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The combined importance of finite dimensions, anisotropy,
and pre-stress in acoustoelastography
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ABSTRACT:

Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to
reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties that are altered by disease
and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that
have been developed neglect boundary conditions, including quasistatic tensile or compressive loading resulting in a
nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being
studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article,
we review how prestress alters both bulk mechanical wave motion and wave motion in one- and two-dimensional
waveguides. Key findings are linked to studies on skeletal muscle and the human cornea, as one- and two-
dimensional waveguide examples. This study highlights the underappreciated combined acoustoelastic and wave-
guide challenge to elastography. Can elastography truly determine viscoelastic properties of a material when what it
is measuring is affected by both these material properties and unknown prestress and other boundary conditions?
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I. INTRODUCTION
A. Background and motivation

Dynamic elastography methods—based on optical, ultra-
sonic, and magnetic resonance imaging modalities—aim to quan-
titatively map the shear viscoelastic properties of biological
tissue, which are often altered by disease and injury. Optical
methods, including early work using stroboscopy' to more
recent, higher resolution methods using optical coherence
tomography> or laser Doppler vibrometry,* have the advantage
of the highest resolution of the three modalities but are con-
strained to the penetration depth of light, limiting their clinical
use to measurements at or near the surface, such as the skin or
cornea. Ultrasound (US)-based elastography using continuous or
transient excitation has greater penetration depth and maintains
high resolution near the surface (though not as high as optical
methods), while also being readily available, contributing to its
wide use in research since the late 1980s.”® Magnetic resonance
elastography (MRE), introduced in 1995,'° has the highest depth
of penetration, even behind hard tissue obstacles, such as the
skull, and the ability to encode oscillatory motion in all three
dimensions simultaneously;'! but it is limited in resolution as
compared to optical methods and near-surface US methods and
is the most expensive, as compared to all other modalities.
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Regardless of the imaging modality, dynamic elastography
methods share common traits. They typically involve mechani-
cal stimulation followed by measurement and analysis of result-
ing transverse wave motion in order to estimate or reconstruct
the tissue’s shear viscoelastic properties.

Most initial studies focused on larger organs, such as the
liver or brain, where boundary effects were assumed negligible.
But as elastography expands to other anatomical regions where
dimensions in at least one direction are smaller or of compara-
ble length to bulk shear wavelengths—such as in slender skeletal
muscles, blood vessels, the heart wall, and the cornea—boundary
effects become non-negligible and must be considered.
Researchers using optical coherence elastography (OCE) to
assess the viscoelastic properties of the cornea have long recog-
nized this, adapting models to include waveguides by treating
the cornea as a plate-like structure that is fluid-loaded on one
side. Here, transverse wave motion on the cornea is modeled as
Rayleigh-Lamb waves.” Blood vessels, as well, have been
modeled using cylindrical shell equations considering fluid—
structure interaction.'>™'® Limited studies on cardiac elastogra-
phy have also acknowledged the frequency-dependent (i.e.,
wavelength-dependent) waveguide behavior of the heart wall.'”

Application of dynamic elastography to tissues with
aligned fibrous structure resulting in local transverse isotro-
pic mechanical properties, such as can be found in striated
skeletal and cardiac muscle, as well as brain white matter,
may benefit from analysis that takes into consideration
anisotropy of the tissue. Recognizing this, some groups have
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pioneered research in this direction over the past few deca-
des, using ultrasound (US)-based elastography,g’lg_20 as
well as magnetic resonance (MR)-based elastography.?'~
Many of these studies have tried to tackle the associated
inversion problem. Multiple configurations or a multi-
directional shear wave excitation source may be needed in
order to generate and measure shear wave motion that will
be affected by its displacement polarization direction and
propagation direction in an anisotropic material.

In addition to a uniaxially aligned fibrous structure, a
layered nonfibrous or fibrous structure, such as in the cor-
nea, can also have a significant effect on shear wave behav-
ior. The cornea can be considered as a transversely isotropic
material where the axis of isotropy is perpendicular to the
plane of the cornea.”? Here, it has been shown that both an
in-plane and out-of-plane shear moduli are required to fully
describe the elastic properties of corneal tissue. This impor-
tant observation has provided a possible explanation for the
differences in magnitude seen with elastic moduli measured
using dynamic elastography techniques compared to tradi-
tional uniaxial tensile testing of cornea tissue.

Often, when elastography studies are done under varying
quasi-static pre-stress conditions, observed changes in mechani-
cal wave behavior are attributed solely to the nonlinear property
of the tissue: it has been suggested that its shear and viscous
constants are highly dependent on the tensile load and associ-
ated deformation. In previous muscle elastography studies, it
has been surmised that the shear elastic modulus increased with
passive muscle loading® ™ or with muscle activa-
tion.?>2%2931734 In other studies, it is simply observed that the
shear wave velocity increased with increased passive or active
loading of the muscle.* While the latter is an indisputable
observation—the velocity increased with increased load—the for-
mer (change in moduli value) ascribes the wavelength change
solely to a change in tissue material properties, which we pro-
pose may or may not be responsible for a fraction of the
observed changes in measured transverse wave speed.

Some have recognized the influence of compressive forces
on elastography measurements of shear waves on phantoms
and organs.’*® An early study®® using MR elastography rec-
ognized that both tensile load and material elastic moduli
affected transverse wave motion in skeletal muscle under ten-
sion. This was an in vivo study of the tibialis anterior (TA) and
lateral gastrocnemius (LG), showing that shear wavelength

increased when the muscle was stretched and when the muscle
was contracted. In the Discussion section, a linear equation
was put forth to account for both tensile and shear modulus
effects, as an explanation for the observed changes. A more
recent MR elastography study*® made a similar observation
but replaced the bulk shear wave expression with one based
on a Timoshenko beam under tension formulation; thus,
also accounting for waveguide effects, and implemented this
in an inversion strategy to assess tensile forces on the indi-
vidual muscles of the forearm.

B. Objectives

In the present study, we review the theoretical princi-
ples of mechanical wave motion in a normally prestressed
transversely isotropic material, and then consider two- and
one-dimensional “thin” waveguides subjected to tensile
loading, relating fundamental observations to applications in
cornea and muscle elastography. Some of the presented con-
cepts, without the supporting analyses detailed here, were
previously summarized by the last author in an invited
abstract and oral presentation at a recent meeting of the
Acoustical Society of America.*!

Il. PRE-STRESS UNDER SMALL DEFORMATION IN A
TRANSVERSE ISOTROPIC MATERIAL

Building upon Tweten ef al.*** we start with a linear elas-
tic nearly incompressible, transversely isotropic (NITI) material
as our model for biological tissue with aligned fibrous structure
subjected to deformation that is sufficiently small in amplitude to
justify the assumption of linearity. A linear elastic NITI material
may be fully described using bulk modulus « and three additional
parameters which can be a combination of two tensile moduli,
E,| and E|, and two shear moduli, x; and 1> where the sub-
scripts denote whether the principle direction is perpendicular or
parallel to the fiber direction. In other words, £, and u, are in
the direction perpendicular to the fibers (parallel to the plane of
isotropy), and £ and y are in the direction parallel to the fibers
(parallel to the axis of isotropy). We define shear anisotropy
¢ = /. — 1 and tensile anisotropy { = E)/ E| — 1. Note
also that* E | = i (4 + 3); thus, there are only three indepen-
dent parameters.

The transverse isotropic elasticity matrix K using
nomenclature from Guidetti ef al.** and taking the z-axis at
the axis of isotropy is
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Adding only normal (no shear) static pre-stresses
0y, 0y, and o aligned with the x, y, and z directions, respec-
tively, leads to the following governing equations of
motion,46’47 where u, v, and w refer to the displacement
component in the x, y, and z direction, respectively, and
subscripted x, y, z, and ¢ after a comma refer to partial deriv-
atives with respect to that spatial or time dimension:
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Consider plane wave propagation in the X, y, and z direc-
tions. Based on Eqgs. (2)—(4) phase speeds for propagation in
these three directions with two possible polarizations for
shear waves, and one polarization for compression waves, is
provided in Table I. (Note, this formulation, based inher-
ently on a small strain assumption due to the applied stress

and linear elastic theory, can be made to match predictions
of phase speed in isotropic®*** and transverse isotropic*’
acoustoelastic models that allow for larger strain values by
appropriate choice of third order Landau coefficients. For
the isotropic case, this is achieved by setting the third order
coefficient A = —6u, which is within the range of values
reported for agar-gelatin and polyvinyl alcohol soft tissue
phantom materials based on ultrasound elastography mea-
surements under compressive stress loading. For the trans-
verse isotropic case, three additional third order Landau
coefficients® are set to specific values to match the small
strain assumption used here. See the Appendix for additional
explanation.)

lll. ADDING BOUNDARY EFFECTS
IN THE 3-DIMENSIONAL PROBLEM

Let us consider a point force or torque acting at the geo-
metric center of a circular cylinder of a transversely isotro-
pic (TI) material under a uniaxial stress ¢ aligned with both
the axis of the cylinder and the axis of isotropy of the TI
material, as shown in Figs. 1(a) and 2(a). For the case of
plane wave propagation in this material, taking o, = o, = 0
and taking o, = o, slow and fast shear wave speeds squared,
respectively, are

c(@)f: Lty (1 + ¢ cos?[0] + 7 cos2[0]), 3)
P 2u,

(o)=L (1 + ¢ + (L — ¢)sin®[20] + 7 cos [29]).
p 2uy
(6)

Here, 0 is the angle between the direction of propagation
and the axis of isotropy and uniaxial stress.

A numerical integral solution for the response created
for the unbounded case of a harmonically oscillating point
force (infinitesimal dipole) in a TI material has been
found,*® as well as analytical approximations to it.’' The
authors are unaware if such a solution exists for the case
with uniaxial stress or for the case of a point torque, or for
any of these cases when the medium has finite boundaries.
Consequently, for the following study, a numerical finite
element (FE) approach is taken using ANSYS Mechanical
APDL Version 2019 R1 (Ansys, Canonsburg, PA). The FE
prediction was validated against the exact integral solution
for the unstressed point force and taking the radius of the

TABLE I. Phase speed squared * density (pcz) of planar waves as function of propagation and polarization directions.
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FIG. 1. (Color online) Fast shear waves in the y-z plane generated by a harmonic point force at the origin polarized parallel to the axis of isotropy (z-axis)
and direction of uniaxial stress o, using material properties from our previous work (Refs. 45 and 51-53) that correspond approximately to passive muscle
with fibers along the z-axis (Table II). Simulations are for no pre-stress (b) and (c) or a uniaxial prestress from elongation along fiber direction that is equiva-
lent to the stress from a 10% MVC contraction (d) and (e). All axes in (b) and (e) are in mm. Cylinders with radii of R =20 mm (b) and (d) or R=5mm (c)
and (e) are shown, each surrounded by a water-like material (low elastic moduli). Colors correspond to the amplitude of the shear waves, scaled by 12 (r is
the distance from the source), to compensate for attenuation away from the source. One quadrant is shown; the other three are mirror images. Here, 0-motion
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amplitudes (in the y-z plane) are plotted.

cylinder to be large enough that waves attenuate before
reaching the boundary. The case study parameters shown in
Table II are typical of soft biological tissue and match those
used previously by the last author,*>'> but with the addi-
tion of cases with a nonzero uniaxial tensile stress ¢ (it is
either O or equal to u ).

First, a cylinder 70 mm in height and 40 mm in diameter
was defined using an axisymmetric mixed u-P formulation
with Plane183 8-node elements with individual element side
dimensions of 0.1 mm. A point force was applied in the ver-
tical “z” direction, parallel to the fiber and tensile load direc-
tion at the node located at the geometric center of the
cylinder. Given the “z” polarization of the source input, it
will predominantly drive fast shear waves. But, since this is
a point source, the propagating wave field is not planar and
thus, does not perfectly follow Eq. (2). The in phase steady
state response for cases without and with a nonzero tensile
load ¢ are shown in Figs. 1(b) and 1(d). Next, the point force
is replaced by a point torque at the same location, oriented
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in the “z” direction, so that it predominantly drives waves
that are polarized in the circumferential direction, which is
orthogonal to the axis of isotropy and thus, behave like slow
shear waves, approximately governed by Eq. (3). The in
phase steady state response for cases without and with a
nonzero tensile load ¢ are shown in Figs. 2(b) and 2(d).

In the simulations described above in this section, for
the chosen material properties, cylinder diameter and excita-
tion frequency, we see more than 8 wavelengths going from
the excitation source (cylinder axis) to the cylinder free
outer boundary at a radius of 20 mm. The effect of the free
boundary is not apparent in this case where wavelength is an
order of magnitude less than the characteristic cross-
dimension. But consider this exact same case with the cylin-
der radius R reduced from 20 mm down to 5 mm, in other
words, only a few wavelengths across. The simulations are
shown in Figs. 1(c), 1(e), 2(c), and 2(e), identical to the
cases in Figs. 1(b), 1(d), 2(b), and 2(d), respectively. While
the wave pattern in the immediate vicinity of the source is

5 10 15

FIG. 2. (Color online) Slow shear waves in the y-z plane generated by a harmonic point torque at the origin polarized orthogonal to the axis of isotropy (z-
axis) and direction of uniaxial stress ¢, using material properties from our previous work (Refs. 45 and 51-53) that correspond approximately to passive
muscle with fibers along the z-axis (Table II). Simulations are for no pre-stress (b) and (c) or a uniaxial prestress from elongation along fiber direction that is
equivalent to the stress from a 10% MVC contraction (d) and (e). All axes in (b)—(e) are in mm. Cylinders with radii of R =20 mm (b) and (d) or R =5mm
(c) and (e) are shown, each surrounded by a water-like material (low elastic moduli). Colors correspond to the amplitude of the shear waves, scaled by 1>
(r is the distance from the source), to compensate for attenuation away from the source. One quadrant is shown; the other three are mirror images. Here,
x-motion amplitudes are plotted.
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TABLE II. Parameter values for case studies.

Parameter Nomenclature Value(s)
Bulk modulus K 2.6 GPa
Shear storage modulus in plane Hir 2.77 kPa
of isotropy

Ratio of shear loss to storage moduli 17 =g, /1t g = i/t 0.15
Shear anisotropy ¢ 1
Tensile anisotropy 4 2
Uniaxial tensile stress/u p o/uir Oorl
Density p 1000 kg/m?
Frequency f 1 kHz

similar, it has been substantially altered beyond a few wave-
lengths from the source. Differences caused by the presence
of the uniaxial stress ¢ are still evident, but there are also
complex wave patterns further from the source. These pat-
terns are not described at all by Eqgs. (5) and (6), although a
modified form (to account for ¢) of the equations in Sec.
8.2.2 of Graff>* might apply.

IV. TWO-DIMENSIONAL WAVEGUIDE WITH IN-PLANE
BIAXIAL NORMAL STRESS

A. Theory

Next, we will consider a thin plate of thickness 4 in the
z-direction, with z still the axis of isotropy, but take: o,
= 0, = o and take . = 0, as shown in Fig. 3. We will focus
on shear waves in the x-y plane that are polarized in the z
direction. In an unbounded three-dimensional medium,
based on Egs. (2)—(4) and Table I, the phase speed of plane
waves propagating in the x-y plane with z polarization are

2 Ky 0 7
cf 14 ( 2# ) ( )

However, we will employ the following assumptions based
on Mindlin’s first contribution that follow from assuming
that plate thickness / is less than the shear wavelengths of
interest (Sec. 8.3 of Ref. 54): ulx,y,z,f] =zo,[x,y,1],
VX, y, 2,8 = zpy[x, y, 1], w[x, ,2,1] = Wx, y,1]. Furthermore,
we will assume that ¢, = —w, and ¢, = —w,, which is
consistent with Euler—Bernoulli thin-plate theory. Utilizing
Eq. (2.1) of Ref. 47, and inputting the above assumptions:

1
O_xx,x + ny,y + G.\’z,z — 0= (uA,zz) - Gxx,x + ny,y + ze,z = Pu,n,

2
(8)
Z
[h M,Q QM
A 4 L ;*
ﬁ S (A ) — )y—»‘/

X
FIG. 3. (Color online) Two-dimensional waveguide.
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Oyxa T Oyyyt0yze =05 (Vez) = Oy T Oyyy + 0y = PV,

2
©)
1
O-zx,x + azy7y + gzz,z + O-E (W,XX - M,ZX + W,yy - VAzy)
= Oy + Oy + Oz + O(Wax + Wyy) = pW. (10)

Adapting Sec. 8.3 of Ref. 54, we multiply Egs. (8) and (9)
by z and integrate across the plate thickness from
—h/2to + h/2, and we directly integrate Eq. (10) across
the plate thickness from —h/2to + /2. Neglecting higher
order terms, this leads to

/’13
Mx,x + My.x,y -0, + PEW‘m = 07 (11
3
Mxy,x + My,y - Qy + pﬁw,ytr = 07 (12)
Qx,x + Qy,y + O—h(w,xx + W7yy) +q= ,Ohw_ﬁ, (13)

where M., My, M,,, and M, are bending moments about
the plate, O, and Q) are shear forces, and ¢ is an externally
applied force per unit area to the plate (Fig. 3). Expressions
for the bending moments are”

E R
- 12(1—12) (Prx T ViyPyy)

E. I

M,

(14)

E W
My = m (§0y7y + l/xy@x,x)
E. W

== —2) (Wyy T VW),

12(1 -2, (13)

E W
24(1 + vy)

i’
1z (%)

My = My = (Pyx T Pxy)

=-2 (16)
Neglecting rotational inertia terms in Eqs. (11) and (12)
since h is small, taking partial derivatives with respect to x
and y, respectively, solving for Q. and Q, , and substituting
into Eq. (13) leads to the following:

M o +2M oy e +My yy +0hW o+ 0hw y +g=phw . (17)
This can be written as
DW o + 2nyw,xxyy + Dw yyyy + phw 4
= ohw o + chw ,, +q, (18)
where
Crutison etal. 2407
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E, W
D= , (19a)
(-2
h3
Dy, = Dy + & (19b)

Neglecting external normal load per unit area ¢ and assum-
ing a planar wavefront in the x direction, partial derivatives
with respect to y lead to zero and the equation simplifies to
the following:

DW yoxx + phw yy = Ghw . (20)
The general solution to Eq. (20) for harmonic motion is

given in the form w = We'"*~") leading to the following
set of solutions:

Yy = *o, £if, (21a)
W2\ 12 12
o=\—¢+ (52 +—2> , (21b)
a
2 12 1/2
=&+ (52 +2> , 2lc)
a
oh
&= D (21d)
D
a= E 21e)

Thus, we have two propagating waves («) in the + or — X
direction, and two non-propagating (near field or evanescent)
waves (ff) in the + or — x direction. For the propagating
waves, the phase speed will be: ¢,;, = w/Real[]. Taking the
limit that oh < 2D, we see that o = (/a)'/* and thus, for
the elastic case ¢, = wl/z(D/ph)l/4. Note, there is disper-
sion even in the lossless elastic case (neglecting viscosity);
this is the classic unstressed thin transverse plate vibration
solution. On the other hand, taking the limit of tension
oh > 2D, we then drop Dw ., from Eq. (20) and reformu-
late the solution to find there are two propagating solutions

in the + or — x direction with ¢,;, = (a/p) /2 This is the clas-
sic thin membrane vibration solution. Note, none of these sol-
utions match the expression for shear wave propagation under
the same conditions but with h very large (3-dimensional
medium) which is provided in Eq. (7).

B. Application to cornea elastography

The eye can be modeled as an internally pressurized
spherical vessel where an increase in the internal pressure
strains the walls of the ocular tissue and induces a tensile,
circumferential hoop stress (gy). The range of tensile stress
can be roughly estimated using Laplace’s law for a spherical

2408  J. Acoust. Soc. Am. 151 (4), April 2022

pressure vessel as gp = Pr/2h, where P is the intraocular
(gage) pressure (IOP), r is the radius of the sphere, and % is
the thickness of the sphere walls. By assuming a radius of
10 mm and thickness of 0.6 mm, IOP values of 0, 5, 10, 15,
and 20 mmHg will induce hoop stresses of 0, 5.56, 11.11,
16.67, and 22.22kPa, respectively. For comparison, finite
element (FE) studies using more precise geometry have
reported hoop stresses within the range of roughly
15-25 kPa for around 15-18 mmHg IOP.>%%’

To evaluate whether tensile in-plane biaxial pre-stress,
being equated to hoop stress, within this range can influence
transverse wave motion on the cornea, we use equations from
Sec. IV A with p = 1 g/cm?, h = 0.6mm, E, = 50kPa and
vy = 0.499, yielding D = 1.2 x 107°Nm. Pre-stress was
incremented between 0 and 20kPa to estimate the tensile
effect of IOP on wavenumber [Fig. 4(a)] and phase speed
[Fig. 4(b)]. For comparison, Young’s modulus £, was also
separately incremented between 15 and 75kPa, with zero
hoop stress [Figs. 4(c) and 4(d)].

Simulation results shown in Fig. 4 suggest that increasing
both the tensile pre-stress (via increasing the IOP) and
Young’s modulus (a material property) can alter phase speed
similarly. The slope of the dispersion curves decreases as both
tension and material stiffness increase which corresponds to
an increase in phase velocities. Importantly, this indicates that
the high frequency asymptotes of the dispersion curves (above
~3kHz) that are normally used to estimate corneal shear
moduli can be significantly influenced by both pre-stress and
Young’s modulus. While both effects are similar, differences
in the dispersion curves can be observed, particularly in the
lower frequency regions (below ~1kHz) from the approxi-
mate thin-plate model; tensile pre-stress appears to strongly
influence the low-frequency dispersion behavior, while the
effects of stiffness are more apparent at higher frequencies.
These results suggest that tensile pre-stresses within the range
predicted for normal and pathological IOP values can indeed
influence wave behavior and that differential analysis of low-
and high-frequency dispersion components may help to dis-
cern the effects of pre-stress and stiffness. It appears that if
these pre-stress effects are not accounted for, an overestima-
tion of corneal shear moduli may arise.

In Sun er al. (2021),>8 analysis of the effect of tensile
pre-stress and a foundation stiffness is further explored by
integrating models for them into the full three-dimensional
theory introduced in Sec. II. Trends identified using the thin
plate theory are consistent with what is found using the
more precise model, in that failure to account for the effects
of pre-stress may result in overestimations of the corneal
elastic moduli, particularly at high IOPs.

V. ONE-DIMENSIONAL WAVEGUIDE WITH UNIAXIAL
NORMAL STRESS

A. Theory

Starting with the transverse isotropic material model
introduced in Sec. II, consider a rod whose axis is aligned
with the z-axis, the axis of isotropy, with cross-sectional

Crutison et al.


https://doi.org/10.1121/10.0010110

(a)

Tensile effect Tensile effect

1 10
OkPa s, OkPa s,
08 5kPan” 8 5kPanp
E 10 kPa a, 10 kPa 7,
< w
'E 15kPa¢10 E 15kPa00
E06 20kPa s, = 20kPa o,
b} ©
8 9
§ E
g 04 2
3 @
o <
2 T
0.2
0

0 1 2 3 4 5 0 1 2 3 4 5

Frequency (kHz) Frequency (kHz)
(C) p Stiffness effect - Stiffness effect
15kPa E 15kPa E
30kPa E 30kPa E
0.8 45kPa E 8 45kPa E
—_ 60 kPa E
2 60 kPa E - Sharef
£ 75kPa E I s o
Eos >
& k]
o o
2 04 :
Q
: 2
S L
s [
0.2
0

0 1 2 3 4 5
Frequency (kHz) Frequency (kHz)

FIG. 4. (Color online) Thin-plate theory for comparing the effects of tensile prestress and stiffness on wave dispersion. (a) The linear wavenumber vs fre-
quency dispersion curves demonstrate that estimated prestress values oy incremented between 0 and 2.0 x 10* Pa can alter wave behavior independently of
material stiffness (where £, =3.0 x 10* Pa). (b) The corresponding phase velocity curves demonstrate that tension strongly influences low-frequency phase
velocities while high-frequency waves are also affected. (¢) Dispersion curves demonstrate that stiffness affects wave behavior similar to tension when incre-
mented between 1.5 and 7.5 x 10* Pa (where oy = 0 Pa), though its effects at high frequencies are more apparent. Additionally, when comparing (a) and (c),
the low-frequency components below ~1kHz are affected less by stiffness than tension. (d) This is reflected in the corresponding phase velocity curves
where low frequency phase velocities are less influenced by stiffness. Further comparison of (b) and (d) show that both tension and stiffness can change the
high-frequency phase velocities that are used to estimate corneal stiffness.

dimensions in the x and y direction that are significantly less 12

o\ 1/2
than wavelength. In other words, take the numerical study o= —-¢+ (éz + co_z) , (23b)
of Sec. III but with r smaller. Also, as in Sec. III, set a

or =0, =0 and o. = 0. Undertaking an analysis similar 12 1/2
to Sec. IV, we arrive at the pre-tensioned Euler—Bernoulli o 2 ?

thin beam described in Section 3.3.4 of Graff’* for b=+ <£ * a2) ’
x-polarized transverse wave propagation of the beam along
its z-axis,

(23¢)

oA
- 23d
=37 (23d)
Eylu,... — gAu ;. +Apuy = 0. (22)

E\l
Here, I is the area moment of inertia about the y axis a= p_JA (23e)
= %1‘4 for a circular cross section of radius r), and A is the
cross-sectional area in the x-y plane. Note the similarity to
the Eq. (20) of Sec. IV.

Consider this an initial approximation for a thin muscle
under a tensile load along its axis. As before, the general
solution form is: u = Uei(“/x‘“”), where i = \/:T, w is the
circular frequency in rad/s and 7y has four possible

Like in Sec. IV A, we have two propagating waves () in the
+ or — x direction, and two non-propagating (near field or eva-
nescent) waves (f8) in the + or — x direction. For the propagat-
ing waves, the phase speed will be: ¢,;, = w/Real[x]. Taking

the limit that cA < 2E 1, we see that o = (w/a)l/2 and thus

solutions, for the elastic case ¢, = '/? (El/pA) /4 which is the clas-
sic thin (Euler-Bernoulli) beam transverse vibration solution.
y = *o, Tif, (23a)  On the other hand, taking the limit of tension ¢A > 2El,
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we then drop E it 22z from Eq. (22) and reformulate the solu-
tion to find that there are two propagating solutions with

con = (a/p) /2 This is the classic transverse thin string vibra-
tion solution. As noted before in Sec. IV A, a case between
the extremes of either neglecting gA or Ey/ still does not
match the phase speed of bulk shear waves, which again is
given by Eq. (7).

B. Application to muscle elastography

In a recent study of shear wave elastography on an
ex vivo cat soleus by Bernabei et al.,>®% where the tensile
preload ¢A could be precisely measured while conducting
elastography measurements on a passively tensioned muscle
as well as when it is activated via an electrical current, it was
found that under passive tensile loading, the wave speed
closely followed the string solution with c¢,;, = (g/ p)l/ 2,
However, under muscle activation phase speed appeared to
fall between the two extreme cases articulated above
(Sec. V A). Other studies have shown similar trends,z‘“30 but
have ascribed the increase in ¢y, to be due to an increase in
the elastic moduli of the muscle, in other words its nonlinear-
ity under deformation. The cat soleus has a physiological
cross sectional area (PCSA) of about 1 cm?, or a diameter
of about 1 cm. Human muscles studied using elastography
can have a wide range of PCSAs, for example, as small as
0.68 cm? in the abductor pollicis brevis®' to 21 cm? in the
medial gastrocnemius.®?

VI. CONCLUDING REMARKS: NONLINEARITY AND
THE GLASS HALF FULL

The experimental method of elastography generally
involves small oscillatory deformations and it is reasonable
to assume linear theory is valid. However, the static defor-
mations, due to pre-stress in the applications described
above (Secs. IV and V), may be significant and not be rea-
sonably modeled based solely on linear systems theory. A
logical approach is to apply a more robust nonlinear theory
to model the static deformation created by the pre-stress
using an appropriate strain energy function, followed by lin-
earization about the new static equilibrium in order to derive
an elasticity matrix that can be used for the “linearized”
acoustoelastography problem. A few groups in the elastog-
raphy community have been investigating this and identify
higher order elastic constants. This remains an active area of
research with a wide range of strain energy functions having
been proposed, with it proving difficult to experimentally
evaluate which may be most appropriate for a given
application, 2648496365

Even without the added complexity of geometric and
material nonlinearities due to large static deformation, the
elastography problem, especially in anisotropic materials, is
made more challenging by the presence of static or quasi-
static stress loads that are inherent to the normal physiological
function of many biological soft tissues. They cannot be
avoided. So is the increase in phase speed as a tissue is further
stretched caused by the stretching (tensile load) itself, or is it
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caused by the higher order elasticity coefficients needed to
fully characterize the material nonlinearity of the tissue over a
large deformation range? Can these effects be teased apart
through careful experimental measurements that fully investi-
gate all manner of direction and polarization of mechanical
wave motion at multiple static deformation levels? Are such
experiments feasible? Recognition of these daunting technical
challenges may lead one to think that the technique of elastog-
raphy is, indeed, a half empty glass, unable to confidently
determine that which it originally set out to determine, a mate-
rial’s elastic constants. But this would be missing the forest
for the trees. Being clear-eyed about the challenges that we
face, we believe the glass is half full, in that once we over-
come the known complexities of the problem, acoustoelastog-
raphy will be able to noninvasively quantitatively map not
only a material’s complex stiffness, but also the complex
stress field it is under. Stiffness and stress are both critical to
the physiological function of many biological tissues, and
both can be uniquely altered by pathology, injury, and
response to therapy. A tool that can nondestructively measure
both independently would be profound.
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APPENDIX

Infinitesimal strain theory based on linear elasticity in a
transverse isotropic (TI) material culminates in the Eqgs.
(2)—(4) of motion and the phase speed values given in Table
I and Egs. (5) and (6). This approach does not account for
changes brought about by the altered geometry due to the
deformation or by any nonlinearity in the material proper-
ties. Other studies have started from the more general non-
linear theory of a hyperelastic material with initial stress,
defining a finite strain energy function, from which linear
and higher order elastic coefficients can be derived for study
of wave propagation.?®*®4%¢3-%5 In Destrade er al** and
Remenieras et al.* elastic wave phase speed in an incom-
pressible TI solid under uniaxial stress was considered by
starting with a third-order expansion of the elastic strain
energy function given in powers of the Green—Lagrange
strain tensor. For the case that is the same as the uniaxial
formulation in the current study (uniaxial stress direction
aligned with the axis of isotropy), the following equations
were derived for the slow ¢, and fast ¢; shear wave phase
speeds, identifying the relationships between the nomencla-
ture of the referenced studies to the current study:

c[@]i = % (1 + qﬁcosz[O] + ﬁH i cos?[0] — [ﬁi sinz[O]),

Hy
(AD)
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c[@]‘? :% ((+y—2B)cos*[0] +2(B —y)cos’[0] +7), (A2)
where
1. b A o}
- (]5 1 A s
_1+3+4C+#L(3+4§)(4+a3+2>’ (A3)
1 A
By =E—(3m +§—063>
% 1 A_
=i at G (2 “3)’ (A9
aty—2=—4u ((—¢)—208u . ((—¢)
+6p, ¢ + 303 + 304 + Zas)mv
(AS)
2(B—7) =4u ({—¢) + Buy +20u, (L= @)
o
+1641, ¢ + 603 + 604 + 4a5)m,
(A6)
and
7 =u (1 +¢)
1 g

Here, A is the third-order constant of weakly nonlinear
incompressible isotropic elasticity48’63 and o3, oy, and o5 are
additional anisotropic third-order constants present in the
transverse isotropy case.*®#

Ogden and Singh®® showed that the formulation pro-
vided by Biot’s linear elasticity theory,*® which Egs. (5) and
(6) in the present study are based upon, leads to
A=—6p (1+¢), oa3=-3u,¢, ow=-u ¢, and
as =, (7¢ — 4{). Placing these values in Egs. (Al) and
(A2) results in fj = %, =0, y=u,(1+¢)—0/2,
=u, (1—¢+2(), and = p, (1+ ¢) + /2. Then, Egs.
(A1) and (A2) will exactly match Egs. (5) and (6).

Values for the parameter A have been estimated experi-
mentally in tissue-like isotropic materials. For example,
Gennisson ef al.>® and Urban er al.*’ found a wide range of
estimated values for A relative to p, [encompassing
A= —6u, (1 + ¢)] by measuring shear wave speeds in dif-
ferent directions and polarizations relative to the axis of uni-
axial compressive stress in agar, gelatin, agar-gelatin, and
polyvinyl alcohol phantoms with compressive stresses up to
and exceeding 10% of the measured p, . These studies also
found that strain levels, even as low as 1%, resulted in a
measured nonlinear relationship between strain and small
amplitude shear wave speed, thus requiring at least fourth
order elasticity constants that have a quadratic dependence
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on strain (or stress). Thus, we acknowledge the limitations
of the current analysis based on linear elasticity, with speci-
fied third order elasticity constants and no fourth or higher
order constants that are necessary to model material nonli-
nearities. Nonetheless, the simplified analysis here has
illustrated the importance of accounting for stress in elastog-
raphy measurements with and without the additional com-
plexity of finite boundaries.
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