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Abstract. The Jordan{Moore{Gibson{Thompson (JMGT) equation is a well-
established and recently widely studied model for nonlinear acoustics (NLA). It
is a third{order (in time) semilinear Partial Dierential Equation (PDE) with a
distinctive feature of predicting the propagation of ultrasound waves at nite
speed. This is due to the heat phenomenon known as second sound which leads
to hyperbolic heat-wave propagation. In this paper, we consider the problem
in the so called \critical" case, where free dynamics is unstable. In order to
stabilize, we shall use boundary feedback controls supported on a portion of
the boundary only. Since the remaining part of the boundary is not
\controlled", and the imposed boundary conditions of Neumann type fail to
saitsfy Lopatinski condition, several mathematical issues typical for mixed
problems within the context o boundary stabilizability arise. To resolve these,
special geometric constructs along with sharp trace estimates will be developed.
The imposed geometric conditions are motivated by the geometry that is suit-
able for modeling the problem of controlling (from the boundary) the acoustic
pressure involved in medical treatments such as lithotripsy, thermotherapy,
sonochemistry, or any other procedure involving High Intensity Focused Ultra-
sound (HIFU).

1. Introduction. It was not until the rst decade of the XX | century that third{
order in time models became central in the study of the propagation of acoustic
waves. Fattorini [14] points out that models with three time derivatives are, in gen-
eral, ill-posed. Nevertheless, from a modelling point of view, the appearance of a
third derivative in time seems unavoidable. For once, if one seeks to understand the
eects of (thermal) relaxation in the propagation of sound, a (by now) well{known
strategy is the use of hyperbolic models for the heat ux (also known as second{
sound phenomena), which introduce one extra time derivative [15, 16] in explicit
models. Even more essential for controlling medical or engineering (acoustic) phe-
nomena is the fact that the presence of a third time derivative predicts nite speed
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of propagation of the waves, a novelty in comparison to the classic parabolic mod-els
where heat uxes are modeled through diusion (Fourier’s law). The issue of
wellposedness is naturally remedied in modern formulations of nonlinear acoustics
{ in particular models leading to the so called HIFU eld { due to the structural
damping eect caused by sound diusivity in a given tissue or group of tissues [20]. This
pleasant feature allows for a better understanding of the role of sound diu-sion and
propagation in the acoustic environment. Instead, classical second{order in time
models (see (2) below) lead to strong smoothing of solutions exhibited by the
analyticity of the underlying dynamics.

Studies toward more accurate calibration of HIFU eld generator devices are
plenty, specially in the last few decades. Such devices are pivotal for several types
of thermal therapy as treatment of ablating solid tumors of the prostate, liver,
breast, kidney, brain, among others. The feature of raising the temperature of a
focal region very rapidly with minimal damage to the biological material around it
comes at the price of very high (sometimes even with formation of shocks) acoustic
pressure [7]. It is, therefore, of paramount interest the study of models that provide
suitable (optimal) proles for the HIFU devices ensuring that the acoustic pressure
will remain within safety range. In fact, in recent years we have witnessed a large
body of work dealing with the questions of wellposedness and stability of third order
dynamics, in both linear and nonlinear versions [21, 17] and on bounded [27] and
unbounded (R") domains [29]. However, very little is known regarding how the
third order model responds to the inputs from the boundary-particularly with low
regularity. This particular interest needs no defense, given prevalence of boundary
control problems (imaging, HIFU) associated with acoustic waves that can be ac-
tuated just on the boundary of the spatial region. Since the model itself can be
seen as a hyperbolic system [4] { which is however characteristic { one may expect
mathematical interest and the associated challenges. Of great physical and mathe-
matical interest are issues such as wellposedness with low regularity boundary data
and a potential stabilizing eect of boundary damping. The latter is particularly of
interest in the case when natural viscoelastic damping (strongly compromised by the
second sound phenomenon) is either very weak or even non{existent.

This paper accomplishes an important step towards the described goal, namely
a boundary stabilizability property for the linearized third{order in time acoustic
wave models with degenerated viscoelastic eects and with boundary dissipation
located on a suitable portion of the boundary. One of the salient feature is the
fact that part of the boundary subject to Neumann boundary conditions is not ob-
served/dissipated - in line with the conguration expected from applications to
boundary control. Unobserved Neumann part of the boundary (rather then Dirich-
let where suitable methods have been well developed) is known as causing major
challenges in the derivation of observability estimates { even in the case of the
wave equation [24]. This diculty is dealt with by using suitable geometric and
microlocal analysis constructions applicable to the third{order in time models.

1.1. PDE model and motivation. We assume that the acoustic pressure u =
u(t; x) at the material point x 2 RY (d = 2 or 3) and instant t 2 R, obeys the
Jordan{Moore{Gibson{Thompson equation

e + ( 2ku)ur  cu (+ c?)up = 2ku?; . (1)

where c;; k > 0 are constants representing the speed and diusivity of sound and a
nonlinearity parameter, respectively. The function :
I R represents the natural
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frictional damping provided by the medium. The parameter > 0 represents the
thermal relaxation time and its presence allows for a more precise distinction within
propagation of sound in dierent media. Indeed, the semilinear equation is a (singular
perturbation) renement of the classical quasilinear Westervelt’s equation ( = 0):

( 2kuwuw  cu  uc = 2ku?: . (2)

Although not unique, one interesting way of obtaining (1) from a similar procedure
as the one to obtain (2) is simply to use Maxwell{Cattaneo law [13, 5, 6] in place of
Fourier’s law. The advantage of this strategy (which is by no means physics{proof
[31, 8]) is that it provides a suitable model for studying relaxation eects. Since
waves propagate at a nite speed, it allows the construction of optimal policies for
controlling the HIFU eld. Overall, in its simplicity, (1) catches most of the key
features that would be present in a more detailed model.

The mathematical study of (1) as well as the dierences (and similarities) when
compared to (2) started around 2010 with the works of I. Lasiecka, R. Triggiani
and B. Kaltenbacher [18, 19, 27] where the issues of wellposedness and stability of
solutions under homogeneous Dirichlet and Neumann boundary data were addressed
for both nonlinear and linearized dynamics. The obtained results depend critically
on the positivity of the stability parameter

2
(x) (x) OTO a.e. in

: (3)

In addition to ensuring uniform exponential decays of solutions for the linearized
(k = 0) problem, condition (3) allows for the construction of nonlinear ows via
\barrier’s" method. In face of such results, the natural question is: what if (x) is
no longer positive? It is known that if < 0 one may have chaotic solutions [10]. If
0 then the energy is conserved [19, 20]. This raises an interesting question on how
to ensure stability of the dynamics when the frictional parameter degenerates (x)
0. It has been recently shown that adding viscoelastic eects produces in some cases
the asymptotic decay of the energy, cf. e.g. [25, 11, 12]. In this work we concentrate
on boundary stabilization. This is also motivated by recent consideration of control
problems dened for MGT dynamics [9, 3]. By actuation { say on the boundary {
one aims at obtaining a desired outcome measured by certain functional cost. It is
well known that control problems { particularly on innite horizon { are strongly
linked with stabilizability properties of the linearized model. One interesting
problem , considered by Clason-Kaltenbacher in [9] is that of actuating the external
part of the boundary through a transducer! with the aim at targeting acoustic signal
on a given area inside the domain, cf. Figure 1. Such conguration will call for
stabilizing eects emanating from uncontrolled part of the boundary, say 1, while
the actuation itself will take place on the remaining { accessible to the user { part
of the boundary, say o, which is not subjected to dissipation or absorption. This
conguration leads to the following model.

1A transducer is a device that takes power from one source and supplies power usually
in another form to a second system. In the particular case of HIFU processes, the transducer
concentrates the energy generated by the vibration of sound in a given medium and delivers it to
a targeted area in form of heat.
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Uttt + (X)uee  c*u bug= f inQ= (0;T]
> (42) U(0) = Uoi () = Ui uw(0)= v in
g (4b)

@u+ o(x)u=0 ino=(0;T] o (4c)
"@u+ 1(x)ur= 0 in1= (0;T] 1 (4d)

with;cb> 0; 2 L1
,02LY( o)and12 LY( 1);1(x) 1> 0;0> Oa.e.

Assuming for the time being that a solution u = u(t; x) for (4a){(4d) exists in a
suitable topology, and critical parameter admits degeneracy (x) 0, our goal is to
study its asymptotic propertiesast! 1. More precisely, we want to show that for
large times the acoustic pressure will be small, i.e., Iimt Llj(lt;) = 0, hopefully at

exponential rate.

It should be noted that boundary stabilization of linear MGT has been studied
recently. However, the existing results [1] and [2] do not allow for un-dissipated o
with Neuman-Robin boundary conditions and degenerate viscoelasticity. The latter
provides for major mathematical challenge (even in the case of wave equation). This is
due to the fact that boundary conditions on ¢ fail to satisfy strong Lopatinski
conditions. On the other hand, control problems under consideration call for ¢ to
be an active (rather than passive) wall where control actuation takes place. From the
mathematical point of view, this new scenario requires drastically dierent strategies
and constructions.

This brings us up to the main topic of this paper: stabilization problem closely
related to optimal control problems for MGT in innite time horizon and with
Neumann boundary feedback supported only partially on . In order to motivate
our assumptions on the geometry we look at Figure 1 where a schematic transducer
is represented. The only needed (and realistic) assumption is the convexity of the
red part, which we will call o: The other portion of the boundary, 1, will be
assumed to be \smooth". The schematic representation is given in Figure 2.

From the practical point of view, the quantity (x) is interpreted as the vis-
coelasticity at the material point X 2

and, in particular in the medical eld, is not expected to be known for all points of

By making the more physically relevant assumption that 2 L
), (x) 0 a.e. in
(allowing the critical case 0, or the case where measurements can only me made at
isolated points of the domain), we ask ourselves whether a non{invasive (boundary)
action can drive the pressure to zero at large times regardless of the particular
knowledge of (as longas it is nonnegative). This question was answered in [1, 2] with
the nal conclusion that in the case Dirichlet zero boundary conditions are assumed
on o, which is also star-shaped, the dissipative boundary eects assumed on 1 is
strong enough to stabilize the system regardless of the particular structure of 0

The present paper addresses the problem: what happens when boundary condi-
tions on ¢ are of Neuman-Robin type [Lopatinski condition fails]? This allows to
place actuators on 1. Thus we keep the dissipative Neumann boundary condition
on 1 and supplement o with a homogeneous Robin boundary data (see (4c)). Our
result states that uniform stability still holds provided, however, that ¢ is convex
in addition to being star-shaped. If one considers a \benchmark" optimal control
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Figure 1. lllustration of the domain. The \red" convex portion of the
boundary, in the context of HIFU, represents a device called transducer
and its role is to concentrate the sound waves in the direction of the
focus. The remaining part of the boundary represents an absorption
area. (Font: B. Kaltenbacher)
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Figure 2. Representation of the domain

problem:
z 1

min J(u) := kruk? + kgk?, (5a)
g
subject to (433; (4b); (4d) and replacing (4c) by (5b)

'V AV 00

o " ®
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then showing that (4a){(4d) is uniform exponentially stable proves a stabilizability
property for the control problem introduced above. Indeed, one takesg=uj 2 L
o) as a stabilizing feedback. This means that at least one strategy (control) exists
capable of stabilizing the system on innite horizon. We note that related optimal
control problem subject to \smooth" controls and nite time horizon has been
considered in [9]. Our point is to address the case of nonsmooth controls {
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just L2 controls { dened on innite time horizon. This leads to new mathematical
developments in the area of boundary stabilizability.

2. Main results. We begin by introducing a phase (nite energy) space, the ab-
stract version of (4a){(4d) along with some notation. We will work on a phase
space H given by
H:=H(

) H*(

) L2 (

) (6)

To proceed, let A : D(A) L2
)L
) be the operator dened as

A= ; D(A)= 2H?%

(

) @, =0Gl@+o0] ,=0 (7)
In this setting, A is a positive, self-adjoint operator with compact resolvent and
D A1=2 - Hl(
) (equivalent norms). In addition, with some abuse of notation we (also) denote by
A : L2(
) I [D(A)]° the extension (by duality) of the operator A:

Next, we write (4a){(4d) as a rst{order abstract system on H. To this end we
need to introduce Harmonic (boundary ! interior) extensions for the Neumann
data on 1. We proceed as follows: for’ 2 L2( 1), let := N(’); be the unique
solution of the elliptic problem

2 =0 in
@ ="j, on 1 (8)

@ +o0 =0 on o:

It follows from elliptic theory that N 2 (L(H S(); HS*3=2(

))? (s 2 R) and on )

NA

(9)

0 on 0,

for all 2 D(A), where N represents the adjoint of N when the latter is considered as
an operator from L2( 1) to L2(
). For the reader’s convenience, we present a short proof of (9) since it will be used
critically for the proof of Theorem 2.1(i). For 2 D(A) and’ 2 L%( 1), we rst use the
denition of adjoint followed by Green’s second formula to obtain
(NA;?) =(A;N")= (GN’)= (G(N’')) (@;N’) + (;@N’') :
To complete we use the denition of N ’ as the solution of problem (8) and the fact
that 2 D(A). This gives

(NA;7) = ((N7)) (@;N') + (;@N’')
(0;N) o+ GON) o+ (i),
GoN"+ @N') o+ (') .= (") o (10)

which-is—preeisely (9).

Thus, the u{problem can be written (distributionally with the values in [D(A)]°)
as

Uttt + (X)ute + c2Au + bAuc + c?AN(1NAu¢) + bAN (1NAuw) = f: (11)

Next, we introduce the operator A : D(A) H ! H with the action (on
= (152;3)):



A ~= (23 3 Cc*Alz+ N(zNA2)) bA(z+ N(1NA3))) (12)

21L(X; Y ) denote the space of linear bounded operators from X to Y
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and the dogain
D(A)= 2H; 32D AY™ ; + N(1NAi+1) 2 D(A); fori= 1;2
(

Y e, e,

) DAl:Z} @+01 = @+oz =0 )
@l+ = @24- =0 . 13
‘@7 12 @7 13 ( )

1 1

The rst order abstract ver(sion of u{problem is thus given by
t= A + F
(0) = 0= (uo;u1;u2)’;

with A :D(A) H! H denedin (12) and F> = (0;0;f):
We are ready for our rst result.

(14)

Theorem 2.1. [Wellposedness and Regularity]
(i) The operator A generates a strongly continuous semigroup on H.

(ii) Let f 2 LY(0;T;L%(
)), 1;2 Oaeand 2 L{
). Then, for every initial data ¢ := (uo; u1; uz2) in H, there exists a unique
(semigroup) solution = (u;ut; uw) of (4a)-(4d) such that 2 C([0; T]; H)
for every T > 0: Moreover, if the initial datum belongs to D(A ) and f 2
CH([0; TT; L3(
)) the corresponding solution is in C((0; T1; D(A))\ C*([0; T]; H).

Our main result pertains to exponential decay of solutions asserted by Theorem
2.1 and requires geometric assumptions on the undissipated part of the boundary
0. We assume that ¢ is conve, in the sense of being described by the level set of a
convex function. In addition, we require that the following \star shaped" condition
holds:
(x xo0) O (15)
on o for some xo 2 R":

Theorem 2.2. [Uniform stability] Let (x) 0 and the geometric condition stated
above holds true. The semigroup generated by A is exponentially stable, i.e., there
exist constants M 1;! > 0 such that

k(t)ku Me 'tkoky for
all 0 2 H.

Remark 1. We note critical role being played by the fact that boundary conditions
imposed are of Neumann type and there is nontrivial part of the boundary ¢ which
is not dissipated. It is known from the observability theory for wave equation, that
standard techniques do not apply to uncontrolled Neumann parts of the boundary,
see [24, 23] . The reason is that known multipliers do not collect the energy from this
part of the boundary due to conicting sign of the vector eld on the undissipated part
of the boundary. Recently, new geometric methods have been introduced in order
to handle this diculty. We shall adapt these methods to the present system.

Conclusion. The result of Theorem 2.2 provides a positive answer to the ques-
tion of exponential stabilizability of MGT equation in the critical case ( 0) via a
boundary feedback supported only partially on  with the requirement of convexity
imposed on .

The remainder of this paper is devoted to the proofs of our main results.
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3. Semigroup generation. We recall that, topologically, the space H introduced
in the previous section is equivalent to

D A¥™2 D A2 L2

) (16)
with the topology induced by the inner product dened, for all =" (1;2;3)>;" =
("1;'2;"3)> 2 H, as

3"& ; - (A1=21;A1=2’1) + b(A1=22;A1=212)+ (3[,;3): (17)

Because of this equivalence we will be using the same H to denote both spaces. It

is useful to notice that
Z

(A1=2U;A1=2V) = (ru; rv) + 0 uvd 0 (18)
0

We need to show that A : D(A) H ! H generates a strongly continuous
semigroup on H: It is convenient to introduce the following change of variables bz
= buy + c?u (see [27]) which reduces the problem to a PDE{abstract ODE
coupled system.

Let M 2 L(H) dened by

2 2
M &= ;2 + +
1,2 b 19 b 2 i
which has inverse M 12 L(H) given by
2 2 4
M & 1 +
1 L2 63 2%C 51 C

and therefore is an isomorphism of H. The next lemma makes precise the translation
of u{problem to a dierent system involving a component of a suitable wave equation
labeled by z:

Lemma 3.1. Assume that the compatibility conditions

€ 0 € 0 (19)
—tg+ gUp= 0on o —dg+ quy = 0on
@0+ olo 0 @t U 1
hold. Then 2 C(0;T;H)\ C(0; T;D(A)) is a strong solution for (14) if, and
only if, = M 2 C%(0;T;H)\ C(0;T;D(A)) is a strong solution for
8
2 t=A +G
2 2 > (20)
> (0)=0= Mo = Up; U1 + %UO;Uz+ %U1 ;
where G = MF and A = MA M 1 with
(
D(A)= "2 H?( —
2 -2 @ @
)" DAY? ;T4 02 = 0;
) (21)
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Proof. The only non-trivial step is to prove that boundary conditions (going from z

to u{problem) match. To this end, assume that = (u;z;z) 2 CYHO;T;H)\
C(0; T;D(A)) is a strong solution for (20). Let
t
=W, w0

and notice that by + c2 = 0 for all t. ®his along with the compatibility condition (19);
((0) = 0) implies that 0. The same argument mutatis mutandis recovers the
boundary condition for u on 1: The proof is then complete. O

For ™= (1;2;3)” 2 D(A) a basic algebraic computation yields the explicit
formula for A:

2 2 4
c c c
A= ;3 +_ - bA b1ANN A 22
2 b41 3 3 b 2 bzl 2 1 3 ( )
2
where = %Ll(

):

We are ready for our generation result.
Theorem 3.2. The operator A generates a strongly continuous semigroup on H.

Proof. Equivalently, we show that A generates a strongly continuous semigroup on
H. If fS(t)gto is the said semigroup then fT (t)gio, T(t) := M 1S(t)M;t 0, will be
the semigroup generated by A :

Write A = A + P where

2
P = 2;0; gﬁ 2 kcF

is bounded in H and
Ag = @us 3 bA(2 + N(1NA3)) ; 2 D(Aq); (23)

N

+(1 )3 ; 2H

[y

~

where D(Aq) := D(A): It then suces to prove generation of Ay on H, see [28, Page
76]

We start by showing dissipativity: for = (1;2;3)” 2 D(A) we have

2
Fadi 1=2 2
Ag; o bfeA 1k (1L

)+ b A1=23;A1=22 p—
k3k2|2( 2
) béAl=22;A1=23) bk 13k|_z( 0
= b kA1=21kL2( 2 _— 2
) kskey

p
) bk 13k|_2( 1) 0,

hence, Aq is dissipative in H.
For maximality in H, given any L = (f;g;h) 2 H we need to show that there

exists = (1;2;3) 2 D(A) such that ( Ag4) = L, for some > O0: This
leads to a solvability of the system of equations:
i + < f
1 iB: ;
2 3= 8 (24)

3+ 3+ bA(2+ N(lNA3)) = h,
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2 1
which implies 1 = + tCh f 2 D(A'=2): Moreover, since A 1 2 L(L?(
)) a combination of the second and third equations above yields
Ks=A *h bg (25)

where K : L?%(
)L
) acts on an element 2 L?(
) as
K= (>+)A Y+ b(l+ N(1NA)
We now notice the restriction Kjp(a1-2) is strictly positive. Indeed it follows by
(9) that, given 2 D(A'=2) we have

(K; )p(at=2) = (> + )kk? + bkAy=2k? + b(A*3ZN(1NA); AT=2) = (2 + )kk? +
bKAL2k2 + bk, 1NAKZ, > :  ©

Among the consequences of positivity, is the fact that KD(A11=2) 2 L(D(A=2)).
Therefore, since A 'h  bg 2 D(A*=2) we have that

3:=K YA *h bg)2 D(A'¥™?)is
the solution of (25). Finally,
2= '(3+g)2 D(AT?):
For the nal step to conclude membership of (1;2;3) in D(A) we look at the

abstract version of the descyiption of D(A):
D(A)= "2 H; 2+ N(1NA3) 2 D(A) 0

whereby one only needs to check that ; + N(1NA3) 2 D(A) The desired regu-
larity will follow from (24), which implies

bz+ N(zNA3)) = (*+)A '3+ A *h2 D(A);

since 3;h 2 L%
):

The proof is complete. O

Theorem 2.1(b) then follows as a straightforward corollary of Theorem 3.2 and
Lemma (3.1).

4. Stabilization. Our stability results rely on a chain of estimates developed
through the process of the proof whose main ingredient is to propagate dissipa-
tion from a portion of the boundary 1 into the entire domain. Let us rst outline the
main conceptual ideas.

(i) In order to handle the estimates on ¢ { the undissipated part of the boundary
{ a typical radial vector eld leads to conicting signs in front of tangential
boundary-time derivative. In order to handle this, special vector elds are
introduced which are constructed locally by \bending" tangentially the radial
eld on the undissipated part of the boundary. This can be accomplished
by exploiting convexity of ¢ along with a general star shaped requirement.
Having a vector eld which is tangential to the boundary allows us to annihi-
late the normal component of this vector eld { taking care of the tangential
derivatives on the undissipated part of the boundary (note that in the Dirich-
let case, the contribution on the undissipated part of the boundary is just
zero).
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(ii) On the absorbing part of the boundary 1 we use the fact that the time
derivative of the solution is given through the energy relation. By applying
microlocal analysis argument, one estimates the space-time tangential contri-
bution of the solution in terms of the time time derivatives and some lower
order terms.

(iii) The resulting lower order terms are eliminated by a suitable compactness-
uniqueness argument.

We start by introducing the energy functional. We work with smooth (classical
solutions) guaranteed by Theorem 2.1 and then Theorem 2.2 is obtained via density
argument along with the convexity of the energy functional.

Let (u; ut; uit) 2 H be a classical solution of (14) and recall the corresponding
z{problem determined via (20), from which follows that z = u; + %zu solves the
equation

Zit + bA(ze + N(1NAz)) = uwe + f; (26)
with initial conditions described in (20).

With this notation, we dene the functional E(t) = Eo(t) + E1(t) where E; :

[0;T]! R4+ (i = 0;1) are dened by

2
Eq(t) := gkA1:22k§+ %kztk§+ ;:—bklzzutkz2 (27)
and
1 2
Eo(t) 1= Sk 2uk? 5 kaA1=2uk2;2 (28)

The next lemma guarantees that stability of solutions in H is equivalent to uni-
form exponential decay of the function t ! E(t): One thing to notice is that E1(t)
is dissipative along the unforced solution.This no longer holds for the full energy
E(t).

Lemma 4.1. Let = (u;ug; uw) be a weak solution for the u{ problem in H and
assume that (19) is in force. Then the following statements are equivalent:

a) t! k(t)k? ,fecays exponentially.

b) t!1 kM(t)k? 7 k(u;z; z)k? decays exponentially.

c) t! E(t) decays exponentially.

Proof. Proof relies on algebraic manipulations. Details can be found in [1]. O

Remark 2. The purpose of Lemma (4.1) is that it allows us to use both the expres-
sion of the energy E(t) = Eo(t) + E1(t) and the norm of the solution k(u;z;zt)kzH
interchangeably. The specic structure of the energy contributes to a discovery of

certain invariances and dissipative laws. However, from the topological point of
view, it is essential that the following three quantities kA'=?zka, kztka and kruka
display the appropriate decays.

The next proposition provides the set of main identities for the linear stabilization
in H:

Proposition 4.2. Let T > 0. If (u;z;z:) is a classical solution of (20) then the
following holds
(i) (Energy ldentity) For0 t T,
VARV A yARSYA ARV A
E1(T)+ b 12%d 1ds + u’d
ds= E1(t)+ fzid
ds: (29)t 1 t
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(ii) Energy (L*{norm){Reconstruction. For 0< s< T=2,

z T s
E1(t)dt. [Ei(s)+ E1(T s)]
z z: z (30)
+Ct b 122g1+ u? th,El- lot(z) + Cr fdeZ
1 Q Q

n 0
where lot(z) C supyo,;r; kzky: (2 2
)+ kzeky,
) , for > 0.

Remark 3. Notice that the energy identity (29) involves only partial information
on the dynamics. In fact E1(t) does not reconstruct kruk,, a critical ingredient
of the MGT system. The second inequality (30) is an \almost" reconstruction of
partial energy in terms of the dissipation and lower order terms.

Proof. 1. Proof of (29). Let, on H, the bilinear form h;i be given by

h*i=b A2, AY2; + (3;73) + b c2 2 b¢2 ;72 b'cz (31)
for all ™ = (1;2;3)”;° = ("1;’2;’3)” 2 H, which is continuous. Moreover,
recalling that (t) = (u(t); z(t); z¢(t)) it follows that 2E1(t) = h (t); (t)i. There-
fore,

Eq(t) (
det) —ddt),- () =hA ()+G; ()i
x Ot 2 4 T +
= z %u;zt; Zt bcl+ b&; bA(z¢+ N(1N Az))+ f ; (t)
2 4
= z  Sz+ Su bA(z¢ + N(1NAZ)) + f; z;
b b
2 2 2 2
b A2z A72; 4 & Zt £ . S ;Z S
St b b
= zt  cz+ cu ;zc b(A(ze + N(1N Az)); zi)
b b
- - c? c? c? c?
+ b A2z AY?z 4+ (f;z) + Y Ze oz LU 5z
z 2 & 2 & z
= 2o 2t U 20 pZ+ U d 2
z Z 7 1

b a1zed 1+ (f;2¢) 2

Uyd

b 1z¢d 1+
1

thd

since z¢ 74 %}u = Ui. ldentity (29) then follows by an integration in time on

(tT):

2. Proof of (30) This second part will be established via multipliers technique
making strong use of the geometrical conditions preceding the statement of Theorem
2.2. However, due to the fact that Neumann boundary conditions are imposed on
the acoustic pressure u and the absorbtion of the energy (dissipation) occurs only
on a portion ( 1) of it, standard radial multipliers used in observability theory of
waves do not apply. There is a conicting sign requirement for the vector eld to
be constructed [24, 22]. To resolve this issue one needs to construct a dierent
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multiplier with the property that its Jacobian generates a positive metric, and at the
same time complies with the conicting sign on 1. This has been accomplished (see for
instance [24]) under the condition that the non-dissipative part of the boundary is
convex and leads to a construction of a special vector eld h 2 C* which enjoys the
following properties [22]

h =0on o J(h(x)) co> 0;x2

where J (h) denotes the Jacobian matrix of the vector eld h. Such vector eld has been
constructed in [24] based on the idea introduced in [32] and further generalised in [22]
for domains
with the properties: ¢ is a convex part of which also satises star shaped condition:

(x xo0) 6 0; on g; for some xo 2 R" (32)

The condition (32) guarantees that a suciently large portion of the boundary
is under absorbtion. This is typical condition required by Moravetz-Strauss theory.
However, convexity of ¢ is a new requirement. This allows for a construction of
suitable vector eld with the postulated properties. The construction is based on a
perturbation [bending tangentially] of the radial vector eld. With that eld h in
hand, we rst multiply equation (26) by h rz integrate by parts in (s; T s)
. This gives

Z1 ¢ Z:1 ¢
b J(h)jrzizd L t
2 g+ 22 bjrzj?2 divihd 5
dt =
S
7.7 27
5 Utt(f\ rz)d 5
dt™ ° zzi(h rz)d 7z s
S
S
T s T s
+ z, bjrzj? (h)d 1dt+ z, bjrzj? (h)d odt (33)Z
T s ' ZT s ’
+b @z(h rz)d dt+ f(h rz)d
dt: (34) s s

where we notice that the second term in (33) vanishes sinceh = 0on o:
Next, we multiply equation (26) by zdiv(h) and integrate by partsin (s; T s)
. This leads to

Z+1 ¢ Z; 7
bjrzj> z? div(h)d

t

~
1]

b

2 s
1@zzdiv(h)d dt Z ¢
EZ ’ T s
Zz z uwzdiv(h)d Z z

ztzdiv(h)d

)| NN Pa
[35Y



s
T s

zrz r(div(h))d
dt+ fzdiv(h)d
dt: (35) s
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Adding (34) with (35) we have
b Z1 ¢
Z J(h)jrzj?d
2 dt = (36)
Z A z Ts Z1 ¢
uttAn(z)d
dt ziAn(z)d s
1 + fAn(z)d s

2dt°Z ;
Z. 2

+ th bjrzj? (h )d 1dt+ b @zAn(z)d dt
z:z' S

zrz r(div(h))d
dt (37) s

N | o

1
where An(z) = hrz + Ezdiv(h). Notice now that, we have the upper estimate
kAnzlkz, 2 2

) krz kLz(
)+ kz kLz(
)3, which combined with Peter-Paul’s inequality implies
YRS zZ, 2
UttAh(Z)d E s
dt . "jrzj?d 2 s
dt
S
IIZ T Z # s
+ Cr juwj’d
dt + lot(z) (38)
S
for " > 0 to be precised later. Analogously, we deal with the last integral in the

RHS of (37) as follows
z T sz z T s 7
b zrzr(div(h))d b
2 dt.  "jrzj3d 2
dt+ Crlot(z): (39) s

Plugging (38) and (39) into (37) and choosing " < J(h)=2 we conclude the following
upper estimate for the potential energy of z

Z: 2 z
b jrzjd
dt. [Ei(s)+ Ex(T)]+ b  1jz?ds’
z Z: . b
+ jugj?dQ+ 2 jrzj2(h )d 1dt (40)
z:z T2
+b @zAn(z)d dt+ f2dQ + lot(z): s
Q

In order to obtain the estimate for the kinetic part of the energy, we multiply (26)
by z and integrate by parts over (s; T s)
to obtain



Z T z Z T SZ Z T Sz
bjrzj? th d
dt + 022C| odt = fzd
S s S b S
dt Z ; b
s 0 2 s
z z T V4 T
UttZd
dt ZtZd
+ 122d 1 : (41) s
s 1 s

3By a . b we mean that there exists a constant C > 0 { possibly depending on any xed
quantity of the problem: c;b; ;1 and maxjh(x)j { but independent of time and .
X2
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Identity (41) implies the following upper estimate for the kinetic energy

IZTSZ..Z bZTSZ bZTSZ
= jz:j°d > >
dt . jrzjd
dt+ 0jzj’d o
S
Z S
tt
z z° ° (42) +[Ex(s) + Ex(T)I+ b 1jzj’di+  u?

da+  f2dQ+ lot(z):
1 Q Q

Combining (40) with (42) and accounting for (18) we conclude

Z. . z
Ei(t)dt. [Ei(s)+ E1(T s)]+ b  1jzj?ds
s z L7 (43)
+ uldQ+ lot(z)+ (s;T s)+  f2dQ
Q Q
where
b Z1 2 Z1 2
(s;T s)= 2 jrzj%(h )d 1dt+ b @zAn(z)d dt
2 . 1 s

and the boundary integral . jzj’d o resulting from (18) is included in lot(z). The
latter is by virtue of trace estimate and compact embedding H?(
) H 1=2(
): The bowndary integrals above are estimated next. Recalling the notation An(z) =

hrz + zzdiv(h); we have

z T s z z T s z
(T )= g jrzji2(h )didt+ b @z(h rz)ddt
1 7 ] 7 s
b S
v @zzdiv(h)ddt (44)
S
b b
) o+ bl2 + ) bs:
Moreover, we write the gradient at the boundary as
X 1 X 1
rz = (rz, )+ (rz i), =, (@z2)+ (@ z)i;:
[_Z)ZZ_} i=1 %zz-} i=1

which implies jrzj? = j@zj?+j@ zj?. These along with the boundary conditions for

the z{equation allow us to estimate the rst integral in the RHS of (44) as follows
z z T s

ilaj . 1jztj%d1 + I@ZkLZZ( ydt: (45)

1 S

The second integral |2 is more involved. We rst rewrite it as Z

T s z
Iy = @z(h rz)d idt
z, .z" YA v
= j@zi(h )d 1dt+ . @@z(h )ddt s (46)
1 : 1 0

l2;1+ l2;2 + l2;3
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and then estimate the three resulting boundary integral terms. We notice that the

boundary conditions for z on 1 allow us to estimate 1.1 as
4

I2;1 . 1thjzd1: (47)
1
and Iz;2 as
z T s z z z T s
l2.2 = @@z(h )d 1dt. 1jzej2ds + k@zk?2 (| dt: (48)
s 1 1 s
For the remaining integral 12,3 we use the boundary condition for z on o: @z=
z and the trace theorem, which implies that zj ; 2 H 1=2( ). On the other hand,
since z 2 H{(

) we have @ 2 H 1=2(
). Hence, for " > 0 we have

Z: .2
lp,3 = @@z (h )d odts
0
Z
Ck@zk, % + "k@zk ;2 dt
2, Z;
S G kek? dt+ " kakd, |
dt  © (49)
Cr } kz I, 100 2
Z n
dt+ " kzkyl
0
ydtr
" krzk, 2
0

Jdt + Cr lot(z)

for " > 0 to be determined. Here also, the boundary term in (18) is included in a
lower order term.
Plugging (47), (48) and (49) into (46) we estimate |, as
Z Z T S Z T
il2j - 1jztj%d1 + k@zk 2 dt+ " krzk 2
s 0

ydt+ Crlot(z) (50)

Finally, integral I3 is estimated as

Z: . Z y4
i) - j@z® + jzj’d dt. 1jzej2d1dt + lot(z): s (51)
1
Collecting (45), (50) and (51) and returning to (44) we conclude
z z T s

(5T sl ajzjld+ k@zk 2 ,dt

' z;:° (52)
+" krzk{2
0

ydt+ Cr lot(z):

The tangential derivative above is estimated using an adaptation of Lemma 2.1 in
[23], which was obtained for the homogeneous case,
z T s
I@Zko;z 1dt 6
'z . * # (53)



Cr kezky + kziko, ,dt+ lot(z) + kuw + fky 1245 (q)
0
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Combining (52) and (53) we arrive at

Z; z
js;T s)j. " krzk, 2
0 .
ydt+ Cr 1jzej2d1 + lot(z) !
1 (54)
+kUtt + kaZ 1=2+5(Q)
Returning with (54) to (43) and choosing " > 0 properly we conclude (30). O

Our next result deals with lot(z), which can be absorbed by the damping using a
compactness unigueness argument.

Proposition 4.3. For T > 0 there exists a constant Ct > 0 such that the following
inequality holds:

VA VA
lot(z) Ct b 1jzej2ds + jugj’dQ (55)
1 Q
Proof. As pointed out in (30), we haye
lot(z) C sup kzk? 1 (ot kzik? ( °,
t2[0;T]

) )
for 2 (0;1=2). Then we prove Proposition (4.3) as a corollary of the following
Lemma

Lemma 4.4. For every 2 (0;1=2),there exists a constant Ct; > 0 such that

Z Z

k(z; zt)R 20,741

JH |

)6 Cr b ajzjdi+  juwi’dQ (56)

1 Q

Proof. Using the notation of [30], let X = HL(
), B = H! (
) and Y = H (

): Then it follows from [26, Theorem 16.1] that the injection of X in B is compact.
Moreover, since 2 (0;1=2), [26, Theorem 12.4] allows us to write

Y =H (

)= (L%

);H

)L
and then the injection of B in Y is continuous (even dense). Introduce the space
as

fv 2 L2(0; T;X);v. 2 L?(0; T; Y )g
equipped with the norm

kvk = kvkiz2(0;1:x) + KV_Ki2(0;7:v):

Then it follows from [30] that the injection of W into LZ(0; T; B) is compact. We
are then ready for proving (56)

By contradiction, suppose that there exists a sequence of initial data fuon; U1n; U2ng
with corresponding E"(0) energy uniformly (in n) bounded generating a sequence
fun; u n; @hg of solutions of problem (14) with related sequence

CZ 2
Zn = Fun + Un;Zn =

solutions of problem 20 such that

2 2
ngnkLZ(o;T;H1 (



N+ kznkiz o
1

(@n) dQ+

0

))

(

(573)22 T v

1(zn) d1!

0; asn!

+1:

(57b)
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From idenity (29) (with f = 0) we see that the uniform boundedness E7(0)
implies uniform boundedness of EYj(t), t 2 [0;T]. Therefore, one might choose a
(non{relabeled) subsequence satisfying

zn ! some; weak in L*(0; T; H(
) (58a)
zn ! some 1; weak in LY(0; T; L?(
), 1 L2(0; TS H

)); (58b)
=2y, 1 some; weak in L1(0; T; L?(
)); (58¢)
It easily follows from distributional calculus that _= 1 and, in the limit, the
functions and satisfy the equation
8
~p 2 inQ (59a)
> 2
=22 (59b)
b
@ - 0 @
? @+ 1 =0 @+ o = 0: (59¢)

1 0
plus respective initial data.
It follows from the weak convergence that there exist M independent of n such
that
k(zn; Z_n)kLl(o,-T,-Hl(
JH

for all n. Then, by compactness (of in L2(0;T;H! (
)) there exists a subse-quence, still indexed by n, such that

zn | strongly in L2(0; T; HY (
): (61)

Next we show that and are zero elements. Indeed, from (57b) we obtain that

1=24, ! 0 ) in L2(0; T; L%(
Jandz,j ! O in_Lzl(O;T; L%2( 1)): This impliesthat _= 0andj = 0. Indeed,
the last claim  follows from '=2a&, ! in H 1(0; T; L%

) where by the uniqueness of the limit one must have _ 0 . Similar

argument applies to infer j = O:
Next, passing to the limit as n ! 1 vyields the following over determined (on

1) problem:
8
.., ¢
= - (62b)
:> % = 0; g+ o =0 Jd,=0 (62c)

plus respective initial data.
The overdetermined {problem implies in particular with v

v = bv
with the overdetermined boundary conditions

AN
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which yields overdetermination of boundary data on ; for the wave operator. This
gives v 0, hence + 0 and t = 0 distributionally . Using this information in (59a)

yields
= 0; @ = 0; @+ 0 = 0:

1 0
Standard elliptic estimate, along with o > 0 gives 0in Q:

Finally, weak convergence of Zn in L1(0; T; L%
) and the compacity of _ L2(
) into H (
) (see [26, Theorem 16.1 with s = 0 and " = ])[so zn(t) ! (t) strongly in H (
) for a.e. t 2 [0;T]] allow us to compute (due to Lebesgue dominated
convergence theorem):
Z; Z;
n”!nl kznkzl'z(O;T;H ( n!1 ’ n!1 ’
) = ”m an(t)kH (
0 -
ydt = lim kzn(t)ky |
0
ydt
= kkLé(o;T;H (

y = Osince 0in Q: Then, passing with the limitasn! 1 in (57a) we have
0= kzkyz2(o;7;n1 ¢
j) = 1; which is a contradiction. The Lemma is proved. O
Lemma 4.4 implies in a straightforward way the result of the proposition 4.3. [

We are ready to establish the exponential decay of the the energy functional E;.

Theorem 4.5. Assume that f = 0. Hence, the energy functional E1 is exponen-
tially stable, i.e. there exists T > 0 and constants M; ! > 0 such that

E1(t) Me 'tE1(0); fort> T: (63)
Proof. Using identity (29) we have
Z. Z;
+ E1(t)dt 2sE1(0):0
T s

Since s < T=2 can be taken arbitrarily small, we x s < 1=2 in the above inequality
and use it to completethe L*{norm of the energy E , in (30). We obtai

Zq
E1(t)dt. E1(0)+ E1(s)+ E1(T s)
%z z (64)
+Crt bth d12+ UttdQ"'z lOt(Z)
. o}

The remaining terms in s are estimated using the dissipativity of E1 (see identity
(29) for f = 0). In fact we rewrite the above as follows

Z; z z
Ei(t)dt. E1(T)+ Ct b1z, dZ+ u,dQ ¥ lot(z)
0 1 Q
The lot (z) is \absorved" using Lemma 4.3, thus
Z z v4
E.(t)dt. E1(T)+ Ct b1z, dZ+ u,dQ 2 (65)
(o] 1 Q
On the other hand, using identity (29) (with f = 0) once more, we deduce
e y4 y4
TEL(T) . E1(t)dt+ Cy b1z, d2+ u,dQ 2 (66)

0 1 Q
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Combining (65) and (66) we arrive at
Z z z (T
C)E1(T) + Eq1(t)dt Cr b122d1+ tu2 dQ ;
0 1 Q

tt

for some C > 0. Choosing T = 2C and replacing the \damping" term using identity
(29) (with f = 0) we rewrite the above estimate as follows
Zq
E1(T)+ Ea(t)dt. Cy[E2(0) Ex(T)]o
which implies

E1(T) );

C
—1—E1(0

+ CT
Jl_{Z—

where 0 < < 1 does not depend on the solution. Repeating the process on the
interval [mT; (m+ 1)T] and we obtain E1((m + 1)T) E1(mT), for every m 0. This
implies

Ex(mT) ME1(0);
for every m 1. Thus, fort> T we writet= mT + s, withs2 (0;T] and m 1,
which implies

Ex(t) Ex(mT) ™E1(0) = e I™MEL(0)= e 1M E1(0) = e " tES (O)Which
implies (63) with ! = jInj=T and M = 1=. -

The previous result is key to establish the exponential stability of E(t), which is
given next.

Proof of Theorem 2.2. Notice that the exponential decay for E;1 obtained in
Theorem (4.5) implies exponential decay of the quantities kzkpai-2); kztk 2
), and we will show that this implies exponential decay of E. In view of Lemma 4.1,
the only remaining quantity we need to show exponential decay is kukp(a1-2) and
this follows from the fact that bu; + c?u = z. Indeed, the variation of parameter
formula implies that

VA
u(t)= e tug+ Ot e « )z()d; (67)
then, computing the D(A*=2){norm both sidezs we estimate
ku(t)kp(ai-z) 6 € tkuokpai-z) + te St Tkz()kpar-2)d (68)
hence it follows from (63) that ’ .
t

ku(t)kp(ai-z) 6 € 5tkuokpaisy + ME1(0) e %) 'do
CZ
(2 bl)(e 't e FY

Ic?

6 e TYE(0)+ ME(0) 6 Me 'TE(0):

2 2
where we have made the benign assumption that % > | from (63), asif | >

c? c2
we use formula (63) with !4 :=F "so! > 14 and?> 1.
The proof is complete. O
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