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ABSTRACT
We consider the third-order (in time) linear equation known as SMGT-
equation, as defined on a multidimensional bounded domain. Part A
gives optimal interior and boundary regularity results from L2(0, T ; L2(�))
– Dirichlet or Neumann boundary terms. Explicit representation formulas
are given that can be taken to define the notion of solution in the canon-
ical case (γ = 0), while the same regularity results hold for γ ∈ L∞(�).
Part B considers the SMGT equation under Neumann dissipative bound-
ary conditions and critical parameter γ ∈ L∞(�) and γ (x) � 0 a.e. in�. We
provide two results: (i) uniform stabilization under minimal checkable geo-
metric conditions, and (ii) strong stabilization in the absence of geometrical
conditions.
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1. Introduction: the SMGTJ equation

Let � be a bounded domain in R
3 with sufficiently smooth boundary � = ∂�, as specified below.

In this paper, we return to the equation, which should be called SMGTJ [for G. G. Stokes (1851),
F. K. Moore & W. E. Gibson (1960), P. A. Thompson (1972) and P. M. Jordan (2004)], see [1–5].
As widely documented in the literature, it arises in a variety of physical contexts such as: effects
of the radiation of heat on the propagation of sound; propagation of disturbances in a gas sub-
ject to relaxation effects; behavior of viscoelastic materials; propagation of acoustic waves, etc. In
particular, if in classical models in nonlinear acoustics (Kuznetsov equation, Westervelt equation,
Kokhlov–Zobolotskaya–Kuznetsov equation), one replaces the Fourier Law for the heat flux with the
Maxwell–Cattaneo Law (to avoid the paradox of infinite speed of propagation), one obtains a third
order in time PDE, whose linear part is the one considered in the present paper; that is [1,2]

τψttt + ψtt − c2�ψ − b�ψt = 0 in (0,T] ×�, (1.1)

where, in the physical models of the literature, τ > 0, b > 0, c2 > 0 are fixed constants, whose physi-
cal meaning is not relevant here. See [6]. Hencefort we shall take τ = 1 in (1.1) w.l.o.g. We are taking
� in R

3, as this is the physically significant setting. However, the mathematical analysis of this paper
works on any R

d, d = 1, 2, . . . (Dirichlet); d = 2, 3, . . . (Neumann).
The present paper is divided in two parts. Part A deals with optimal interior and boundary (trace)

regularity of the mixed problem consisting of the third-order Equation (1.1), subject to Dirichlet or
Neumann boundary control g of low regularity L2(0,T; L2(�)) (and zero I.C). Here we revisit the
proofs of [7], which studied this problem. More on the literature below. With reference to problem
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1736 M. BONGARTI ET AL.

(2.1a)–(2.1c), the interior and boundary regularity results of Part A hold true actually with coefficient
γ in (2.1d) below satisfying γ ∈ L∞(�); the physically most interesting cases being α ∈ L∞(�) and
b, c2 positive constants. In fact, in our approach, the coefficient γ is responsible for lower-order terms
so that w.l.o.g we give explicit proofs in the text for the case γ = 0, which lead to explicit representa-
tion formulas. These may be taken as defining the notion of solution. The analysis for γ ∈ L∞(�) is
reported in Appendix 1.

Part B considers the problem of uniform stabilization of the third-order equation under Neumann
feedback control and critical parameter γ ∈ L∞(�), γ (x) � 0 a.e. in�. Two results are given: (i) uni-
form stabilization under minimal checkable geometric conditions imposed only on the uncontrolled
part of the boundary; and strong stabilization in the absence of geometric conditions. The uniform
stabilization result for the SMGT feedback problem encounters several conceptual and technical
challenges.

PART A.1: OPTIMAL INTERIOR AND BOUNDARY REGULARITY OF THE MIXED
PROBLEMWITHDIRICHLET BOUNDARY TERM IN L2(0,T; L2(�))

2. Linear third-order SMGTJ-equation with non-homogeneous Dirichlet boundary
term in L2(0, T; L2(�))

If the linear third-order Equation (1.1) is written in terms of the pressure, then Dirichlet non-
homogeneous boundary terms are appropriate (I. Christov, private communication; P. Jordan, private
communication). We then consider the following mixed problem in the unknown y(t, x):⎧⎪⎪⎨

⎪⎪⎩
yttt + αytt − c2�y − b�yt = f in Q = (0,T] ×� (2.1a)

y
∣∣
t=0 = y0; yt

∣∣
t=0 = y1; ytt

∣∣
t=0 = y2 in� (2.1b)

y
∣∣



= g in
 = (0,T] × � (2.1c)

The following quantity, introduced in [6,8] plays a critical role in stability

γ = α − c2

b
, (2.1d)

see more details following (2.10). By the principle of superposition, we shall consider separately two
cases: {y0, y1, y2} �= 0 and g = 0 in Section 2.1, and {y0, y1, y2} = 0 and g �= 0 in Section 2.2, the key
of Part A.1.

2.1. Case g ≡ 0.

A rather comprehensive study of this case was carried out in [6] in the constant coefficient case via
semigroup/functional analytic techniques, later extended to variable α(x) [9, Theorem 2.1, p. 833];
and in [8,10] in the case of likewise variable α ∈ L∞(�), via energy methods. Here we shall only
report a subset of these results which are relevant to the present paper. In addition, we note explicitly
s.c. group generation also in the space V3 in (2.5d), which is obtained from U3. The consequent
regularity in C([0,T];V3) for {y0, y1, y2} ∈ V3 is then consistent with the analysis of the problem
for {y0, y1, y2} = 0, g ∈ L2(0,T; L2(�)). Define the positive self adjoint operator on H = L2(�):

A0h = −�h, D(A0) = H2(�) ∩ H1
0(�)

D(A1/2
0 ) ≡ H1

0(�), [D(A1/2
0 )]′ = H−1(�),

(2.2)

so that problem (2.1) (with g = 0) can be re-written abstractly as

uttt + αutt + c2A0u + bA0ut = f on H = L2(�), (2.3)
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along with I.C. u0, u1, u2. For f = 0 we re-write it as a first-order problem as

d
dt

⎡
⎣ u
ut
utt

⎤
⎦ = G

⎡
⎣ u
ut
utt

⎤
⎦ , G =

⎡
⎣ 0 I 0

0 0 I
−c2A0 −bA0 −αI

⎤
⎦ . (2.4)

Introduce the following spaces:

U0 = H × H × H (2.5a)

U1 ≡ D(A
1
2
0 )× D(A

1
2
0 )× H; U2 ≡ D(A0)× D(A0)× D(A

1
2
0 ) (2.5b)

U3 ≡ D(A0)× D(A
1
2
0 )× H; U4 ≡ D(A

3
2
0 )× D(A0)× D(A

1
2
0 ) (2.5c)

U5 ≡ V3 ≡ H × [D(A1/2
0 )]′ × [D(A0)]′ (2.5d)

Theorem 2.1 ([6, Section 2, constant coefficients],[9, Theorem 2.1, p. 833, variable α(x) i.e.
∈ L∞(�)): ]

(i) Let f = 0. The operator G in (2.4) generates a s.c. group eGt on each of the spaces U1, . . . ,U5 with
appropriate domains so that⎡

⎣ u(t)
ut(t)
utt(t)

⎤
⎦ = eGt

⎡
⎣u0u1
u2

⎤
⎦ ∈ C([0,T];Ui), i = 1, 2, 3, 4, 5 (2.6a)

for [u0, u1, u2] ∈ Ui, i = 1, 2, 3, 4, 5.
(ii) Let f ∈ L1(0,T;Ui) be a forcing term acting on the RHS of (2.3) with {u0, u1, u2} = 0. Then⎡

⎣ u(t)
ut(t)
utt(t)

⎤
⎦ =

∫ t

0
eG(t−τ)f (τ ) dτ ∈ C([0,T];Ui) (2.6b)

continuously.

Below we shall emphasize the case U3, whereby then

G : U3 ⊃ D(G) = D(A0)× D(A0)× D(A
1
2
0 ) −→ U3 (2.4 bis)

as well as the case V3, whereby

G : V3 ⊃ D(G) = H × H × [D(A
1
2
0 )]

′ −→ V3 (2.4 tris)

In both cases there is no smoothing of the first component space of D(G) and G has no compact
resolvent in both cases [6]. This will make more challenging the analysis of Section 10. The group
generation property points out that the third-order Equation (2.3) is strictly hyperbolic: its principal
part [∂ttt − b�∂t] has symbol [−iτ 3 + ib|ξ |2τ ] with three distinct roots: 0,√b|ξ |,−√

b|ξ | [11, p. 23].
In fact, as in [6], rewrite (2.3) as

(ut + αu)tt + bA0

(
c2

b
u + ut

)
= 0. (2.7)

This suggests introducing a new variable, as in [6]

either z = c2

b
u + ut , or else ξ = ut + αu (2.8)
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(i) Thus,

If α = c2

b
or γ = 0, then (2.7) =⇒ ztt + bA0z = 0 (z = ξ), (2.9)

the pure abstract wave equation.
(ii) Otherwise,

z = c2

b
u + ut = (αu + ut)− γ u, γ = α − c2

b
(2.10)

(ut + αu)tt = ztt + γ utt = ztt + γ

(
z − c2

b
u
)
t
. (2.11)

Substituting (2.8), (2.10), (2.11) in (2.7) leads to the following hyperbolic system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ztt = −bA0z − γ utt = −bA0z − γ zt + γ
c2

b
z − γ

(
c2

b

)2

u in Q (2.12a)

ut = − c2

b
u + z, u(t) = e−

c2
b u0 +

∫ t

0
e−

c2
b (t−τ)z(τ ) dτ (2.12b)

(models #1 and #2 in [6, Section 2]) coupling the hyperbolic z-equation with the scalar ODE in u.
In the constant coefficient case, the constant γ = α − c2

b plays a critical role in the stability of the
s.c. group eGt on Ui. Indeed, eGt is uniformly stable on each Ui (with a sharp explicit decay rate [6,
Theorem 3.3]) if and only if γ > 0 [6]. The case γ = 0, see (2.9) corresponds to the point spectrum
σp(G) of G being on the imaginary axis, while the point − c2

b is in its continuous spectrum [6]. Paper
[12] claims that if γ < 0, and at least in the 1D case, the boundary homogeneous Equation (1.1)
admits a chaotic and topologically mixing semigroup on Banach spaces of Herzog’s type.

2.2. Case y0 = 0, y1 = 0, y2 = 0, f = 0,g �= 0. Statement of results

In this case, we seek to obtain sharp regularity of the map

g −→
{
y, yt , ytt ,

∂y
∂ν

∣∣∣∣



}
(2.13)

from the Dirichlet boundary datum g of low regularity such as L2(0,T; L2(�)) to the interior solution
{y, yt , ytt} and the Neumann boundary trace ∂y

∂ν
|
 .

Orientation:We seek optimal regularity results for themap in (2.13), initially for g ∈ L2(0,T; L2(�)),
under the assumption γ ∈ L∞(�), the case α ∈ L∞(�), and c2, b positive constants being the most
relevant case we wish to cover. We shall proceed in two steps.

Step 1.We assume at first that

γ = 0 or α = c2

b
, yttt + c2

b
ytt − c2�y − b�yt = 0 (2.14)

so that in view of the simplified version (2.14), the y-problem (2.1a)–(2.1c) with {y0, y1, y2} = 0 can
be rewritten as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dt

[
ytt − b�y

] + c2

b
[
ytt − b�y

] = 0 in Q = (0,T] ×� (2.15a)[
ytt − b�y

]
t=0 = y2 − b�y0 = 0 in� (2.15b)

y
∣∣



= g in
 = (0,T] × � (2.15c)
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Lemma 2.2: y is a solution of problem (2.15a)–(2.15c) if and only if y = w is a solution of⎧⎪⎨
⎪⎩

wtt = b�w in Q = (0,T] ×� (2.16a)

w|t=0 = wt|t=0 = 0 in� (2.16b)

w
∣∣



= g in 
 = (0,T] × �. (2.16c)

Thus, in this canonical case γ = 0, the regularity of the map (2.13) coincides with the regularity
of the by now well-known map g → {w,wt ,wtt , ∂w∂ν } for which we quote [13, p. 172], [14] and [15,
Chapter 10, Section 5]. See Theorem 2.3.

Step 2. The claim is that 0 �= γ ∈ L∞(�) produces only lower-order terms in the analysis of the
regularity of the map in (2.13). We choose to substantiate this claim by using the new variable z
in (2.8) (or (2.38) below) that transforms the y-mixed problem in (2.1a)–(2.1c) into the z-mixed wave
problem (2.39a)–(2.39c), which shows that γ �= 0 is responsible for lot. We refer to Section 3, Step 1
and Appendix 1 for the relevant discussion. Moreover, in the case γ = 0, the z-analysis in Section 3
will likewise yield the conclusion: y = w solution of (2.16a)–(2.16c), though in a few more steps, see
Theorem 3.1.

Conclusion. The optimal regularity of the map (2.13) for the SMGT-mixed problem (2.1a)–(2.1c)
with zero initial data and γ ∈ L∞(�) is the same as in the canonical case γ = α − c2

b = 0; in which
case y = w and all the desired quantities are given by the w-problem (2.16a)–(2.16c) as reported in
Theorem 2.3 below. In this case, useful representation formulas are available [13,14,16,18] and [15,
Chapter 10, Section 5]. �.

In order to provide explicit representation formulas we need to introduce a few quantities.

(i) recall A0 from (2.2);

Af = −b�f , D(A) = H2(�) ∩ H1
0(�), i.e. A = bA0 (2.17)

(ii) The Dirichlet map

Dg = ϕ ⇐⇒ {
�ϕ = 0 in�, ϕ

∣∣
�

= g
}
. (2.18a)

D : L2(�) → H1/2(�) ⊂ H
1
2−2ε(�) = D(A 1

4−ε), or A
1
4−εD ∈ L (

L2(�); L2(�)
)

(2.18b)

by elliptic theory [16–18], with ε > 0 arbitrary, with A in (2.17). One cannot take ε = 0, see
[15, Remark 3.1.4, p.186]. Moreover, [15, p. 181]

D∗Af = bD∗A0f = −b
∂f
∂ν

, f ∈ D(A). (2.18c)

(iii) the (strictly negative) self-adjoint operator (−A) in (2.17) is the infinitesimal generator of
a strongly continuous (self-adjoint) cosine operator family C(t) [19–21] with sine operator
S(t)x = ∫ t

0 C(τ )x dτ , x ∈ H, with A
1
2S(t) strongly continuous:

S(t − τ) = S(t)C(τ )− C(t)S(τ ) (2.19a)

C(t − τ) = C(t)C(τ )− AS(t)S(τ ), τ , t ∈ R (2.19b)

We have

d2C(t)x
dt2

= −AC(t)x, x ∈ D(A); dC(t)x
dt

= −AS(t)x, x ∈ D(A 1
2 ), (2.20)

C(t) is even onH, C(0) = I; S(t) is odd onH, S(0) = 0. The above formulae (2.20) onH with
H ⊃ D(A) → H can be extended to [D(A)]′ with A now the extension Ae : H → [D(A)]′,
which we still denote by A.
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The solution of the wave problem (2.16a)–(2.16c) and hence of the y-problem (2.1a)–(2.1c) for
γ ≡ 0 will be expressed by explicit representation formulas in terms of the above cosine and sine
operators, generated by the operator (−A) in (2.17).

Theorem 2.3 ([13, p. 172],[14,16]): Consider the mixed problem (2.16a)–(2.16c) (without compat-
ibility conditions), where � is a bounded domain in R

d, d ≥ 1, with sufficiently smooth boundary �.
Then, continuously

g ∈ L2(0,T; L2(�)) →

w = A
∫ t

0
S(t − τ)Dg(τ ) dτ ∈ C([0,T]; L2(�)) (2.21)

wt = A
∫ t

0
C(t − τ)Dg(τ ) dτ ∈ C([0,T]; [D(A1/2)]′ = H−1(�)) (2.22)

wtt = b�w ∈ C([0,T];H−2(�)), (2.23a)
as it follows from (2.16a) and (2.21) [17, p. 85]. Additional versions may be obtained by differentiat-
ing (2.22):

wtt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−A)
[
A
∫ t

0
S(t − τ)Dg(τ ) dτ − Dg(t)

]
∈ L2(0,T; [D(A)]′)

− A2
∫ t

0
S(t − τ)Dg(τ ) dτ + ADg(t)

∈ C([0,T]; [D(A)]′)+ L2(0,T; [D(A3/4+ε)]′)

(2.23b)

(2.23c)

∂w
∂ν

∣∣∣∣



= −1
b
D∗AA

∫ t

0
S(t − τ)Dg(τ ) dτ ∈ H−1(
), (2.24)

recalling (2.18c) in (2.24), where H−1(
) = dual of {h ∈ H1
0(
)} i.e. with h(·, 0) = 0 and h(·,T) = 0

on � (but actually, h(·,T) = 0 is not needed).
Moreover, from (2.23b)

g ∈ C([0,T]; L2(�)) → wtt ∈ C([0,T]; [D(A)]′) (2.25)

Remark 2.1: We recover (2.23a) from (2.23c) as follows as [w − Dg] ∈ D(A)

(−A)
[
A
∫ t

0
S(t − τ)Dg(τ ) dτ − Dg(t)

]
= b�

[
w − Dg(t)

] = b�w ∈ C([0,T];H−2(�)

Our main result in the present Part A.1 is the following

Theorem 2.4: (i) With reference to problem (2.1a)–(2.1c) with zero I.C. {y0, y1, y2} = 0, f = 0, and
γ ∈ L∞(�) we have the following optimal interior regularity results:

g ∈ L2(0,T; L2(�)) =⇒
⎧⎨
⎩
y ∈ C([0,T]; L2(�))

yt ∈ C([0,T]; [D(A 1
2 )]′ = H−1(�)),

(2.26)

(2.27)

ytt

⎧⎪⎪⎨
⎪⎪⎩

∈ C([0,T];H−2(�))

∈ L2(0,T; [D(A)]′),
∈ C([0,T]; [D(A)]′)+ L2(0,T; [D(A3/4+ε)]′)

(2.28a)

(2.28b)

(2.28c)
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as well as the following boudary trace result:

∂y
∂ν

∣∣∣∣



∈ H−1(
). (2.29)

Moreover,

g ∈ C([0,T]; L2(�)) =⇒ ytt ∈ C([0,T]; [D(A)]′), (2.30)

all the maps being continuous.
(ii) Let now γ = 0. Then (see also Step 1 in the Orientation Lemma 2.2)

y = w = a solution of the problem (2.16a)–(2.16c) (2.31)

so that, in this case, the same representation formulas for {w,wt ,wtt , ∂w∂ν } = {y, yt , ytt , ∂y∂ν } of
Theorem 2.3 hold for the y-problem with zero initial data.

An immediate corollary of Theorem 2.4(ii) yields an exact controllability result for the SMGT-
equation (2.1a)–(2.1c) from the origin regarding the first two component {y(T), yt(T)} at the optimal
time T, within the class of L2(0,T; L2(�))-Dirichlet controls.

Corollary 2.5: Assume that the w-problem (2.16a)–(2.16c) is exact controllable (from the origin) at
time T within the class of L2(0,T; L2(�))-Dirichlet boundary controls. That is, given an arbitrary pair
{φ,ψ} ∈ L2(�)× H−1(�), there exists a Dirichlet boundary control g ∈ L2(0,T; L2(�)) such that the
solution of problem (2.16a)–(2.16c) satisfies w(T) = φ, wt(T) = ψ . Then the same control g used in
problem (2.1a)–(2.1c) with zero initial data and γ = 0 satisfies

y(T) = φ ∈ L2(�), yt(T) = ψ ∈ H−1(�), ytt(T) = �φ ∈ H−2(�). (2.32)

Of course, for the time reversible problems y and w, exact controllability from, or to, the origin,
are equivalent statements.

To establish Theorem 2.4 for γ ∈ L∞(�), it remains to verify that γ produces only lower-order
terms in the analysis of the regularity of the y-problem. This will be done in Section 3 andAppendix 1.

The proof of Theorem 2.3 is by PDE-techniques, either directly [14,16], or much more conve-
niently, by duality [13].

In fact, consider the following problem, dual of problem (2.16a)–(2.16c)

⎧⎪⎨
⎪⎩
φtt = �φ + f in Q (2.33a)

φ
∣∣
t=T = φ0; φt

∣∣
t=T = φ1 in� (2.33b)

φ
∣∣



= 0 in
 (2.33c)

Theorem2.6 ([14],[13, Lemma2.1, p. 154]): The following (sharp, hidden) trace regularity holds true
for problem (2.33)

∫ T

0

∫
�

(
∂φ

∂ν

)2
d
 = OT

(∥∥{φ0,φ1}∥∥2H1
0(�)×L2(�) + ∥∥f ∥∥2L1(0,T;L2(�))) . (2.34)

Since [13] it has been ascertained that a most convenient roadmap is to first show (by PDE-
techniques) Theorem 2.6 and then obtain Theorem 2.3 on {w,wt ,wtt} by duality.

Analysis of smooth solutions of Equation (2.1a), zero I.C. {y0, y1, y2} = 0, and f = 0.
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Let {y, yt , ytt} be a smooth solution of equation (2.1a) and I.C. {y0, y1, y2} = 0. We let y|� and yt|�
be the corresponding Dirichlet traces at the boundary �. We return to Equation (2.1a) and re-write
it, as usual [16,18], [15, Appendix 3B, p. 420–424], via (2.18a) as

yttt + αytt − c2�(y − D
(
y|�

)
)− b�(yt − D

(
yt|�

)
) = 0 in Q (2.35)

or abstractly, via (2.2), as

yttt + αytt + c2A0(y − D
(
y|�

)
)+ bA0(yt − D

(
yt|�

)
) = 0 in H. (2.36)

Extending, as usual [13,15,16], the original operator A0 in (2.2): L2(�) ⊃ D(A0) → L2(�) to A0e :
L2(�) → [D(A∗

0)]
′ = [D(A0)]′; duality [ ]′ w.r.t. H = L2(�) by isomorphism, and retaining the

symbol A0 also for such extension, A0e we re-write Equation (2.36) as

(yt + αy)tt + bA0

(
c2

b
y + yt

)
= c2A0D(y|�)+ bA0D(yt|�) ∈ [D(A0)]′. (2.37)

Setting as in (2.10)

z = c2

b
y + yt = (αy + yt)− γ y, γ = α − c2

b
(2.38)

and proceeding as in going from (2.10)–(2.12), we re-write problem (2.1a) as the following hyperbolic
system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ztt = −bA0z − γ zt + γ
c2

b
z − γ

(
c2

b

)2

y + c2A0D
(
y|�

) + bA0D(yt|�) ∈ [D(A0)]′ (2.39a)

yt = − c2

b
y + z, y(t) =

∫ t

0
e−

c2
b (t−τ)z(τ ) dτ (2.39b)

along with the I.C. (recall that we are taking y0 = 0, y1 = 0, y2 = 0)

z0 = c2

b
y0 + y1 = 0, z1 = c2

b
y1 + y2 = 0. (2.39c)

2.3. Literature review

RegularityWe refer to the Orientation of Section 2.2 regarding the contributions of the present paper
in the case of a non-smooth boundary term g ∈ L2(0,T; L2(�)) – the most desirable class. With
both Dirichlet (Section 3) and Neumann (Section 5) boundary control, our proof of regularity of the
map (2.13) or (5.2), respectively, is reduced (as in [7]) to the canonical model with γ = 0 in (2.14);
in which case, the simplest observation of rewriting the resulting simplified equation (2.14) in the
revealing form (2.15a) yields at once the most valuable conclusion y ≡ w of Lemma 2.2 and y ≡ η

of Lemma 5.1, with w and η wave solutions with Dirichlet, respectively, Neumann boundary control.
Thus, for γ = 0, the optimal regularity of the map (2.13) or (5.2), respectively, is obtained at once,
with the additional advantage – exploited in Corollary 2.5 (Dirichlet) and a corresponding state-
ment for Neumann – of having available the same representation formula of the wave mixed problem
[13–16,18,22,23]. Next, as noted in [7], the case γ ∈ L∞(�) is responsible only for lower-order terms
on the analysis of the regularity problem. This is perhaps best appreciated by using precisely the
approach of [7] is Section 3, Appendix 1, which reduces the original problem (2.1a)–(2.1c) to the z-
problem (2.39a)–(2.39c) following the change of variable (2.38) introduced in [6,10]. This approach
reproves that y = w or y = η, respectively, by the computations as in [7] (where a sign error occured).
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The final results in Theorem 2.4 (Dirichet) and Theorem 5.3 (Neumann) refine those of [7]. A dual-
ity approach, in the vein of [13] is given in Section 4, following [7] with similar refinements. A full
semigroup approach with a 3 × 3 matrix generator will be given for γ �= 0 in a follow-up paper.

A different approach with low regularity of boundary datum g is presented in [24].
The method (for constant coefficients) ‘embeds (2.1a) in a general class of integro-differential

equations (depending on a parameter). The MGT equation is then a special instance of a wave
equation with persistent memory [24, Equation (1.5) p. 839] which displays an affine term’.

Thus, in this paper the SMGT equation is reduced to aVolterra integral equation. The final interior
regularity due to the Dirichlet boundary datum g ∈ L2(0,T; L2(�)) coincides with our Theorem 2.4,
Equations (2.26), (2.27) and (2.28a). The interior regularity due to the Neumann boundary datum
g ∈ L2(0,T; L2(�)) coincides with our Theorem 5.3, Equations (5.16), (5.17) and (5.18a). Our present
paper has alternative ( non-equivalent) versions: (2.28b)–(2.28c) and (5.18b)–(5.18c), respectively;
again, a benefit of our representation formulas. [24] does not have boundary trace results with 0 �=
g ∈ L2(0,T; L2(�)), such as (2.29) on ∂y

∂ν
|
 ∈ H−1(
) in theDirichlet case of Theorem 2.4 and g|
 ∈

H2α̂−1(
) in the Neumann case of Theorem 5.3. Again, in the present paper, these results follow at
once from y = w and [13–16] in theDirichlet case; and y = η and [15,25,34,35] in theNeumann case.
In [24], the definition of solution is indirect via a solver of Volterra equation. In both approaches –
[24] and Section 3 (Dirichlet) and 5 (Neumann) of the present paper – a critical role is played by the
regularity of convolutions with Sine and Cosine operators, as given in [13,14,16], after such formulas
were introduced, for boundary value problems, in [18].

Paper [26] provides a definition of solution of the y-problem by transposition via the adjoint
equation. Transposition was used in the approach of [7, Sections 6 and 7]. In [26] however, trans-
position requires an upfront analysis of higher regularity of solutions to the SMGT equation,
and thus, in this sense, is less direct. It requires the Dirichlet boundary term being regular (g ∈
C([0,T];H3/2(�)) ∩ H2(0,T; L2(�)), gt ∈ C([0,T];H1/2(�))) by combining a Volterra approach
with Sakamoto’s theory on first-order hyperbolic systems.

We note that the approach of the present paper naturally lends itself to an (optimal) analysis with
more regularDirichlet boundary term g, by employing the results of [13]. This analysis will be pursued
in the future in a follow-up paper.

‘Going up’ with the regularity of the boundary datum is a less challenging problem than ‘going
down’ [13]. We also note that the approaches of the present paper can be extended to the case where
the Laplacian operator is replaced by a second-order elliptic operator with space variable coefficient of
limited regularity, sayC2. To this end, onewould use theRiemannian geometry-based/Carleman-type
estimate approach for the ‘wave’ as in [13,27–32].

Stabilization: The present paper’s main contribution is a uniform stabilization result for the SMGT
equation with Neumann boundary dissipation, in the case where γ ∈ L∞(�) and γ (x) � 0 a.e. in
�, under ‘minimal’ checkable geometric conditions imposed only on the uncontrolled part of the
boundary �1. In doing so, our contribution extends [33]. Reduction of geometrical conditions only
in the part�1 of the boundary introduces additional challenges to include Lemma 8.3 and the proof of
Theorem 8.5 in Section 9. The corresponding uniform stabilization problem of the SMGT-equation
with Dirichlet boundary dissipation is far more challenging and is left to future investigations. It will
require to rely heavily in the treatment of the wave-equation with Dirichlet dissipation in [23]. In
the present paper, in addition, we present in Section 10 a strong stabilization result in the absence of
geometrical conditions.

3. Proof of theorem 2.4 (i) via a direct method: reduction to hyperbolic new-variable z

In this section, we shall pursue a different approach – from the one leading for γ = 0 fromLemma 2.2
to Theorem 2.4(ii) via Theorem 2.3 – based on the change of variable z = c2

b y + yt in (2.38). When
γ = 0, it will reproduce Lemma 2.2; that is: y ≡ w solution of the wave-problem (2.16a)–(2.16c). In
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addition, such approach will establish that 0 �= γ ∈ L∞(�) is responsible only for lower-order terms
in the analysis of the regularity of the map in (2.13), so that the regularity of {y, yt , ytt , ∂y∂ν } noted in
Theorem 2.4(i) – and re-obtained in Theorem 3.1 in the present approach – will be the same as for
γ ≡ 0.

Step 1 The coupling γ ( c
2

b )
2y = γ ( c

2

b )
2 ∫ t

0 e
− c2

b (t−τ)z(τ ) dτ between the hyperbolic z-dynamics
in (2.39a) and the ODE y-equation in (2.39b) is a mild (lower order) integral term. Thus, essentially
w.l.o.g., we may take at first

γ = 0, i.e. α = c2

b
, (3.1)

see (2.38), to simplify the computations. This will not affect the sought-after regularity of the map
in (2.13). The terms zt , z in (2.39a) that by taking γ = 0 disappear are benign terms for the argument
that follows. We refer to Appendix 1 for their full treatment for γ ∈ L∞(�). Thus, we obtain the
simplified problem (2.39a)⎧⎪⎨

⎪⎩
ztt = −bA0z + c2A0D(y|�)+ bA0D(yt|�) ∈ [D(A0)]′

yt = − c2

b
y + z

(3.2a)

(3.2b)

along with zero I.C., where now under the (essentially w.l.o.g.) assumption (3.1), the z-problem is
uncoupled; that is, explicitly, in PDE-form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ztt = b�z in Q = (0,T] ×�

z
∣∣
t=0 = 0; zt

∣∣
t=0 = 0 in�

z
∣∣



= c2

b
(y|�)+ (yt|�) in
 = (0,T] × �

(3.3a)

(3.3b)

(3.3c)

⎧⎪⎪⎨
⎪⎪⎩
yt = − c2

b
y + z, y(t) =

∫ t

0
e−

c2
b (t−τ)z(τ ) dτ in Q

y
∣∣
t=0 = 0

(3.4a)

(3.4b)

In the statement of Theorem 3.1, we deliberately list only the interior regularity of z, which is the one
needed to obtain the regularity of {y, yt , ytt , ∂∂ν |
}. The regularity of zt is given in Remark 3.1.

Theorem3.1: Consider the y-problem (2.1a)–(2.1c)with {y0, y1, y2} = 0, f = 0 and g ∈ L2(0,T; L2(�))
and γ = 0.With z = c2

b y + yt as in (2.38), consider the z-problem in PDE-form as in (3.3a)–(3.3c), or
in abstract form as in (3.2a)–(3.2b). Then, the quantity z(t), as well as the solution {y, yt , ytt , ∂∂ν |
} can
be expressed explicitly by the following representation formulas, with corresponding (optimal) regularity
results in terms of g; continuously on g:

g ∈ L2(0,T; L2(�)) =⇒ z(t) = c2

b
A
∫ t

0
S(t − τ)Dg(τ ) dτ + A

∫ t

0
C(t − τ)Dg(τ ) dτ (3.5a)

= c2

b
w(t)+ wt(t) ∈ C([0,T]; [D(A1/2)]′) (3.5b)

hence (as in Theorems 2.3 and 2.4):

g ∈ L2(0,T; L2(�)) =⇒ y(t) = w(t) = A
∫ t

0
S(t − τ)Dg(τ ) dτ ∈ C([0,T]; L2(�)) (3.6)



APPLICABLE ANALYSIS 1745

yt(t) = wt(t) = A
∫ t

0
C(t − τ)Dg(τ ) dτ ∈ C([0,T]; [D(A1/2)]′) (3.7)

ytt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt = b�w ∈ C([0,T];H−2(�)),

ADg(t)−A2
∫ t

0
C(t − τ)Dg(τ ) dτ ∈ L2(0,T; [D(A3/4+ε)]′)+C([0,T]; [D(A)]′)

(−A)
[
A
∫ t

0
S(t − τ)Dg(τ ) dτ − Dg(t)

]
∈ L2(0,T; [D(A)]′)

b�
[
w − Dg

] = b�w

(3.8a)

(3.8b)

(3.8c)

(3.8d)

continuously. In addition, we have, still continuously (from (3.8c))

g ∈ C([0,T]; L2(�)) → ytt ∈ C([0,T]; [D(A)]′). (3.9)

3.1. Proof of Theorem 3.1

Step 1. As reported in Theorem 2.3 after [18],[13–16, p.172] – and used aready in (2.21) and (2.22)
for the w-problem – the representation formulae for the solution of the Dirichlet-boundary prob-
lem (3.3a)–(3.3c), or its abstract version (3.2a) are given by (S(0) = 0)

z(t) = A
∫ t

0
S(t − τ)D

(
c2

b
y(τ )

∣∣
�

)
dτ + A

∫ t

0
S(t − τ)D

(
yt(τ )

∣∣
�

)
dτ (3.10a)

= z(1)(t)+ z(2)(t) (3.10b)

Integrating by parts (S(0) = 0) on z(2)(t) in (3.10a), we obtain

z(2)(t) = A
∫ t

0
S(t − τ)D

(
yt(τ )

∣∣
�

)
dτ

=
[
AS(t − τ)D

(
y(τ )

∣∣
�

) ]τ=t

τ=0
+ A

∫ t

0
C(t − τ)D

(
y(τ )

∣∣
�

)
dτ (3.11a)

=
���������
AS(0)D (

y(t)
∣∣
�

) − AS(t)D (
y(0)

∣∣
�

) + A
∫ t

0
C(t − τ)D

(
y(τ )

∣∣
�

)
dτ . (3.11b)

At this point, we notice that since the component y of the solution of (2.1a) was taken to be smooth,
then compatibility conditions apply and yield

y(0)
∣∣
�

= y0
∣∣
�

= 0 (3.12)

as y0 = 0 throughout. Then, by (3.12) used in (3.11b) we see that the second term in (3.11b) also
vanishes and thus we obtain

z(2)(t) = A
∫ t

0
C(t − τ)D(y(τ )|�) dτ . (3.13)

Thus, combining (3.13) in (3.10a), we obtain

z(t) = c2

b
A
∫ t

0
S(t − τ)D

(
y(τ )

∣∣
�

)
dτ + A

∫ t

0
C(t − τ)D

(
y(τ )

∣∣
�

)
dτ (3.14)
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originally for smooth trace y(·)|� . Extending the integral term, by closedness and density, we finally
obtain

g ∈ L2(0,T; L2(�)) =⇒ z(t) = c2

b
A
∫ t

0
S(t − τ)Dg(τ ) dτ + A

∫ t

0
C(t − τ)Dg(τ ) dτ (3.15a)

= c2

b
w(t)+ wt(t) ∈ C([0,T];H−1(�) ≡ [D(A1/2)]′) (3.15b)

recallingw in (2.21) andwt in (2.22) of thew-problem (2.16a)–(2.16c). Then (3.5) is established. Next
recall that z = c2

b y + yt from (2.38) and compare with (2.38). By subtraction we find

(y − w)t = − c2

b
(y − w), (y − w)(0) = 0, (3.16)

and since y(0) = w(0) = 0, (3.16) implies

y(t) = w(t) = A
∫ t

0
S(t − τ)Dg(τ ) dτ ∈ C([0,T]; L2(�)) (3.17)

and (3.6) is established. Then (3.7)–(3.9) follow at once. Theorem 3.1 is proved.

Remark 3.1: From (3.15) we obtain

g ∈ L2(0,T; L2(�)) =⇒ zt(t) = c2

b
wt + wtt(t) (3.18)

with regularity and representation formula of wt given by (2.22) and regularity and representa-
tion formula of wtt given by (2.23a), (2.23b) or (2.23c). Statement (3.18) is not needed to obtain
results (3.6)–(3.9) on the y-problem.

4. Second proof of Theorem 2.4 (interior regularity) by duality via the
non-homogenous Dirichlet problem (2.1a)–(2.1c)

It was pointed out in [7, Section 6] that the dual problemof the boundary non-homogeneousDirichlet
problem (2.1a)–(2.1c) is actually the problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vttt − αvtt + c2�v − b�vt = f in Q (4.1a)

v
∣∣
t=T = v0; vt

∣∣
t=T = v1; vtt

∣∣
t=T = v2 in� (4.1b)

v
∣∣



= 0 in
 (4.1c)

abstractly vttt − αvtt − c2Av + bAvt = 0 (4.2)

along with I.C. at t = T. For future use we report the following results from [7, Section 6]. For the
first, refer also to Theorem 2.1.

Theorem 4.1: With reference to problem (4.1a)–(4.1c) we have

f ∈ L1(0,T;H), {v0, v1, v2} ∈ U3 ≡ D(A)× D(A 1
2 )× H =⇒ {v, vt , vtt} ∈ C([0,T];U3) (4.3)

and with f = 0, the solution is a s.c. group on U3.
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Theorem 4.2: With reference to the v-problem (4.1a)–(4.1c), abstractly (4.2), we have with U3 =
D(A)× D(A1/2)× H∫ T

0

∫
�

(
∂vt
∂ν

)2
d
 = OT

(∥∥{v0, v1, v2}∥∥2U3
+ ‖f ‖2L1(0,T;H)

)
(4.4)

This is a sharp hidden regularity result, in the style of [13,14] with respect to the interior regularity
result of vt in (4.3) (a ‘gain’ of 1/2 derivative in the space variable). Next, by duality on the trace result
in Theorem 4.2 for the v-problem (4.1a)–(4.1c), we shall re-obtain the basic interior regularity result
of Theorem 2.4 for {y, yt , ytt}. While the proof of Theorem 2.4 in Section 3 was ‘direct’, the proof of
Theorem 4.3 below is ‘by duality’, in the style of [13].

Theorem 4.3: With reference to the Dirichlet problem (2.1a)–(2.1c), we have continuously

g ∈ L2(0,T; L2(�)) =⇒ {
y, yt , ytt

} ∈ C([0,T];H × [D(A 1
2 )]′)× L2(0,T; [D(A)]′) (4.5a)

g ∈ C([0,T]; L2(�)) =⇒ ytt ∈ C([0,T]; [D(A)]′). (4.5b)

This is a counterpart of [7, Theorem 6.4]

Proof of Theorem 4.3: Step 1 �

Lemma 4.4: Under the appropriate regularity assumptions on the data: {y0, y1, y2}, g, and {v0, v1, v2},
f – to be made explicit in (4.7) below – the following identity holds true, where 〈, 〉� denotes the duality
pairing with respect to H = L2(�):〈

ytt(T)+ αyt(T), v(T)
〉
�

− 〈
yt(T)+ αy(T), vt(T)

〉
�

+ 〈
y(T), vtt(T)

〉
�

+ 〈
y0,−vtt(0)+ αvt(0)

〉
�

+ 〈
y1, vt(0)− αv(0)

〉
�

− 〈
y2, v(0)

〉
�

− b〈�y(T), v(T)〉� + b〈�y0, v(0)〉�

− 〈y, f 〉L2(Q) − b
〈
g,
∂vt
∂ν L2(
)

〉
+ c2

〈
g,
∂v
∂ν

〉
L2(
)

= 0. (4.6)

This is a variation of [7, Appendix B, (B.3)] in that the term 4© in [7, Appendix B, (B.9)] is now
first integrated in time before applying Green second theorem.

Step 2 (analysis of y) With reference to the y-problem (2.1a)–(2.1c) and the v-problem
(4.1a)–(4.1c), we now take{

f ∈ L1(0,T; L2(�)), v(T) = vt(T) = vtt(T) = 0
g ∈ L2(0,T; L2(�)), y0 = y1 = y2 = 0.

(4.7)

Then the duality indentity (4.6) specializes to∫ T

0

∫
�

yf dQ = −b
〈
g,
∂vt
∂ν

〉
L2(
)

+ c2
〈
g,
∂v
∂ν

〉
L2(
)

(4.8a)

= O (‖{g, f }‖L2(0,T;L2(�))×L1(0,T;L2(�))
)

(4.8b)

recalling ∂v
∂ν

∈ C([0,T];H1/2(�)) by (4.3) and trace theory and critically ∂vt
∂ν

∈ L2(0,T; L2(�))
by (4.4). Hence estimate (4.8b) for all f ∈ L1(0,T; L2(�)) implies y ∈ L∞(0,T; L2(�), and hence

y ∈ C([0,T]; L2(�)) continuous w.r.t g ∈ L2(0,T; L2(�)) (4.9)

by extension by density.
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Step 3 (analysis of yt)We now take

{
f ≡ 0, v(T) = 0; vt(T) ∈ D(A1/2), vtt(T) = 0
g ∈ L2(0,T; L2(�)), y0 = y1 = y2 = 0.

(4.10)

Then the duality indentity (4.6) specializes to

〈yt(T), vt(T)〉� = −α〈y(T), vt(T)〉� − b
〈
g,
∂vt
∂ν

〉
L2(
)

+ c2
〈
g,
∂v
∂ν

〉
L2(
)

(4.11a)

= O (‖{g, vt(T)}‖L2(0,T;L2(�))×D(A1/2)

)
(4.11b)

since y(T) ∈ L2(�) by (4.9) in Step 2, and again using critically (4.4). Hence estimate (4.11b) for all
datum vt(T) ∈ D(A1/2) implies

yt(T) ∈ [D(A1/2)]′, or yt(t) ∈ [D(A1/2)]′ 0 � t � T (4.12a)

by having T as a general point, hence

yt ∈ C([0,T]; [D(A1/2)]′ continuous w.r.t g ∈ L2(0,T; L2(�)). (4.12b)

Step 4 (analysis of ytt)We now take

{
f ≡ 0, v(T) ∈ D(A), vt(T) = vtt(T) = 0
g ∈ L2(0,T; L2(�)), y0 = y1 = y2 = 0.

(4.13)

Then the duality indentity (4.6) specializes to

〈ytt(T)− b�y(T), v(T)〉� = −α〈yt(T), v(T)〉� + b
〈
g,
∂vt
∂ν

〉
L2(
)

− c2
〈
g,
∂v
∂ν

〉
L2(
)

(4.14a)

= O (‖{g, v(T)}‖L2(0,T;L2(�))×D(A)
)

(4.14b)

since yt(T) ∈ [D(A1/2)]′ by (4.12a) in Step 3. Hence estimate (4.14b) for all datum v(T) ∈ D(A), so
that v(T)|� = 0 by (2.2) implies

[ytt(T)− b�y(T)] ∈ [D(A)]′, or [ytt − b�y] ∈ C([0,T]; [D(A)]′) (4.15)

since T in the LHS of (4.15) is arbitrary. Moreover, by Green’s Theorem

〈�y(T), v(T)〉� = 〈y(T),�v(T)〉� +
��������〈
∂y(T)
∂ν

, v(T)
〉
�

−
〈
y(T),

∂v(T)
∂ν

〉
�

(4.16)

where recalling y(T) ∈ L2(�) by (4.9),�v(T) ∈ L2(�) as v(T) ∈ D(A) ∈ H2(�), we have a.e. in t in
[0,T]:

〈�y(t), v(t)〉� = −
〈
y(t),

∂v(t)
∂ν

〉
�

+ O (‖{g, v}‖L2(0,T;L2(�))×L2(0,T;D(A))
)

= O (‖{g, v}‖L2(0,T;L2(�))×L2(0,T;D(A))
)

(4.17)



APPLICABLE ANALYSIS 1749

taking the datum v ∈ L2(0,T;D(A)) so that ∂v
∂ν

|� ∈ L2(0,T;H1/2(�)) and the boundary term with
y|� = g in (4.17) is well-defined. Using (4.17) in (4.14b) (for a general t, 0 � t � T) we obtain

∫ T

0
〈ytt(t), v(t)〉� dt = OT

(‖{g, v}‖L2(0,T;L2(�))×L2(0,T;D(A))
)
. (4.18)

With datum v ∈ L2(0,T;D(A)), then (4.18) implies

ytt ∈ L2(0,T; [D(A)]′ continuous w.r.t g ∈ L2(0,T; L2(�)). (4.19)

Then (4.9) for y, (4.12b) for yt and (4.19) for ytt prove Theorem 4.3, (4.5a).
PART A.2: OPTIMAL INTERIOR AND BOUNDARY REGULARITY OF THE MIXED

PROBLEMWITHNEUMANN BOUNDARY TERM IN L2(0,T; L2(�))

5. Linear third-order SMGT-equation with non-homogeneous Neumann boundary
term in L2(0, T; L2(�))

If the SMGT Equation (2.1a) is written in terms of the scalar velocity potential, where pressure= k∂t
(velocity potential), then the Neumann non-homogeneous boundary terms are appropriate.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yttt + αytt − c2�y − b�yt = 0 in Q = (0,T] ×� (5.1a)

y
∣∣
t=0 = y0 = 0; yt

∣∣
t=0 = y1 = 0; ytt

∣∣
t=0 = y2 = 0 in� (5.1b)

∂y
∂ν

∣∣∣∣



= g in
 = (0,T] × � (5.1c)

In this case, we seek to obtain optimal regularity of the map

g −→ {
y, yt , ytt , y|
 .

}
(5.2)

We proceed along the same approach as for Dirichlet boundary control.
Step 1. When γ = α − c2

b = 0, the argument in the Orientation below (2.13) yield-
ing (2.15a)–(2.15c), ultimately Lemma 2.2, does not depend on the boundary conditions. Hence we
likewise obtain that problem (5.1a)–(5.1c) can be rewritten for γ = 0 as∗⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d
dt

[
ytt − b�y

] + c2

b
[
ytt − b�y

] = 0 in Q = (0,T] ×� (5.3a)[
ytt − b�y

]
t=0 = y2 − b�y0 = 0 in� (5.3b)

∂y
∂ν

∣∣∣∣



= g in
 = (0,T] × � (5.3c)

Lemma 5.1: We have that y as a solution of problem (5.3a)–(5.3c) if and only if y = η is a solution of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηtt = b�η in Q = (0,T] ×� (5.4a)

η|t=0 = ηt|t=0 = 0 in� (5.4b)

∂η

∂ν

∣∣



= g in 
 = (0,T] × �0 (5.4c)
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Thus, in this canonical case γ = 0, the regularity of the map (5.2) coincides with the regularity of
the well-known map g → {η, ηt , ηtt , η|
} for which we quote [15, Vol II, Sect 8], [25,34,35]. To this
end we introduce the parameter α̂:

α̂ = 2
3
for a general sufficiently smooth domain� ⊂ R

d, d � 2. (5.5a)

α̂ = 3
4
for a parallelepiped in R

d, d � 2. (5.5b)

Moreover, we introduce the operators (not to be confused with those in Part A.1)

(i)

A0f = −�f , D(A0) =
{
h ∈ H2(�);

∂h
∂ν

∣∣∣∣
�

= 0
}

i.e. A = bA0 (5.6)

A0,A are strictly positive self-adjoint operators onH = L2(�)/R, so that the fractional powers
Aθ , 0 < θ < 1, are well-defined on H.

(ii) The Neumann map

Ng = ϕ ⇐⇒
{
�ϕ = 0 in�,

∂ϕ

∂ν

∣∣∣∣
�

= g
}
. (5.7a)

N : L2(�) → H3/2(�) ⊂ H
3
2−2ε(�) = D(A 3

4−ε), or A
3
4−εN ∈ L (

L2(�); L2(�)
)

(5.7b)

by elliptic theory [16–18], Moreover,

N∗Af = bN∗A0f = −bf |
 f ∈ D(A). (5.8)

(iii) Let (in this section) C(t) be the s.c. cosine operator generated by the operator A = b� (+BC)
with corresponding sine operator S(t).

Theorem 5.2 ([13, p. 172],[14,16]): With reference to the η-problem (5.4a)–(5.4c) we have, continu-
ously

g ∈ L2(0,T; L2(�)) →

η(t) = A
∫ t

0
S(t − τ)Ng(τ ) dτ ∈ C([0,T];Hα̂(�) ≡ D(Aα̂/2)) (5.9)

ηt(t) = A
∫ t

0
C(t − τ)Ng(τ ) dτ ∈ C([0,T];Hα̂−1(�) ≡ [D(A(1−α̂)/2)]′) (5.10)

ηtt = b�η ∈ C([0,T];Hα̂−2(�)), (5.11)

as it follows from (5.9). Additional version may be obtained by differentiating (5.10):

ηtt(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−A)
[
A
∫ t

0
S(t − τ)Ng(τ ) dτ − Ng(t)

]
∈ L2(0,T; [D(A1−α̂/2)]′)

− A2
∫ t

0
S(t − τ)Ng(τ ) dτ + ANg(t)

∈ C([0,T]; [D(A1−α̂/2)]′)+ L2(0,T; [D(A1/4+ε)]′)

(5.12a)

(5.12b)

η|
 = 1
b
N∗Aη = 1

b
N∗AA

∫ t

0
S(t − τ)Ng(τ ) dτ ∈ H2α̂−1(
), (5.13)
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Moreover, from (5.12a)

g ∈ C([0,T]; L2(�)) → ηtt ∈ C([0,T]; [D(A1−α̂/2)]′) (5.14)

Remark 5.1: We recover (5.11) from (5.12a) as follows

(−A)
[
A
∫ t

0
S(t − τ)Ng(τ ) dτ − Ng(t)

]
= b�

[
η − Ng(t)

] = b�η (5.15)

Our main result of Section 5 is

Theorem 5.3: (i) With reference to problem (5.1a)–(5.1c) and γ ∈ L∞(�) we have the following
optimal interior and boundary regularity results:

g ∈ L2(0,T; L2(�)) =⇒
⎧⎨
⎩

y ∈ C([0,T];Hα̂(�) ≡ D(Aα̂/2))
yt ∈ C([0,T];Hα̂−1(�) ≡ [D(A(1−α̂)/2)]′),

(5.16)

(5.17)

ytt ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C([0,T];Hα̂−2(�))

L2(0,T; [D(A1−α̂/2)]′),

C([0,T]; [D(A1−α̂/2)]′)+ L2(0,T; [D(A1/4+ε)]′)

(5.18a)

(5.18b)

(5.18c)

as well as the following boundary trace result:

=⇒ y
∣∣



∈ H2α̂−1(
). (5.19)

Moreover, still continuously

g ∈ C([0,T]; L2(�)) =⇒ ytt ∈ C([0,T]; [D(A1−α̂/2)]′), (5.20)

all the maps being continuous.
(ii) Let now γ = 0. Then, by Lemma 5.1 y = η is a solution of the problem (5.4a)–(5.4c) with

corresponding representation formulas.

PART B: Boundary uniform stabilization with neumann dissipative feedback. Main results

6. The case: γ ∈ L∞(�), γ (x) � 0 a.e. on�

As in [23], � is an open bounded domain in R3 with sufficiently smooth boundary � = �0 ∪ �1,
�i relatively open, �0 �= ∅, �1 �= ∅, �0 ∩ �1 = ∅. For the case �0 = ∅ we refer to [36] for needed
technical changes in the absence of the Poincaré’s inequality. We consider the SMGT equation with
Neumann dissipation on the boundary:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yttt + α(x)ytt − c2�y − b�yt = 0 in Q = (0,T] ×� (6.1a)

y
∣∣
t=0 = y0 ∈ D(A1/2

N ); yt
∣∣
t=0 = y1 ∈ D(A1/2

N ); ytt
∣∣
t=0 = y2 ∈ L2(�) in� (6.1b)[

∂y
∂ν

+ yt
]

1

= 0 in
1 = (0,T] × �1; y
∣∣

0

= 0 in
0 = (0,T] × �0. (6.1c)

where we introduce the positive (�0 �= ∅) self-adjoint operator

ANf = −�f , D(AN) =
{
f ∈ H2(�) : f |�0 = 0,

∂f
∂ν

∣∣∣∣
�1

= 0

}
(6.2a)
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D(A1/2
N ) ≡ H1

�0
(�) = {f ∈ H1(�), f |�0 = 0}. (6.2b)

Morever, we assume that the coefficient α(x) > 0 in L∞(�) and positive a.e. in� so that

γ (x) = α(x)− c2

b
∈ L∞(�) and γ (x) � 0 a.e. on�, (6.3)

whereby γ (x) can vanish on subsets of�, even of positivemeasure. The important special case γ (x) ≡
0 will be noted in case Appendix 2. For problem (6.1a)–(6.1c) we shall establish the following results:

Theorem 6.1: Consider the Neumann boundary problem (6.1a)–(6.1c). Then:

(a) (well-posedness) With γ (x) ∈ L∞(�) ( not necesseraly nonnegative ), the map {y0, y1, y2} →
{y(t), yt(t), ytt(t)} defines a s.c. semigroup eGN,Ft in the space

U1 ≡ D(A1/2
N )× D(A1/2

N )× H = H1
�0
(�)× H1

�0
(�)× L2(�). (6.4)

(b) (Strong Stabilization) Assume (6.3). For any {y0, y1, y2} ∈ U1 we have

⎡
⎣ y(t)
yt(t)
ytt(t)

⎤
⎦ = eGN,Ft

⎡
⎣y0y1
y2

⎤
⎦ → 0 as t → +∞ in U1. (6.5)

(c) (Uniform Stabilization) Assume (6.3). Moreover, with �0 �= ∅, assume the following geometrical
condition on the triple {�,�0,�1}: there exists a coercive vector field h(x) = [h1(x), . . . , hd(x)] ∈
C2(�) such that
(iii)1 h · ν � 0 on �0, ν = unit outward normal
(iii)2 for some constant ρ > 0 and all vector u(x) ∈ [L2(�)]d, we have

∫
�

H(x)u(x) · u(x) d� � ρ

∫
�

|u(x)|2 d�, H(x) =

⎡
⎢⎢⎢⎢⎣

∂h1
∂x1

· · · ∂h1
∂xd

:
. . . :

∂hd
∂x1

· · · ∂hd
∂xd

⎤
⎥⎥⎥⎥⎦ . (6.6)

Then there exist a constant δ > 0 and a constant C = Cδ � 1, such that the semigroup solution
of part (a) satisfies

∥∥∥∥∥∥
⎡
⎣ y(t)
yt(t)
ytt(t)

⎤
⎦
∥∥∥∥∥∥
U1

=
∥∥∥∥∥∥eGN,Ft

⎡
⎣y0y1
y2

⎤
⎦
∥∥∥∥∥∥
U1

� Ce−δt
∥∥∥∥∥∥
⎡
⎣y0y1
y2

⎤
⎦
∥∥∥∥∥∥
U1

, t � 0. (6.7)

Thus, the geometrical assumption is made only on the non-controlled part �0 of the boundary, a
contribution of [23] over prior literature.
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7. Proof of wellposedness, Theorem 6.1 (a), γ ∈ L∞(�)

Step 1 As in [6], introduce the new variable

z = c2

b
y + yt ; y(t) = e−

c2
b ty0 +

∫ t

0
e−

c2
b (t−τ)z(τ ) dτ . (7.1)

As shown in [6, Model #2] and [33] regarding the boundary conditions, we then obtain a new
dissipative problem for the wave equation in z, coupled with the ODE (7.1) in y:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt = b�z − γ (x)ytt = b�z − γ (x)
(
zt − c2

b
z + c4

b2
y
)

in Q = (0,T] ×� (7.2a)

z
∣∣
t=0 = c2

b
y0 + y1 ≡ z0 ∈ D(A1/2

N ); zt
∣∣
t=0 = c2

b
y1 + y2 ≡ z1 ∈ L2(�) in� (7.2b)

yt = − c2

b
y + z in Q = (0,T] ×� (7.2c)[

∂z
∂ν

+ zt
]

1

= 0 in
1 = (0,T] × �1; z
∣∣

0

= 0 in
0 = (0,T] × �0 (7.2d)

Remark 7.1 ([33]): Under the change of variables (7.1), then the y-problem (6.1a)–(6.1c) produces
the z-problem (7.2a)–(7.2d). The converse likewise holds true if we assume, in addition, ∂νy(0)+
yt(0) = 0 on �1 and y(0) = 0 on �0.

Step 2We rewrite problem (7.2a)–(7.2d) as a first-order coupled system

d
dt

⎡
⎣ z
zt
y

⎤
⎦ =

⎡
⎢⎢⎢⎣

0 I 0

b�+ γ (x)
c2

b
I −γ (x)I −γ (x) c

4

b2
I

I 0 − c2

b
I

⎤
⎥⎥⎥⎦

⎡
⎣ z
zt
y

⎤
⎦ = AN,F

⎡
⎣ z
zt
y

⎤
⎦ (7.3)

where we have introduced the operator

AN,F =

⎡
⎢⎢⎣

0 I 0
b� −I 0

0 0 − c2

b
I

⎤
⎥⎥⎦ +

⎡
⎢⎣

0 0 0

γ (x)
c2

b
I (1 − γ (x))I −γ (x) c

4

b2
I

I 0 0

⎤
⎥⎦ = AN,d + P (7.4a)

D(AN,F) =
{
[h1, h2, h3] : h2, h3 ∈ D(A1/2

N );�h1 ∈ L2(�);
[
∂h1
∂ν

+ h2
]
�1

= 0, h1|�0 = 0

}
(7.4b)

on the space

H1 = D(A1/2
N )× L2(�)× D(A1/2

N ) ≡ Hz × D(A1/2
N ), Hz = D(A1/2

N )× L2(�) (7.5)

for the triple {z, zt , y}. Set

WN ≡
[
0 I
b� −I

]
: Hz ⊃ D(WN) → Hz (7.6a)

D(WN) =
{
[w1,w2] ∈ Hz : �w1 ∈ L2(�),w2 ∈ D(A1/2

N )

[
∂w1

∂ν
+ w2

]
�1

= 0,w1
∣∣
�0

= 0

}
.

(7.6b)
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Proposition 7.1: (i) The operatorWN generates a s.c., uniformly stable group eWNt on the spaceHz
in (7.5).

(ii) The operator AN,d (d = damped) in (7.4a) generates a s.c., uniformly stable semigroup eAN,dt on
the spaceH1 in (7.5).

(iii) The operatorAN,F generates a s.c. semigroup eAN,F on the spaceH1 in (7.5).

Proof: Part (i) is well-known and leads to part (ii) since the term a33 = − c2
b I is bounded onD(A

1/2
N ).

Then, part (iii) follows since the terms a21 = γ (x) c
2

b I and a23 = −γ (x) c4b2 I in P are compact terms
while the term a22 = (1 − γ (x))I is bounded, as γ ∈ L∞(�). �

Corollary 7.2: The wellposedness result of Theorem 6.1(a) holds true. More precisely, with reference to
AN,F in Proposition 7.1 (iii), we have:⎡

⎣ y(t)
yt(t)
ytt(t)

⎤
⎦ = eGN,Ft

⎡
⎣y0y1
y2

⎤
⎦ = MeAN,FtM−1

⎡
⎣y0y1
y2

⎤
⎦ (7.7)

with eGN,Ft = MeAN,FtM−1 a s.c. semigroup on U1 ≡ D(A1/2)× D(A1/2
N )× L2(�), with generator

GN,F = MAN,FM−1. Here, ⎡
⎣ y
yt
ytt

⎤
⎦ = M

⎡
⎣ z
zt
y

⎤
⎦ M =

⎡
⎢⎣

0 0 1
1 0 − c2

b
− c2

b 1 c4
b2

⎤
⎥⎦ (7.8)

as well as ⎡
⎣ z
zt
y

⎤
⎦ = M−1

⎡
⎣ y
yt
ytt

⎤
⎦ M =

⎡
⎢⎣

c2
b 1 0
0 c2

b 1
1 0 0

⎤
⎥⎦ (7.9)

M : boundedH1 ≡ D(A1/2
N )× L2(�)× D(A1/2

N ) → U1 ≡ D(A1/2)× D(A1/2
N )× L2(�) (7.10a)

M−1 : bounded U1 → H1 (7.10b)

so that M is a homeomorphism between the spaces H1 and U1. Thus, eGN,Ft is strongly stable (resp.
uniformly stable) on U1 if and only if eAN,Ft is strongly stable (resp. uniformly stable) onH1.

8. Proof of uniform stabilization of theorem (6.1)(c) (γ (x) � 0)

It is based, as usual, on establishing two basic properties: (i) the energy dissipation identity of
Lemma 8.1 in Step 1; (ii) the property that the ‘energy’ is dominated by the ‘the dissipation’ in
Theorem 8.6 below, Step 5.

Step 1 (energy dissipation identity)We return to the z-component of system (7.2a)–(7.2d)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt = b�z − γ (x)ytt = b�z − γ (x)
(
zt − c2

b
z + c4

b2
y
)

in Q = (0,T] ×� (8.1a)

z
∣∣
t=0 = c2

b
y0 + y1 ≡ z0 ∈ D(A1/2

N ); zt
∣∣
t=0 = c2

b
y1 + y2 ≡ z1 ∈ L2(�) in� (8.1b)[

∂z
∂ν

+ zt
]

1

= 0 in
1 = (0,T] × �1; z
∣∣

0

= 0 in
0 = (0,T] × �0 (8.1c)

Define the following ‘energies’

Ez(t) =
∫
�

[|∇z(t)|2 + z2t (t)
]
d�; Eγ (t) = Ez(t)+ c2

b

∫
�

γ y2t (t) d�. (8.2)
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Lemma8.1: Let {y, yt , ytt} be a solution of problem (6.1a)–(6.1c) as asserted by Theorem 6.1(a), so {z =
c2
b y + yt , zt = c2

b yt + ytt} is a solution of problem (8.1a)–(8.1c). Then the following energy dissipation
identity holds true:

Eγ (t)+ 2
∫ t

s

∫
�1

z2t d
1 + 2
∫ t

s

∫
�

γ y2tt dQ = Eγ (s), 0 � s � t. (8.3)

Proof: Multiply Equation (8.1a) by zt and integrate to obtain, as usual [23, Remark 7.1, p 218], using
the B.C. (8.1c)

Ez(t)− Ez(s) = 2
∫ t

s

∫
�1

∂z
∂ν

zt d
1 − 2
∫ t

s

∫
�

γ yttzt dQ (8.4)

where by (7.1)

2
∫
�

γ

∫ t

s
yttzt dt d� =

∫
�

γ

∫ t

s
2ytt

(
c2

b
yt + ytt

)
dt d�

= c2

b

[∫
�

γ y2t d�
]∣∣∣∣

t

s
+ 2

∫
Q
γ y2tt dQ. (8.5)

Substituting (8.5) into (8.4), where ∂z
∂ν

= −zt on �1 by (8.1c) yields (8.3). �

From the dissipation identity (8.3) one obtains that the Energy Eγ (t) is decreasing as t → +∞, a
property to be repeatedly invoked below e.g. in (8.6b).

Step 2:We let ∇tan to be the tangential gradient.

Theorem 8.2: In the notation of Lemma 8.1, the following inequalities hold:

(i)
∫ T

0
Eγ (t) dt

� C
{∫

Q
γ y2tt dQ +

∫

1

[
z2 + z2t + |∇tanz|2

]
d
1 +

∫ T

0

∫
�

z2 dQ + Eγ (T)+ Eγ (0)
}
(8.6a)

for a constant C> 0 independent of T.
(ii) In fact, Eγ (0) on the RHS of (8.6a) can be eliminated by using identity (8.3) with s = 0, t = T,

thus obtaining

TEγ (T) �
∫ T

0
Eγ (t) dt � 3C

{∫
Q
γ y2tt dQ +

∫

1

[
z2 + z2t + |∇tanz|2

]
d
1

+
∫ T

0

∫
�

z2 dQ
}

+ 2CEγ (T). (8.6b)

(iii) Let T> 2C, then

Eγ (T) � 3C
T − 2C

{∫ T

0

∫
�1

[
z2 + z2t + |∇tanz|2

]
d
1 +

∫ T

0

∫
�

γ y2tt dQ +
∫ T

0

∫
�

z2 dQ
}
.

(8.7)
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(iv) Let T> 2C, then∫ T

0
Eγ (t) dt � 3C

(
1 + 1

T − 2C

){∫ T

0

∫
�

γ y2tt dQ +
∫

1

[
z2 + z2t + |∇tanz|2

]
d
1

+
∫ T

0

∫
�

z2 dQ
}
. (8.8)

Proof of Theorem 8.2: The key estimate (8.6a) will be established below. Once (8.6a) is proved, then
inequality (8.6b) in (ii) follows at once after substitutingEγ (0) in (8.3) in the RHS of (8.6a). The LHS
inequality in (8.6b) is obtained by recalling that Eγ (t) is decreasing as t → +∞ from Lemma 8.1. In
turn, estimate (8.6b) readily implies estimate (8.7) in (iii).

Finally, inequality (8.8) in (iv) follows from substituting estimate (8.7) for Eγ (t) on the RHS of
estimate (8.6b). Thus, we need to establish the RHS of inequality (8.6a).

We return to Equation (7.2a) and use the two classical multipliers h · ∇z and zdivh in [13,36]. We
obtain the following by now classical identity (with no use of B.C.): sum up the two identities in [36,
Eq (2.18) p. 255] for h · ∇z and in [36, Eq (2.19), p.255] for zdivh, and in addition we now need to
account for the new terms − ∫

Q γ ytth · ∇z dQ and − ∫
Q γ yttzdivh dQ, due to the RHS of (8.1a). The

result is the following identity∫



∂z
∂ν
(h · ∇z) d
 + 1

2

∫



z2t h · ν d
 − 1
2

∫



|∇z|2h · ν d
 + 1
2

∫



∂z
∂ν

zdivh d


=
∫
Q
H∇z · ∇z dQ − 1

2

∫
Q
z∇(divh) · ∇z dQ + β0T +

∫
Q
γ ytth · ∇z dQ + 1

2

∫
Q
γ yttzdivh dQ,

(8.9)

β0T =
[
(zt , h · ∇z)+ 1

2
(zt , zdivh)

]∣∣∣∣
T

0
. (8.10)

Identity (8.9) does not take into account the B.C. (7.2c). Next, we split� = �1 ∪ �0.We use z|�0 = 0,
hence h · ∇z = ∂z

∂ν
h · ν in 
0 and |∇z|2 = ( ∂z

∂ν
)2 in 
0; [14, (2.21b), p. 253]; while |∇z|2 = ( ∂z

∂ν
)2 +

|∇tanz|2 on
1. As to the boundary terms in the LHS of identity (8.9), we obtain:

C̃h

∫

1

[
z2 + z2t + |∇tanz|2

]
d
1

� Ch

{∫

0

(
∂z
∂ν

)2
h · ν d
0 +

∫

1

[(
∂z
∂ν

)2
+ z2 + z2t + |∇tanz|2

]
d
1

}
� LHS of (8.9)

(8.11)

recalling the assumption h · ν � 0 on �0 and ∂z
∂ν

= −zt in 
1. As to the interior terms on the RHS
of (8.9) we obtain

β0T � −Ch [Ez(T)+ Ez(0)] (8.12)

by virtue of Poincaré inequality via z|
0 = 0, with �0 �= ∅ as assumed. Moreover, by the geometrical
assumption, see (6.6), we have using γ 1/2 ∈ L∞(�) :

RHS of (8.9) � ρ

∫ T

0

∫
�

|∇z|2 d�− ε

∫ T

0

∫
�

|∇z|2 d�− Ch

ε

∫
Q
z2 dQ − Ch,γ

ε

∫
Q
γ y2tt dQ

− ε

∫ T

0

∫
�

|∇z|2 d�− Ch[Ez(T)+ Ez(0)] − ch
∫
Q
z2 dQ
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� ρ − 2ε
2

∫ T

0

∫
�

|∇z|2 d�+ ρ − 2ε
2

∫ T

0

∫
�

|∇z|2 d�

− Ch,γ

ε

∫
Q
γ y2tt dQ − C̃h[Ez(T)+ Ez(0)] − chε

∫
Q
z2 dQ. (8.13)

Combining (8.11) with (8.13), LHS of (8.9) ≥ RHS of (8.9), we obtain

Ch

ε

∫
Q
γ y2tt dQ + C̃h

∫

1

[
z2 + z2t + |∇tanz|2

]
d
1 + ch,ε

∫
Q
z2 dQ

� ρ − 2ε
2

∫ T

0

∫
�

|∇z|2 d�+ ρ − 2ε
2

∫ T

0

∫
�

|∇z|2 d�− C̃h[Ez(T)+ Ez(0)]. (8.14)

Next on the second term of the RHS of (8.14) we recall the identity∫ T

0

∫
�

|∇z|2 d� =
∫ T

0

∫
�

z2t d�+
∫

1

∂z
∂ν

z d
1 −
∫
Q
γ yttz dQ − [(zt , z)]

∣∣T
0 (8.15)

obtained by multiplying Equation (7.2a) this time by z (see [36, Eq (2.20), p. 255]) plus the term
− ∫

Q γ yttz dQ. Substituting (8.15) in the second term on the RHS of (8.14) and recalling that ∂z
∂ν

=
−zt in
1 by (7.2d) we obtain by use again of Poincaré inequality

Cγ ,h,ε
∫
Q
γ y2tt dQ + Ch,ε

∫

1

[
z2 + z2t + |∇tanz|2

]
d
1 + c̃

∫
Q
z2 dQ + Ch[Ez(T)+ Ez(0)]

� ρ − 2ε
2

[∫ T

0

∫
�

[|∇z|2 + z2t
]
d�−

∫
Q
γ yttz dQ

]
(8.16a)

= ρ − 2ε
2

[∫ T

0
Eγ (t) dt + (A)

]
(8.16b)

adding and subtracting ρ−2ε
2

c2
b
∫ T
0

∫
�
γ y2t dQ, where

(A) = −
[
c2

b

∫ T

0

∫
�

γ y2t d�+
∫ T

0

∫
�

γ yttz dQ
]
. (8.17)

Recalling z = c2
b y + yt we compute after integrating by parts on ytty:

−
∫ T

0

∫
�

γ yttz dQ

= −
∫
�

γ

[∫ T

0
ytt

(
c2

b
y + yt

)
dt

]
d�

= c2

b

∫
�

γ

∫ T

0
y2t dt d�− c2

b

∫
�

γ [yt(T)y(T)− yt(0)y(0)] d�+
∫
�

γ

2
[y2t (0)− y2t (T)] d�.

(8.18)

Thus, substituting (8.18) into (8.17) yields after a cancellation of the term c2
b
∫
Q γ y

2
t dQ:

(A) = − c2

b

∫
�

γ [yt(T)y(T)− yt(0)y(0)] d�+
∫
�

γ

2
[y2t (0)− y2t (T)] d�. (8.19a)

Next, recalling that y = b
c2 (z − yt) we obtain

− c2

b

∫
�

γ yt(T)y(T) d� =
∫
�

γ [y2t (T)− yt(T)z(T)] d� (8.19b)
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c2

b

∫
�

γ yt(0)y(0) d� = −
∫
�

γ [y2t (0)+ yt(0)z(0)] d�. (8.19c)

Substituting (8.19b)–(8.19c) in (8.19a) yields

(A) =
∫
�

[γ
2
y2t (T)− γ

2
y2t (0)

]
d�+

∫
�

[−γ yt(T)z(T)+ γ yt(0)z(0)] d� (8.20a)

� −k2
∫
�

[γ y2t (T)+ γ y2t (0)] d�− K2
∫
�

[|∇z(T)|2 + |∇z(0)|2] d� (8.20b)

� −(const.)2
{
Ez(T)+ c2

b

∫
�

γ y2t (T) d�+ Ez(0)+ c2

b

∫
�

γ y2t (0) d�
}

(8.20c)

where in going from (8.20a) to (8.20b) we have invoked once more the Poincaré inequality. The con-
stant K2 is such that K2 ∼ ‖γ ‖2L∞(�) and therefore the (const.)2 in (8.20c) is such that (const.)2 ∼
1 + ‖γ ‖2L∞(�). This along with the energy identity (8.2) yields:

(A) � −(const.)2 [Eγ (T)+ Eγ (0)
]
. (8.21)

Substituting inequality (8.21) in (8.16b) we at the inequality

Cγ ε
∫
Q
γ y2tt dQ + Chε

∫

1

[
z2 + z2t + |∇tanz|2

]
d
1 + c

∫ T

0

∫
�

z2 dQ

+ (const.)2
[
Eγ (T)+ Eγ (0)

]
�

∫ T

0
Eγ (t) dt. (8.22)

Then, inequality (8.22) coincides with (8.6a). Theorem 8.2 is established. �

Step 3We shall need crucially the following result from [23, Lemma 7.2]

Lemma 8.3: Let ε > 0 be arbitrarily small. Let z solve equation (7.2a). Then the following estimate
holds true:∫ T−ε

ε

∫
�1

|∇tanz|2 d
1

� CTε

{∫ T

0

∫
�1

[(
∂z
∂ν

)2
+ z2t

]
d
1 + ‖z‖2L2(0,T;H1/2+ε(�) + ‖γ ytt‖2H−1/2+ε(Q)

}
(8.23)

Remark 8.1: Estimate (8.23) for the homogeneous equation wtt = �w in Q, that is, for equation
(7.2a) with RHS f ≡ −γ ytt ≡ 0, is established by a microlocal argument in [23, Lemma 7.2]. If we
trace the proof with, this time, a RHS term f, i.e. for the equation wtt = �w + f in Q, we see that the
final estimate requires the additional term ‖f ‖2H−1/2+ε(Q). This establishes (8.23).

Step 4We continue with the proof of Theorem 6.1 (uniform stabilization).
We apply inequality (8.8) of Theorem 8.2 (iv) over the interval [ε,T − ε] rather than over the

interval [0,T], and obtain, for T large∫ T−ε

ε

Eγ (t) dt

� C
{∫ T−ε

ε

∫
�

γ y2tt d� dt +
∫ T−ε

ε

∫
�1

[
z2 + z2t + |∇tanz|2

]
d�1 dt +

∫ T−ε

ε

∫
�

z2 dQ
}

(8.24)
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� C
{∫ T

0

∫
�

γ y2tt dQ +
∫ T

0

∫
�1

[
z2 + z2t

]
d
1 + ‖z‖2L2(0,T;H1/2+ε(�))

}
. (8.25)

In passing from (8.24) to (8.25) we have invoked estimate (8.23) where, in the present setting, ∂z
∂ν

=
−zt in
1 and where theH−1/2+ε(Q)-norm of γ ytt is majorized by its L2(Q) -norm. Using thatEγ (t)
is decreasing (Lemma 8.1) in the LHS of inequality (8.25) yields the following result.

Theorem 8.4: Let {y, yt , ytt} be a solution for problem (6.1a)–(6.1c) so that {z = c2
b y + yt , zt = c2

b yt +
ytt} is a solution of problem (7.2a)–(7.2c). Then there is a positive constant CT > 0 such that

CTEγ (T)
C̃TEγ (0)

}
�

{
c2

b

∫ T

0

∫
�

γ y2tt dQ +
∫ T

0

∫
�1

z2t d
1 + ‖z‖2L2(0,T;H1/2+ε(�))

}
. (8.26)

Estimate (8.26)withEγ (T)produces the corresponding estimate (8.26)withEγ (0) (and a different
constant) by using the dissipative identity (8.3), and conversely.

Step 5We next absorb the lower-order term ‖z‖2 in L2(0,T;H1/2+ε(�)) through a compactness-
uniqueness argument, that must account for both problems: the y-problem (6.1a)–(6.1c) and the
resulting z-problem (8.1a)–(8.1c).

Theorem 8.5: With reference to the solution of problem (6.1a)–(6.1c) satisfying inequality (8.26), there
is a constant κT such that

‖z‖2L2(0,T;H1/2+ε(�)) � κT

{
c2

b

∫ T

0

∫
�

γ y2tt dQ +
∫ T

0

∫
�1

z2t d
1

}
. (8.27)

The proof is given in Section 9. Once Theorem 8.5 is established, then Theorem 8.4 is refined as
follows, to produce the critical result, anticipated at the outset, that the enerty Eγ (T) at time t = T
is dominated by the dissipation up to t = T.

Theorem 8.6: In the setting of Theorem 8.4 we have: there are positive constants CT , C̃T such that

CTEγ (T)
C̃TEγ (0)

}
� c2

b

∫ T

0

∫
�

γ y2tt dQ +
∫ T

0

∫
�1

z2t d
1. (8.28)

Estimate (8.28) with Eγ (T) produces the corresponding estimate (8.28) with Eγ (0) by using the
dissipative identity (8.3), and conversely.

Step 6 So far we have established the two critical ingredients announced at the outset: (i) the energy
dissipation identity (8.3) of Lemma 8.1; and (ii) control of the energy by the dissipation as in (8.28)
of Theorem 8.6. Using these two ingredients we obtain:

Eγ (0) = Eγ (T)+ 2
{∫ T

0

∫
�

γ y2tt dQ +
∫ T

0

∫
�1

z2t d
1

}
(8.29)

� Eγ (T)+ CTEγ (T) = (1 + CT)Eγ (T) (8.30)

or

Eγ (T) � rTEγ (0), rT = 1
1 + CT

< 1. (8.31)

Remark 8.2: If the energyEγ (t) in (8.2) were equivalent to the norm ‖eGN,Ft‖L(U1) of the semigroup
defining the solution of the Neumann-dissipative problem (6.1a)–(6.1c), then (8.31) would – as is
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well-known [37, p.178] – provide at once the sought–after exponential decay (6.7). However, the
definition (8.2) of Eγ (t) penalizes z = c2

b y + yt in D(A1/2
N ), zt = c2

b yt + ytt in L2(�) and γ 1/2yt in
L2(�), from which is not possible to unscramble y in D(A1/2

N ), the first space component of the U1-
norm in (6.4). If this were possible at this stage, we would be done, and (6.7) would follow.

Step 7 Our next step is inspired by Remark 8.2. The goal is to establish that the energy Eγ (t)
in (8.2) is norm-equivalent to a well-defined semigroup-based dynamical system in the variables
{z, zt , γ 1/2yt} on the space

H0 = D(A1/2
N )× L2(�)× L2(�) ≡ Hz × L2(�), Hz = D(A1/2

N )× L2(�) (8.32)

Specifically in line with Remark 8.2. Specially, such system will define a s.c. semigroup eLt on such
space H0 and so the energy Eγ (t) in (8.2) will be norm-equivalent to the norm ‖eLt‖L(H0) of the
s.c. semigroup eLt . Moreover, because of the critical estimate (8.31), such s.c. semigroup eLt will be
uniformly stable onH0 [37, p.178]. Such new dynamical system inspired by Remark 8.2, is provided
by a new coupled {z, y}-problem, for which we now employ [6, Model #1]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt = b�z − γ (x)ytt = b�z − γ (x)
(
zt − c2

b
yt
)

in Q = (0,T] ×� (8.33a)

z
∣∣
t=0 = c2

b
y0 + y1 ≡ z0 ∈ D(A1/2

N ); zt
∣∣
t=0 = c2

b
y1 + y2 ≡ z1 ∈ L2(�) in

�(yt)t = − c2

b
(yt)+ zt in Q = (0,T] ×� (8.33b)[

∂z
∂ν

+ zt
]

1

= 0 in
1 = (0,T] × �1; z
∣∣

0

= 0 in
0 = (0,T] × �0 (8.33c)

We rewrite it as follows

d
dt

⎡
⎣ z

zt
γ 1/2yt

⎤
⎦ =

⎡
⎢⎣

0 I 0
b� −γ (x)I −γ 1/2(x) c

2

b I
0 γ 1/2(x)I − c2

b I

⎤
⎥⎦

⎡
⎣ z

zt
γ 1/2yt

⎤
⎦ = L

⎡
⎣ z

zt
γ 1/2yt

⎤
⎦ (8.34a)

thereby introducing the operator L on the spaceH0 in (8.32) with domain

D(L) =
{
[ξ1, ξ2, ξ3] : ξ2 ∈ D(A1/2

N );�ξ1 ∈ L2(�); ξ3 ∈ L2(�);
[
∂ξ1

∂ν
+ ξ2

]
�1

= 0, ξ1|�0 = 0

}

(8.34b)
for the triple {z, zt , γ 1/2yt} with γ � 0 a.e. on �. One readly has the next result as γ ∈ L∞(�), and
the terms a22, a23 and a32 in (8.34a) are bounded on their respective component spaces.

Proposition 8.7: (i) The operator L generates a s.c. semigroup eLt on the spaceH0.
(ii) The energy Eγ (t) in (8.2) is norm-equivalent to ‖eLt‖L(H0).

By introducing suitable weights in the second and third component spaces ofH0, L can be made
maximal dissipative, see Section 10, and thus its corresponding semigroup becomes a contraction.

The next result – a corollary of Proposition 8.7 and estimate (8.31) – is critical in our concluding
analysis.
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Theorem 8.8: Assume (6.3) and the geometrical assumption leading to (6.6). The s.c. semigroup eLt on
H0 asserted by Proposition 8.7(i) is exponentially stable on H0: there exist constants δ > 0 and M =
Mδ � 1 such that

∥∥∥∥∥∥
⎡
⎣ z(t)

zt(t)
γ 1/2yt(t)

⎤
⎦
∥∥∥∥∥∥H0

=

∥∥∥∥∥∥∥∥
eLt

⎡
⎢⎢⎣
z0 = c2

b y0 + y1
z1 = c2

b y1 + y2
γ 1/2y1

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥H0

� Me−δt
∥∥∥∥∥∥
⎡
⎣ z0

z1
γ 1/2y1

⎤
⎦
∥∥∥∥∥∥H0

, t � 0. (8.35)

Proof: By estimate (8.31) and proposition 8.7(ii) we have

‖eLT‖L(H0) � rT < 1,

for some T> 0 and then result follows from [37, p.178]. �

Step 8 To conclude, as noted in Remark 8.2, we need to show the exponential decay of y in
the D(A1/2

N )-norm. To this end, we recall (7.1) and estimate with {y0, y1, y2} ∈ U1 = D(A1/2
N )×

D(A1/2
N )× L2(�) in (6.4)

A1/2
N y(t) = e−

c2
b tA1/2

N y0 +
∫ t

0
e−

c2
b (t−τ)A1/2

N z(τ ) dτ (8.36)

‖y(t)‖D(A1/2
N )

� e−αt‖y0‖D(A1/2
N )

+
∫ t

0
e−α(t−τ)‖z(τ )‖D(A1/2

N )
dτ (8.37)

and invoking (8.35) for z andH0 = D(A1/2
N )× L2(�)× L2(�) in (8.32)∫ t

0
e−

c2
b (t−τ)‖z(τ )‖D(A1/2

N )
dτ �

∫ t

0
e−

c2
b (t−τ)Me−δτ dτ‖{z0, z1, γ 1/2y1}‖D(A1/2

N )×L2(�)×L2(�)

� M‖γ 1/2‖L∞(�)

⎡
⎣e−δt − e−

c2
b t

c2
b − δ

⎤
⎦ ‖{z0, z1, y1}‖D(A1/2

N )×L2(�)×L2(�)

(8.38)

= M1,γ e
−min

{
δ, c

2
b

}
‖{y0, y1, y2}‖U1 (8.39)

with M1,γ depending on ‖γ 1/2‖L∞(�), recalling z0, z1 from (8.35) and U1 = H1
�0
(�)× H1

�0
(�)×

L2(�) from (6.4). Substituting (8.39) in (8.37) yields

‖y(t)‖D(A1/2) � M2,γ e−at‖{y0, y1, y2}‖U1 , a = min
{
c2

b
, δ

}
. (8.40)

Next, by invoking again (8.35) for z as well as (8.40) we obtain by (7.2c)

‖yt(t)‖D(A1/2) =
∥∥∥∥z(t)− c2

b
y(t)

∥∥∥∥D(A1/2)

� M3,γ e−at‖{y0, y1, y2}‖U1 (8.41)

and similarly, again by (8.35) this time on zt and now by (8.41)

‖ytt(t)‖L2(�) =
∥∥∥∥zt(t)− c2

b
yt(t)

∥∥∥∥
L2(�)

� M4,γ e−at‖{y0, y1, y2}‖U1 . (8.42)

Thus, (8.40)–(8.42) prove (6.7).
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9. Proof of Theorem 8.5: absorption of l.o.t

The absorption (8.27) of the l.o.t ‖z‖2L2(0,T;H1/2+ε(�)) is done by applying to the case at hand the
classical idea of a compactness-uniqueness proof by a contradiction argument.

Step 1 By contradiction, suppose there exists a sequence {yn, ẏn, ÿn} of solutions of problem
(6.1a)–(6.1c)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

...yn + αÿn − c2�yn − b�ẏn = 0 in Q (9.1a)

yn
∣∣
t=0 = y0n; ẏn

∣∣
t=0 = y1n; ÿn

∣∣
t=0 = y2n in� (9.1b)[

∂yn
∂ν

+ ẏn
]∣∣∣∣

1

= 0 in
1 = (0,T] × �1; yn
∣∣

0

= 0 in
0 = (0,T] × �0 (9.1c)

with related sequence {zn = c2
b yn + ẏn, żn = c2

b ẏn + ÿn} solution of the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z̈n = b�zn − γ ÿn in Q (9.2a)

zn
∣∣
t=0 = z0n = c2

b
y0n + y1n; żn

∣∣
t=0 = z1n = c2

b
y1n + y2n; in� (9.2b)[

∂zn
∂ν

+ żn
]∣∣∣∣

1

= 0 in
1 = (0,T] × �1; zn
∣∣

0

= 0 in
0 = (0,T] × �0 (9.2c)

such that

⎧⎪⎨
⎪⎩

‖zn‖L2(0,T;H1/2+ε(�)) ≡ 1 (9.3a)

c2

b

∫ T

0

∫
�

γ (ÿn)2 dQ +
∫ T

0

∫
�1

(żn)2 d
1 → 0, as n → +∞. (9.3b)

By assumption, each member of such sequence satisfies inequality (8.27) for CT > 0

CTE
n
γ (0) �

{
c2

b

∫ T

0

∫
�

γ (ÿn)2 dQ +
∫ T

0

∫
�1

(żn)2 d
1 + ‖zn‖2L2(0,T;H1/2+ε(�))

}
(9.4)

so that from (9.3a) and (9.3b) we have from (9.4) recalling Eγ (0) in (8.2)

E
n
γ (0) = Enz (0)+ c2

b

∫
�

γ (y1n)2 d� =
∫
�

[|∇z0n|2 + z21n
]
d�

+ c2

b

∫
�

γ (y1n)2 d� � Const., uniformly in n (9.5)

Thuswe can extract a subsequence {y0n, y1n, y2n} and corresponding {z0n, z1n}, still indexed by n, such
that

z0n → some ζ0, weakly in H1(�); (9.6a)

z1n → some ζ1, weakly in L2(�); (9.6b)

η1n = γ 1/2y1n → some η1, weakly in L2(�); (9.6c)
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In line with (8.34a), we consider the dynamics

d
dt

⎡
⎣ zn(t)

żn(t)
ηn(t) ≡ γ 1/2ẏn(t)

⎤
⎦ = L

⎡
⎣ zn(t)

żn(t)
ηn(t) ≡ γ 1/2ẏn(t)

⎤
⎦ (9.7a)

or by Proposition 8.7 ⎡
⎣ zn(t)

żn(t)
ηn(t) ≡ γ 1/2ẏn(t)

⎤
⎦ = eLt

⎡
⎣ z0n

z1n
η1n ≡ γ 1/2y1n

⎤
⎦ (9.7b)

as well as the corresponding dynamics originating from the limit points in (9.6a)–(9.6c)⎡
⎣ζ(t)ζ̇ (t)
η(t)

⎤
⎦ = eLt

⎡
⎣ζ0ζ1
η1

⎤
⎦ (9.8)

Thus, recalling (8.34a)

d
dt

⎡
⎣ζ(t)ζ̇ (t)
η(t)

⎤
⎦ =

⎡
⎢⎣

0 I 0
b� −γ (x)I −γ 1/2(x) c

2

b I
0 γ 1/2(x)I − c2

b I

⎤
⎥⎦

⎡
⎣ζ(t)ζ̇ (t)
η(t)

⎤
⎦ (9.10)

or explicitly⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̈ = b�ζ − γ 1/2
[
γ 1/2ζ̇ − c2

b
η

]
= b�ζ − γ 1/2η̇ in Q (9.11a)

γ 1/2ζ̇ = c2

b
η + η̇ (9.11b)[

∂ζ

∂ν
+ ζ̇

]∣∣∣∣

1

= 0 in
1 = (0,T] × �1; ζ
∣∣

0

= 0 in
0 = (0,T] × �0 (9.11c)

plus respective initial data. We claim that

{zn, żn, ηn} → eLt
⎡
⎣ζ0ζ1
η1

⎤
⎦ = {ζ , ζ̇ , η} weak-star in L∞(0,T;H1(�)× L2(�)× L2(�)) (9.12)

Step 3 To show (9.11), let f = {f1, f2, f3} ∈ L1(0,T; [H1(�)]′ × L2(�)× L2(�)). Then, by the
Lebesgue dominated convergence Theorem compute

∫ T

0

⎛
⎝
⎡
⎣zn(t)
żn(t)
ηn(t)

⎤
⎦ ,

⎡
⎣f1(t)f2(t)
f3(t)

⎤
⎦
⎞
⎠ dt =

∫ T

0

⎛
⎝eLt

⎡
⎣z0n
z1n
η1n

⎤
⎦ ,

⎡
⎣f1(t)f2(t)
f3(t)

⎤
⎦
⎞
⎠ dt =

∫ T

0

⎛
⎝
⎡
⎣z0n
z1n
η1n

⎤
⎦ , eL

#t

⎡
⎣f1(t)f2(t)
f3(t)

⎤
⎦
⎞
⎠ dt

(9.13)

→
∫ T

0

⎛
⎝
⎡
⎣ζ0ζ1
η1

⎤
⎦ , eL

#t

⎡
⎣f1(t)f2(t)
f3(t)

⎤
⎦
⎞
⎠ dt =

∫ T

0

⎛
⎝eLt

⎡
⎣ζ0ζ1
η1

⎤
⎦ ,

⎡
⎣f1(t)f2(t)
f3(t)

⎤
⎦
⎞
⎠ dt, (9.14)

recalling the weak convergence (9.6a)–(9.6c), where ( , ) denotes the duality between H1(�)×
L2(�)× L2(�) and [H1(�)]′ × L2(�)× L2(�). Then the convergence (9.12) → (9.13) proves the
weak-star convergence in (9.11).
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Step 4 It follows from the weak-star convergence results in (9.11) that there existsM independent
of n such that

‖{zn, żn}‖L∞(0,T;H1(�)×L2(�)) � M, ∀n (9.15)

Moreover, the injection

H1(�) ↪→ H1/2+ε(�) (9.16)

is compact. Thus, we are in the following situation: we have three spaces B0 ≡ H1(�), B ≡
H1/2+ε(�), B1 = L2(�) such B0 ⊂ B ⊂ B1 (with continuous inclusion) and B0 ↪→ B compact.
Further we define the space the space

W ≡ {v ∈ L2(0,T;H1(�)); v̇ ∈ L2(0,T; L2(�)} (9.17a)

equipped with the norm

‖v‖W = ‖v‖L2(0,T;H1(�)) + ‖v̇‖L2(0,T;L2(�)). (9.17b)

Then, we appeal to a well-known result [38,39] and conclude that the injection

W ↪→ L2(0,T;H1/2+ε(�)) (9.18)

is compact. Thus, in view of (9.14) and (9.17), there exists a subsequence, still indexed by n, such that

zn → ζ strongly in L2(0,T;H1/2+ε(�)) (9.19)

Moreover, returning to (9.3a) and invoking here (9.18), we obtain

‖ζ‖L2(0,T;H1/2+ε(�)) = 1. (9.20)

Step 5 Finally, our proof will be completed once we show that η and ζ satisfy the identity

c2

b

∫ T

0

∫
�

η̇2 dQ +
∫ T

0

∫
�1

(ζ̇ )2 d
1 = 0. (9.21)

In fact, (9.20) along with (9.10a)–(9.10c) imply
{
η̇ ≡ 0 in (0,T] ×�

ζ̇ ≡ 0 in
1
=⇒

⎧⎨
⎩
ζ̈ = b�ζ in Q
∂ζ
∂ν

∣∣∣

1

≡ 0, ζ
∣∣

0

≡ 0.
(9.22a)

=⇒
⎧⎨
⎩
ζ̇tt = b�ζ̇ in Q
∂ζ̇
∂ν

∣∣∣

1

≡ 0, ζ̇
∣∣



≡ 0.
(9.22b)

where (9.21b) is obtained from (9.21a) by t-differentiation and recalling again ζ̇ ≡ 0 on 
1
from (9.20). The overdetermined ζ̇ -problem implies [40, Theorem 6.1, p.75]

ζ̇ ≡ 0 in Q =⇒
⎧⎨
⎩
�ζ ≡ 0 in Q
∂ζ
∂ν

∣∣∣

1

≡ 0, ζ
∣∣

0

≡ 0.
(9.23)

using ζ̇ ≡ 0 in Q in (9.21a). Then the elliptic problem (9.22) (at each t) implies finally

ζ ≡ 0 in Q, (9.24)

which is a contradiction of (9.19) and Theorem 8.5 is proved.
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We finish the proof by establishing (9.20). To this end, recall from (9.3b) that

c2

b

∫ T

0

∫
�

γ (ÿn)2 dQ +
∫ T

0

∫
�1

(żn)2 d
1 → 0, n → ∞, (9.25)

or as ηn(t) ≡ γ 1/2ẏn(t),

c2

b

∫ T

0

∫
�

η̇2n dQ +
∫ T

0

∫
�1

(żn)2 d
1 → 0, n → ∞. (9.26)

Recall that ηn → η weak-star in L∞(0,T; L2(�)) by (9.11) and that zn → ζ strongly in
L2(0,T;H1/2+ε(�)) by (9.18), the last implying (from continuity of the trace operator) that zn|�1 →
ζ |�1 strongly in L2(0,T; L2(�1)). Moreover, (9.25) imply that, at least for n large, {η̇n, żn|�1} belongs
to a fixed finite ball in L2(0,T; L2(�)× L2(�1)) for all such n.

Then, by maybe restricting to a further subsequence we have

η̇n → η̇ weakly in L2(0,T; L2(�)) (9.27)

żn|�1 → ζ̇ |�1 weakly in L2(0,T; L2(�1)) (8.28)

In fact, if ϕ ∈ D(0,T;�) we have by definition of distributional derivative:∫
η̇nϕ dQ = −

∫
ηnϕ̇ dQ → −

∫
ηϕ̇ dQ =

∫
η̇ϕ dQ (9.29)

recalling ηn → η weak-star in L∞(0,T; L2(�)) and the uniqueness of the limits. Similarly, if ϕ ∈
D(0,T;�1) then∫

żn|�1ϕ d
1 = −
∫

zn|�1 ϕ̇ d
1 → −
∫
ζ |�1 ϕ̇ d
1 =

∫
ζ̇ ϕ d
1 (9.30)

recalling that zn|�1 → ζ |�1 strongly in L2(0,T; L2(�1)).
In our last step, we invoke the weak convergence in (9.26) and (9.27) along with the weak lower

semicontinuity of a convex functional f, in particular the norm f (x) = ‖x‖ [37, Corollary 1.8.3, p.30],
to conclude via (9.25) that

0 � c2

b

∫ T

0

∫
�

η̇2 dQ +
∫ T

0

∫
�1

(ζ̇ )2 d
1 =
∫ T

0

[
c2

b
‖η̇‖2L2(�) + ‖ζ̇‖2L2(�1)

]
dt

� lim inf
n→∞

∫ T

0

[
c2

b
‖η̇n‖2L2(�) + ‖żn‖2L2(�1)

]
dt = 0. (9.31)

Thus (9.30) establishes (9.20) and this concludes the proof of Theorem (8.5).

10. Proof of Theorem 6.1(b): strong stabilization (without geometrical conditions on
{�,�0,�1}) for, γ ∈ L∞(�), γ (x) � 0 a.e. in�

The strategy is to use the Arendt-Batty [41–43] result, the version of which presently needed is [41,
Theorem 2.3, p. 35]: Assume that {T(t), t � 0} is a bounded s.c. semigroup with generator A. If
σ(A) ∩ iR = ∅, then limt→∞ T(t)x = 0 for all x ∈ X.

Step 1 We return to problem (8.33a)–(8.33b), or (8.34a), and introduce the following operator L̂
which is the same as the operator L in (8.34a), except that the spaceH0 in (8.32) for L is replaced by
the space Ĥ0 introduced below. For it, we introduce the (benign) weight 1√

b
in its second component
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space, and the (benign) weight c
b on its third component space. The goal is to get L̂ dissipative in Ĥ0.

This space is defined by

Ĥ0 ≡ H1
�0
(�)× L2

1/
√
b
(�)× L2c/b(�). (10.1)

Here, H1
�0
(�) = {f ∈ H1(�), f |�0 = 0},�0 �= ∅, is topologized by the gradient norm (by Poincare’s

inequality). Moreover,

(u, v)L2
1/

√
b
(�) =

(
1√
b
u,

1√
b
v
)
L2(�)

, (u, v)L2c/b(�) =
( c
b
u,

c
b
v
)
L2(�)

(10.2)

The operator L̂ is defined by

L̂

⎡
⎣z1z2
η

⎤
⎦ =

⎡
⎢⎢⎢⎣

0 I 0

b� −γ I −γ 1/2 c
2

b
I

0 γ 1/2I − c2

b
I

⎤
⎥⎥⎥⎦

⎡
⎣z1z2
η

⎤
⎦ : Ĥ0 ⊃ D(L̂) → Ĥ0 (10.3a)

D(L̂) = D(L) =
{
{z1, z2, η} ∈ Ĥ0 : z2 ∈ D(A1/2

N ) ≡ H1
�0
(�);�z1 ∈ L2(�)

∂z1
∂ν

∣∣∣∣
�1

= −z2|�1 ∈ H1/2(�1), z1|�0 = 0, so that z1 ∈ H2(�)

}
. (10.3b)

We note that for {z1, z2, η} ∈ D(L̂), the third component η ∈ L2(�) is no smoother than the third
space component of Ĥ0. Thus, L̂ does not have compact resolvent in Ĥ0.

Lemma 10.1: The operator L̂ is dissipative in Ĥ0:

Re

⎧⎨
⎩
⎛
⎝L̂

⎡
⎣z1z2
η

⎤
⎦ ,

⎡
⎣z1z2
η

⎤
⎦
⎞
⎠
⎫⎬
⎭
Ĥ0

= −
∫
�1

z22d�1 − 1
b
‖γ 1/2z2‖2L2(�) − c2

b

( c
b

)2 ‖η‖2L2(�) � 0. (10.4)

Proof: For {z1, z2, η} ∈ D(L̂) we compute via (10.2), Green’s Theorem and (10.3b)

Re

⎧⎨
⎩
([

0 I
b� −γ I

] [
z1
z2

]
,
[
z1
z2

])
H1
�0
(�)×L2

1/
√
b
(�)

⎫⎬
⎭

= Re
{
(∇z2,∇z1)L2(�) + (�z1, z2)L2(�) − 1

b
(γ z2, z2)L2(�)

}
(10.5)

= Re
{
(∇z2,∇z1)L2(�) −

∫
�1

z22d�1 − (∇z1,∇z2)− 1
b
(γ z2, z2)L2(�)

}
(10.6)

= −
∫
�1

z22d�1 − 1
b
‖γ 1/2z2‖2L2(�). (10.7)

Moreover, again by (10.2)

Re

{(
− 1√

b
γ 1/2 c

2

b
η,

1√
b
z2
)
L2(�)

+
( c
b
γ 1/2z2,

c
b
η
)
L2(�)

}
= 0. (10.8)

Thus, (10.4) is proved by (10.7), (10.8) returning to L̂. �
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Step 2

Lemma 10.2: With reference to L̂ in (10.3a) we have 0 ∈ ρ(L̂) = the resolvent set of L̂.

Proof: Given {h1, h2, h3} ∈ Ĥ0, the unique solution {z1, z2, η} ∈ D(L̂) of

L̂

⎡
⎣z1z2
η

⎤
⎦ =

⎡
⎢⎣

0 I 0
b� −γ I −γ 1/2 c2

b I
0 γ 1/2I − c2

b I

⎤
⎥⎦

⎡
⎣z1z2
η

⎤
⎦ =

⎡
⎣h1h2
h3

⎤
⎦ (10.9)

is

z2 = h1 ∈ H1
�0
(�), η = b

c2
[
γ 1/2h1 − h3

] ∈ L2(�) (10.10)

while z1 ∈ H2(�) is the unique solutions of the problem⎧⎪⎨
⎪⎩

b�z1 = h2 + 2γ h1 − γ 1/2h3 ∈ L2(�) (10.11a)
∂z1
∂ν

∣∣∣∣
�1

= −z2|�1 ∈ H1/2(�1), z1|�0 = 0 (10.11b)

�

Corollary 10.3: L̂ is maximal dissipative in Ĥ0 and thus generates a s.c. contraction semigroup eL̂t on
Ĥ0.

Proof: Lemma 10.2 implies maximal dissipativity since a small disk ofC containing the origin is still
contained in ρ(L̂) (the resolvent set is open) and the Lummer–Phillips theorem yields the conclusion.

�

Step 3 As a consequence of Corollary 10.3, we have that the spectrum σ(L̂) of L̂ in contained in
the closed half-plane {λ ∈ C : Re(λ) � 0}. Since L̂ does not have compact resolvent, it is not enough
to show that σp(L̂) ∩ iR = ∅, where σp = point spectrum. We shall show directly that

Proposition 10.4: With reference to L̂ in (10.3a) we have iR ∈ ρ(L̂).

Proof: in view of Lemma 10.2 we need to show that iω ∈ ρ(L̂) for all 0 �= ω ∈ R. To this end, let
{h1, h2, h3} ∈ Ĥ0. We seek a unique solution {z1, z2, η} ∈ D(L̂) such that:⎡

⎢⎣
0 I 0
b� −γ I −γ 1/2 c2

b I
0 γ 1/2I − c2

b I

⎤
⎥⎦

⎡
⎣z1z2
η

⎤
⎦ − iω

⎡
⎣z1z2
η

⎤
⎦ =

⎡
⎣h1h2
h3

⎤
⎦ (10.12)

or ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z2 − iωz1 = h1; (10.13a)

b�z1 − γ z2 − γ 1/2 c
2

b
η − iωz2 = h2; (10.13b)

γ 1/2z2 − c2

b
η − iωη = h3;

[
iω + c2

b

]
η = iωγ 1/2z1 + γ 1/2h1 − h3 (10.13c)
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Next, multiply (10.13a) by γ , sum to (10.13b), replace z2 from (10.13a) and obtain

b�z1 − iωγ z1 + ω2z1 = c2

b
γ 1/2η + iωh1 + γ h1 + h2. (10.14)

Rationalizing the fraction for η in (10.13c) one finds

η =
(
ω2 + iω c2

b

)
γ 1/2z1 +

(
c2
b − iω

)
γ 1/2h1 +

(
iω − c2

b

)
h3(

c2
b

)2 + ω2
(10.15)

which substituted as the RHS of (10.14) yields the final problem

b�z1 + (ω2 − iωγ )z1 −
c2
b

[
ω2 + iω c2

b

]
(
c2
b

)2 + ω2
γ z1

= γ + iω +
c2
b

[
c2
b − iω

]
(
c2
b

)2 + ω2
γ h1 + h2 +

iω −
(
c2
b

)2
γ 1/2

(
c2
b

)2 + ω2
h3 (10.16a)

with B.C[
∂z1
∂ν

+ iωz1
]
�1

= −h1|�1 ∈ H1/2(�1); iωz1|�0 = −h1|�0 ∈ H1/2(�0). (10.16b)

Thus, for ω �= 0, given {h1, h2, h3} ∈ H1
�0
(�)× L2(�)× L2(�), one obtains �z1 ∈ L2(�), yielding

in turn z2 = iωz1 + h1 ∈ H1(�), and finally

η = γ 1/2z2 − h3
iω + c2

b

∈ L2(�).

It remains to show that the above solution is unique in the class of solutions with the same regularity.
�

Proof of uniqueness: Suppose that there exist two such solutions z1, z′1 of problem (10.16a)–(10.16b).
Hence ζ = z1 − z′1 solves the following problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
b�ζ + (ω2 − iωγ )ζ −

c2
b

[
ω2 + iω c2

b

]
c2
b + ω2

γ ζ (10.18a)

[
∂ζ

∂ν
+ iωζ

]
�1

= 0 iωζ |�0 = 0 (10.18b)

Multiply (10.17a) by ζ and integrate by parts. Separate the resulting identity into real and imaginary
parts. The imaginary part is

− iω

⎧⎪⎨
⎪⎩b

∫
�1

ζ 2d�1 + (γ ζ , ζ )+
(
c2
b

)2
(
c2
b

)2 + ω2
(γ ζ , ζ )

⎫⎪⎬
⎪⎭ = 0. (10.18)



APPLICABLE ANALYSIS 1769

Thus, for ω �= 0 we obtain a.e.

ζ ≡ 0 on �1 γ 1/2ζ = 0 in�. (10.19)

Return to problem (10.17a)–(10.17b) and apply the conditions (10.19). We obtain the over deter-
mined problem ⎧⎪⎨

⎪⎩
b�ζ = −ω2ζ in� (10.20a)
∂ζ

∂ν

∣∣∣∣
�1

= 0 ζ |�0 = 0 (10.20b)

which implies [40, Theorem 6.1, p.75]

ζ ≡ 0 (10.21)

and uniqueness of z1 is established, from which uniqueness of z2, η follows by (10.13a) and (10.13c).
Thus we have shown that given {h1, h2, h3} ∈ Ĥ0, we have found a unique triple {z1, z2, η} ∈ D(L̂)
such that ⎡

⎣z1z2
η

⎤
⎦ = (L̂ − iω)−1

⎡
⎣h1h2
h3

⎤
⎦ (10.22)

for ω �= 0. The case ω = 0 was shown in Lemma 10.2. Thus Proposition 10.4 is established. �

Step 4 Thus L̂ is the generator of a s.c contraction semigroup eL̂t in Ĥ0 and iR ∈ ρ(L̂). It follows
by the [42,43] theorem that

Theorem 10.5: The s.c. contraction semigroup eL̂t in Ĥ0 is strongly stable

eL̂t
⎡
⎣z10z20
η0

⎤
⎦ =

⎡
⎣z1(t)z2(t)
η(t)

⎤
⎦ → 0 in Ĥ0 as t → ∞. (10.23)

Step 5We next employ (part of Theorem 10.5) to show that Theorem 6.1(b) holds true⎡
⎣ y(t)
yt(t)
ytt(t)

⎤
⎦ = eGN,Ft

⎡
⎣y0y1
y2

⎤
⎦ → 0 as t → +∞ in U1 = D(A1/2

N )× D(A1/2
N )× H (10.24)

where D(A1/2
N ) = H1

�0
(�) and H = L2(�). Let {y0, y1, y2} ∈ U1, z0 = c2

b y0 + y1 ∈ D(A1/2
N ), z1 =

c2
b y1 + y2 ∈ L2(�). By (10.23) of Theorem 10.5 we have

‖z(t; z1, z2)‖D(A1/2
N )

+ ‖zt(t; z1, z2)‖L2(�) → 0 as t → ∞. (10.25)

We shall see that it will suffices to show that

‖y(t)‖D(A1/2
N )

→ 0 as t → ∞ (10.26)

for then strong stability of ‖yt(t)‖D(A1/2
N )

= ‖z(t)− c2
b y(t)‖D(A1/2

N )
→ 0 would then follow

from (10.26) and (10.25); and this is turn via again (10.25)will imply strong stability of ‖ytt(t)‖L2(�) =
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‖zt(t)− c2
b yt‖L2(�) → 0. To establish (10.26) we return to (3.4a). For 0<T< t, we rewrite it as

y(t) = e−
c2
b ty0 + e−

c2
b t

∫ T

0
e
c2
b τ z(τ ) dτ + e−

c2
b t

∫ t

T
e
c2
b τ z(τ ) dτ . (10.27)

For fixed I.C., given ε > 0, there exists Tε > 0 such that ‖z(τ )‖D(A1/2
N )

� ε, for all τ > Tε . Thus, with
T = Tε identity (10.27) yields for all t � Tε :

‖y(t)‖D(A1/2
N )

� e−
c2
b t‖y0‖D(A1/2

N )
+ b

c2
e−

c2
b t‖z‖L∞(0,Tε ;D(A1/2

N ))
(e

c2
b Tε − 1)

+ εb
c2

(
1 − e−

c2
b (t−Tε)

)
= O(ε). (10.28)

Thus (10.26) is proved, and so is Theorem 6.1(b).
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Appendices

Appendix 1. The general case 0 �= γ ∈ L∞(�) in the Proof of Theorem 2.4. Handling
lower order terms
We return to Step 1 of the (first) proof of the Theorem 2.4 in Section 3.1, where we have explained that we took at
first γ ≡ 0 to simplify the computations. In this appendix we indicate the (benign) modifications over the content of
Section 3.1, needed to handle the general case 0 �= γ ∈ L∞(�) in (2.39a). We may proceed in two ways:

First way (minimal re-writing). We now call (initially) C̃(t) the cosine operator corresponding to the operator
b�− γ ∂t + γ c2

b plus B.C or[
0 I

b�+ c2
b −γ

]
= generator of a group G̃(t) =

[
C̃(t) S̃(t)
C̃′(t) C̃(t)

]
.

Then the only extra term in (2.39a) that needs to be handled is−γ ( c2b )ywhere y(t) = ∫ t
0 e

− c2
b (t−τ)z(τ ) dτ .We shall only

argue for the regularity of z(·), which in turn leads to the regularity of zt(·). We obtain the variations of (3.7a)–(3.7b),
(3.8a)–(3.8b)

z(t) = z(1)(t)+ z(2)(t)− γ

(
c2

b

)∫ t

0
S̃(t − τ)y(τ ) dτ (A1.1)

zt(t) = z(1)t (t)+ z(2)t (t)− γ

(
c2

b

)∫ t

0
C̃(t − τ)y(τ ) dτ (A1.2)

Equations (A1.1) and (A1.2) are the new versions corresponding to (3.10b) and (3.18),respectively, for γ = 0. Compute
the new term, changing the order of integration∫ t

0
S̃(t − τ)y(τ ) dτ =

∫ t

0
S̃(t − τ)

∫ τ

0
e−

c2
b (τ−s)z(s) ds dτ =

∫ t

0

∫ t

s
S̃(t − τ)e−

c2
b (τ−s)z(s) dτ ds

thus

−γ
(
c2

b

)∫ t

0
S̃(t − τ)y(τ ) dτ = − γ

(
c2

b

)∫ t

0
K1(t, s)z(s) ds

with smooth kernel

K1(t, s) = e
c2
b s

∫ t

s
S̃(t − τ)e−

c2
b τ dτ

Thus, the new version of z(t) for γ �= 0 is

z(t) = z(1)(t)+ z(2)(t)− γ

(
c2

b

)∫ t

0
K1(t, s)z(s) ds (A1.3)

an integral equation in z(·). Equation (A1.3) is the definitive counterpart of Equation (3.10b) for γ = 0. Then, either
by integral equation theory or by Gronwall inequality, we find that

z(1)(t)+ z(2)(t) ∈ C([0,T];H−1(�)) =⇒ z(t) ∈ C([0,T],H−1(�)) (A1.4)

as the regularity of z(i)(t) under the new C̃(·) is the same as the regularity of z(i)(t) under the original C(·), established
in (3.15b), as corresponding to γ = 0. If one wishes to appeal to a Grownwall inequality, recall from [19, p. 27, 28] that
‖C̃(t)‖ � Ceω|t| and thus ‖S̃(t)‖ � C(eω|t|−1)

ω
, −∞ < t < +∞. This yields K1(t, s) � Ceω(t−s), s < t.

Second way In (2.39a) with γ ∈ L∞(�), we keep C(t) to be the cosine operator generated only by the operator b�
(as in the proof of Theorem 2.2) in which case the new form of z(t) is now

z(t) = z(1)(t)+ z(2)(t)+ γ

(
c2

b

)∫ t

0
S(t − τ)z(τ ) dτ − γ

∫ t

0
S(t − τ)zt(τ ) dτ − γ

(
c2

b

)∫ t

0
S(t − τ)y(τ ) dτ

while ∫ t

0
S(t − τ)zt(τ ) dτ = −

∫ t

0
C(t − τ)z(τ ) dτ

integrating by parts with z(0) = 0. In conclusion:

z(t) = z(1)(t)+ z(2)(t)+ a new integral term in z(t)

= integral equation.
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Appendix 2. Direct proof of Theorem 6.1(c) in the canonical case γ = 0.
We shaw assume the same hypothesis of Theorem 6.1(c) and in addition, that γ = 0. In this case, a short proof can be
given by applying directly to known results [23].

Step 1 With reference to problem (7.2a)–(7.2d) with γ = 0 [23, Theorem 1.2], (under the noted geometrical
condition on {�,�0,�1}) yields the uniform decay∥∥∥∥

[
z(t) = αy(t)+ yt(t)
zt(t) = αyt(t)+ ytt(t)

]∥∥∥∥
D(A1/2

N )×L2(�)
� Me−δt

∥∥∥∥
[
z0 = αy0 + y1
z1 = αy1 + y2

]∥∥∥∥
D(A1/2

N )×L2(�)
, t � 0. (A2.1)

Step 2 We finally need to show that on the trajectories {z(t), zt(t)} and {y(t), yt(t), ytt(t)} related by (7.1), the
decay (A2.1) implies the decay (6.6) for I.C. {y0, y1, y2} ∈ U1 in (6.4). In fact, in this case, by (7.1)

‖y(t)‖D(A1/2
N )

� e−αt‖y0‖D(A1/2
N )

+
∫ t

0
e−α(t−τ)‖z(τ )‖D(A1/2

N )
dτ (A2.2)

and invoking (A2.1) and U1 ≡ D(A1/2
N )× D(A1/2

N )× H from (6.4)∫ t

0
e−α(t−τ)‖z(τ )‖D(A1/2

N )
dτ �

∫ t

0
e−α(t−τ)Me−δτ dτ‖{z0, z1}‖D(A1/2

N )×L2(�)

� M
[
e−δt − e−αt

α − δ

]
‖{z0, z1}‖D(A1/2

N )×L2(�) (A2.3)

= M1e−min{δ,α}‖{y0, y1, y2}‖U1 (A2.4)

recalling z0 = αy0 + y1 and z1 = αy1 + y2 from (7.2b). Substituting (A2.4) in (A2.2) yields

‖y(t)‖D(A1/2) � M2e−at‖{y0, y1, y2}‖U1 , a = min{α, δ}. (A2.5)

Next, by invoking again (A2.1) as well as (A2.5) we obtain by (7.1)

‖yt(t)‖D(A1/2) = ‖z(t)− αy(t)‖D(A1/2) � M3e−at‖{y0, y1, y2}‖U1 (A2.6)

and similarly, again by (A2.4) and now by (A2.6)

‖ytt(t)‖L2(�) = ‖zt(t)− αyt(t)‖L2(�) � M4e−at‖{y0, y1, y2}‖U1 . (A2.7)

Thus, (A2.5)–(A2.7) prove (6.7).
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