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Machine-learning structural and electronic properties of
metal halide perovskites using a hierarchical convolutional
neural network
Wissam A. Saidi 1✉, Waseem Shadid2 and Ivano E. Castelli 3

The development of statistical tools based on machine learning (ML) and deep networks is actively sought for materials design
problems. While structure-property relationships can be accurately determined using quantum mechanical methods, these first-
principles calculations are computationally demanding, limiting their use in screening a large set of candidate structures. Herein, we
use convolutional neural networks to develop a predictive model for the electronic properties of metal halide perovskites (MHPs)
that have a billions-range materials design space. We show that a well-designed hierarchical ML approach has a higher fidelity in
predicting properties of the MHPs compared to straight-forward methods. In this architecture, each neural network element has a
designated role in the estimation process from predicting complex features of the perovskites such as lattice constant and
octahedral till angle to narrowing down possible ranges for the values of interest. Using the hierarchical ML scheme, the obtained
root-mean-square errors for the lattice constants, octahedral angle and bandgap for the MHPs are 0.01 Å, 5°, and 0.02 eV,
respectively. Our study underscores the importance of a careful network design and a hierarchical approach to alleviate issues
associated with imbalanced dataset distributions, which is invariably common in materials datasets.
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INTRODUCTION
Realization of commercially viable solar electricity is critical for
securing long-term economic growth and mitigating the impact of
climate change. The metal halide perovskites (MHPs) and in
particular MAPbI3 (MA= CH3NH3) are currently the most investi-
gated solar materials with ~25.2% power conversion efficiency
(PCE) surpassing commercialized solar cells such as multicrystal-
line Si (c-Si, 21.3%), cadmium telluride (CdTe, 22.1%) and copper
indium gallium selenide (CIGS, 22.3%)1. However, in comparison to
traditional solar absorbers, the main advantage of MHPs is their
facile large-scale synthesis with relatively low cost2. Several studies
showed that the high PCE in MHP based solar cells results from a
unique combination of features: large absorption coefficient >
3.0 × 104 cm−1 in the visible light region3, low exciton binding
energy resulting in high quantum yield of free electrons and
holes4, long electron–hole diffusion lengths5,6, and electronically
benign point7,8 and grain-boundary defects9. Another application
of MHPs utilizes tandem solar cells, coupling a wide bandgap “top
cell” with a narrow bandgap material like silicon as a “bottom cell”.
Given that crystalline Si has a 1.1 eV bandgap, this requires
materials with a 1.75 eV bandgap in order to current-match both
junctions10. Current research focuses on finding optimum MHPs
materials for either a single absorber or tandem solar cells that are
cost-effective, stable and lead free11. As an example, Li and Yang
quite recently screened over 4500 hybrid compounds including
those beyond the perovskite crystal structure, identifying 13 and
23 materials for solar energy conversion and light emitting diodes,
respectively12. Despite these and other efforts, the chemical space
of materials design is too broad for “brute force” screening, and
more efficient search methods are needed to find perovskites in
different bandgap ranges.

There are vast opportunities for the discovery of new
photovoltaic materials, but with considerable synthesis challenges,
e.g., new materials can disproportionate into competing phases,
and uniform films of the correct phase and composition for
photovoltaics may prove difficult to form. “Computational
experiments” or inverse-design approaches using predictive first-
principles calculations offer a remedy, either narrowing down the
number of potential solar absorbers or in guiding the experi-
mental synthesis by determining the region of stability, if any, of
the new compound. Further, previous studies show that useful
compounds for different applications comprise only a small
fraction of the total number of possible compounds13–16. For
example, Castelli et al. examined the performance of 19,000 oxide
and oxynitride perovskite materials as solar water light splitters,
finding only 20 interesting compounds for experimental follow-
up14,17. Also, DFT-based screening of 700 ternary alkali-transition
metal borohydrides identified ~20 compounds with potential for
reversible hydrogen storage15.
While ab initio investigations only require input of atomic

numbers and ion positions to provide accurate materials proper-
ties, their relatively high computational cost limits their applica-
tion on large datasets of millions of possible combinations. This is
a serious limitation given that the material design space of hybrid
MHPs is enormous. In contrast to the ~100 chemical elements
available for all inorganic compounds, there are astronomical
combinations yielding valid molecular species for the organic
systems. The GDB-17 database18 contains 166.4 billion molecules
composed of 17 atoms including H, C, N, O, S, and the halogens,
and there are ~10 million in the FDB-17 database, which evenly
covers a broad range of molecular sizes, polarities, and stereo-
chemistries19. Even limiting the chemical space to ~10,000
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experimentally measured molecules20,21, the number of potential
candidates is still huge, precluding traditional screening methods.
Machine learning (ML) approaches can accelerate the materials

search by orders of magnitude compared to traditional first-
principles methods without significantly compromising their
accuracy22–25, contributing to a paradigm shift in materials design
where big data, artificial intelligence and materials modeling are
deeply entangled26. For example, Pilania and collaborators used
kernel-ridge regression to predict the bandgaps of double
perovskites achieving a root-mean-square error (RMSE) of
0.37 eV22. Im and co-workers used gradient-boosted regression
trees to identify lead-free double perovskites and achieve an RMSE
of 0.3 eV25. Weston and Stampfl compared different ML models in
the prediction of bandgaps of kesterite I2-II-IV-V4 quaternary
compounds, reporting an RMSE as low as 0.28 eV24.
Herein, we systematically develop a dataset including structural

and bandgap properties of 862 MHPs with the aim of developing
a predictive ML model that captures the complex trends and
correlations of this chemical space. We construct our materials
design space by focusing mainly on variations in the organic
molecule that has an enormous number of possibilities compared
to those afforded by inorganic systems. For example, in
comparison to inorganic compounds22–25, organic compounds
display a wider range of features like electrostatic moments,
anisotropies, and a complex potential energy surface allowing the
molecule to distort depending environment and other entities in
the compound. Additionally, the atomic size of the constituent
elements of the perovskites is particularly important since this
relates to their stability according to the Goldschmidt tolerance
factor27. But simple features such as the Shannon radii for atomic
size are not easily generalized to the molecular case22–25.
Furthermore, structural optimization of the MHPs is challenging
due to the soft nature of their potential energy surface28, which
thus complicates building a consistent large database for ML
training.
With the aim of addressing these challenges, we develop a ML

approach for the MHPs that will (1) accurately estimate the
bandgap using easy to calculate descriptors; (2) overcome the
small size dataset problem with imbalanced distributions of target
values, i.e., some range parts of a target value may have too many
samples while other parts may have few or none; and (3) use
simple ML approaches that are computationally not demanding,
and are relatively simple to understand and control. We show that
a hierarchical neural network architecture composed of a relatively
small neural network elements can address all of these constraints.
In this case, the ML elements are arranged such that each part
plays a specific role in the prediction process. Each element is built
using a convolutional neural network (CNN) framework and

independently trained for its designated role apart from the other
elements. This simplifies the learning process for neural networks
and avoids the need for more sophisticated network architectures
with many hidden layers.

RESULTS
Database
We perform a high-throughput computational screening of ABX3
MHPs, focusing mainly on variations at the “A-ion” site while
keeping the lattice and the inorganic BX3 network the same as in
the parent MAPbI3 structure. As a necessary constraint, we
ensured selected A, B, and X species satisfy (a) the valence rule,
requiring elements to have the correct oxidation state, namely
A+1, B+2, and X−1; and (b) the even-odd rule, requiring the
material to have an even number of electrons in the unit cell to
maintain a non-metallic behavior. Figure 1 summarizes the
material design space. At the A site, we investigated Cs in
addition to 18 different organic molecules: ammonium [NH4]

+,
[AsH4]

+, [PH4]
+, [AsH4]

+, [PF4]
+, methylammonium [CH3NH3]

+,
[CH3PH3]

+, [CH3AsH3]
+, hydrazinium [(H3N)(NH2)]

+, azetidinium
[(CH2)3NH2]

+, formamidinium [NH2(CH)NH2]
+, [NH2(CH)PH2]

+,
[NH2(CH)AsH2]

+, imidazolium [C3N2H5]
+, dimethylammonium

[(CH3)2NH2]
+, acetamidinium [NH2-C-CH3-NH2]

+, ethylammonium
[(C2H5)NH3]

+, and hydroxylammonium [H3NOH]
+. Starting from A

cations such as ammonium, methylammonium or dimethylam-
monium, other cations can be generated by replacing N with P, As,
or Sb, or by replacing hydrogen in ammonium with halogen
atoms such as [PF4]

+28. In our database, we avoided using
relatively large organic molecules such as tertiary methylammo-
nium or other combinations such as [NF4]

+ and [PCl4]
+ since these

were previously shown to destabilize the 3-dimensional perovskite
network28. At the B site, we considered the divalent metals Pb and
Sn. At the halogen X site, we included 10 different combinations
obtained from the three halogens (Cl, Br, I). Previous searches
investigated a small portion of these compounds28–32. In total, we
have 380 different MHP compositions in the cubic phase, which
was expanded to 862 to account for all permutations obtained by
rearrangements of the tri-halide moiety.
The bandgap and structural parameters of all of the compounds

in the dataset are computed using DFT. For each case, we start
structural relaxation with the organic molecule chosen randomly
at the center of the metal-halide octahedra. Previous studies show
the orientation of the organic molecule has relatively small effect
on electronic properties of the system and, on average, the
bandgap changes less than 0.1 eV33. MHPs are known to have a
complex potential energy surface with many local minima28,34.
This adds a significant challenge to high-throughput

Fig. 1 Schematic representation of the selected material design space for the MHPs. The A site of ABX1X2X3 can be occupied by Cs in
addition to 18 different organic molecules: ammonium [NH4]

+, [AsH4]
+, [PH4]

+, [AsH4]
+, [PF4]

+, methylammonium [CH3NH3]
+, [CH3PH3]

+,
[CH3AsH3]

+, hydrazinium [(H3N)(NH2)]
+, azetidinium [(CH2)3NH2]

+, formamidinium [NH2(CH)NH2]
+, [NH2(CH)PH2]

+, [NH2(CH)AsH2]
+,

imidazolium [C3N2H5]
+, dimethylammonium [(CH3)2NH2]

+, acetamidinium [NH2-C-CH3-NH2]
+, ethylammonium [(C2H5)NH3]

+, and
hydroxylammonium [H3NOH]

+. The B site can be occupied by Sn or Pb, while as the X1, X2, and X3 halogen can be Cl, Br or I.
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computational studies because the outcome structure, and hence
its properties, tend to be sensitive to the starting configuration. In
our study, we fully relaxed the atomic coordinates and obtained
the lattice constant using the Murnaghan equation of state
assuming a perfect cubic structure. We find this approach to be
important to have a consistent database given the sensitivity of
the bandgap to lattice distorations. We ingored electron-phonon
coupling effects that can affect the bandgasp as these are
relatively small35–37. Figure 2 shows the bandgaps of the system
obtained using GLLBC+ SOC. Differences between the direct and
indirect bandgaps were <0.1 eV, so this is ignored in our analysis.
While the significant (0.2–6 eV) modulations of the bandgaps in
the database ensure that the obtained correlations cover a wide
range of systems, this complicates the development of an
accurate ML model as we further discuss below.

DISCUSSION
Features engineering
Based on their complexity, we classify our descriptors into three
main categories: elemental, precursor-based, and ABX3-based
features. We identified 29 elemental features that are obtained
from the atoms and molecules forming the perovskite compound.
These include first and second ionization energies and electron
affinities, the electric dipole of the organic molecule, and atomic/
molecular sizes. Also, we included the Goldschmidt tolerance
factor,

t ¼ RA þ RXð Þ
ffiffiffi

2
p

RB þ RXð Þ
often used to assess the stability of the perovskite structure and
the recently introduced tolerance factor38,

τ ¼ RX
RB

� nA nA � Y
lnðYÞ

� �

with Y ¼ RA
RB

and nA ¼ 1:

We also identified six-precursor-based features derived from
optimum structures of AX and BX2 including lattice volumes,
formation energies and bandgaps. The motivation for including
these precursor-derived features is that MAPbI3 can be synthe-
sized from MAI and PbI3. While similar synthesis routes may not
exist for different ABX3 compounds, these features capture some
of the chemistry of ABX3 and hence are deemed important to

include. The last set of features considered are the lattice constant
a and the metal-halide-metal octahedral tilt angle O obtained
from the optimum ABX3 structure, included because these
geometric parameters affect the overlap of atomic orbitals and
thus the bandgap28. Obviously, a predictive model to be used for
screening different ABX3 systems should not depend on features
obtained from the optimized ABX3 structures. However, as we will
discuss later, we will implement the ABX3-based features in a
hierarchal neural network architecture composed of a relatively
small number of neural network elements, each computationally
tractable and relying on quickly calculated features.
Using the full set of features, we performed a statistic analysis

and empirical validation to determine the features that have the
most impact on the predictivity of the ML model, as quantified
from the RMSE. This process results in 11 features out of the 37
original set of features. We note that this reduction of feature
space is mainly important to speed up the calculations and to
obtain a smoother training of the neural network. The identified
important features include the size A, B and halides, first ionization
energy and electron affinity of the organic molecule, bandgap,
formation energy, and the volume of the AX precursor, in addition
to the lattice constant and the octahedral angle of ABX3. As seen,
the selected features are associated mainly with the A cation
(organic molecule) rather than the B cation, which is rationalized
given that our database encompasses mainly variations at the A
site (19 different cases) rather than the B site (2 cases). The
importance of some of these features for the bandgap in the
MHPs has been reported before10,28,29,39. For example, Filip and
collaborators found this to be the case for the lattice constant and
the octahedral angle28. Further, the bandgaps of MHPs are found
to be strongly dependent on electronegativities of the constituent
species and the lattice constant, where the bandgaps increase
(decrease) with an increase of the electronegativities (lattice
constant)10,29. Also, the electronegativity of the organic molecule
can influence the bandgap indirectly: increasing the size of A
tends to increase the lattice constant, and hence decrease the
bandgap based on a one-dimensional quantum well description.
Such a model applies to perovskites with A = FA, MA and Cs29, as
well as APbI3 (A= NH4, PH4, AsH4, and SbH4)

39.
Our ML approach is based on a CNN since it can be equally

applied for classification and regression models. Further, we found
that convolutional layers capture important trends as multiple

Fig. 2 Ground-truth bandgap values. Results obtained using GLLB-SC with SOC corrections for (a) Sn-based and (b) Pb-based perovskites.
Each colored square corresponds to a different perovskite with the color indicating the bandgap value. The A-ion and the X1X2X3 combination
is identified by the labels on the vertical and horizontal axis, respectively.
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perceptron layer was appreciably less accurate. Figure 3 shows
pictorially the employed CNN architecture characterized by an
input layer followed by two convolutional layers, one fully
connected layer, and an output layer. This network design was
implemented with TensorFlow Python API40. The input layer is the
set of predictors; The first convolutional layer consists of 64 filters,
and employs a one dimensional (1D) convolutional kernel of size
corresponding to the number of input features. The second
convolutional layer consists of 128 filters, and employs a 2D
convolutional kernel where the number of rows is equal to five
and the number of columns is equal to the number of input
features divided by two. The choice of 2D rather than 1D for the
second layer is purposeful to accommodate the 2D output (filters
and features) of the first layer. For both convolutional layers, the
padding technique forces the output of each filter to have the
same size as the input, followed by an element-wise rectified
linear activation. Subsequent down sampling by a factor of two in
a max pooling layer compresses the features between convolu-
tional layers41. The fully connected layer consists of 100 hidden
neurons connected to the down-sampled output of the second
convolutional layer. This layer employs an element-wise rectified
linear activation followed by a dropout layer with a drop rate of
0.2 to prevent overfitting. The last layer consists of one neuron
with element-wise rectified linear activation that takes output of
the fully connected layer as input and calculates the value of the
bandgap. For the CNN for classification purposes, e.g., for
estimating the range of the bandgap or the octahedral angle,
the element-wise rectified linear activation is replaced by an
element-wise sigmoid in all layers.
The CNN is trained using 80% of the data selected randomly

from our dataset. For validation, we employed 12 different
selections of the training set from the dataset, and the reported
RMSE prediction estimation is an average over all of them. Prior to
the training, we first standardized the input data by subtracting
the mean of each feature from each value and divided by the
standard deviation. The standardized features have a zero-mean
and unit-variance, which ensures that all have equal weight
without any distortions to the differences in the value ranges.
Further, features standardization is important for optimizing the
weights of the CNN during the training process given that inputs
over different ranges may cause convergence problems manifest-
ing as oscillatory behavior around the desired minimum. After
standardization, we also included new features obtained from the

pair-wise interaction between the original descriptors to transform
the linear regression model to a polynomial regression one. In this
case, the pair-wise interactions between two different features
capture the conjoint variation of any two independent predictors,
and the self-interaction of features adds quadratic nonlinearity to
the model. This feature augmentation step reduces the probability
of missing important information that may improve the predic-
tions of the CNN. Here, assuming that the original number of
features is M, then after feature augmentation the total number of
features will be increased by M due to the square terms and M(M-
1)/2 from pair-wise interactions (see Fig. 3). After CNN training, we
obtained an RMSE of 0.07 eV during bandgap prediction. Using all
of the features also yielded similar RMSE for the bandgap, assuring
that the dimensionality reduction does not affect the predictivity
of the model.
One of the requirements to produce a reliable CNN is to have a

balanced training dataset with homogenous distribution of
samples in the output range. Imbalanced datasets may produce
a model biased to learning parts of the range that have the most
samples, and thus performs poorly on the other parts. As seen
from the histogram in Fig. 4, the bandgap values vary between 0
and 6 eV with the majority of the values between 2 and 4 eV.
Clearly, this imbalance in the representation of a physical property
is a common problem in materials design, as there is no practical
way to choose compounds that equally cover all the different
ranges. To address the uneven nature of the dataset, we applied a
hierarchical CNN (HCNN) that implements a classification algo-
rithm to determine the bandgap range followed by another
regressor CNN that estimates the bandgap value based on the
outcome of the first CNN. Figure 5 shows schematically the
dataflow contrast between the direct and hierarchical ML
approaches.
We trained the HCNN by splitting the training set into six

different classes based on the bandgap value. The first level
structure of the hierarchical CNN design consists of one CNN
model that outputs a vector of six binary values corresponding to
the six ranges of the bandgaps. For each compound, all of these
values should be zero except the value associated with the
category this combination belongs to, which is one, a method
referred to as one-hot representation42. Further, we implemented
soft cutoffs for the range classification so that compounds that
within ~0.2 eV of the boundary are included in both classes.
Impressively, the HCNN approach reduces the error obtained

Fig. 3 Schematic representation of the convolutional neural network architecture. For the classifier network the element-wise rectified
linear activation unit (relU) is replaced by an element-wise sigmoid unit.
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before using standard CNN by a factor of three resulting in an
RMSE of 0.02 eV or on average a 0.14 eV error in the bandgap.
While the HCNN has a high predictive accuracy, the feature list

includes the lattice constant a and the octahedral angle O of the
hybrid ABX3 that are not easily accessible without calculating the
optimum structure of the ABX3 using DFT, which we are trying to
circumvent by using a CNN in the first place. Indeed, we find that
both features are important to the high predictivity of the CNN
model, as the RMSE increases from 0.07 to 0.16 eV when lattice
constant and octahedral angle are removed from the features sets.
It would be tempting to explore whether the a and O can both be
predicted using a CNN that employs only elemental and
precursor-type features. We find that this is indeed the case,
and both features can be predicted with a high accuracy, as can
be seen in Fig. 5a, b. Using a CNN with an architecture similar to
the one employed for the bandgap, the RMSE for the lattice
constant and tilt angle are found to be 0.01 Å and 40°,
respectively. The high RMSE for the octahedral angle is expected
to be due to the imbalanced nature of the dataset, which is not
the case for the lattice constants as seen from the histograms in
Fig. 4b, c. To verify that this is the case, we employed an HCNN for

the octahedral angle as we did for the bandgap. The RMSE
decreased in this case to 5°.
We employed the lattice constant CNN and the octahedral

angle HCNN as two sub-nets in conjunction with an HCNN for the
bandgap, all utilizing the same set of nine features identified
before without the ABX3-type. Using this complex network
architecture, we obtained an RMSE of 0.02 eV for the bandgap
that is identical to the value obtained before the HCNN with the
11 feature sets including those of a and O. Figure 6c compares the
DFT-computed and CNN predicted values for the bandgap.
In summary, this study underscores the importance of careful

design of the ML approaches to provide a predictive structure-
property relationship for the MHPs. Particularly, we show that the
lattice constant and the octahedral till angle are key to obtain a
predictive model for the bandgap, as the RMSE increases from
0.07 to 0.16 eV when these two features are removed from the
dataset. Addressing this, we demonstrate that a CNN with easy-to-
compute features can predict the lattice constant and octahedral
angle with RMSE of 0.01 Å and 5°, respectively. Further, using the
lattice constant and the tilt angle CNNs as two elements in the
bandgap CNN would provide a predictive model with an RMSE of

Fig. 5 HCNN architecture. Schematic representation of the convolutional neural network employed for (a) bandgap and (b) structural
features of the perovskites. Type 1, 2, and 3 correspond respectively to elemental, precursor-derived and complex type features. In (a) and (b)
we show two design schemes by either using a direct regressor network, or a combined hierarchical network that employs a classifier for the
range followed by a regressor network for the output value. The dotted square in (a) indicates that Type 3 structural features can be obtained
using the network design shown in (b).

Fig. 4 Data distribution. Histogram analysis for (a) lattice constant, (b) octahedral angle, and (c) bandgap of the perovskites.
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0.02 eV, in agreement with the CNN that uses the DFT computed
lattice constant and angle. Additionally, we show that a key to the
success of this approach is in employing a hierarchical CNN to
alleviate problems associated with the imbalanced nature of
target values. Our findings are general and are likely to be
applicable to other problems in materials design.

METHODS
The structural optimization of the MHPs is carried out using DFT
calculations employing the Perdew-Burke-Ehrenzhof exchange-
correlation functional revised for solids (PBEsol)43 and projector augmen-
ted wave (PAW) pseudopotentials44,45 as implemented in the Vienna Ab
initio Simulation Package (VASP) package. We expanded the electronic
wavefunctions using planewave representation with a 400 eV cutoff.
Sampling in the Brillouin zone, we used a 8 × 8 × 8 shifted grids with 0.2 eV
Gaussian smearing. All of the atomic coordinates are relaxed using a
convergence threshold of 1 meV/Å on the atomic forces and 10−7 eV on
the energies of the self-consistent electronic step. The band structure
calculations are performed using GPAW46 with spin-orbit coupling (SOC)
corrections. To obtain accurate bandgaps at a reasonable computational
cost, we employed the GLLB-SC functional47 that can predict the bandgaps
within an absolute accuracy of 0.5 eV48. The GLLB-SC functional has been
used in several studies to screen layered perovskites49, perovskite oxides14,
and also organic perovskites29. For comparison, the GLLB-SC bandgaps of
tetragonal MAPbI3 and FAPbI3 with SOC are 1.36 and 1.47 eV, comparable
to the GW/SOC results29,50. The SOC corrections decrease the bandgap on
average by ~1.0 and 0.25 eV for Pb-based and Sn-based compounds. These
results are consistent with previous studies29,50. The reduction of the
quasiparticle gap due to electron–hole interactions is relatively small
~0.1 eV and is hence ignored in this study29.
For consistency, we calculated all features employed in the ML analysis

rather than using values from literature. The electron affinity and ionization
energy are obtained from energy differences of neutral and charged
systems computed using Gaussian51 and the B3LYP functional. Such
approach can be equally applied for the elements and the organic
molecule. We have verified that the basis set is large and include diffuse
basis functions to accurately calculate the electron affinity. For Pb, we used
0.365 eV for the electron-affinity as computed with relativistic effects52. To
quantify the steric size, it is common to use Shannon radii of the elements.
However, these do not exist for the organic cations. To be consistent for all
elements/cations, we used as a size feature the radius of the sphere
containing 90% of the electron density obtained from the B3LYP functional
of the cation/anion that have the following nominal valence charges in
ABX3 perovskite structure: +1 for A cations, +2 for Pb and Sn, and –1 for
the halides28. Although the atom sizes of Pb/Sn and halide groups
obtained from this method were different from the corresponding
Shannon radii, it was comforting that both quantities showed similar
trends. Further, it was reassuring that the less stringent constraint RA > RB is
also satisfied by all our systems using the new size feature. We also
calculated the formation energies, lattice constant, and bandgap based on
PBEsol for all AX and BX2 compounds, under the assumption that these
have the same crystal structure as in the parent MAI and PbI2 systems.

DATA AVAILABILITY
A dataset of the 862 systems utilized in this study along with optimized atomic
structures of the compounds are provided in the Supplementary Information.
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