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The paper considers a system of equations that models a lateral flow of a Boussinesq—
Scriven fluid on a passively evolving surface embedded in R3. For the resulting Navier—
Stokes type system, posed on a smooth closed time-dependent surface, we introduce a
weak formulation in terms of functional spaces on a space-time manifold defined by the
surface evolution. The weak formulation is shown to be well-posed for any finite final time
and without smallness conditions on data. We further extend an unfitted finite element
method, known as TraceFEM, to compute solutions to the fluid system. Convergence of
the method is demonstrated numerically. In another series of experiments we visualize
lateral flows induced by smooth deformations of a material surface.
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1. Introduction

There is extensive literature on analysis and numerical simulation of the incom-
pressible Navier—Stokes equations, a fundamental model of fluid mechanics. While
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the overwhelming majority of papers in this field treats these equations in Euclidean
domains, there also is literature on analysis of the incompressible Navier—Stokes
equations on surfaces, or more general on Riemannian manifolds. Building on a
fundamental observation made by Arnold? that relates equations of incompressible
fluid to finding geodesics on the group of all volume preserving diffeomorphisms,
local existence and uniqueness results for Navier—Stokes equations on compact ori-
ented Riemannian manifolds were proved in the seminal paper (Ref. 11). This work
has been followed by many other studies, cf. Refs. 44 and 42 and the overview in
Ref. 8. Very recent activity in the field includes the work,?? 4° in which local-in-
time-well-posedness in the framework of maximal regularity is established. All these
papers restrict to stationary surfaces or manifolds.

In recent years there has been a growing interest in fluid equations on evolving

16, 20, 24, 38, 47 motivated in particular by applications to modeling of bio-

surfaces,
logical membranes, e.g. see Refs. 39, 34, 4 and 45. In Ref. 6 one finds an overview
and comparison of different modeling approaches for evolving viscous fluid lay-
ers that result in the surface Navier—Stokes equations. We are not aware of any
literature presenting well-posedness analysis of this system on evolving surfaces.
Furthermore, only very few papers address numerical treatment of such equations.
In Refs. 36 and 37 computational results are presented, based on a surface vorticity-
stream function formulation of the Navier—Stokes equations. The surface motion is
prescribed and the evolving SFEM of Dziuk-Elliott" '© is applied to the partial
differential equations for the scalar vorticity and stream function unknowns. The
authors of Ref. 26 consider another discretization approach that is based on the
techniques developed in Ref. 38. These papers focus on modeling and illustration
of certain interesting flow phenomena but not on the performance of the numerical
methods. Several recent papers® 14 1719 present error analysis of finite element
discretization methods for vector-valued PDEs on stationary surfaces. We are not
aware of any paper with a systematic numerical study or an error analysis of a dis-
cretization method for vector-valued PDEs on evolving surfaces. We conclude that
in the field of incompressible Navier—Stokes equations on time-dependent surfaces
basic problems related to well-posedness of the systems, development and analysis
of numerical methods remain open. This paper addresses two of these problems:
well-posedness and numerical method development.

It is shown in Ref. 6 that several different modeling approaches all yield the
same tangential surface Navier—Stokes equations (TSNSE). These equations govern
the evolution of tangential velocity and surface pressure if the normal velocity of
the surface is prescribed. The main topic of this paper is the analysis of a vari-
ational formulation of the TSNSE. In particular, a well-posedness result for this
formulation is proved. To the best of our knowledge, this is the first well-posedness
result for evolving surface Navier—Stokes equations. The paper also touches on the
development of a new discretization method for the TSNSE. This method combines
an implicit time stepping scheme with a TraceFEM?® 2° for discretization in space.
We explain this method, validate its optimal second-order convergence for a test
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problem with a known solution and apply it to the simulation of a lateral flow
induced by deformations of a sphere. Error analysis of this method is not addressed
in this paper and left for future research.

The remainder of the paper is organized as follows. In Sec. 2, we recall the surface
Navier—Stokes equations known from the literature. In particular, the TSNSEs are
described. Appropriate function spaces for a variational formulation of the TSNSE
are introduced in Sec. 3. Relevant properties of these spaces are derived. The main
results of this paper are given in Sec. 4. We introduce and analyze two variational
formulations of the TSNE: The first one is for the tangential velocity only, which is
solenoidal by construction of the solution space. Then we introduce the pressure and
study a mixed variational problem. For both formulations well-posedness results
are derived. In Sec. 5, we explain a discretization method. Finally, Sec. 6 collects
and discusses results of numerical experiments.

2. Surface Navier—Stokes Equations

We first introduce necessary notations of surface quantities and tangential differen-
tial operators. For a closed smooth surface I' embedded in R3, the outward pointing
normal vector is denoted by n, and the normal projector on the tangential space at
x€lis P=P(x)=I—-nn”. Let H= Vrn € R**3 be the Weingarten mapping
(second fundamental form) and k := tr(H) twice the mean curvature. For a scalar
function p : I' — R or a vector field u : I' — R? their smooth extensions to a neigh-
borhood O(T") of T" are denoted by p® and u®, respectively. Surface gradients and
covariant derivatives on I" can be defined through derivatives in R? as Vrp = PVp©,
Dru = Vu®P, and Vru = PVu®P. These definitions are independent of a par-
ticular smooth extension of p and u off I'. The surface rate-of-strain tensor!? is
given by E,(u) := 1(Vru+ Vpu®), the surface divergence and curlp operators for
a vector field u: I' — R? are divru := tr(Vru) and curlru := (Vr x u) - n. For a
tensor field A = [a;,az,a3] : [' — R3*3, divrA is defined row-wise and DrA is a
third-order tensor such that (DpA); ;x = (Dra;); .

We now let I'(t) be a material surface embedded in R? as defined in Refs. 13
and 25, with a density distribution p(t,x). By u(t,x), x € I'(t), we denote a velocity
field of the density flow on T, i.e. u(t,x) is the velocity of a material point x € T'(¢).
The derivative f of a surface quantity f along the corresponding trajectories of
material points is called the material derivative. Assuming the surface evolution is
such that the space-time manifold

S= |J {3 xT(t) cRr?

t€[0,T]
is smooth, the material derivative can be defined as

. Of°
F= ot

+(u-V)f¢ onS, (2.1)
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where f€ is a smooth extension of f : & — R into a spatial neighborhood of S. Note
that f is a tangential derivative for S, and hence it depends only on the surface
values of f on S. For a vector field v on S, one defines v componentwise.

The conservation of mass and linear momentum for a thin material layer rep-
resented by I'(¢) together with the Boussinesq—Scriven constitutive relation for the
surface stress tensor and an inextensibility condition leads to the surface Navier—
Stokes equations:

pa = —Vrm + 2udivp(Es(u)) + b + mrkn,

divpu =0, on I'(t), (2.2)

p=0,
where 7 is the surface fluid pressure and p stands for the viscosity coefficient. Equa-
tions (2.2) model the evolution of an inextensible viscous fluidic material surface
with acting area force b, cf. Refs. 20 and 16 for derivations of this model and Ref. 6
for a literature overview and alternative forms of this system. The pure geometrical

evolution of I'(¢) is defined by its normal velocity Vr = Vi (¢, x) that is given by the
normal component of the material velocity,

Ve=u-n onI(?). (2.3)

If b is given or defined through other unknowns, then (2.2) and (2.3) form a closed
system of six equations for six unknowns u, m, p, and Vr, subject to suitable initial
conditions.

2.1. Tangential surface Navier—Stokes equations

We now introduce a major simplification by assuming that the geometric evolution
of I' is known. We make this more precise below and derive equations governing
the unknown lateral motions of the surface fluid. To this end, consider a smooth
velocity field w = w(t,x) in [0, T] x R? that passively advects the embedded surface
T'(t) given by

F(t) = {y € R? |y = X(ta Z), VAS FO}? (24)
where the trajectories x(¢,z) are the unique solutions of the Cauchy problem

x(0,2z) = z,
(2.5)

d
Ex(t’ Z) = w(t, X(t, Z))a

for all z on an initial smooth connected surface 'y = I'(0) embedded in R3. We
now assume that the normal material motion of I' is completely determined by the
ambient flow w and the lateral material motion is free, i.e. for the given w the
relation

u-n=w-n onlI(t) (2.6)
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holds for the normal component® uy = u - n, while the tangential component ur
of the surface fluid flow is unknown and depends on w only implicitly through
the variation of I'(¢) and conservation laws represented by Eq. (2.2). The resulting
system can be seen as an idealized model for the motion of a fluid layer embedded
in bulk fluid, where one neglects friction forces between the surface and the bulk
as well as any effect of the layer on the bulk flow. In such a physical setting, (2.6)
means non-penetration of the bulk fluid through the material layer.

Material trajectories of points on the surface are defined by the flow field u,
rather than w. We are also interested in a derivative determined by the variation
of a quantity along the so-called normal trajectories defined below.

Definition 2.1. Let &} : T'y — I'(¢), be the flow map of the pure geometric
(normal) evolution of the surface, i.e. for z € Ty, the normal trajectory x™(t,z) =
®7(z) solves

x"(0,z) = z,
(2.7)
ax"(t,z) = wpn(t,x"(z,1)).
Equation (2.7) defines a bijection between I'y and T'(t) for every ¢ € [0,T] with
inverse mapping ®",. The Lagrangian derivative for the flow map ®} is denoted
by 0°:
o d n n

0°v(t,x) = @V(t o (z)), x=D}(z). (2.8)

We call 0°v the normal time derivative of v.

It is clear from (2.8) that this normal time derivative is an intrinsic surface
quantity. Similar to the material derivative in (2.1), it can be expressed in terms of
bulk derivatives if one assumes a smooth extension of v from S to its neighborhood:

€

0°v(t,x) = %V(Lx"(t,z)) = (8(;; + (wn - V)ve> (t,x) (2.9)

for (t,x) € S. Comparing the material and normal time derivatives of a flow field
v on the surface we find the equality

Pv =Po°v + (Vrv)ur.

With the splitting v = vy + v, we get

Pv =P0°vy + PO°vy + (VFVT)IIT + (VFVN)UT. (210)
Noting that Pn = 0 and P9°n = —Vr5rwy (cf. (2.16) in Ref. 16), we rewrite
Po°vy as
Po°vy = 0°vnPn +vyP0°n = vyP0°n = —vyVrwy.

aFor velocity fields v € R3 defined on T'(t) we use a splitting into tangential and normal compo-
nents v=vp +vy = vy +ovnyn, with vy =v - n.
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We also have the relation (Vrvy)ur = vyHur. Using these results and letting
v = u in (2.10) one obtains

1
Pua =Po°ur + (VpuT)uT +wyHur — ivo]QV, (2.11)

where we also used uy = wy. To derive an equation for the unknown tangential
velocity ur, we apply the projection P to the first equation in (2.2). For Pu we have
the result (2.11). Note that the term 1 Vrw?%; is known and can be treated as a source
term. For a stationary surface (wy = 0) the normal time derivative is just the usual
time derivative, P9°ur = %‘—f. The term (Vrur)ur is the analog of the quadratic
term in the Navier—Stokes equations. Using divruy = uyk and uy = wy, the
second equation in (2.2) yields divrur = —wyk. We are not interested in variable
density case and let p = 1. Summarizing, from the surface Navier—Stokes equations

(2.2) we get the following reduced system for ur and = which we call the TSNSE:

{P@OuT + (VFUT)UT +wyHur — 2uP diVFES(llT) + Vrm =1, (2 12)

divrur = g,

with right-hand sides known in terms of geometric quantities, wy and the tangential
component of the external area force b:

1
g=—wnk, f=Dbr+2uPdivp(wyvH)+ §prj2\,. (2.13)

In the remainder of this paper, we study this TSNSE. Note that these equations
have a structure similar to the standard incompressible Navier—Stokes equations
in Euclidean domains. Important differences are that TSNSE is formulated on a
space-time manifold that does not have an evident tensor product structure and,
related to this, a normal time derivative PO° instead of the standard time derivative
is used and an additional term wyHur occurs. After some preliminary results in
the following section, we introduce a well-posed weak formulation of the TSNSE in
Sec. 4.

Remark 2.1. If one does not assume a given normal velocity uy = wy, an equa-
tion for up can be derived from (2.2), cf. Ref. 16. The surface Navier—Stokes equa-
tions (2.2) are then rewritten as a coupled system for ur, = and uy, that consists
of TSNSE (2.12) and the coupled equation

N = —2,u(tr(HVpuT) + ’LLNtI‘(H2)) +ur -Hup —up - V9ouy + 75 + by
(2.14)

A challenging problem, not addressed in this paper, is the well-posedness of the
surface Navier—Stokes equations (2.2), i.e. of the coupled system (2.12)—(2.14). For
studying this problem, results on well-posedness of only the TSNSE (2.12) may be
useful.
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3. Preliminaries

In this section, we introduce several function spaces and derive relevant properties of
these spaces. We will use these spaces to formulate a well-posed weak formulation of
the TSNSE (2.12). At this point, we make our assumptions on I'g and its evolution
more precise. We introduce the following smoothness assumptions:

ToeC® and we C3([0,T] x R*,R?), sup |w| < 4o0. (3.1)
[0,T]xR3
Then the ODE system (2.5) has a unique solution for any z € 'y C R?, which
defines a one-to-one mapping I'y — I'(¢) for all ¢ € [0,T] (Theorems II.1.1, V.3.1
and remark to Theorem V.2.1 in Ref. 15). Moreover, this mapping is C3(Sy, R*)
(Corollary V.4.1 in Ref. 15) with

80 = [07T} X Po.

Therefore, S is a C® manifold as the image of Sy € C® under a smooth mapping.

We need a globally C%-smooth extension of the spatial normal n(t, z), (¢,z) € S
that can be constructed as follows. Let ¢ be the signed distance function to I'g. On a
tubular neighborhood Us of I'y, with diameter § > 0 sufficiently small, we have ¢g €
C3(Us), cf. Lemma 2.8 in Ref. 10. We extend this function to be from C*(R3) and
zero outside Uss. Thus, we have ¢g € C3(R3) and ¢y is a signed distance function
in a neighborhood of T'y. Let ®; be the flow map for the velocity field w. The
mapping (t,x) — ®;(x) is C3([0,T] x R3,R?) and V,®;(x) is regular.!® Define the
level set function ¢(t, ) := ¢o(P_¢(x)) and the neighborhood S := U;c(o,71{t} x
®,(Us) of S. Then we have ¢ € C3([0,T] x R* R) and for (t,x) € S it holds
[Vo(t,z)| > ¢ >0, and ¢(t,x) = 0 iff (¢t,x) € S. Set (¢, x) := Vo(t,x)/|V(t, z)|
for (t,x) € 8. Clearly i = n on S and h € C%(S**,R3), and by a standard
procedure we can extend it to i € C2%([0,T] x R3,R?). To simplify the notation,
this extension is denoted by n. For such an extended vector field n we have that
wy = (w-n)n € C%([0,7] x R? R3) holds. Arguing in the same way as above, we
conclude that for the normal flow mapping from Definition 2.1, we have

¢y € C%(S0, ). (3.2)

Note that Sp = Sy and S = S, i.e. Sy and S are closed manifolds.

We need function spaces suitable for a weak formulation of the TSNSE. For
this we make use of a general framework of evolving spaces presented in Ref. 1. In
Sec. 3.2, we introduce specific evolving Hilbert spaces, based on a Piola pushfor-
ward mapping. Based on results from Ref. 1 several properties of these spaces are
derived. In Sec. 3.4, an evolving space of functions for which suitable weak “mate-
rial” derivatives exist is introduced. Here we deviate from Ref. 1 in the sense that
this “material” derivative is not based on the pushforward map but on the normal
time derivative defined above.
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3.1. Surface Piola transform

To define evolving Hilbert spaces based on standard Bochner spaces, we need a
suitable pushforward map. In the context of this paper, it is natural to use a surface
Piola transform as pushforward map, since this transform conserves the solenoidal
property of a tangential vector field.

To define a surface variant of the Piola transform based on the normal flow
map @} : Ty — I'(t), we need some further notation. Below we always take z € T'g
and x := ®P(z) € I'(t). Since for each ¢ € [0,7] the map @} : Ty — T'(¢) is
a C?-diffeomorphism, the differential D®7(z) : (TTg), — TI(t)x, is invertible.
Define J = J(t,z) := det D®}(z), J~ ' = J~1(t,x) = det D®",(x) = J(t,z)" L.
Denote by D = D(t,z) and D~! = D~1(¢,x) the matrices of linear mappings given
by D®?(z)P(z) : R? — R3 and D®",(x)P(x) = [D®}(z)]'P(x) : R?® — R3,
respectively. Note that D™D = P(z) and DD~! = P(x) hold. For these mappings
the following useful identities hold:

Dr(vo®",) = (Dr,v)D™! for v e CYTy)?,
(3.3)
(Drv)D = Dr,(vo®?) forve CHT(t))>.

We need the Piola transform for arbitrary, not necessarily tangential vectors. For
this it is convenient to define an invertible operator A(t,z) : R®> — R3 such that
Alrp, = J71D®? : TTy — TT(t) and A : TT¢ — TT'(t)*. We use the operator

A(t,z)v:=J ' (t,x)D(t,z)v + nrp(x)nr, (z) - v, veER? x=®}(z). (3.4)

For A7'(t,x) := J(t,2)D ' (t,x)+nr, (z)nry (x)7 it holds A~ (t,x)A(t,z) = Is.
The matrices of A and A~! in the standard basis are also denoted by A and A~!,
respectively. Note that det A = 1 holds. We define the surface Piola transform
P, :R3 — R3 by

(Pv)(x) := A(t,z)v(z), z€T,. (3.5)

This operator maps tangential vectors on Iy to tangential vectors on I'(¢) and for
tangential vectors v it satisfies divpP;v = 0 a.e. on I'(¢) iff divpv = 0 a.e. on Ty,
cf. Ref. 41.

We need some regularity properties of D, A and D!, A~!, which are col-
lected in the following lemma. For a function g € C'(Sp) the maximum norm is
llgllcr(sy) = max(szyes, (|9(t,2)|+[Vs,9(t,z)|) and similarly for vector and matrix-
valued functions as well as for such functions on S.

Lemma 3.1. It holds that D,A € C'(S)**3, D1, A~ € C1(8)3*3 and, in
particular,

[T llc1(so) + IDller(se) + 1Allerse) + 17 e s)
+ D Hers) + A lors) < C. (3.6)
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Proof. From (3.2), we know that ® : (¢,z) — (¢, ®}(z)) is in C*(Sp,S) and hence
D® € CYTS,y, TS). Moreover, Ps, is Cl-smooth, so (D®)Pg, is a C' smooth
mapping with matrix representation

[1 W%

0 D € C*(Sp)*4. (3.7)

Hence, D € C*(8;)**?® and J € C''(Sp) hold. Combining this with np,, np(.) o®l) €
C1(Sp), (3.4) and the property that Sy is closed, implies the bound in (3.6) for D,
J and A. The mapping @ : Sg — S is one-to-one. By the inverse mapping theorem
the inverse ®~! is C%(S,Sy) and for its differential we have D&~ € C1(T'S, TS).
The matrix of the C'! smooth mapping D® 'Pgs is

1 —W%D_l

. po et

This and A~! = JD~! + nr‘on%“(.)(q)?.)) imply the desired bound for D1, J—!
and A~ 0

3.2. FEwvolving Hilbert spaces

For constructing suitable evolving Hilbert spaces, we first define tangential velocity
spaces on I'(¢). The notation (-,-)o+ and || - ||o,+ is used for the canonical inner
product and norm in L?(T'(t)). We need the Sobolev spaces of order one

H'(t):={ve H (T(t)*|v-n=0onl(t)},

with the inner product (-, )1, := (-, ")o,t + (Dr-, Dr-)o,, and its closed subspace of
divergence free tangential fields

Vi(t) :={v € H'(t)| divrv = 0 a.e. on T'() }.

The space Vy(t) is defined as closure of a space of smooth div-free tangential fields
in the L?(T'(t)) norm:

Volt) = v V() = (v e ' T#)* |v-n=0, divev =0on T(f) ).
The space of smooth functions V(¢) is dense not only in V(¢) but also in Vi ().
Indeed, for any tangential velocity field u € L?(I'(¢))? on the C? smooth surface
I'(t) we have a Helmholtz decomposition u = V¢ + n x (Vré) + h with some
1, € HYT'(t)) and a harmonic field h € C1(T'(¢))3, see Ref. 35. For u € V4 (t)
we have 1 = 0 and the result follows from the density of C2-smooth functions in
H(T(t)). Therefore, endowed with canonical scalar products, the spaces form a
Gelfand triple Vi (t) — Vu(t) — Vi(t)’. We also have that the dense embedding
Vi(t) <= Vi(t) is compact. Here and later H' always denotes a dual of a Hilbert
space H, and we adopt the common notation H~*(t) for H*(t)'.
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For the space L?(t) := {v € L?(I'(#))® | v-n = 0 a.e. on ['(¢)} we define a
pushforward map ¢, : L*>(0) — L2(t), based on the Piola transform, by
(¢v)(x) = (Pv)(x) = A(t,2)v(z), veL*0), x=&(z), zelo. (38)

The inverse map (pullback) is given by (¢_¢v)(z) = A~1(¢,x)v(x), v € L?(t). Since
A € C*(8p)3*3, the restriction of ¢; to H1(0) is a pushforward map from H'(0) to
H'(t). Because ¢; is based on the Piola transform and thus conserves the solenoidal
property, we also have that ¢; is a pushforward map from V5(0) to Vo(t), and from
V1(0) to V4 (t). For this pushforward map we have for v € H*(0):

n n 1
l¢eviine = (|Avo @™ |5, +[[Dr(Avod™ )3 ,)2

< (lAllcwe) + 1DrAlcee))llv e @,

0.t T [[Alley [Pr(v e 2,)lo.
1
< (IAllewe) + IPrAlle@a) I é g Viloo

1
+Allewn D™ Hlewe) 1 11E ) 1Prviloo-

The result (36) implies that the norms ||A||C(F(t))7 HD_lHC(F(t))a ||DFAHC(F(t))a
l/llc(ro) are uniformly bounded in ¢ and thus

1.t < Clvllio

sup || pev
te[0,7)

holds with some C' independent of v € H'(0). With similar arguments one easily
shows that ||¢_¢v|[1,0 < C|lv|l1,+ holds for all v € H'(¢), with C independent of
v and t. These bounds remain obviously true if H1(0), H!(t) and the correspond-
ing norms are replaced by V;(0), Vo(t) and the corresponding norms. Using (3.6)
one shows that the maps ¢t — ||¢v|l1+ and ¢ — ||¢¢v]|o,s are continuous. These
properties imply that {Vo(t), ¢: }eco,r), {H" (), ¢t }eejo.r), and {Vi(t), ¢t }icpo,r) are
“compatible pairs” in the sense of Definition 2.4 in Ref. 1. This compatibility struc-
ture induces some useful properties of the evolving spaces defined as follows:

Ly, =<K v:[0,T] = U {t} x Vi(t),t — (t,%(t)) | p—( V() € L*(0,T; V1(0)) ¢,

t€[0,T]

Ly, =g 0,7 = | {8 x Vi)t — (t,&8(1) [¢{,&8() € L*(0,T;V1(0)') ¢,
te[0,T)

Ly, = v:[0,T] = |J {t} x Vo(t),t = (t,9(t) | ¢y ¥() € L*(0,T;V5(0)) ¢,
te[0,T]

where ¢ is the dual of ¢;. We shall also need the spaces L7, L%,l, L%,l, which
are defined analogously, and the spaces of smooth space-time functions
D={velLyl|s(¥() € (0, T} V(0)},

(3.9)
Do ={v e L}, [¢_()v(-) € C5°((0,T); V(0)) }.
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Note that functions in Dy have zero traces on 9S. With a slight abuse of notation
we identify v(t) with v(t) = (¢, v(¢)).

In Ref. 1, it is shown that if V1(0) — V;(0) < V1(0)" is a Gelfand triple,
with a compact embedding V1(0) < Vp(0), and both {Vio(t),d¢}icjo,r) and
{Vi(t), ¢t }refo,m are compatible pairs, then the L-spaces inherit certain properties
of the standard Bochner spaces. In particular, cf. Sec. 2 in Ref. 1, the spaces L‘2/1
and L%,O with

(W, v)1 = /O (Wl v(®) e dt,  (wv)o = /0 (u(t), v(t))o.s dt,

are separable Hilbert spaces, homeomorphic to L?(0,T; V;(0)) and L2(0,T; Vo(0)),
respectively. Furthermore, the embedding Lj, < L7, is dense and compact, the
dual space (L‘Q/l)’ is isometrically isomorphic to L%/{, and

LY, = L3, < Ly,

is a Gelfand triple. The space Dy is dense in L}, and so Dy is dense also in L3, .
By the same arguments L%, is also a Hilbert space with inner product (-,);. The
subspace of smooth functions

Do ={v €L} | ¢_()v(-) € C3((0,T); C*(To,TTo))} (3.10)

is dense in L3, and (L3) ~ L% _, holds. Note that L%/l is a closed subspace of
qul and that functions in Dy are solenoidal and functions in 730 are not necessarily
solenoidal.

3.3. Some uniform inequalities

We need to establish several basic inequalities on I'(¢) with constants wuniformly
bounded in t.
We first consider a Korn inequality. Recall that the estimate

ot + 1Es(V)|lo,) forall ve Hl(t) (3.11)

vl < e(llv

holds with a constant ¢ = ¢(¢) that depends on smoothness properties of T'(¢), cf.
Ref. 16. In the next lemma, we show that the constant can be taken such that
max;e[o,r] ¢(t) < 0o holds.

Lemma 3.2. The constant ¢ in (3.11) can be chosen finite and independent of t.

Proof. Fix any ¢ € [0,7] and v € H'(t). Define u = DTvo®? € H'(0). Below, for
the 3-tensor T = DrD7T and v € R3, Tv € R3**3 is the second-mode tensor-vector
product. With the help of (3.3) one computes

Vr,u(z) = P(z)[Dr,u(z)] = P(2)[Dr, (D"v o &} (2))]
= P(2)Tv(x) + P(z) DT Drv(x)D,
= P(2)Tv(x) + DTVrv(x)D, x= ®7(z).
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The latter inequality holds since DTP(x) = P(z)D?. From this we find
1
E,(u)(z) = 5(P(z)ﬂrv(x) + (Tv(x))TP(z)) + DTE,(v)(x)D.  (3.12)
With the help of Drv = Dp(D~Tuo®",), (3.6), (3.11) applied for t = 0, and (3.12)

we estimate

IDrv]loe = 177 ([DrD~"Ju+ D" (Dru)D )|

0,0

< C([[ullo.o + [Pruffo.0) < C(llullo,o + [[Es(a)o.0)

1 1 1
=C (IIJQDTv 0.0+ HJ (Q(PTV +(Tv)"P) + DTES(V)D)

O,t>

< O(|J72D Vo + ||/ ZPTv]lo, + ||/ 2D Ey(v)Dllo,.)
< C(|[vlloe + 1 Es(¥)lo.z)

with some C' independent of ¢ € [0,7] and v. m|

The following inf-sup estimate holds!®: there exists c(t) > 0 such that

fF(t) 7 divev ds

IVerlg-1 == sup > c(®)|7llos, Vme LXI(1)),

0#£veH (t) ||V||1,t
(3.13)

with fF(t) m = 0. A uniformity result for this inf-sup constant is derived in the
following lemma.

Lemma 3.3. The constant c(t) in (3.13) can be taken such that inf,co 1) c(t) > 0
holds.

Proof. We use a similar approach as in the proof of the previous lemma, and derive
an estimate on I'(t) by pulling forward the result on I'g. We use the pullforward ¢,
that is based on the Piola transform and satisfies divp () (¢, w)(x) = J ! divp, w(z),
z € Ty, x = ®7(z) € ['(t). Take v € H*(t) and 7 € L?(T'(t)) with fl"(t) m = 0. Define
c:= —|To|™! froﬂ' o @7 ds and w := ¢_,v € H'(0). Note that ||v]1: < C|w|l10
with a constant C' uniformly bounded in ¢ € [0,T] (compatibility property). We
have

(71', diVF(t)V)O,t = (7T, din(t) (¢tw))0,t = (7T o @?, diVFOW)O’o.
Using this and the result (3.13) for t = 0 we get

Jrw mdivevds Jr, (w0 @)divr,wds

C sup —— > sup
0£veH (1) Vil 0£weH(0) wllio

L,
> c(0)||m 0 @ + cllo.o = c(O)[1J %[l s Im + cllo.s
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0.0 +¢|D(1)[2)

1
= c(0)[|7% | 5 s (Il
1
> (O)l1E )15l Il
which yields a t-independent strictly positive lower bound for ¢(t) in (3.13). ]
We now derive a uniform interpolation estimate.
Lemma 3.4. The interpolation inequality (Ladyzhenskaya’s inequality)
1
IVlizsay < Clvilg vz, v e H'(?). (3.14)
holds with a constant C' < oo independent of t.

Proof. Consider v € H(T'(t)) and let & = v o ®",. For a compact Riemann man-

ifold Ty, the estimate (IL.38) from Ref. 3 yields |0[/ps(p,) < C||13||§’0||17||1%’0. An
examination of the proof shows that the estimate remains true if Ty is a C? com-
pact manifold. With the help of this estimate applied component-wise and (3.6) we
calculate for v € H'(t)

=

vl

=l

.ol 1 N !
IVllizary = VT35 [ aro) < CllTNE s Vi) < ClIVIGIVITE o

1

1 .3 _1 B R 2
< =5l (1775 vlos + 172DV v, )

1 1
§,t||v||12,t7

with some C' independent of ¢. O

1 1
< Clvlige Uvlloe + IVevlios)* < vl

For ¢ € H'(t) consider the Helmholtz decomposition (see e.g. Ref. 35)
=& +&, withé =Vrg, ¢ H'(D() and & eVi(t). (3.15)

Lemma 3.5. For &, as in (3.15) we have &, € H'(t) and ||€|l1c < C||€]l1.s
1=1,2, with a constant C finite and independent of t.

Proof. Due to the L? orthogonality of the Helmholtz decomposition we have
||£1H(2)7t+||£2| (QM = HSH%t Also note that divpé€, = 0, divp€ = divré,, curlpé, =0,
curlré = curlp€,. Furthermore on H'(t) we have the norm equivalence ||ul|;; ~
[[allo,+ + || divrul
equivalence enters only through the Gaussian curvature of T'(t), cf. Ref. 35 . Due to

ot + || curlpullo¢. A t-dependence in the constants in this norm

the smoothness property S € C? the Gaussian curvature is uniformly bounded on
S and thus the constants in this norm equivalence can be taken independent of ¢.
Using these results we get

1§11l < CUI€llo.e + [|divrgyllos + [[eurlrgs [lo.e)
= C([|&:llo.c + lldivr&llo.c) < Cll€]l.e,

and by similar arguments ||€,]/1,+ < C||€||1,+ with a constant C uniformly bounded
in t. O
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3.4. Solution space

In this section, we introduce a subspace of L%/l consisting of functions for which a
suitable weak normal time derivative exists. This space will be the solution space
in the weak formulation of TSNSE.

We recall the Leibniz rule

d
—/ vds = / (0°v +vdivpwy) ds = / (0°v +vwyk) ds,
dt Jr T(t) I(t)

Thus for velocity fields v,u € C'(S) we get

d

— v-uds = / (0°(v-u) + (v-u)wnk)ds. (3.16)
dt Jre ()

This implies the integration by parts identity

T
/ / (0°v-u+v-0°u+ (v-u)wyk)dsdt
o Jre

:/ v-uds—/ v-uds, v,uecCYS)>. (3.17)
I (T) T'o

Based on this we define for v € L?p the normal time derivative as the functional

0°v:
T
(0°v, &) = —/ / (v-0°% + (v-&wyk)dsdt, &eDy. (3.18)
o Jre

Note that functions in ﬁo are not necessarily solenoidal, cf. (3.10). Restricting now
to LY, C L3, assume v € L}, is such that

(0°v,€)
0°vl|(r2 y 1= sup —— >+
197l = 2 e

is bounded. Since Dy is dense in L‘z/l, 0°v can then be extended to a bounded linear
functional on L%,l. We use (L%,l)’ = L%,l, and introduce the space

W, VY) = {ve L%,l | 0°v € L%/ll },  with

(v,u)w = /o (v(t),u(t)1,e + (9°v(t),0%u(t))v, (1 dt.

This space is used as solution space in the weak formulation of TSNSE below.
In the remainder of this section, we derive certain useful properties of this space.
For this it will be helpful to introduce in addition to the Lagrangian derivatives
v (material derivative) and 0°v (normal time derivative) one other Lagrangian
derivative, which is based on the pushforward operator ¢;:

Iv(l) = 6y (;t¢_tv(t)> . venD. (3.19)
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The reason that we introduce the 0* derivative is, that it is the same as the one
used in the general framework in Ref. 1 and we can use results derived in that
paper. Note that the 0* derivative is defined for tangential flow fields and based on
the Piola transform implying

n-9"v=0 and divp0*v=0 forveD. (3.20)
We now derive relations between the derivatives 0* and 0°.
Lemma 3.6. For v € D the following holds:
0°v =0"v — A(O°A™Y)v, (3.21)
PO°v = 0*v — AP(0°A™)v. (3.22)

Proof. Using the definitions of the pushforward and pullback mappings we
compute

o0 (5-v10) 09 = Ale) & [0 800 v, 8000

= A(t,2)(0° A (t, x)v(t,x) + AL (t,x)0°v(t, X))
= A(t,2)0° A7 (t,x)v(t,x) + 0°V(t, %),
which yields the result (3.21). The result (3.22) follows from (3.21) using Po*v =
0*v and PA = P(x)A(t,z) = A(t,z)P(z). O
From (3.21) we obtain the identity
(0"v.&)o = (0°V.€)o + (Cv.€)o, Vv ED, &€ Do,
with C := AP(9°A~"). Based on this, we define 9*v for v € L}, as the functional
<8*V,€> = <aova£> + (Cvag)ﬂa 6 € §0~ (323)

with (9°v, &) defined in (3.18). The density of Dy in L2, and of Dy C Dy in L2,
allows us to define 0*v as an element of L%,l and L‘Q/l,, respectively. The following
result holds:

Ively ©d'vely., velLy. (3.24)

Implication “<” in (3.24) is trivial since V; C H'. To see “=", consider any v € D
and & € L?,, together with its Helmholtz decomposition & = V¢ + &,, cf. (3.15).
Thanks to Lemma 3.5 we get Vg € LY, €, € L3, and ||[Vroll1 + [|€5]1 < C|[€])1.
Since &, € L}, we have

(07v, o)l < [107vll1z [1€all < CllO™VIIL2 l1€]1, (3.25)

while for the other component we get employing (3.20)
(0"v,Vr¢) = (0"v,Vrd)o = —(divrd*v, ¢)o = 0. (3.26)
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We thus conclude [(9*v, &)| < C||(’“)*V||L€/||£||1 for all v.€ D and &€ € L?,. The
1

result in (3.24) follows from the density of D in L, .
We are now ready to prove the following result.

Lemma 3.7. The space W (V1,V]) is a Hilbert space and D is dense in W (Vy, V).
For any v € W(V1,V/) and t € [0,T], v(t) is well defined as an element of Vy(t)
and 1t holds

sup_[[v(t)[lo,e < ClIv]w-
t€[0,T

Proof. The idea of the proof is to relate the space W (V1,V/) to the space
1

W.(Vi, W) o= {v € Lj, [0V € L, }, with || - w. = (- 3 + 119" - I172)>,
1

and to show that the latter is homeomorphic to a standard Bochner space for Sy.
Lemma 3.1 ensures C € C(8)**3 and thus from (3.23) we obtain

{07V, §)| = cllvlloll€llo < [(0°V, &) < [(0"v,&)[ + c|Ivloll&llo-

Therefore, 0*v is a linear bounded functional on L%/l iff 9°v has this property.
We conclude v € W(V1,VY) iff v € W, (V1, V). Moreover, the above inequalities,
definition of the W (V4, V{)-norm, W, (Vi, V{)-norm and L}, < L§, yield

civllw < lvllw. < Cllvilw,

with constants 0 < ¢ and C < +oco independent of v.€ W(V;,V{) and so
W(V1, V) = W, (V1,V]) algebraically and topologically. Thus, it is sufficient to
check the claims of the lemma for W, (V3, V/). For the latter we apply results from
Ref. 1, more specifically, Corollary 2.32 (W, (V1,V/) is a Hilbert space), Lemma
2.35 (continuous embedding W (V1,V{) — C([0,T); V5(0))) and Lemma 2.38 (den-
sity of smooth functions). For these results to hold one has to verify Assumption
2.31 in Ref. 1, which requires the mapping v.— ¢_()v to be a homeomorphism
between W, (V1, V/) and W(V1(0), V1(0)"), the standard Bochner space

W(V1(0),V1(0)') = {v € L*((0,T),V1(0)) | v € L*((0,T), V1(0)")}.

It remains to check this homeomorphism property. We already derived the norm

equivalence [[v|]1 =~ [l¢—)V|r2(0,m,v1(0)), cf Sec. 3.2. To relate the norms

10:d—(yVlL2(0,1),vi 0y and [[0*v| 2 we consider the following equalities for
vi

veL, E€Dy, €=¢ 1€ € CP((0,T),V(0)) and A~1(t, ) : TD(t) — TTy:
(Oe(d—()V), &) = (D—(1V, 0€) 12(50) = (ATIV(, BL()), Oe(D—(1€)) 12(50)
= (ATTATV(, RF(), Adi (D ()€))12(s0)

= (JHAAT) v, 0%€)o

= (v,0"(T¢) — (0"T)€)o with T := J 1(AAT)L.
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Note that ¢ := T¢& is smooth and has zero trace on 9S. Using this, (3.22), (3.18)
and (3.23), we have

(v,0"¢p)o = (v,0°¢)o + (v, Co)o
= —(0°v,d) + (v,Cd)o — (V,wnkD)o
—(0"v,8) + (Cv,@)o + (v, Ch)o — (v, wn K)o,
with C := AP(0°A~!), and thus
(On(d—()v), &) = —(0"v, TE) — (v, wnk TE — (C + CT)TE + (9" T)€)o.
(3.27)

Note that T : TT'(t) — TT'(¢) for all ¢t € [0,T] and from Lemma 3.1 it follows that
T, T~ ! € C1(8)3*3. Hence it holds

TE € pr and [ TE|lx =~ [[€]l1 ~ HEHLQ([O,T],Vl(O))-

From this, equality (3.27) and (3.24) one obtains after simple calculations
19t (é-()Vllz2(o.m1vi 0 < CIOVIIz -, +Ivllo) < C([07Vlzz, +Vilo)

< Clvlw,-

The reverse estimate ||6*VHL%// < Clvllwva 0),vi 0y follows from the identity
1

<8*V7€> = _<8t(¢f(-)v)’ ¢,(_)T_1£> - (V’wN"f& - (C + CT)£ + (8*T)T_1§)O

by similar arguments (in particular the analogue result to (3.24) holds for the time
derivative 9; on Sp). Therefore we proved ||v|lw = [|¢_)VIw(v;(0),v;(0)) and hence
W (Vy,V/) and W(V1(0), V1(0)") are homeomorphic. O

4. Well-Posed Weak Formulation

In this section, we introduce and analyze a weak formulation of TSNSE (2.12). We
restrict our arguments to the solenoidal case g = 0. The extension of the analysis to
the case g # 0 is discussed in Sec. 4.3. In the weak formulation we take a solution
space with only solenoidal vector fields, and thus the pressure term vanishes. The
existence of a corresponding unique pressure solution is shown in Sec. 4.1.
We introduce the notation
a’(uv V) = Qu(ES(u)a ES(V))07 C(ll, u, V) = ((vfu)ﬁv V)Ua (4 1)
{(u,v) := (wyHu, Vv)o, .
and consider the following weak formulation of TSNSE (2.12) with g = 0: For given
f € L?(S)3, with f = fr, ug € V5(0), find ur € W(V4,V/) such that ur(0) = ug
and

(0°ur,v) + a(ur,v) + c(ur,ur,v) + L(ur,v) = (f,v)o forallveLi. (4.2)
One easily checks that any smooth solution of (2.12) satisfies (4.2).
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For the analysis of the weak formulation (4.2) we apply an established approach,
e.g. see Ref. 43. Compared to the analysis of the non-stationary Navier—Stokes
equations in Euclidean domains the main differences are that we use evolving spaces
as introduced above instead of the standard Bochner ones, we have a normal time

derivative 9° in place of the usual %, and an additional curvature-dependent term

(wyHurp, v)e. We show the existence of a Galerkin solution, derive a priori bounds
and based on this show existence of a solution uy. We then show uniqueness of the
solution with the help of Ladyzhenskaya’s inequality.

Faedo—Galerkin approximation

The space V7(0) }vlas a countable basis 131,1/)2, ..., which is pushed forward to a
countable basis {1,} of V1 (¢) by letting v, = ¢1p,. Consider

m

U, = Zgim(t)'(/)i. (4.3)

i=1
We determine the unknown functions g; ,,, from (4.3) by considering the system of
ODEs

(8°um,{bj)o,t + 2u(Es(um),Es(@7)j))o,t + ((Vrum)um@j)o,t
+ (wnHuy, 9,)0s = (£,9,)0; forall1<j<m. (4.4)
u,,(0) = ugy,.

Here uy,, is the L2-orthogonal projection of ug on span{,...,9,,}.

A priori bounds

Assume u,, as in (4.3) satisfies (4.4). Multiplying (4.4) by g;m(t) and summing
over j =1,...m, we get, using ((Vrum)Wm, um)os =0,

(6Oum7 um)O,t + QM(Es(um)y Es(um))o,t + (U}]\/Hum, um)O,t = (f7 um)O,ta (45)
and applying integration by parts (3.17), we have

d
@”um”%,t + 4/1||E8(um)”(2)7t = _2(wNHum7um>0,t
+ (WN KU, U)o + 2(F, w0 (4.6)

From this we obtain for 0 < 7 < T,

;
Ry YOy
0 0

T

WM&ﬁ+AHW@ﬁ+WMMWW
(4.7)

Here and in the remainder we write A < B to denote A < ¢ B with some constant ¢
which may depend on the final time 7', the maximum normal velocity [[wx ||z (s)
and on smoothness properties of the space-time manifold, quantified by ||[H|| e s).
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Note that ||| L (s) = [[tr(H)|| o (s) < 2||H|| L (s). The Gronwall lemma and (4.7)
yield the a priori bound,

max ||,

< 5 . ]
ey 0t + 1 Es(um)llo S Ifllo + [[uollz2(ry) (4.8)

The uniform Korn inequality and the estimates in (4.7) and (4.8) yield the a
priori estimate

w2 S [Ifllo + [laoll 22 rg) - (4.9)

Ezistence of solution

Consider the ODEs system (4.4). Due to Lemma 3.6 we have P9°(¢;) = 0" (¢;) —
Cv, = —Cqp;, with C = APJ°A~1. Thus (4.4) results in the following system
for gim:

m

Z dgl,#;«(ﬂ@l}ﬂ {Lj)o,t = - Z gi,m(t)gkﬂn(t)((vf‘%k)’lzm &j)o,t

i=1 ik=1

- Zgi,m(t){2M(ES("~pi)’ Es(;ﬁj))o,t + ((wnvH — C)‘Ziﬂzj)o,t} +(£.9;)0.0,
- (4.10)

for 1 < j < m. From the fact that the pushforward map ¢; is one-to-one and linear
for every t, and 1, are linear independent we infer that 17)1 are linear independent
for every t and thus the matrix M(t) := (1,~bi(t)77,~bj(t))197jgm is invertible for
t € [0, T]. Moreover, (3.6) and the definition of t implies M € C[0, T]™*™. Since
any eigenvalue of M, denoted by A(M), continuously depends on matrix coefficients,
the bound A(M) > 0 for each ¢ € [0,7] implies A(M) > ¢ > 0 uniformly on
[0, T]. The uniform lower bound for the eigenvalues and the symmetry of M ensures
M~ co, 77 < C. Multiplying both sides of (4.10) with M ™!, one verifies that the
Picard-Lindel6f theorem applies. Hence a unique solution g; ., (t), 1 < i < m, exists
W (t)]|0,r = oo, which
contradicts the established bound (4.8) with T replaced by t.. Hence, a unique
solution u,,(t) exists for ¢ € [0,T7].

From the a priori bounds (4.8), (4.9) it follows that there is a subsequence of

for a maximal interval [0,¢t.], te > 0. If t. < T, then limyq,

(W )mr>1 Of (W )m>1 that is weak-star convergent in L and weakly convergent
in L%/I tou* € L¥ N L%/l. Due to the compactness of~L%/1 — L%/O this sequence
also strongly converges in L%,O. Now note that, with %, j = 1,2,..., as above,
functions Z;\Ll gi(t);, N €N, g; € C*([0,T]), with g;(T) = 0, are dense in L7, .
We multiply (4.4) with such a function g;, integrate over [0,7] and apply partial
integration (3.17), which yields

7(um’aao(1’zjjgj))0 - (HwNum’a{z’jgj)O (411)
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+ 2N(Es(um’)7 Es(’;z’jgj))o + (VFum’um’ ) 17’3'93')0 (412)

+ (wNHllmu{Z’jgj)o = (u0ma¢jgj(0))L2(F0) + (fﬂ?’jgj)o- (4-13)

Due to the strong convergence u,,y — u* in L%,O we can pass to the limit in the two
terms in (4.11) and the first term in (4.13). Since (Es(+), Es(v))o is a functional
on L%,l for any v € L‘z/l, we can pass to the limit in the first term in (4.12). Using
the strong convergence in L%/O we can also pass to the limit in the second term in
(4.12), cf. Ref. 43 . By definition of ug,, we have ug,, — u(0) strongly in L?(Ty).
Thus we get, cf. (4.1),

—(u”, ao('rpjgj))o - (KwNU*v’legj)O = —a(u”, 17’]‘93')
- C(U*7 u*a {ng_j) - E(U*7 {L]gj) + (110, wjgj (O))LQ(Fo) + (fa {/;jgj)o' (414)
We restrict to g; with g;(0) = 0 and build linear combinations of (4.14) to arrive at

—(u*,0°v)p — (kwyu*,v)g = —a(u*,v) — c¢(u*,u*,v) — L(u*,v) + (f,v)o
(4.15)

for all v = Zjvzl 1,7;j g;. We estimate the nonlinear term with the help of uniform
Ladyzhenskaya inequality and (4.8), (4.9):

T
C(u*,U*,V):*C(V,U*,U*)S/O Vool Zs ooyt

T
S/kuwwmm
0

14dt S sup |ju”
t€[0,T]

lo.ella*{|xflv]lx

< ([£llo + [0l 2 ro))* [ ¥l (4.16)

Using the above estimate and obvious continuity estimates for other terms on the
right-hand side in (4.15) together with a density argument we conclude that

|07l s, S F(L+ F), with F = [[£]lo + luoll2(ry . (4.17)
1

hence u* € W(V4, V) and furthermore ur = u* satisfies (4.2).

To check that u*(0) = ug holds, we apply standard arguments. Using conti-
nuity of t — ||[v(t)]lo, for v.e W(V1,V/) (1 ) and density of smooth functions in
W(V1,VY) it follows that the partial integration rule (3.17) can be generalized to
W (V, V). Test (4.2) with v = 1~bjgj (t), with ¢;(0) = 1, applying partial integration
and comparing the result with (4.14) we obtain (u*,%;)r2(r,) = (U0, %;)L2(r)-
Since (1);)jen is dense in 5(0) we conclude that u*(0) = ug holds.

Uniqueness of solution

We prove uniqueness of the solution using essentially the same arguments as in
Euclidean space. For the sake of presentation below, we use ((-,-)) to denote L?
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duality pairing between V4 () and V4 ()" and introduce the notation for ¢-level bilin-
ear forms, cf. (4.1):

ar(v, ) == 2u(Es(v), Es(¥))ot, (v, v, ¢) := ((Vrv)v, 9o,
G(v, ) = (wvHV, 9o,
Note that ¢;(v,¥,v) = 0 holds. A solution ur € W(Vi, V{) of (4.2) satisfies
(0%ur(t), v(t)) + ar(ur(t), v(t)) + ce(ur(t), ur(t), v(t))
Fl(ur(t), v(t) = (E@),v(D)os ae int forvel?.  (4.18)
The Leibniz rule (3.16) extends to v € W(Vi, V{) (cf. Ref. 1) yielding

%(V(t)w(t))o,t =2(0°v(t), v(t)) + [v()[Pwnr ds.
T(t)

Let u}, u% be solutions of (4.2) with ul.(0) = u2(0) = ug. Letting 9 := uk — u?
and using c; (¢, uk, ) = 0 we compute, with C’1 = [lwnkllces),

L ap(0)]2,1 + 200(46(1), (1)
= 20090 9(0) + | (0 Puynds + 2060, 9(0)

(1)) + 2a¢ (up (), 9(t))
() = 2a: (w7 (8), (1) + Crllw ()5,
(t),%(t)) — 26 (ug (1), (1))

We have [€((t), 9(t))| < lwnH]|c(s)l|9(t)]§,+- For the other terms on the right-
hand side above we use (3.14) and the Korn inequality (3.11) to estimate

L p(e) 1, +201((0), 910)
< Ol Ol 3acroy + OB,
<l Ol |10 + ClpOIR,
< Ol Ol (b (Bl + a((0), B0 + Clb(H
< O+ I DIRE)Z, + 200(26(0), (1),

with a suitable constant C' independent of ¢ € [0, 7] and of uk., u%. Thus, we get

d
S OI5: < Fu®OIP@IG:  ful®) = CUluZ[l1e + uZ1)-
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Now, u € L‘Q/1 implies that fOT fu(s)ds is bounded and so the Gronwall inequal-
ity together with |[1(0)| z2(r,) = O yields 4(t) = 0 for ¢t € [0,T] and thus the
uniqueness result holds.

Summarizing we proved the following main well-posedness result.

Theorem 4.1. The weak formulation (4.2) of the TSNSE has a unique solution
ur € W(V1,V{). The solution satisfies

||uT||W < C(l + F’)F‘7 with F = ||f||0 + HuOHLZ(FO). (419)

4.1. Surface pressure

For v € L}, , (3.18) defines 9°v as a functional on Dy. The density of Dy in L3,

and the density of Dy C ﬁo in L%,l is used to define the bounded linear functionals
0°v € L%{,l and 0°v € L%,l/7 respectively. The following equivalence holds:

O°v e Ly, < d°ve Ly, velLy. (4.20)

Implication “<” in (4.20) is trivial since V; C H'. The “=” implication follows
from (3.24) and Lemma 3.6.
Below we introduce a weak formulation of TSNSE on the velocity space

WHH Y ={vel3 : °veli .}

with (-, )w g1 = ()1 + ()2

H—1

with a pressure unknown m € L?(S). One checks that W(H', H=1) is a Hilbert
space by the same arguments as for W(V;, V{). Consider the following mixed for-
mulation of TSNSE, which relates to the well-posed weak formulation (4.2): For
given f € L*(S)3, with f = f7, ug € V5(0), find ur € W(H!, H!) and 7 € L?*(S),
with fl"(t) mds =0 a.e. t € [0,T], such that ur(0) = uy and

9

(0°ur,v) + a(ur,v) + c(ur,ur,v) + (ur,v) + (m, divpv)o = (f,v)o (121)
21
(g, divpur)o =0

forall v e L%, g € L*(S).
Theorem 4.2. The problem (4.21) has a unique solution (ur,w). The wvelocity

solution uy is also the unique solution of (4.2). Furthermore, with F := |/f|o +
llao||£2(ry) the following estimate holds:

larllw + [[7lo < C(1+ F)F. (4.22)

Proof. Let ur € W(Vq, V) be the solution of (4.2). Define

f(v) = (0°ur,v) + a(ur,v) + c(ur,ur,v) + L(ur,v) — (f,v)o, VE L%p.
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Using (4.20) and straightforward estimates we obtain fe L2, > We use the stan-
dard argument (e.g. Remark I.1.9 in Ref. 43) that for every ¢ € [0,7] estimate
(3.13) implies that Vi € L(L*(T'(t)), H'(t)) has a closed range R(Vr) in H~1(t)
and so

R(Vr) = ker(Vi)t,  with ker(V3) = Vi(t).

Note that f(t) is an element of H~'(t) for a.e. t € [0, 7] and, since ur is the solution
of (4.2), (£(t),v) = 0 for all v € Vi (). Hence, f(t) € R(Vr) which means

f(t) = Vrr(t) for some w(t) € LA(L(t)) for ae. t € [0,T).
)

We take m(t) such that fr " = 0 holds. To see that t — |7 (t)]o,+ is measurable
we argue as follows. FlI‘bt note that t — ||7(¢)|o,c is measurable if ¢ — m(¢) is
Bochner-measurable on [0, T for 7 := Jro®?. Since L?(Ty) is separable, it suffices
to check that ¢ — (mo(t),¢)o,0 is a measurable function for any q € L?(I'g) such
that fFo q = 0. Property (3.13) for ¢ = 0 implies that there exists vo € H'(0) such
that ¢ = divpvo and ||[voll1,0 < Collgllo,0- Let v = ¢y vo. We then have

(mo(t), @)o,0 = (mo(t), divrvo)o,o = (7(t), divrv)o,s = (V7 (t), V) m—10)xH ()

which implies that ¢ — (V7 (t), V) g-14)x a1 (¢) is measurable, since Vrm € L%I_l
and v € pr
From (4.21) we get, with notation as in (4.1),

(mr, divev)o = (£(), v(#))o.e — (0°ur (L), v(t)) — ar(ur(t), v(t))
—cr(ur(t), ur(t), v(t)) — b(ur(t),v(t)) ae. intforve L}
Using the uniform inf-sup estimate, cf. Lemma 3.3, we get

[ (@)llo.e < CUE@) o, + [10°ar vy @y + o @)1+ [l (@)o.r),

with a constant C' independent of t. Hence, 7 € L?(S) holds. The estimate for
velocity in (4.22) is the same as in Theorem 4.19. Note that max;c(o 7 [[ur(t)
F holds, cf. (4.8). Using this and the velocity estimate we obtain the bound for the
pressure in (4.22). Uniqueness of ur follows by restricting to v € L%,l in (4.21) and
using the fact that (4.2) has a unique solution. Uniqueness of 7 is easily derived
using the inf-sup property. O

4.2. Energy balance

Multiplying (2.12) by ur, integrating over I'(¢) and using (3.16), we obtain, for a
smooth solution, the energy balance of the system at any ¢t € (0,7),

1
g plurlB 2l ECun) o+ (o (- 30 urour) = uros
0,t

(4.23)

bTo see v — c(ur, ur,v) € L2

47—1, one uses the same arguments as in (4.16).
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Next, we comment on the contribution of the third term in (4.23), which appears if
the surface is both evolving and non-flat. First, we note that H— %KI =H- %KJP on
TT(t) and H— $xP = H— tr(H)P. Since tr(P) = 2 we get tr(H— 2xP) = 0. This
implies that the symmetric matrix H — %/{P has real eigenvalues {0, A, —A} with
the 0 eigenvalue corresponding to vectors normal to I'(¢). Take a fixed point x on
the surface I'(¢) with wx(x) # 0. Denote by 1 and k2 the two principle curvatures
of T'(t). For the eigenvalue of H(x) — $x(x)P(x) we have A(x) = 1 (k1(x) — r2(x)).
Therefore wy (x) (H(x)— 1 £(x)P(x)) = 0iff £1(x) = k2(x) holds, and it is indefinite
otherwise. In the latter case the increase or decrease of kinetic energy due to this
term depends on the alignment of the flow with the principle directions and the

sign of wy.

4.3. Nomn-solonoidal solution

The tangential surface Navier—Stokes system (2.12) admits non-solonoidal solutions
with divrur = g, where ¢ = —wyk, fF(t) gds =0 for t € [0,T], is defined by the
surface geometry and evolution. We outline how the analysis for the solonoidal case
presented above can be extended to such a problem. We assume that g : § — R
is sufficiently regular. Let ¢(¢,x) be the unique solution of the Laplace-Beltrami
equation Apy)¢ = g, fF(t) ¢ds = 0, and define ur := Vr¢. Then (ur,7) solves
(2.12) iff Uy = up — ur and 7 solve the system

POty + (Vrlr)tr + (Vrir)dr + (Vrtr)dr
+ wyHty — 2uP divp E,(tr) + Ver = £ (4.24)
divprur = 0,
with
f=f— (PO°Ur + (Vrur)uyr + wyHiy — 2uP dive B, (Ur)).

The two additional terms (Vrur)ur and (Vrur)ur in the momentum equation in
(4.24) are linear with respect to the unknown velocity field tir and can be treated
very similar to the zero order term wyHur. The necessary regularity of f can be
established using the smoothness of g and S. We skip working out further details.

5. Discretization Method

As discussed in the introduction, only very few papers are available in which finite
element discretization methods for vector- or tensor-valued surface PDEs, such
as the surface Navier—Stokes equations, on evolving surfaces are treated. In this
section, we present a discretization method for the TSNSE (2.12). The method
is based on a combination of an implicit time stepping scheme with a TraceFEM
for discretization in space. The general idea behind TraceFEM is to use standard
time-independent (bulk) finite element spaces to approximate surface quantities.
The method is based on tangential calculus in the ambient space R® O T'(t). For
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scalar PDEs on evolving surfaces, a space-time variant of TraceFEM is treated in
Ref. 30. A finite difference (FD) in time — FEM in space variant for PDEs on time-
dependent surfaces is treated in Ref. 23 (scalar problems) and in time-dependent
volumetric domains in Ref. 22 (scalar equations) and Ref. 46 (Stokes problem).
Compared to the space-time variant the FD-FEM approach is more flexible in
terms of implementation and the choice of elements. Below we explain this FD-
FEM approach applied to the TSNSE. We start with the numerical treatment of
the system’s evolution in time.

5.1. Time-stepping scheme

Consider uniformly distributed time nodes t, = nAt, n =0,..., N, with the time
step At = T/N. We assume that the time step At is sufficiently small such that

I(t,) € OC(ty_1)), n=1,...,N, (5.1)

with O(T'(¢)) a neighborhood of T'(¢) where a smooth extension of surface quantities
on I'(t) is well defined. Assuming a smooth extension u$., we rewrite the normal
time derivative 9° used in (2.12) in terms of standard time and space derivatives:
ous

ot

PaOuT + (VFUT)UT =P < + (Vu%)WN + (Vu%)uT>

—-P (agf + (V) (wy + uT)) . (5.2)

On T'(t,,) the time derivative term is approximated by
811% - uT(tn) — P(tn)uT(tn_l)"‘
ot At '
Note that due to (5.1) up(t,—1)¢ is defined on I'(¢,). The normal surface velocity
wy is known, so a natural linearization of the nonlinear term in (5.2) is given by

P

PVui(wy +ur) =~ P(t,)Vur(t,) (Wy(t,) + ur(tn,—1)¢) on I'(t,).

The FD approximations above need extensions of quantities defined on I'(¢;) to
O(T'(t;)). It is natural to consider a normal extension, which can be characterized
as follows. Let n = V¢ in O(I'(¢;)), where ¢ is the signed distance function for
I'(t;), and g a function defined on I'(¢;). The normal extension g° of g is such that
g° =g onTI(t;) and

n-Vgt=0 in OT(¢)). (5.3)

For practical purposes, ¢ can be a smooth level set function for I' rather than a
signed distance. In this case, the vector field n = V¢/|V¢| is normal on T" but
defines quasi-normal directions in a neighborhood. Extension of the velocity field
along quasi-normal directions is equally admissible. We assume that at ¢ = 0 an
extension ur(0)¢ on O(Tg) solving (5.3) is given. We use the notation u, and p/ for
an approximation of up(t;)¢ and p(t;), respectively. Based on the approximations
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above and (5.3) consider the following time discretization method for (2.12). Given
ud = ur(0)°, forn =1,... N, find u%}, defined on O(T'(¢,)) and tangential to I'(¢,,),
i.e. (uf-n)pe,) =0, and p” defined on I'(¢,) such that

n n—1
u} — Puy

A7 + PVul(wh + u;_l)

. on I'(t,), (5.4)
+ wHu — 2uP divp E,(u}) + Vpp" = 7
diVFll% = g”
n-Vup =0 in OT(t,)), (5.5)

with wl = wn(t,), Wi == wn(tn), £ = £(t,), ¢" := ¢(t,). Geometric informa-
tion in (5.4) is taken for I'(¢,,), i.e. P = P(t,), H = H(t,). For space discretization,
the stationary linearized surface PDE in (5.4) can be treated using a variational
approach known from Refs. 16 and 18, in which the tangential constraint for the
solution u?} is relaxed using a penalty approach. This technique is now outlined.
We set ¢ := wp, + u’{fl, T, :=T(¢,) and introduce the following bilinear forms on
T, with arguments u, v, vector functions on I;, that are not necessarily tangential:

1
A(u,v) = —/ u- Pvder/ V- P(Vu)cds+/ whyu' Hv ds
I, L, I,

At -
—|—2u/ Es;(Pu): Es(Pv)ds+ T/ unvN ds, (5.6)
T, Ln
B(u,p) = —/ p divpPuds, (5.7)
r,

n

where 7 > 0 is a penalty parameter. We introduce two Hilbert spaces

Li(T,) = {p € L*(T,) / pds = O} , and
I

V. :={vel*I,)?|vr € H(T,)? vy € L*(T,)},

with the norm ||v||}. = HVTH%P(F") + HUN”%Z(DL)‘ A variational formulation corre-
sponding to (5.4) is as follows: Find u, € V., p € L(T},) such that

A(u,,v) + B(v,p) = / f-vds forallveV,
Iy
(5.8)

B(u.,q) = —/ g"qds for all ¢ € L§(T,),
Tn
with f := f + ﬁPugfl. This variational formulation is consistent in the sense that
if (u},p") is a strong solution of (5.4) then (u.,p) = (uf, p™) solves (5.8). Using
the Korn type inequality (3.11) and an inf-sup property of B(-,-) it can be shown
that for At sufficiently small and 7 sufficiently large (but independent of At) the
problem (5.8) is well-posed and its unique solution u, satisfies u,-n = 0, cf. Ref. 16
for a precise analysis. Therefore, for such At and 7 Eq. (5.8) is a well-posed weak
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formulation of (5.4). For a finite element method introduced later it is important
that the space V, admits vector functions not necessarily tangential to I',,. The
solution u of (5.8) is defined only on I}, and we do not specify an extension as in
(5.5), yet. Such an extension will be determined in the finite element method, as
explained in the following section.

Remark 5.1. In the practical implementation of a finite element method for (5.8)
the surface I'(t,,) will be approximated by a piecewise planar surface I';, and the
corresponding projection operator Pj, has discontinuities across boundaries between
different planar segments of this approximate surface. This causes difficulties for
the terms in the bilinear forms A(-,-), B(-,-) where derivatives of P, are involved.
These can be avoided by eliminating derivatives of P as follows. For p € H*(T},)
we have B(u,p) = frﬂ Vrp-Puds = an Vrp-uds, which eliminates derivatives of
P. For the bilinear form A(-,-) we can use the relation Vr(Pu) = Vru—unyH and
thus Ei(Pu) = Es(u) — unH.

5.2. Finite element method

We now explain the spatial discretization of (5.8). Consider a fixed polygonal
domain 2 C R? that strictly contains I'(t) for all ¢ € (0,7). Let {75} n>0 be
a family of shape-regular consistent triangulations of the bulk domain €, with
maxgeT;, diam(K) < h. Corresponding to the bulk triangulation we define a stan-
dard finite element space of piecewise polynomial continuous functions of a fixed
degree k > 1:

ViFE={u, €CQ) : v, € P(K), YK €T} (5.9)

The bulk velocity and pressure finite element spaces are standard Taylor-Hood
spaces:

Uh = (V}?)S, Qh = Vhl

For efficiency reasons, we use an extension not in the given (h and At-
independent) neighborhood O(T'(t,,)) of I}, = T'(t") but in a narrow band around
I',. This At-dependent narrow band consists of all tetrahedra within a ¢,, distance
from the surface, with

Opi=cs sup |lwn|lpee (At (5.10)
te(tn—htn)

and ¢s > 1, an O(1) mesh-independent parameter. More precisely, we define the
mesh-dependent narrow band

One(Ty) == U{F : K €Ty, dist(x,T,) <6, for some x € K}.

We also need a subdomain of Oa¢(T,) only consisting of tetrahedra intersected
by 1_"I’Lv

wit = {K € Tn : KT, #0}.
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In a time step from ¢, to i, the surface may move up to Atsup,c, .,
llwn ||z (r(¢)) distance in normal direction, which is thus the maximum distance
from T, to I';,_1. Therefore, ¢5 in (5.10) can be taken sufficiently large, but inde-
pendent of h, such that

Wl C Opr(Tiy). (5.11)

This condition is the discrete analog of (5.1) and it is essential for the well-posedness
of the finite element problem at time step n.

Next, we define finite element spaces for velocity and pressure as restrictions to
the narrow band Oa¢(T,) of the time-independent bulk spaces Uy, and Qp:

Up = {vlo,m) [ VvEUL}E, Qh:={dosm.|a€CQn} (5.12)

Denote by I (v) € U7 the Lagrange interpolation of v € C(Oa+(T},))3. Our finite
element formulation is based on formulation (5.8). Recall that in (5.8) we do not
require u, to be tangential to I'(t). The tangential condition is weakly enforced
by the penalty term in (5.6) with penalty parameter 7. Such a penalty approach
is often used in finite element methods for vector values surface PDEs.!4 18, 27, 32
In the discretization in addition to this penalty term we include two volume terms
with integrals over wt and Oa¢(I},). The discrete problem is as follows: For given
uZ_l € Uz_l and cZ‘l = u’;_l + I (w (tn)n) find up € Up, pp € QF, satisfying

u? —ult 1
/ <hh + (Vup)cy " + u}(,HuZ) -Pvy ds
L\ At

+ 2,u/ Es(Puy) : Es(Pvy)ds + 7'/ (n-up)(n-vy)ds
I, T,

+/ Vrp"vy ds + pu/ (n-Vu})(n-Vvy) dx
r, Oar(Th)
:/ f'vypds Vv, €Uy

In

— / Vrquj ds —I—pp/ (n-Vpp)(n-Vgp) dx
T, w

n
r

= / g"ands V qn € Qp, (5.13)
I

forn =1,...,N. The term me(Fﬂ,)(n -Vup)(n - Vvy,) dx, with a parameter p,,
is included for two reasons. First, this term is often used in TraceFEM to improve
the conditioning of the resulting stiffness matrix, e.g. see Ref. 7. Second, this vol-
ume term weakly enforces the extension condition (5.5) with O(T'(¢,,)) replaced by
Onat(Ty). In particular, at time ¢, a well-conditioned algebraic system is solved for
all discrete velocity degrees of freedom in the neighborhood Oa¢(T},); we refer to
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Ref. 23 for a stability and convergence analysis of such an extension procedure for
a scalar surface equation. The volume term in the pressure equation is added for
the purpose of numerical stabilization of pressure.?! The formulation (5.13) is con-
sistent in the sense that the equations hold if the solution of (5.4), extended along
normal directions, is substituted instead of u} and pj. Penalty and stabilization
parameters are set following the error analysis in Ref. 31:

T:h_27 pu:h_17 pp:h

In practice, I, n = 1,2, ..., is replaced by a sufficiently accurate approximation
I'} in such a way that integrals over I'} can be computed accurately and efficiently.
Other geometric quantities, i.e. n, H and P, are also replaced by sufficiently accu-
rate approximations. The derivatives of projected fields, i.e. Es;(Pu}) and Es(Pvy,),
are handled as discussed in Remark 5.1. For the surface Stokes problem discretized
by the trace Py1-P, k > 1, elements, the introduced geometric error is analyzed
in Ref. 17. Below we will use the lowest order trace Taylor-Hood pair Po—P;. An
approximation I'}' that is piece-wise planar with respect to 7y, leads to an O(h?)
geometric error. This geometric error order is suboptimal given the interpolation
order of the Taylor-Hood pair Po—P;. This suboptimality can be overcome by the
isoparametric TraceFEM.'? For numerical results in this paper, we use the following
less efficient but simpler approach. For the geometry approximation (only) we con-
struct a piece-wise planar I'} with respect to a local refinement of each tetrahedron
from wpt. The number of local refinement levels is chosen sufficiently large to restore
the optimal O(h3) convergence. Note that this local refinement only influences the
surface approximation and not the finite element spaces used.

Finally we note that the use of BDF2 instead of implicit Euler in the implicit
time stepping scheme leads to obvious modifications of (5.13). In the experiments
in the following section, we used this second order in time variant of (5.13).

6. Numerical Examples

For discretization, an initial triangulation 75, was build by dividing 2 = (—%, %)3
into 23 cubes and further splitting each cube into 6 tetrahedra with hy = g Fur-
ther, the mesh is refined in a sufficiently large neighborhood of a surface so that
tetrahedra cut by I'(t) belong to the same refinement level for all ¢t € [0,7]. £ € N
denotes the level of refinement and hy = g 2=t The trace Po—P; Taylor—Hood finite
element method with BDF2 time stepping, as described in the previous section, is

applied.

6.1. Convergence for a smooth solution

To verify the implementation and to check the convergence order of the discrete
solution, we set up an experiment with a known tangential flow along an expand-
ing/contracting sphere. In this example the total area of T" is not preserved, but it
allows to prescribe a flow u analytically and calculate f and g.
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The surface I' is given by its distance function
1
d(x,t) = ||x|| = r(t), r)=1+ 1 sin(2mt), (6.1)

We consider ¢ € [0, 1]. The surface normal velocity is then wy = wyn, with wy (¢) =
r'(t) = w, n(x) = x/|x|. We choose 1 =5 x 1073.
The exact solution is given by

u(x,t) =P(x,t) (1-2t,0,007, p(x)=zy*+ 2, (6.2)

and right-hand sides f and ¢ = divruy +wyk are computed accordingly from (6.1)
and (6.2). For numerical integration, exact solutions and right-hand sides are
extended along normal directions to I'.

The numerical solution was computed on four consecutive meshes with refine-
ment levels £ € {2,...,5} and a time step At = 0.05 on level 2; At is halved in each
spatial refinement, and for parameter in (5.10) we set ¢s = 1.1. A mesh in Oa.(T,)
together with the embedded I'(¢) and computed solution is illustrated in Fig. 1. In
Table 1, we show the mesh parameter h and the resulting (averaged over all time
steps) number of active degrees of freedom (# d.o.f.). We see that a mesh refinement
leads to approximately four times more degrees of freedom. Table 1 further reports
the velocity and pressure errors measured in (approximate) L3, and L?(S) norms.

t=20 t=0.15 t=20.9

Fig. 1. Illustration of the extension mesh and solution at mesh level £ = 3.

Table 1. Convergence results for the example with analytical solution.

Mesh level £ 2 3 4 5

h 417x1071 2,08 x 1071 1.04x 107! 5.21 x 102
Averaged # d.o.f. 4.41 x 103 1.73 x 104 6.82 x 104 2.73 x 10°

la—uplls Order [u—upllp2sy Order |[|p—pnllp2s)y Order

9.3 x 1071 1.3 x 1071 32x1071
1.9 x 10~ 2.3 9.9 x 103 3.72 3.5 x 1072 3.2
4.3 x 1072 2.13 9.2 x 104 3.42 7.3 x 1073 2.27

1.2 x 10—2 1.92 1.2 x 1074 2.98 1.8 x 1073 2.02
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These norms were computed using a quadrature rule for time integration. Results
demonstrate the expected second-order convergence in the “natural” norms and a
higher order for the velocity error in the L?(S) norm. These orders are optimal for
the Po—P; elements used.

6.2. Tangential flow on a deforming sphere

In this numerical example we consider a deforming unit sphere and compute the
induced tangential flow, i.e. the numerical solution of the TSNSE (2.12). Denote
by I'yg the reference sphere of radius 1 with the center in the origin O. Consider
spherical coordinates (r,60,¢) € (0,00) x [0,7] x [0,27) and denote by HI™ (0, ),
the spherical harmonic of degree n and order m. Assume that H]" are normalized,
ie. [[Hy'|l2(ry) = 1. For the evolving surface we consider as ansatz

N
F(t) =3X= (7’,9, 50) |T =1+ Z Z An,m(t)IHnm(e,@) ) (63)

n=Ll|m|<n

with suitably chosen coefficients A, (t). The function £ := 25:1 2 mi<n Anm (1)
M (0, ) describes the radial deformation. We assume small oscillations, ||| < 1.
Under this assumption, an accurate approximation of the normal velocity is given
by wy = wyn, with

&€ N~ N~ P
N = dif - Z Z dt7 Hy', n(x) =x/[x]. (6.4)

n=1|m|<n

We want the surface to be inextensible, i.e. %|I'(t)| = 0. Appropriate coefficients
Ay, m (t) such that we have inextensibility can be determined as follows. Application
of the surface Reynolds transport formula and integration by parts gives for the
variation of surface area:

pn I(t)| = %/ lds = / divrwy ds = / Kkwy ds. (6.5)
I'(t) I'(t) I'(t)
0.0010 0.0010
0.0008 00008 ¢
0.0006
0.0006 0.0004
0.0004 0.0002
0.0000 -
0.0002
~0.0002
0.0000 ~0.0004
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
t t
Fig. 2. Relative surface area variation w as a function of time for axisymmetric (left

plot) and asymmetric (right plot) deformations of the sphere.
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For the doubled mean curvature we have, cf. Ref. 21,

N
K=2-20—Ar=2-> Y {24, M} —n(n+1)An 1y}

n=1|m|<n

N
=2+ > Aum(n—1)(n+2)H].

n=1|m|<n

Using fFo H =0,n > 1, and fFo Hanﬂl = 5'6m | we compute for the area

n m
variation:

D)= [ suds= 3 ¥ (=12 g (0:6)
7 = " rKwyds = n n o nom- .

n=Ll|m|<n

t=20 t=0.1 t=10.3

surface speed

-49e-01 03 02 -01 0 0.1 02 03 0449e01
| | |
2z velocity magnitude
0.0e+00 0.05 0.1 0.15 0.2 24e-01
U e—
X ¥ '

Fig. 3. Visualization of velocity field for axisymmetric deformations of the sphere; mesh level
£ =4, At = 0.01. Click here to see the full animation.
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Based on this formula we set Az o = §cos(wt), Az = \/% sin(wt), and Ay, =0
for other coefficients. For this choice of coefficients one easily verifies 4 |T'(¢)| = 0.
The TSNSE equations (2.12) are then solved with the right-hand side given by
(2.13) with uy = wy computed from (6.4). The initial velocity is zero.

In the first numerical example we let € = 0.2, w = 27, p = %10_4, and include
H9 and HS, two zonal spherical harmonics of degrees 2 and 3. The relative variation
of the surface area I'(t) in the left plot in Fig. 2 shows less than 0.1% of surface
variation. Non-zero variation is due to approximation errors and finite (rather than
infinitesimal) deformations. The latter causes an approximation error in (6.4).

The velocity field induced by these axisymmetric deformations of the sphere
is visualized in Fig. 3. We see that the velocity pattern is dominated by a

t=0 t=0.1 t=0.3

velocity magnitude
0.0e+00 0.05 0.1 0.15 02 025 03 0.353.9e-01

o —
surface speed
T -7.8e-01 -0.6 -0.4 -0.2 0 0.2 04 7.3e-01
1 | |
v — o

Fig. 4. Visualization of velocity field for asymmetric deformations of the sphere; mesh level ¢ = 4,
At = 0.01. Click here to see the full animation.
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sink-and-source flow driven by the term —xwpy on the right-hand side of the diver-
gence condition in (2.12).

We repeat the experiment, but decrease the viscosity to p = %10’5 and add
two more spherical harmonics, the sectorial H3 harmonic and the tesseral H3 one,
to make the deformation asymmetric. The radial displacement in this experiment
is then given by

£=0.2 (; cos(27 t) HI(x) + \/% sin(2m t) ”Hg(x)> ,

+0.1 (; cos(4mt) Hi(x) + 15—8 sin(4mt) HZ(X)) :

Again, the coefficients are such that %H‘(t)\ = 0 according to Eq. (6.6). The result-
ing velocity field is visualized in Fig. 4. The velocity pattern is still dominated by
the sink-and-source flow. Note that in both cases there are no outer forces and the
flow is completely “geometry driven”.
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