the

high-frequency phase velocities that are used to estimate corneal stiffness.
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we then drop EkIu;zzzz from Eq. (22) and reformulate the solu-

tion to find that there are two propagating solutions with

cph ¼ r=qð Þ1=2. This is the classic transverse thin string vibra-
tion solution. As noted before in Sec. IVA, a case between

the extremes of either neglecting rA or EkI still does not

match the phase speed of bulk shear waves, which again is

given by Eq. (7).

B. Application to muscle elastography

In a recent study of shear wave elastography on an

ex vivo cat soleus by Bernabei et al.,59,60 where the tensile

preload rA could be precisely measured while conducting

elastography measurements on a passively tensioned muscle

as well as when it is activated via an electrical current, it was

found that under passive tensile loading, the wave speed

closely followed the string solution with cph ¼ r=qð Þ1=2.
However, under muscle activation phase speed appeared to

fall between the two extreme cases articulated above

(Sec. VA). Other studies have shown similar trends,24–30 but

have ascribed the increase in cph to be due to an increase in

the elastic moduli of the muscle, in other words its nonlinear-

ity under deformation. The cat soleus has a physiological

cross sectional area (PCSA) of about 1 cm2, or a diameter

of about 1 cm. Human muscles studied using elastography

can have a wide range of PCSAs, for example, as small as

0.68 cm2 in the abductor pollicis brevis61 to 21 cm2 in the

medial gastrocnemius.62

VI. CONCLUDING REMARKS: NONLINEARITYAND
THE GLASS HALF FULL

The experimental method of elastography generally

involves small oscillatory deformations and it is reasonable

to assume linear theory is valid. However, the static defor-

mations, due to pre-stress in the applications described

above (Secs. IV and V), may be significant and not be rea-

sonably modeled based solely on linear systems theory. A

logical approach is to apply a more robust nonlinear theory

to model the static deformation created by the pre-stress

using an appropriate strain energy function, followed by lin-

earization about the new static equilibrium in order to derive

an elasticity matrix that can be used for the “linearized”

acoustoelastography problem. A few groups in the elastog-

raphy community have been investigating this and identify

higher order elastic constants. This remains an active area of

research with a wide range of strain energy functions having

been proposed, with it proving difficult to experimentally

evaluate which may be most appropriate for a given

application.26,48,49,63–65

Even without the added complexity of geometric and

material nonlinearities due to large static deformation, the

elastography problem, especially in anisotropic materials, is

made more challenging by the presence of static or quasi-

static stress loads that are inherent to the normal physiological

function of many biological soft tissues. They cannot be

avoided. So is the increase in phase speed as a tissue is further

stretched caused by the stretching (tensile load) itself, or is it

caused by the higher order elasticity coefficients needed to

fully characterize the material nonlinearity of the tissue over a

large deformation range? Can these effects be teased apart

through careful experimental measurements that fully investi-

gate all manner of direction and polarization of mechanical

wave motion at multiple static deformation levels? Are such

experiments feasible? Recognition of these daunting technical

challenges may lead one to think that the technique of elastog-

raphy is, indeed, a half empty glass, unable to confidently

determine that which it originally set out to determine, a mate-

rial’s elastic constants. But this would be missing the forest

for the trees. Being clear-eyed about the challenges that we

face, we believe the glass is half full, in that once we over-

come the known complexities of the problem, acoustoelastog-
raphy will be able to noninvasively quantitatively map not

only a material’s complex stiffness, but also the complex

stress field it is under. Stiffness and stress are both critical to

the physiological function of many biological tissues, and

both can be uniquely altered by pathology, injury, and

response to therapy. A tool that can nondestructively measure

both independently would be profound.
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APPENDIX

Infinitesimal strain theory based on linear elasticity in a

transverse isotropic (TI) material culminates in the Eqs.

(2)–(4) of motion and the phase speed values given in Table

I and Eqs. (5) and (6). This approach does not account for

changes brought about by the altered geometry due to the

deformation or by any nonlinearity in the material proper-

ties. Other studies have started from the more general non-

linear theory of a hyperelastic material with initial stress,

defining a finite strain energy function, from which linear

and higher order elastic coefficients can be derived for study

of wave propagation.26,48,49,63–65 In Destrade et al.48 and

Remenieras et al.49 elastic wave phase speed in an incom-

pressible TI solid under uniaxial stress was considered by

starting with a third-order expansion of the elastic strain

energy function given in powers of the Green–Lagrange

strain tensor. For the case that is the same as the uniaxial

formulation in the current study (uniaxial stress direction

aligned with the axis of isotropy), the following equations

were derived for the slow cs and fast cf shear wave phase

speeds, identifying the relationships between the nomencla-

ture of the referenced studies to the current study:

c h½ �2
s ¼

l?
q

1þ/ cos2 h½ � þ bk
r
l?

cos2 h½ � � b?
r
l?

sin2 h½ �
� �

;

(A1)
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c h½ �2
f ¼

1

q
aþc�2bð Þcos4 h½ �þ2 b�cð Þcos2 h½ �þc

� �
; (A2)

where

bk ¼ 1þ 1

Ek
l?/þ A

4
þ a3 þ

a5
2

� �

¼ 1þ /
3þ 4f

þ 1

l? 3þ 4fð Þ
A

4
þ a3 þ

a5
2

� �
; (A3)

b? ¼ 1

Ek
3l? þ A

2
� a3

� �

¼ 1� 4f
3þ 4f

þ 1

l? 3þ 4fð Þ
A

2
� a3

� �
; (A4)

aþ c� 2b ¼� 4l? f� /ð Þ � 2 8l? f� /ð Þð

þ6l?/þ 3a3 þ 3a4 þ 2a5Þ
r

l? 3þ 4fð Þ ;

(A5)

2 b� cð Þ ¼ 4l? f� /ð Þ þ 3l? þ 20l? f� /ð Þð

þ16l?/þ 6a3 þ 6a4 þ 4a5Þ
r

l? 3þ 4fð Þ ;

(A6)

and

c ¼ l? 1þ /ð Þ

þ 1

4
Aþ 4l?/þ 4a3 þ 2a5ð Þ r

l? 3þ 4fð Þ : (A7)

Here, A is the third-order constant of weakly nonlinear

incompressible isotropic elasticity48,63 and a3, a4, and a5 are
additional anisotropic third-order constants present in the

transverse isotropy case.48,49

Ogden and Singh66 showed that the formulation pro-

vided by Biot’s linear elasticity theory,46 which Eqs. (5) and

(6) in the present study are based upon, leads to

A ¼ �6l? 1þ /ð Þ, a3 ¼ �3l?/, a4 ¼ �l?/, and

a5 ¼ l? 7/� 4fð Þ. Placing these values in Eqs. (A1) and

(A2) results in bk ¼ 1
2
, b? ¼ 0; c ¼ l? 1þ /ð Þ � r=2; b

¼ l? 1� /þ 2fð Þ; and a ¼ l? 1þ /ð Þ þ r=2. Then, Eqs.
(A1) and (A2) will exactly match Eqs. (5) and (6).

Values for the parameter A have been estimated experi-

mentally in tissue-like isotropic materials. For example,

Gennisson et al.26 and Urban et al.67 found a wide range of

estimated values for A relative to l? [encompassing

A ¼ �6l?ð1þ /Þ] by measuring shear wave speeds in dif-

ferent directions and polarizations relative to the axis of uni-

axial compressive stress in agar, gelatin, agar-gelatin, and

polyvinyl alcohol phantoms with compressive stresses up to

and exceeding 10% of the measured l?. These studies also

found that strain levels, even as low as 1%, resulted in a

measured nonlinear relationship between strain and small

amplitude shear wave speed, thus requiring at least fourth

order elasticity constants that have a quadratic dependence

on strain (or stress). Thus, we acknowledge the limitations

of the current analysis based on linear elasticity, with speci-

fied third order elasticity constants and no fourth or higher

order constants that are necessary to model material nonli-

nearities. Nonetheless, the simplified analysis here has

illustrated the importance of accounting for stress in elastog-

raphy measurements with and without the additional com-

plexity of finite boundaries.
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