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Abstract. Boundary feedback stabilization of a critical third–order (in time)
semilinear Jordan–Moore–Gibson–Thompson (JMGT) is considered. The word

critical here refers to the usual case where media–damping effects are non–

existent or non–measurable and therefore cannot be relied upon for stabiliza-
tion purposes. Motivated by modeling aspects in high-intensity focused ul-

trasound (HIFU) technology, the boundary feedback under consideration is
supported only on a portion of the boundary. At the same time, the remain-

ing part is undissipated and subject to Neumann/Robin boundary conditions.

As such, unlike Dirichlet, it fails to satisfy the Lopatinski condition, a fact
which compromises tangential regularity on the boundary [37]. In such a con-

figuration, the analysis of uniform stabilization from the boundary becomes

subtle and requires careful geometric considerations and microlocal analysis
estimates. The nonlinear effects in the model demand construction of suitably

small solutions which are invariant under the dynamics. The assumed small-

ness of the initial data is required only at the lowest energy level topology,
which is sufficient to construct sufficiently smooth solutions to the nonlinear

model.

1. Introduction.

1.1. PDE Model and an Overview. Let Ω ⊂ Rd (d = 2, 3) denote a bounded
domain with sufficiently smooth boundary Γ := ∂Ω within which a sound wave
propagates. In HIFU technology, as well as in other related areas, one is interested
in tracking – and often controlling – the evolution of an acoustic pressure u =
u(t, x) (t ∈ R+, x ∈ Ω) triggered by wave propagation. In media within which
heat propagates hyperbolically (which is the case of most biological tissues), the
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evolution of the acoustic pressure can be assumed to obey the semilinear JMGT
equation which is given by the third order in time abstract evolution equation

τuttt + (α− 2ku)utt − c2∆u− (δ + τc2)∆ut = 2ku2
t , (1)

where c, δ, k > 0 are constants representing the speed and diffusivity of sound and
a nonlinearity parameter, respectively, while the function α : Ω → R+ accounts
for a natural frictional damping with the quantitative properties depending on the
media. The parameter τ > 0 – also media–dependent – accounts for time relaxation
and essentially transfers the hyperbolicity of the heat to the acoustic wave.

The semilinear equation (1.1) can be viewed as a singular perturbation and, to
some extent, a refinement of the classical quasilinear Westervelt’s equation

(α− 2ku)utt − c2∆u− δ∆ut = 2ku2
t . (2)

obtained by setting τ = 0. Physically, the main difference between (1.1) and (1.1)
is that the latter accounts for finite speed of propagation of the heat waves. From
the modeling point of view, this results from using Maxwell-Cattaneo Law – rather
than Fourrier’s Law – to model the heat flux for the acoustic heat waves. More
details regarding the physical interpretation of the model (1.1), its derivation and
overall discussion see [18, 9, 10, 40, 12, 19]. An analysis of asymptotic behavior of
solutions when the parameter of relaxation tends to zero can be found in: [24, 25, 3].

The issues of wellposedness and stability of solutions under homogeneous Dirich-
let and Neumann boundary data were first addressed for both nonlinear and lin-
earized (k = 0) dynamics around 2010, see [22, 33, 23]. For the analysis of long–time
dynamics of (1.1), in both linear and nonlinear cases, the function

γ : Ω→ R, γ(x) ≡ α(x)− τc2

b

plays a central role. In fact, the existence of a positive constant γ0 such that
γ(x) > γ0 > 0 a.e. in Ω ensures both: that the linear dynamics is uniformly
exponentially stable and that stable nonlinear flows can be constructed via a barrier
method [23]. A natural question to ask appears to be: what about other profiles of
γ? It is known that if γ < 0 one may have chaotic solution [13] and if γ ≡ 0 then
the energy is conserved [22]. This raises an interesting question: which mechanisms
could be employed to ensure the stability of the dynamics when γ degenerates, i.e.,
γ(x) > 0? Here “criticality” is used within the context of stability rather than
nonlinear parameters related to the validity of Sobolev’s embeddings.

From a practical point of view, the quantity γ(x) is interpreted as the viscoelas-
ticity of the material point x ∈ Ω and, in particular, in the medical field, is not
expected to be known for all points of Ω. By making the physically relevant as-
sumption that γ ∈ L∞(Ω), γ(x) > 0 a.e. in Ω (allowing the critical case γ ≡ 0,
or the case where measurements can only be made at isolated points of the do-
main), we ask the question of whether a non–invasive (boundary) action can drive
the acoustic pressure asymptotically to zero, regardless of the particular knowledge
of γ (as long as it is nonnegative). This question, besides being of independent
interest in stability theory, is critical in ensuring global wellposedness of nonlinear
dynamics. Otherwise, the nonlinearity may cause blow-up of solutions [11].

It has been recently shown that added viscoelastic effects produce, in some cases,
the asymptotic decay of the energy. The type of the results obtained depend on
the properties of the viscoelastic kernel, which requires rather special structural
properties in order to produce the exponential decays in the critical case [30, 31, 14,
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Figure 1. Representation of the domain

15, 17, 16]. Even more, unlike a wave equation, it is known [17] that viscous effects
acting upon pressure only u(t, x) can not produce uniform decays of the energy in
the critical case. Because of the above, the question of identifying other mechanisms
forcing the energy of critical MGT to decay uniformly to zero is of paramount
interest. Boundary dissipation is a natural, physically attractive candidate since
the control action is applied on the boundary only. Hence it is easily accessible to
external manipulations. As always in the case of boundary dissipation in hyperbolic
dynamics, geometric configuration for the damping plays a pivotal role.

Of particular interest is a configuration arising in the ultrasound technology,
where an acoustic medium is excited on one part of the boundary while the remain-
ing part is subject to absorbing boundary conditions, see Fig 1. This control model
was introduced in [21, 20] in the case of Westervelt–Kuznetsov equation and later
pursued in [8] for a finite time horizon MGT equation. This corresponds to the
following boundary conditions

λ∂νu+ κ0(x)u = 0 on Σ0 := (0, T )× Γ0

∂νu+ κ1(x)ut = 0 on Σ1 := (0, T )× Γ1
(3)

with Γ0,Γ1 ⊂ Γ relatively open, Γ0 6= ∅, Γ0 ∪ Γ1 = Γ, Γ0 ∩ Γ1 = ∅, λ > 0,
κ0 ∈ L∞(Γ0), κ1 ∈ L∞(Γ1), κi ≥ 0.

Remark 1.1. Note that the boundary conditions imposed on Γ change the struc-
ture from Γ0 to Γ1. This particular model is motivated by applications [21, 20] where
only one part of the boundary is subject to dissipation (Γ1 ), while the other part is
left free or subject to some control actions. When λ = 0, the boundary conditions
in (1.1) are of mixed type-involving both Dirichlet and Neumann boundary condi-
tions. It is known that mixed boundary conditions, imposed on the same part of the
boundary and not separated, lead to singularities of the corresponding elliptic solu-
tions [38]. Maximal amount of regularity in the case κ0 = κ1 ≡ 0 , as shown in [38],

is up to B
3/2
2,∞(Ω), the latter stands for Besov’s space. Some regularity improvement

is possible, assuming that the two boundaries meet under a certain angle. For this
reason, when considering boundary stabilization problems for Dirichlet–Neumann
problem, it is typically assumed that Γ0 and Γ1 do not intersect.

However, the situation is different when λ > 0 say, without loss of generality,
λ = 1. This Neumann-Robin case is under consideration in the present paper. The
principal symbols associated with the boundary conditions on both parts Γ0 and Γ1
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are the same, so the regularity of the elliptic solutions is dictated by the regularity
of the forcing on the boundary, in line with standard elliptic theory [32]. More on
this will be given later.

1.2. Past results. The boundary stabilization of MGT dynamics, in the critical
case, has been considered only very recently and for linear models only. In [4], linear
dynamics is considered in the Dirichlet–Neumann case, i.e., λ = 0 and κ0 ≡ κ1 ≡ 1
in (1.1). However, this configuration, due to the regularity issues associated with
mixed boundary value problems, as noted before, requires the two parts of the
boundary to be separated. Stabilization estimates require the domain Ω to be star-
shaped. This latter restriction has been removed in [6], still for the linear dynamics,
by resorting to a microlocal analysis argument. The final result in [6] holds without
any geometric conditions on the controlled part of the boundary, and only the
uncontrolled part is subject to the star-shaped condition. This is in line with the
physics of the problem.

In the case of boundary conditions in (1.1) with λ > 0, both parts of the boundary
are adjacent, thus touching, and we are dealing with the Neumann–Robin problem.
This allows the propagation of higher-order regularity, up to H2(Ω). However,
the question of propagating stability through suitable flux multipliers now becomes
problematic. This is due to the failure of the Lopatinski condition [37] on the
non-dissipated part Γ0 of the boundary and is discussed below.

It is well known that the failure of the strong Lopatinski condition [42, 41] leads
to new challenges at the level of proving controllability or stabilization even for the
wave equation in dimensions higher than one. The mathematical-technical reason
for this is that the presence of tangential boundary derivatives on Γ0 cannot be
handled by the standard flux multiplier methods suitable for studying controllability
or stabilization from the boundary. Note that in the Dirichlet case the corresponding
tangential traces on the non-dissipated part are simply zero.

The first progress in solving this open problem in the MGT case was made in [5],
where linear model is considered. There it is shown that the energy decays expo-
nentially at the low (base) level. This result is obtained by a suitable construction
of flux multipliers under certain geometrical constraints imposed on the boundary.
The imposed geometric conditions require convexity of the level sets of the part of
the boundary that is not subject to dissipation. For the nonlinear case, one needs
to “boost” these estimates to higher topological levels. However, nonlinear effects
force a different functional environment in which the higher-level energy function-
als and the higher topology of the solutions must be controlled in time. Moreover,
quasilinear effects force one to consider appropriately small solutions. Thus, obtain-
ing stability estimates, at several topological levels, which are also invariant subject
to the dynamics lies at the heart of the matter of the nonlinear problem.

1.3. New Challenge. The main challenge of the present work is to study the
problem for the nonlinear dynamics. This is non-trivial for at least three reasons:
first, the nonlinear effects require a higher degree of regularity, which automatically
forces one to raise the stabilization estimates to higher topological levels. Combined
with the dynamics at the boundary, it is challenging to lift the linear estimates to
higher levels. This is due to the geometry and the fact that the usual multipliers are
not commutative with the generator. The second reason is that the initial data for
nonlinear problems must be well prepared. This includes compatibility conditions
and also suitable smallnesss of the energy solutions. To deal with the latter problem,
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the smallness requirement is imposed only for the lower topology of the initial data.
The analysis performed shows that this smallness is propagated by the dynamics
at the lower topological level so that the higher derivatives can remain large. This
is the crucial point for the claim that the presented framework preserves the fully
nonlinear properties of the model and the resulting acoustic waves remain genuinely
nonlinear. Finally, the third reason is that geometric configurations are necessary
for “trapping” the energy rays. The estimates must be boosted to higher energy
levels while maintaining smallness only at the lowest energy level, so this is not a
perturbation argument.

For other relatively recent references related to the questions of boundary regu-
larity for linear MGT equation, the interested reader is referred to: [7, 36, 43].

2. Main Results and discussion. Let Ω ∈ BR3 be a bounded domain with C2

boundary Γ = Γ0 ∪ Γ1, where Γ0,Γ1 are relatively open, nonempty subsets of Γ.
Consider the following PDE system:

τuttt + αutt − c2∆u− (δ + τc2)∆ut = u2
t + uutt in Q := (0, T )× Ω

∂νu+ κ0(x)u = 0 on Σ0 := (0, T )× Γ0

∂νu+ κ1(x)ut = 0 on Σ1 := (0, T )× Γ1

u(0, x) = u0(x), ut(0, x) = u1(x), utt(0, x) = u2(x) in Ω

(4)

where we assume without loss of generality that λ = 1 and 2k = 1 in (1.1).

Notation. Here and throughout the paper we denote by L2(Ω) and L2(Γ) the sets of
measurable (in the Lebesgue and Hausdorff measures, respectively) functions whose
squares are integrable on Ω and Γ respectively, equipped with the norms given by
the inner products

(u, v) =

∫
Ω

uvdΩ and (u, v)Γ =

∫
Γ

uvdΓ.

and denoted respectively by ‖ · ‖2 and ‖ · ‖Γ. The remaining Lp(Ω)– spaces (1 6
p 6 ∞) will also have norms denoted by ‖ · ‖p. In addition, we denote by Hs(Ω)
the (L2–based) Sobolev space of order s ∈ R [32]. Let Bsp,q(D) denote Besov spaces
of order s > 0 , 1 6 p 6 q 6∞ defined on a domain D (be it Ω or a boundary Γ),
see [34, Section 3.3].

2.1. Functional Analytic Setting. Let A : D(A) ⊂ L2(Ω) → L2(Ω) be the
operator defined as

Aξ = −∆ξ, D(A)=
{
ξ ∈ L2(Ω); ∆u∈L2(Ω) and ∂νξ|Γ1

=0, [∂νξ + κ0ξ]Γ0
=0
}
.

In this case A is a positive self–adjoint operator with compact resolvent. With
κ0(x) > 0, on an open set of Γ0, D

(
A1/2

)
= H1(Ω) with the – equivalent to H1(Ω)

– topology of D(A1/2) given by

‖u‖2D(A1/2) := ‖∇u‖22 +

∫
Γ0

κ0|u|2dΓ0.

Moreover, with some abuse of notation, we (also) denote by A : L2(Ω) → [D(A)]′

the extension (by duality) of the operator A.
The phase space H is given by

H := D(A1/2)×D(A1/2)× L2(Ω) ∼ H1(Ω)×H1(Ω)× L2(Ω).
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Since the main emphasis in the paper is on nonlinear dynamics, one needs to
work with more regular solutions. For this, an additional regularity of the co-
efficients κi will be required. In what follows, we shall assume (conservatively)
that κi ∈ W 1

p (Γi), p > 2 .The above regularity implies that κi are the multipli-
ers on Hs(Γi), i = 0, 1 and 0 < s < 1/2. Indeed, for the latter it suffices that

κi ∈ L∞(Γi) ∩B1/2
4,∞(Γi), i = 0, 1, [34, p. 126].

Under such assumption one has the following regularity of the domain D(A),

D(A) ⊂ Hθ(Ω); θ < 2

Remark 2.1. Note that the restriction θ < 2 is due to possible singularity caused
by Robin–Neumann boundary conditions. Indeed, κi ∈W 1

p (Γi), p > 2, yields κiu ∈
Hs(Γi), s ≤ 1/2 for u ∈ H1(Ω) [34]. However, the singularity of the characteristic
function across the interface (from Γ0 to Γ1) propagates only H1/2−ε(Γ) regularity
for the normal derivative on Γ. If one assumes that κi’s are also of compact support
in Γi, then θ can be taken equal to two. For analysis in this paper θ < 2 provides
sufficient regularity.

Next, we rewrite (2) as a first–order abstract system on H. For this, we introduce
the classical boundary → interior harmonic extension for the Neumann data on Γ1

as follows: for ϕ ∈ L2(Γ1), let ψ := N(ϕ), be the unique solution of the elliptic
problem 

∆ψ = 0 in Ω

∂νψ = ϕ|Γ1
on Γ1

∂νψ + κ0ψ = 0 on Γ0.

From elliptic theory, it follows that that N ∈ L(Hs(Γ1), Hs+3/2(Ω)), (0 ≤ s < 1/2)
and

N∗Aξ =

{
ξ on Γ1

0 on Γ0,

for all ξ ∈ D(A), where N∗ represents the adjoint of N when it is considered as an
operator from L2(Γ1) to L2(Ω) [28, 32].

The u–problem can be written (via duality on [D(A)]′) as

τuttt+αutt+c
2Au+bAut+c

2AN(κ1N
∗Aut)+bAN(κ1N

∗Autt)=u2
t +uutt (5)

Next, we introduce the operator A : D(A) ⊂ H→ H with the action:

A


ξ1

ξ2

ξ3

:=


0 I 0

0 0 I

−c
2

τ
A −c

2

τ
AN(κ1N

∗A)−b
τ
A − b

τ
AN(κ1N

∗A)−α
τ
I



ξ1

ξ2

ξ3

 (6)

and the domain (with ~ξ ≡ (ξ1, ξ2, ξ3)>)

D(A) =
{
~ξ ∈ H; ξ3 ∈ D

(
A1/2

)
, ξi +N(κ1N

∗Aξi+1) ∈ D(A), for i = 1, 2
}

This gives (see Remark 2.1 and the regularity of the Neumann-Robin map)

D(A) ⊂ Hθ(Ω)×Hθ(Ω)×H1(Ω), θ < 2

with a proper injection.
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The first order abstract version of the u–problem is thus given by{
Φt = AΦ + F(Φ)

Φ(0) = Φ0 = (u0, u1, u2)>,
(7)

in the variable Φ = (u, ut, utt)
> with A defined in (2.1) and F(Φ)> ≡ (0, 0, τ−1(u2

t +
uutt)).

To treat the nonlinear problem one needs to consider “smoother” solutions than
those generated by the topology of H. This leads to the following construction of
the second phase space denoted by H1, which is“tighter” than H but strictly larger
than D(A). The new phase space H1 is defined as

H1 = {~ξ ∈ H; ∆ξ1 ∈ L2(Ω); [∂νξ1 + κ0ξ1]Γ0
= 0; [∂νξ1 + κ1ξ2]Γ1

= 0}

and endowed with the norm

‖~ξ‖2H1
= ‖~ξ‖2H + ‖∆ξ1‖22

We remark that the boundary conditions in the definition of the space H1 are well
defined due to the property: ∆ξ1 ∈ L2(Ω) and ξ1 ∈ H1(Ω) then ∂νξ1 ∈ H−1/2(Γ)
– the latter allowing to define the boundary conditions as a distribution. We also
note that since ξ1, ξ2 ∈ H1(Ω) we have ξi|Γi ∈ H1/2(Γi) (i = 1, 2) and therefore

∂νξi ∈ H1/2(Γi), the latter a consequence of regularity of κi ∈ B1/2
4,∞(Ω).This, along

with the elliptic regularity implies:

H1 ⊂ Hθ(Ω)×H1(Ω)× L2(Ω), θ < 2

with a proper injection, see also Remark 2.1. Note also the inequality

‖~ξ‖2H1
≤ ||~ξ‖2H + ‖∆ξ1‖22 + ‖∂νξ1‖2H1/2(Γ) ∼ ||~ξ‖

2
H + ||ξ1||2H2(Ω)

The important property is that the nonlinear term in (2.1) is invariant under H1

topology in dimensions up to 3. This will be extensively used throughout the paper.

2.2. Formulation of Main Results. We begin with a preliminary result on the
generation of linear semigroups within the framework of spaces H and H1. The
operator A generates a C0 semigroup S(t) on H, as shown in [5] . We shall show
that the action defined by A with its natural domain also generates a C0–semigroup
{T (t)}t>0 on H1.

Theorem 2.2 (Generation). Let S(t) , t ≥ 0, denote the C0 semigroup generated
by A on the space H. Then, the family T (t) := S(t)|H1

, t > 0, is also a C0–semigroup
with the generator A and its realization on H1.

The second result deals with an exponential stability of the semigroups on the
phase space H and H1. For this, one needs to introduce the following geometric
condition.

Assumption 2.3. The boundary Γ0 is star–shaped and convex. This is to say:
there exists x0 ∈ Rn such that (x − x0) · ν(x) 6 0 for all x ∈ Γ0 where ν(x) is the
outwards normal vector to the boundary at x. In addition, there exists a convex level
set function which defines Γ0, see [29]. We shall also assume that the coefficient κ0

has its support nonempty and compact in Γ0, while κ1(x) ≥ κ1 > 0, x ∈ Γ1.
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As shown in [5], Assumption 2.3 is sufficient for the semigroup S(t) to be expo-
nentially stable on H. We shall show that exponential stability also holds on H1.
This will be critical for the study of the nonlinear problem. The corresponding
result is formulated below.

Theorem 2.4 (Two level uniform stability). Let Assumption 2.3 on Γ be in
force and let γ(x) > 0. Then the semigroup {T (t)}t>0 generated by A in H1 is
uniformly exponentially stable with decay rate ω1 > 0, where ω1 < ω0 with ω0 the
decay rate corresponding to the semigroup S(t).

Once linear wellposedness and uniform stability of the linear (k = 0) problem
are established with respect to the appropriate topologies, our next task is to prove
the wellposedness of nonlinear dynamics on H1. To accomplish this, initial data
need to be assumed sufficiently small. How small? This is an important question
as argued in [3]. We will be able to show that some smallness will be imposed only
at the lowest level of regularity H, while higher derivatives can remain large. As
a consequence, in the following theorem, we establish the existence of H1–valued
solutions with given H1 small initial data in H only. The proof, given in Section
5, relies on estimates derived via interpolation inequalities which allow exhibiting
certain “invariance” of a H-small ball under the nonlinear dynamics in H1.

We start specifying the notion of solution for the semilinear problem (2). We
denote the initial data here by Φ0 = (u0, u1, u2)>. Given T > 0, we say that

Φ(t) = (u(t), ut(t), utt(t))

is a mild solution for the system (2) provided Φ ∈ C([0, T ],H1) and

Φ(t) = T (t)Φ0 +

∫ t

0

T (t− τ)F(Φ)(τ)dτ. (8)

It is important to notice that the notion of mild solution given above cannot be
extended to the base topological level H. The reason is that the nonlinearity, here
described by the function F , is not invariant under H, hence justifying the need for
a smoother phase space.

Before stating the theorem, we denote by Hρ (for ρ > 0) the set

Hρ := {Φ ∈ H1; ‖Φ‖H < ρ} .
Theorem 2.5 (Global Solutions). Let Assumption 2.3 be imposed on Γ. Then,
there exists ρ > 0 sufficiently small (depending on the parameters in the equation),
such that, given any Φ0 ∈ Hρ the formula (2.2) defines a continuous H1–valued mild
solution for the system (2). Moreover, for such ρ > 0, there exists R = R(‖Φ0‖H1

)
such that all trajectories starting in BHρ(0, R)1 remain in BHρ(0, R1) for all t > 0,
for some R1 > R.

Once global solutions are shown to exist, we take on the issue of asymptotic (in
time) stability. The final result is positive and it and holds uniformly (w.r.t γ) as
long as γ ∈ L∞(Ω) and γ(x) > 0 a.e. in Ω.

Theorem 2.6 (Nonlinear Uniform Stability). Let Assumption 2.3 imposed on
Γ be in force and assume γ ∈ L∞(Ω) and γ(x) > 0. Then, there exists ρ > 0
sufficiently small and M(ρ), ω > 0 such that if Φ0 ∈ Hρ then

‖Φ(t)‖H1
6M(ρ)e−ωt‖Φ0‖H1

, t > 0

1The Hρ–ball centered at the origin and with radius R.
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where Φ is the mild solution given by Theorem 2.5.

2.3. Discussion. The main novelty of the present paper is the study of stabiliz-
ability of a nonlinear critical JMGT equation with Neumann–Robin undissipated
portion of the boundary. Should the problem be subcritical (i.e. γ(x) > γ0 > 0
for x ∈ Ω), the difficulty created by the failure of the Lopatinski condition would
not enter the picture, simply because there would be no need to propagate stability
from the boundary into the interior. As already mentioned before, linear dynamics
with absorbing boundary conditions on Γ1 and zero Dirichlet data on Γ0 subject to
star–shaped conditions have been considered in [4, 6]. Mathematical difficulties in
propagating stability through the undissipated part of the boundary are not present
in this case, since the tangential traces are null on Γ0. To cope with the new chal-
lenge we shall employ geometric constructs developed earlier in [29]. These results
allow for the construction of suitable–non–radial–vector fields from the tangential
bending of the radial and star–shaped fields. The newly constructed fields prop-
agate the needed estimates through the undissipated part of the boundary. This
method has been already used in [5] for the linear model. However, handling the
nonlinear effects, as in the present manuscript, brings another layer of difficulties.
First, stability estimates need to be boosted to the higher topological levels. And
this also involves “cooperation” of the new multipliers, in addition to topological
issues of keeping invariance of suitably small solutions. It should also be noted
that the nonlinear approach used in the past (for subcritical cases) relied on the
so-called barrier method which is based on a contradiction argument. However,
the application of this method in the boundary critical case meets several technical
difficulties even at the level of low frequencies (lower-order terms). In this paper,
we exploit another technique that, to the best of our knowledge, is new and makes
strong use of the fact that we only require initial data to be small in H. One of the
advantages of such construction (for JMGT) was already exploited by the authors
in [3] in allowing extension by density in the nonlinear environment. In the present
paper, we discovered that it also allows to

a) prove global existence and exponential stability by the representation of the
solution and two-level stability of linear flows. Here, the smallness interplay
comes to the picture through a nonlinear propagation of an estimate of the
type

‖F(Φ)‖H1
6 C1(‖Φ‖H)C2(|Φ‖H1

.)

where the size of C1(‖Φ‖H) can be controlled by ρ. See Theorem 2.5;
b) obtain a continuity property of the decay rate with respect to the H–size of

the initial data and the decay rate of the linear flow, ω1. In general, we prove
that if ε is the H–size of the initial data and ω(ε) is the corresponding decay
rate, then there exists ω(ε) such that ω(ε) > ω(ε) and ω(ε)→ ω1 as ε→ 0+.

The rest of the paper is devoted to the proofs.

3. Generation of linear semigroups.

3.1. Preliminaries. The proof of generation of the linear semigroup on H is given
in [5]. Thus, the main task of this section is to prove generation on the space H1.
To be reasonably self-contained, we shall be repeating a few – mainly notational –
details from [5]. These will be needed within the context of proving the generation
of higher regularity solutions.
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First note that H can be topologised by the inner productξ1ξ2
ξ3

 ,
ϕ1

ϕ2

ϕ3


H

= (A1/2ξ1, A
1/2ϕ1) +

b

τ
(A1/2ξ2, A

1/2ϕ2) + (ξ3, ϕ3),

for all (ξ1, ξ2, ξ3)>, (ϕ1, ϕ2, ϕ3)> ∈ H.
For notational convenience and future use, we introduce the following change of

variables bz = but+c
2u which reduces the problem to a PDE–abstract ODE coupled

system. The change from the coordinates (u, ut, utt) to (u, z, zt) is described through
the isomophism M ∈ L(H) given by (see [33])

M =


1 0 0
c2

b
1 0

0
c2

b
1

 .
The next lemma makes the above topological statement precise.

Lemma 3.1. Assume that the compatibility conditions

∂νu0 + κ0u0 = 0 on Γ0, ∂νu0 + κ1u1 = 0 on Γ1 (9)

hold. Then Φ ∈ C1(0, T ;H) ∩ C(0, T ;D(A)) is a strong solution of{
Φt = AΦ

Φ(0) = Φ0

if, and only if, Ψ = MΦ ∈ C1(0, T ;H) ∩ C(0, T ;D(A)) is a strong solution for{
Ψt = AΨ

Ψ(0) = Ψ0 = MΦ0

(10)

where A = MAM−1 with

D(A) =


ξ1ξ2
ξ3

 ∈ [Hθ(Ω)
]2 ×D (A1/2

)
; [∂νξ2 + κ0ξ2]Γ0

= 0, [∂νξ2 + κ1ξ3]Γ1
= 0


Proof. We only check the matching of the boundary conditions. Assume that Ψ =
(u, z, zt) ∈ C1(0, T ;H) ∩ C(0, T ;D(A)) is a strong solution for (3.1). Let

Υ(t) := (∂νu(t) + κ0u(t))|Γ0 , t > 0

and notice that bΥt+ c2Υ = 0 for all t. This along with the compatibility condition
(3.1)1 (Υ(0) = 0) implies that Υ ≡ 0. The same argument mutatis mutandis
recovers the boundary condition for u on Γ1. The loss of differentiability in D(A) is
due to the fact that the two parts of the boundary are not separated, see Remark
2.1.

For convenience, we explicitly write a formula for the new operator A = MAM−1.

A


ξ1

ξ2

ξ3

 =


−c

2

b
I I 0

0 0 I

−γ c
4

τb2
I γ

c2

τb
I − b

τ
A −γ 1

τ
I − b

τ
AN(κ1N

∗A)



ξ1

ξ2

ξ3


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where γ = α− τc2

b
∈ L∞(Ω).

3.2. Proof of Theorem 2.2. In the first step, it is shown that A generates a C0–
semigroup on H, from which the semigroup is generated by A can be recovered via
M . The semigroup on H1 will then be obtained by a restriction argument. The
details are below.

We write A = Ad + P where

P :=

 0 1 0
0 0 0

−γ c
4

τb2
γ
c2

τb
I − γ I

τ


is bounded in H and D(Ad) := D(A). It then suffices to prove generation of Ad
on H, see [35, p. 76] and this is done by verifying the hypothesis of Lummer–
Philips Theorem: dissipativity and maximality.The details of this argument are in
[5]. This yields that Ad is maximal dissipative, therefore generates a C0– semigroup
of contractions due to Lummer–Phillips Theorem. Since P is bounded, A = Ad +P
generates a C0–semigroup on H.

For generation in H1, one applies an argument inspired by the one presented
in ([33], p. 26) with the needed modifications to account for different boundary
conditions.. Since we already know that A generates a C0 semigroup {S(t)}t>0 on
a larger space H, we only show that

{T (t)}t>0 := {S(t)|H1
}t>0

is also a semigroup and that its infinitesimal generator is A when considered as an
operator in H1.

This entails to the proof of two facts: {T (t)}t>0 satisfies the semigroup property
– which follows from the fact that the problem is autonomous – and invariance:
T (t)(H1) ⊂ H1 for all t > 0.

If Φ0 = (u0, u1, u2)> ∈ H1 then ∂νu0 + k1u1 = 0 on Γ1. We then need to show
that this condition is invariant under the dynamics and, in addition, the regularity
∆u ∈ C

(
[0, T );L2(Ω)

)
holds true. This, along with the boundary conditions and

regularity of elliptic problems would lead to u ∈ C([0, T );Hθ(Ω)) with θ < 2.
Recall that an incremental loss of differentiability is due to change of the boundary
conditions from Γ0 to Γ1 with the normal direction having H1/2−ε(Γ) regularity
across the interface.

In order to show that ∆u ∈ C
(
[0, T );L2(Ω)

)
, we appeal to the change of variables

z = ut + c2

b u. By the variation of parameters formula we have

u(t) = e−
c2

b tu0 +

∫ t

0

e−
c2

b (t−σ)z(σ)dσ

and since ∆u0 ∈ L2(Ω) (Φ0 ∈ H1), it suffices to verify that∫ t

0

e−
c2

b (t−σ)∆z(σ)dσ ∈ L2(Ω), ∀t > 0.

To this end we recall that (z, zt) ∈ C([0, T );H1(Ω) × L2(Ω)). Writing the linear
solution of (1.1) (with k = 0) in the z–variable yields∫ t

0

e−
c2

b (t−σ)∆z(σ)dσ =
τ

b

∫ t

0

e−
c2

b (t+σ) [ztt(σ) + γutt(σ)] dσ
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=
τ

b

[
zt(t) + γut(t)− e−

c2

b t[zt(0) + γu1]
]

+
c2

b2

∫ t

0

e−
c2

b (t−σ)[zt(σ) + γut(σ)]dσ ∈ L2(Ω),

as needed.
We show next that the boundary conditions are also invariant under the dynam-

ics. For this we again use the variation of parameters formula for u (and its time
derivative) to write (for continuous D(A)–valued solutions):

∂νu(t) + κ1ut(t) = e−
c2

b t∂νu0 +

∫ t

0

e−c
2b−1(t−σ)∂νz(σ)dσ

+ κ1

(
−c

2

b
e−

c2

b tu0 + e−
c2

b tz(0) +

∫ t

0

e−
c2

b (t−σ)zt(σ)dσ

)
= e−

c2

b t∂νu0 +

∫ t

0

e−c
2b−1(t−σ)∂νz(σ)dσ

+ κ1

[
−c

2

b
e−

c2

b tu0 + e−
c2

b t

(
u1 +

c2

b
u0

)
+

∫ t

0

e−
c2

b (t−σ)zt(σ)dσ

]
= e−

c2

b t [∂νu0 + κ1u1] +

∫ t

0

e−c
2b−1(t−σ) [∂νz(σ) + κ1zt(σ)] dσ = 0,

where the conclusion follows from the fact that the initial conditions for u satisfy the
absorbing boundary conditions and the variable z satisfies the absorbing boundary
conditions along the trajectory. This completes the proof of Theorem 2.2.

4. Exponential decays – Proof of Theorem 2.4.

4.1. Preliminaries. In this section we work with the linearized version of (1.1)
– i.e., we take k = 0 – in the z–variable. Moreover, since τ is fixed, we lose no
generality by setting τ = 1 to be assumed for the rest of the paper. Recall the

change of variables z = ut + c2

b u transforming (1.1) into

ztt + bA(zt +N(κ1N
∗Az)) = −γutt + f. (11)

We assume smooth initial conditions and a u–independent – L2(Ω)–valued and C1

in time – forcing term f . This ensures the existence and uniqueness of strong
solutions which are, in addition, continuously dependent on the initial data. We
can eventually extend the results that follow to semigroup solutions by density.

The energy for a solution Φ = (u, ut, utt) ∈ D(A) will be computed at two levels.
We define the lower energy functional by E(t) = E0(t) + E1(t) where

E1(t) :=
b

2
‖A1/2z‖22 +

1

2
‖zt‖22 +

c2

2b
‖γ1/2ut‖22

E0(t) :=
1

2
‖α1/2ut‖22 +

c2

2
‖A1/2u‖22

and the higher energy functional E(t) = E(t) + E2(t) where

E2(t) =
b

2
‖∆u‖22

where α and γ may depend on x. We also note that

‖A1/2u‖22 = ‖∇u‖22 + ‖
√
κ0u‖2Γ0
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By Poincare- Wirtinger inequality we have ‖A1/2u‖2 ∼ ‖u‖H1(Ω).

It is standard to see that E(t) ∼ ‖Φ(t)‖2H, see [4] for details. The following
lemma follows from classical elliptic theory [32] and provides the estimate which
is necessary for justifying our choice of higher energy functional. As a remark,
here and hereafter we use the notation a . b to say that a 6 Cb where C is a
constant possibly depending on the physical parameters of the model (τ, c, b > 0)
but independent of space, time and γ ∈ L∞(Ω).

Lemma 4.1. Let Ω be a smooth domain and consider a function u : Ω → R such
that ∆u ∈ L2(Ω) and ∂νu|Γ ∈ Hs(Γ), 0 ≤ s ≤ 1/2, then u ∈ H3/2+s(Ω) and

‖u‖H3/2+s(Ω) . ‖∆u‖2 + ‖∂νu‖Hs(Γ).

4.2. Propagation of boundary dissipation – Flow multipliers. We begin
with energy identity for E1. Since the problem is linear we work with smooth so-
lutions (in the domain of the generator) which can be extended by density to the
phase space solutions.

Proposition 4.2 (Energy Identity). Let T > 0. If Ψ = (u, z, zt) is a weak
solution of (4.1) then

E1(T ) +

∫ T

t

DΨ(s)ds = E1(t) +

∫ T

t

∫
Ω

fztdΩds (12)

holds for 0 ≤ t ≤ T , where DΨ represents the interior/boundary damping and is
given by

DΨ := b

∫
Γ1

κ1z
2
t dΓ1 +

∫
Ω

γu2
ttdΩds (13)

Proof. The energy identity (4.2) is first derived for strong solutions and then ex-
tended by density to weak solutions. The details are the same as in [5]. We repeat
some of the calculations for the reader’s convenience. Consider the bilinear form
〈·, ·〉 : H×H→ R given by〈ξ1ξ2

ξ3

 ,
ϕ1

ϕ2

ϕ3

〉 := b
(
A1/2ξ2, A

1/2ϕ2

)
+ (ξ3, ϕ3) +

c2

b

(
γ

(
ξ2 −

c2

b
ξ1

)
, ϕ2 −

c2

b
ϕ1

)
which is continuous. Moreover, recalling that Ψ = (u, z, zt) it follows that 2E1(t) =
〈Ψ(t),Ψ(t)〉.Therefore, with G = (0, 0, f)>, after straightforward calculations (de-
tails in [5])

2
dE1(t)

dt
=

〈
dΨ(t)

dt
,Ψ(t)

〉
= 〈AΨ(t) +G,Ψ(t)〉

= −
∫

Ω

γu2
ttdΩ− b

∫
Γ1

κ1z
2
t dΓ1 +

∫
Ω

fztdΩ.

Identity (4.2) then follows by an integration in time on [t, T ].

In the next step, we reconstruct the integral of the full energy on a truncated
time interval (s, T − s) for 0 < s < T/2, in terms of the dissipation and lower order
terms. This step requires a transfer of dissipation from the boundary into the entire
spatial domain. Some comments are in order.

We study stability properties of both S(t) and T (t) assuming the general de-
generated case for γ, i.e., γ ∈ L∞(Ω) and γ(x) > 0 a.e. in Ω. This includes a
completely degenerate (critical) case when γ = 0 and the uncontrolled dynamics is
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unstable. The stability of S(t) has been already considered in [5], however, to make
the arguments self-contained, some of the constructs will be repeated below. With
a feedback boundary control, it will be shown that the semigroups can be stabilized.
For this to happen, additional geometric conditions are needed which are stronger
than the ones typically assumed in a boundary stabilization theory of hyperbolic
dynamics. It is clear that if Γ0 = ∅ then the entire boundary Γ is dissipated and
therefore stability results would hold without any additional geometric restrictions.
Assuming that Γ0 6= ∅, and Γ0 is star-shaped (standard condition), classical stabil-
ity methods (multipliers) do not work due to conflicting signs of radial vector fields
on the boundary Γ0, when acting on the tangential derivatives. This fact has been
recognized already in [29].

However, the convexity of Γ0 and Assumption 2.3 save the situation due to the
following construction [29]: there exists a vector field h(x) = [h1(x), · · · , hd(x)] ∈
C2(Ω) such that

h · ν = 0 on Γ0 (14)

with ν being the unit outward normal, and that for some constant δ > 0 and all
vector v(x) ∈ [L2(Ω)]n, we have∫

Ω

J(h)|v(x)|2dΩ > δ

∫
Ω

|v(x)|2dΩ, (15)

where J(h) represents the Jacobian matrix of the vector field h.

Remark 4.3. We note that the more general typical star–shaped condition h·ν 6 0
on Γ0 is not sufficient. This is due to the presence of tangential derivatives on
uncontrolled part of the boundary which can not be “absorbed” via dissipation by
the microlocal argument [27, 41, 26]. The latter requires time derivatives of the Γ0

traces to be controlled according to the inequality:

‖∂τu‖Σ0
≤ C‖ut‖Σ0

+ C‖∂νu‖Σ0
+ lotQ

valid on solutions. Above, lotQ mean lower order terms on Q = Ω×[0, T ]. By “bend-
ing” on the boundary Γ0 the radial vector field allows to eliminate its contribution
of the tangential derivatives. See Remark 4.7.

Remark 4.4. Convexity of Γ0 is only one sufficient condition. Several examples
where the construction in (4.2) holds for other types of domains are given in [29].

Proposition 4.5. Let T > 0 and assume that Assumption 2.3 holds. For any
strong solution of (3.1) (u, z, zt) the following inequality is valid∫ T−s

s

E1(t)dt . [E1(s) + E1(T − s)]+

CT

[∫ T

0

DΨ(s)ds+

∫
Q

f2dQ+ lotδ(z)

]
for 0 < s < T/2. Here, lotδ(z) is a collection of lower order terms satisfying

lotδ(z) ≤ Cδ sup
t∈[0,T ]

{
‖z(t)‖2H1−δ(Ω) + ‖zt(t)‖2H−δ(Ω)

}
,

for some 0 < δ < 1/2.
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Proof. We start with energetic calculations performed first on regular (strong) so-
lutions [with at least H3/2+(Ω) regularity ]. Let’s multiply equation (4.1) by h · ∇z
and integrate by parts in (s, T − s)× Ω, for s ∈ [0, T/2). This gives

1

2

∫ T−s

s

∫
Γ

(
z2
t − b|∇z|2

)
(h · ν)dΓdt+ b

∫ T−s

s

∫
Γ

∂νz(h · ∇z)dΓdt

=

∫ T−s

s

∫
Ω

γutt(h · ∇z)dΩdt+

∫
Ω

zt(h · ∇z)dΩ

∣∣∣∣T−s
s

+
b

2

∫ T−s

s

∫
Ω

J(h)|∇z|2dΩdt+
1

2

∫ T−s

s

∫
Ω

(
z2
t − b|∇z|2

)
div(h)dΩdt

−
∫ T−s

s

∫
Ω

f(h · ∇z)dΩdt, (16)

where J(h) is the Jacobian with the properties in (4.2). Now notice that equipar-
tition of kinetic and potential energy appears in the above identity via the term∫

Ω

(
z2
t − b|∇z|2

)
div(h)dΩ,

We next multiply (4.1) by zdiv(h), integrate by parts to obtain the following identity

b

2

∫ T−s

s

∫
Γ

∂νzzdiv(h)dΓdt =
1

2

∫ T−s

s

∫
Ω

γuttzdiv(h)dΩdt

+
1

2

∫
Ω

ztzdiv(h)dΩ

∣∣∣∣T−s
s

+
1

2

∫ T−s

s

∫
Ω

(
b|∇z| − z2

t

)
div(h)dΩdt

− b

2

∫ T−s

s

∫
Ω

z∇z · ∇(div(h))dΩdt− 1

2

∫ T−s

s

∫
Ω

fzdiv(h)dΩdt (17)

where we have, as in (4.2), kept the boundary terms on the left–hand–side. Adding
(4.2) and (4.2) yields

1

2

∫ T−s

s

∫
Γ

(
z2
t − b|∇z|2

)
(h · ν)dΓdt

+ b

∫ T−s

s

∫
Γ

∂νz(h · ∇z)dΓdt+
b

2

∫ T−s

s

∫
Γ

∂νzzdiv(h)dΓdt

=

∫ T−s

s

∫
Ω

γutt(h · ∇z)dΩdt+
1

2

∫ T−s

s

∫
Ω

γuttzdiv(h)dΩdt

+
b

2

∫ T−s

s

∫
Ω

J(h)|∇z|2dΩdt+

∫
Ω

zt(h · ∇z)dΩ

∣∣∣∣T−s
s

+
1

2

∫
Ω

ztzdiv(h)dΩ

∣∣∣∣T−s
s

− b

2

∫ T−s

s

∫
Ω

z∇z · ∇(div(h))dΩdt

−
∫ T−s

s

∫
Ω

f(h · ∇z)dΩdt− 1

2

∫ T−s

s

∫
Ω

fzdiv(h)dΩdt,

The boundary terms can be written more compactly in terms of the interior terms
as ∫ T−s

s

B(Γ)(t)dt
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=

∫ T−s

s

∫
Ω

(γutt − f)Mh(z)dΩdt+

∫
Ω

ztMh(z)dΩ

∣∣∣∣T−s
s

+
b

2

∫ T−s

s

∫
Ω

J(h)|∇z|2dΩdt− b

2

∫ T−s

s

∫
Ω

z∇z · ∇(div(h))dΩdt. (18)

by defining Mh(z) := h · ∇z + 1
2zdiv(h) and

B(Γ) :=
1

2

∫
Γ

(
z2
t − b|∇z|2

)
(h · ν)dΓ + b

∫
Γ

∂νzMh(z)dΓ.

Now, the second part of geometrical condition (4.2) allow us to obtain an estimate
for the potential z–energy. Since Mh(z) is controlled by the potential energy

‖Mh(z)‖2 6 sup
x∈Ω

(|h(x)|+div(h)(x)|)
(
‖∇z‖2 +

1

2
‖z‖2

)
. ‖z‖H1(Ω) . ‖A1/2z‖2, (19)

due to Robin boundary condition imposed on Γ0 which allows to control L2 norms
by the gradient. Moreover, the last term in (4.2) can be estimated as∣∣∣∣∣
∫ T−s

s

∫
Ω

z∇z∇(div(h))dΩdt

∣∣∣∣∣ . ε

∫ T−s

s

∫
Ω

|∇z|2dΩdt+ Cε‖z‖2L2(s,T−s;L2(Ω)), (20)

for any ε > 0, due to Young’s inequality and boundedness of D2h in Ω. Similarly,
for any ε > 0∣∣∣∣∣

∫ T−s

s

∫
Ω

γuttMh(z)dΩdt

∣∣∣∣∣ . ε

∫ T−s

s

∫
Ω

‖A1/2z‖2dΩdt+ Cε

∫ T−s

s

∫
Ω

γ|utt|2dΩdt

and finally ∫
Ω

ztMh(z)dΩ

∣∣∣∣T−s
s

. E1(s) + E1(T − s). (21)

Combining (4.2), (4.2), (4.2) and the second part of assumption (4.2) yields, for
ε > 0 sufficiently small,∫ T−s

s

∫
Ω

|∇z|2dΩdt . E1(s) + E1(T − s) +

∫ T

0

DΨ(s)ds

+

∫ T−s

s

B(Γ)(t)dt+

∫
Q

f2dQ+ ‖z‖2L2(s,T−s;L2(Ω)). (22)

The reconstruction of kinetic energy comes next. To this end we multiply (4.1)
by z and again integrate by parts over (s, T − s)× Ω to obtain∫ T−s

s

∫
Ω

[
b|∇z|2 − z2

t

]
dΩdt+ b

∫ T−s

s

∫
Γ

z∂νdΓdt =

−
∫ T−s

s

∫
Ω

γuttzdΩdt−
∫

Ω

ztzdΩ

∣∣∣∣T−s
s

+

∫ T−s

s

∫
Ω

fzdΩdt. (23)
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Identity (4.2) implies the following upper estimate for the kinetic energy∫ T−s

s

∫
Ω

|zt|2dΩdt . [E1(s) + E1(T − s)] +

∫ T−s

s

∫
Ω

|∇z|2dΩdt+

∫ T−s

s

∫
Γ

z∂νzdΓdt

+

∫ T

0

DΨ(s)ds+

∫
Q

f2dQ+ ‖z‖2L2(s,T−s;L2(Ω))

(24)
and then combining (4.2) and (4.2) (adding and subtracting the boundary term
defining ‖A1/2z‖22 from the gradient), and noticing that the term ‖γ1/2ut‖2 in E1(t)
can be estimates from the first two inequalities, we conclude∫ T−s

s

E1(t)dt . E1(s) + E1(T − s) +

∫ T

0

DΨ(s)ds

+

∫ T−s

s

B̃(Γ)(t)dt+

∫
Q

f2dQ+ ‖z‖2L2(s,T−s;L2(Ω)). (25)

where

B̃(Γ):=
1

2

∫
Γ

(
z2
t − b|∇z|2

)
(h ·ν)dΓ+b

∫
Γ

∂νzMh(z)dΓ+

∫
Γ

z∂νzdΓ+

∫
Γ0

κ0|z|2dΓ0 (26)

We notice that all the computations carried up to now required only coercivity
of the Jacobian (4.2). Only at this point in the analysis of the boundary term B̃(Γ)
will we use the property (4.2),

Lemma 4.6 (Key Lemma). Let Assumption 2.3 be valid. The boundary term

B̃(Γ) satisfies the following estimate∫ T−s

s

B̃(Γ)(t)dt . E1(s) + ε

∫ T−s

s

‖∇z‖22dt

+ CT

∫ T

0

DΨ(s)ds+ CT ‖f‖2H−1/2+δ(Q) + CT,εlotδ(z),

where lotδ(z) has the properties stated in Proposition 4.5.

Proof. We need to estimate all the terms in (4.2). We immediately notice that the
first boundary term contains |zt|2 − |∇τz|2 evaluated on the boundary. However,
on Γ0 we have no information on either tangential derivative – which provides
contribution unbounded with respect to the energy level. And it is at this point
that we will be using orthogonality of the constructed vector field h with respect to
the normal direction to the boundary. The details are given below.

First note that∫ T−s

s

∫
Γ

z∂νzdΓdt

= −
∫ T−s

s

∫
Γ0

z (κ0(x)z) dΓ0dt+

∫ T−s

s

∫
Γ1

z (−κ1(x)zt) dΓ1dt

= −
∫ T−s

s

∫
Γ0

κ0z
2dΓ0 −

1

2

∫
Γ1

κ1(x)z2(T − s)dΓ1 +
1

2

∫
Γ1

κ1(x)z2(s)dΓ1

6
1

2

∫
Γ1

κ1(x)z2(s)dΓ1 . ‖A1/2z(s)‖22 . E1(s), (27)
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due to trace inequality on Γ1 and k1 ∈ L∞(Γ1). Next, we notice that∫ T−s

s

∫
Γ

(
z2
t − b|∇z|2

)
(h · ν)dΓdt

=

∫ T−s

s

(∫
Γ0

+

∫
Γ1

)(
z2
t − b|∇z|2

)
(h · ν)dΓdt

.
∫ T

0

DΨ(s)ds− b
∫ T−s

s

∫
Γ1

|∇z|2(h · ν)dΓdt, (28)

due to h · ν = 0 on Γ0 and the definition of the damping term (4.2).

Remark 4.7. Notice that assuming only h · ν 6 0, would allow to dispense with
the term ∫ T−s

s

∫
Γ0

z2
t (h · ν) 6 0.

However, the gradient term∫ T−s

s

∫
Γ0

|∇z|2(h · ν) =

∫ T−s

s

∫
Γ0

(|∂νz|2 + |∂τz|2)(h · ν)

where ∂τ indicates derivative in the tangential direction, poses difficulties. Bound-
ary condition on Γ0 provide good estimate for the first part. However, for the second
no estimate is available unless zt|Γ0

is under control, which may be given through
the dissipation or geometry h · ν = 0.

Back to (4.2), for Γ1 a tangential–trace estimate is available. In fact, using
microlocal analysis estimate in [29, 26] one obtains∫ T−s

s

∫
Γ1

|∂τz|2dΓ1dt

6 CT

∫ T

0

∫
Γ1

(|∂νz|2 + z2
t )dΓ1dt

+ CT

[
‖γutt + f‖2H−1/2+δ(Q) + lotδ(z)

]
. CT

∫ T

0

DΨ(s)ds+ CT ‖f‖2H−1/2+δ(Q) + CT lotδ(z), (29)

with lotδ(z) complying with the condition stated in Proposition 4.5. With the above
we then improve estimate (4.2) as follows∫ T−s

s

∫
Γ

(
z2
t − b|∇z|2

)
(h · ν)dΓdt

.
∫ T

0

DΨ(s)ds+

∫ T−s

s

∫
Γ1

|∂τz|2dΓdt

. CT

∫ T

0

DΨ(s)ds+ CT ‖f‖2H−1/2+δ(Q) + CT lotδ(z),

due to (4.2). Finally, we tackle the tangential derivatives on the boundary. We
notice first that,∫ T−s

s

∫
Γ

∂νzMh(z)dΓdt =

∫ T−s

s

∫
Γ

∂νz

(
h · ∇z +

1

2
zdiv(h)

)
dΓdt (30)
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.
∫ T−s

s

∫
Γ

∂νz (h · ∇z) dΓdt+ E1(s),

where we have used the fact that the second integral in (4.2) is exactly the one in
(4.2) up to an uniformly bounded term. For the first integral in (4.2), we use the
identity

∂νz(h · ∇z) = |∂νz|2(h · ν) + ∂νz∂τz(h · τ)

which is obtained by writing the coordinates of the vector ∇z in the basis {τ, ν}.
This allows us to write, recalling the damping terms (4.2) and the tangential trace
inequality (4.2):∫ T−s

s

∫
Γ

∂νz (h · ∇z) dΓdt .
∫ T−s

s

∫
Γ0

∂νz∂τz(h · τ)

+ CT

[∫ T

0

DΨ(s)ds+ ‖f‖2H−1/2+δ(Q) + lotδ(z)

]
.

Now notice that the κ0 in Assumption 2.3 and the trace theorem applied to tan-
genial derivatives imply that, at each time t > 0, ∂νz = −κ0z ∈ H1/2(Γ0), ∂τz ∈
H−1/2(Γ0), hence

∫
Γ0
∂νz∂τz(h · τ) is well defined via duality. Thus, taking into

consideration the fact that support of κ0 is compact in Γ0 and again the regularity
of κ0 in Assumption 2.3, we estimate∫ T−s

s

∫
Γ0

∂νz∂τz(h · τ)dΓ0dt = −
∫ T−s

s

∫
Γ0

κ0z∂τz(h · τ)dΓ0dt

= −1/2

∫ T−s

s

∫
Γ0

κ0∂τ |z|2(h · τ)dΓ0 . Cκ0

∫ T−s

s

∫
Γ0

|z|2dΓ0dt

. ε

∫ T−s

s

‖z‖2H1(Ω)dt+ CT,ε‖z‖2L2(Ω). (31)

Estimate (4.2) finishes the proof of Lemma 4.6.

Finally, Lemma 4.6 and the inequality (4.2) yield Proposition 4.5 after taking ε
small enough.

The next result aims at improving Lemma 4.5 by absorbing lotδ(z) via the damp-
ing. For the linear problem, this is done by a compactness uniqueness argument as
in [5]. The corresponding result is stated below.

Proposition 4.8. For T > 0 there exists a constant CT > 0 such that the following
inequality holds:

lotδ(z) ≤ CT
∫ T

0

DΨ(s)ds

Compactness follows from the compactness of Sobolev’s embeddings implicated
in the definition of lower order terms with respect to the finite energy space for vari-
ables (z, zt) which are H1(Ω)×L2(Ω). Uniqueness, instead, follows from the overde-
termination of the wave equation with overdetermined Neuman–Dirichlet data on
the boundary Γ1. The details are in [5],
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4.3. Completion of the Proof of Theorem 2.4. We are ready to establish the
exponential decay of the the energy functional E1.

Theorem 4.9. Let Assumption 2.3 be valid. Assume that f = 0. The energy
functional E1 is exponentially stable, i.e. there exists T > 0 and constants M,ω > 0
such that

E1(t) ≤Me−ωtE1(0), for t > 0. (32)

Proof. For f = 0, identity (4.2) implies(∫ s

0

+

∫ T

T−s

)
E1(t)dt ≤ 2sE1(0).

Since s < T/2 can be taken arbitrarily small, we fix s < 1/2 in the above inequality.
Then by dissipativity of E1 (for f = 0) along with Propositions 4.5 and 4.8 we infer∫ T

0

E1(t)dt . E1(T ) + CT

∫ T

0

DΨ(s)ds. (33)

On the other hand, using identity (4.2) (with f = 0) once more, we deduce

TE1(T ) .
∫ T

0

E1(t)dt+ CT

∫ T

0

DΨ(s)ds. (34)

Combining (4.3) and (4.3) we arrive at

(T − C)E1(T ) +

∫ T

0

E1(t)dt ≤ CT
∫ T

0

DΨ(s)ds

for some C > 0. Choosing T = 2C and replacing the “damping” term using identity
(4.2) (with f = 0) we rewrite the above estimate as follows

E1(T ) +

∫ T

0

E1(t)dt . CT [E1(0)− E1(T )]

which implies

E1(T ) 6
CT

1 + CT
E1(0) = µE1(0),

where 0 < µ < 1 does not depend on the solution. This implies (4.9) with ω =
| lnµ|/T and M = 1/µ.

The result of Theorem 4.9 is the key to establishing the exponential stability of
the semigroup S(t), generated by A on H.

Notice that the exponential decay for E1 implies exponential decay of the quan-
tities ‖z‖D(A1/2), ‖zt‖L2(Ω), and we will show that this implies exponential decay for

the total energy E(t), provided that the initial data u0 is controlled with respect
to the topology induced by A1/2. For this, the only remaining quantity we need
to show exponential decay is ‖u‖D(A1/2) and this follows from the abstract ODE

but + c2u = z.The details for this step are the same as in [5].
To complete the proof of Theorem 2.4, the exponential stability on H1 is the main

task remained. This is argued below. The first step is to derive energy estimate
for the higher order energy functional E2. We start with the following multiplier
identity.



BOUNDARY FEEDBACK STABILIZATION OF JMGT 21

Proposition 4.10. Let Ψ = (u, z, zt) be a weak solution for (4.1). Then for all
0 6 s < t 6 T the following identity holds

b

∫ t

s

(∆z,∆u)dσ =

[
(zt,∆u) +

1

2
‖∇z‖22

]∣∣∣∣t
s

+

∫ t

s

∫
Γ

zt∂νzdΓdσ

+

∫ t

s

[(
c2

b
zt + γutt,∆u

)]
dσ −

∫ t

s

(f,∆u)dσ (35)

Proof. Arguing first for ”strong” solutions, we have ∆u,∆ut ∈ L2(Ω) -the latter
allows to justify the formalism of calculations. We compute

(ztt,∆u) =
d

dt
(zt,∆u)− (zt,∆ut)

=
d

dt
(zt,∆u)−

(
zt,∆

(
z − c2

b
u

))
=

d

dt
(zt,∆u) +

1

2

d

dt
‖∇z‖22

− 1

λ

∫
Γ0

zt(κ0(x)z)Γ0 −
∫

Γ1

zt(κ1(x)zt)dΓ1 +

(
c2

b
z,∆u

)
=

d

dt
(zt,∆u) +

1

2

d

dt
‖∇z‖22 −

1

2λ

d

dt
‖κ1/2

0 z‖2Γ0
− ‖κ1/2

1 zt‖2Γ1
+

(
c2

b
z,∆u

)
.

Thus, taking the L2–inner product of ztt− b∆z = −γutt+f with ∆u ∈ L2(Ω) gives

b

∫ t

s

(∆z,∆u)dσ =

∫ t

s

(ztt + γutt − f,∆u)dσ

=

∫ t

s

(ztt,∆u)dσ +

∫ t

s

(γutt − f,∆u)dσ

=

[
(zt,∆u) +

1

2
‖∇z‖22 −

1

2λ
‖κ1/2

0 z‖2Γ0

]∣∣∣∣t
s

−
∫ t

s

‖κ1/2
1 zt‖2Γ1

dσ

+

∫ t

s

[(
c2

b
zt + γutt,∆u

)]
dσ −

∫ t

s

(f,∆u)dσ.

We now derive the estimate for E2. We take the L2–inner product of

∆(but + c2u) = b∆z

with ∆u and integrate in time. By connecting it with (4.10) one obtains that

b‖∆u‖22 + c2
∫ T

0

‖∆u‖22 = b‖∆u0‖22 + b

∫ T

0

(∆z,∆u) = b‖∆u0‖22

+

[
(zt,∆u)+

1

2
‖∇z‖22−

1

2λ
‖κ1/2

0 z‖2Γ0

]∣∣∣∣T
0

−
∫ T

0

‖κ1/2
1 zt‖2Γ1

dσ

+

∫ T

0

[(
c2

b
zt + γutt,∆u

)]
dσ −

∫ T

0

(f,∆u)dσ (36)

Since all terms in (4.3) are benign in the sense that all (but f and ∆u) are either
subordinated by E(t) or they are bounded above by the damping, it follows that
for each ε > 0 there exists Cε > 0 such that

b‖∆u(T )‖22 + c2
∫ T

0

‖∆u‖22 . E(0) + ε

(
‖∆u‖22 +

∫ T

0

‖∆u‖22dσ

)
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+ Cε

(
E1(t) +

∫ T

0

E1(σ)dσ +

∫
Q

f2dQ

)
.

Then, taking ε small and using (4.9) we have

b‖∆u(T )‖22 + c2
∫ T

0

‖∆u‖22 . E(0) +

∫ T

0

E1(σ)dσ +

∫
Q

f2dQ, (37)

From (4.3) we have obtained that ∆u(t) ∈ L2(Ω). In addition (u, ut, utt) ∈ H
implies that u(t) ∈ H1(Ω) and ut(t) ∈ H1(Ω). By standard duality argument one
this obtains that ∂νu(t) ∈ H−1/2(Γ). We will be able to improve this regularity by
appealing to H regularity already obtained in the previous section. On the other
hand, by using invariance of boundary conditions along with the fact that κi are

the multipliers on H1/2−ε(Γi) (recall κi ∈ B1/2
4,∞(Γi) [34]) , we also have

∂νu(t)|Γ0
= −κ0u(t) ∈ H1/2−ε(Γ0) ∂νu(t)|Γ1

= −κ1ut(t) ∈ H1/2−ε(Γ1).

By the definition of the norm in H1, the above implies that (u, ut, utt) ∈ H1, as
desired. Moreover we have a control of the norms:

‖(u, ut, utt)‖H1
6 C||(u, ut, utt)‖H + ‖∆u(t)‖2
+ ‖
√
κ0u(t)‖H1/2−ε(Γ0) + ‖

√
κ1ut(t)‖H1/2−ε(Γ1)

which proves the desired regularity in H1. We are ready to complete the proof of
Theorem 2.4.

Recall that E(t) := E(t) + E2(t) and let f = 0. Adding E(T ) +
∫ T

0
E(σ)dσ to

both sides of (4.3) we obtain,

E(T ) +

∫ T

0

E(σ)dσ . E(0) + E(T ) +

∫ T

0

E(σ)dσ

6 E(0) +ME(0)e−ωt +ME(0)

∫ t

0

e−ωσdσ

= E(0) +ME(0)e−ωt − ω−1ME(0)
[
e−ωt − 1

]
< +∞,

for all t > 0, for some ω,M > 0. By making T →∞ we see that∫ ∞
0

E(σ)dσ < +∞,

and the result follows by Pazy–Datko’s Theorem [35].

**************************************

5. Proof of Theorem 2.5 – Construction of Global H1– valued Solutions.
Our goal now is to prove that fixed–point solutions can be constructed for the
nonlinear problem in H1. To this end, fix r > 0 such that ‖Φ0‖H1 6 r and let Xβ

r

be the set defined as

Xβ
r=

Ψ=

 wwt
wtt

∈C([0, T ];H1); sup
t∈[0,T ]

‖Ψ(t)‖H1 . r + 1 and sup
t∈[0,T ]

‖Ψ(t)‖H < β


where β > 0 is for the time being a given positive number but we will take it to
be sufficiently small later. Moreover, the condition sup

t∈[0,T ]

‖Ψ(t)‖H1 . r + 1 simply

means that solutions will exist in bounded sets of C([0, T ];H1) with respect to H1
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but this introduces no small size restriction on the data in H1. The number 1 could,
then, be replaced by any other positive number. Let’s equip Xβ

r it with the norm

‖Ψ‖2
Xβr

:= sup
t∈[0,T ]

‖Ψ(t)‖2H1
; Ψ ∈ Xβ

r

We start with a following regularity lemma.

Lemma 5.1. For Ψ = (w,wt, wtt)
>, let the action F on Ψ be given by

F(Ψ) =

 0
0

w2
t + wwtt

 .
Then the following assertions hold true:

(i) F defines a continuous map F : Xβ
r → C([0, T ];H1) and for each t the in-

equality

‖F(Ψ(t))‖H1
6 Cβ‖Ψ(t)‖H1

, Ψ ∈ Xβ
r (38)

holds for some C > 0 fixed.
(ii) Stronger than continuity, the following estimate holds:

‖F(Φ)‖C([0,T ];H1) . β2 + β1+α(r + 1)1−α, α ∈ (0, 1/2). (39)

Proof. Recall that wt ∈ H1
Γ1

(Ω) ↪→ L6(Ω) and then w2
t ∈ C([0, T ];L2(Ω)). More-

over, since Hθ(Ω) ↪→ L∞(Ω) for θ > 3/2, it follows that wwtt ∈ C([0, T ];L2(Ω)).
We shall frequently invoke the following interpolation inequalities.

‖w‖4 . ‖w‖1/42 ‖w‖
3/4
H1

‖w‖∞ . ‖w‖αH1‖w‖1−αHθ
, α =

θ − 3/2− ε
θ − 1

, ε > 0.
(40)

where we recall H1 ⊂ Hθ(Ω) × H1(Ω) × L2(Ω) with 3/2 < θ < 2. So that with
α ∈ (0, 1/2),

‖F(Φ)(t)‖H1 = ‖w2
t (t) + w(t)wtt(t)‖2 . ‖wt(t)‖24 + ‖w(t)‖∞‖wtt(t)‖2

.
∥∥∥A1/2wt(t)

∥∥∥2

2
+
∥∥∥A1/2w(t)

∥∥∥α
2
‖w(t)‖1−α

Hθ(Ω)
‖wtt(t)‖2 (41)

. ‖Ψ(t)‖2H + ||Ψ(t)||1+α
H ‖Ψ(t)‖1−αH1

. β‖Ψ(t)‖H1

which yields (5.1) and, by taking the supremum over time t on both sides, (5.1)
follows. Moreover, returning to the intermediate estimate (5), we further notice

‖F(Φ)(t)‖H1
.
∥∥∥A1/2wt

∥∥∥2

2
+
∥∥∥A1/2w

∥∥∥α
2
‖w‖1−α

Hθ(Ω)
‖wtt‖2

.

[
sup
t∈[0,T ]

‖Ψ(t)‖H

]2

+

[
sup
t∈[0,T ]

‖Ψ(t)‖H

]1+α [
sup
t∈[0,T ]

‖Ψ(t)‖H1

]1−α

. β2 + β1+α sup
t∈[0,T ]

‖Ψ(t)‖1−αH1
,

which yields (5.1) and completes the proof.

The validity of the previous Lemma along with the fact that A generates C0–
semigroups T (t) and S(t) on H1 and H respectively, guarantees that, for each Ψ ∈ X
there exists a unique Φ = (u, ut, utt)

> =: Θ(Ψ) ∈ C([0, T ];H1) solution of (2.1)
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characterized as the variation of parameters formula with forcing term F(Ψ) and
initial condition Φ0 = (u0, u1, u2) ∈ H1, i.e.,

Θ(Ψ)(t) = T (t)Φ0 +

∫ t

0

T (t− σ)F(Ψ)(σ)dσ (42)

Note that the same formula is valid if we replace T (t) by S(t). Moreover, uniform
exponential stability implies the existence of positive constants ω0, ω1,M0,M1 > 0
such that

‖T (t)Φ0‖H1
6M1e

−ω1t‖Φ0‖H1
and ‖T (t)Φ0‖H 6M0e

−ω0t‖Φ0‖H (43)

for all t > 0. Among other properties, the exponential stability of the linear problem
implies invariance of the map Θ in Xβ

r , as we make precise below.

Lemma 5.2. Given Φ0 ∈ H1 such that ‖Φ0‖H1
≤ r

2M , M ≡ max{M0,M1}, there
exist β > 0 and ρβ > 0 with the property that if ‖Φ0‖H < ρβ then the map Θ is
Xβ
r –invariant.

Proof. Proving this claim is equivalent to prove that there exists β > 0 for which
‖Θ(Ψ)(t)‖H1

. r + 1 and ‖Θ(Ψ)(t)‖H < β for all t ∈ [0, T ) and each Ψ ∈ Xβ
r ,

provided ‖Φ0‖H < ρβ , with ρβ conveniently chosen. From (5) and (5) it follows, for
each t ∈ [0, T ),

‖Θ(Ψ)(t)‖H1 6 ‖T (t)Φ0‖H1 +

∫ t

0

‖T (t− σ)F(Ψ)(σ)‖H1
dσ

6M1

(
‖Φ0‖H1 +

∫ t

0

e−ω1(t−σ)‖F(Ψ)(σ)‖H1dσ

)
.M1[‖Φ0‖H1

+ Cω1
sup
t∈[0,T ]

‖F(Ψ)(t)‖H1
]

.M1C +M1Cω1

(
β2 + βα+1(r + 1)1−α) . r + 1, (44)

provided β is sufficiently small. Moreover, by Lemma 5.1 (and again (5) and (5))

‖Θ(Ψ)(t)‖H 6 ‖T (t)Φ0‖H +

∫ t

0

‖T (t− σ)F(Ψ)(σ)‖H dσ

6M0

(
‖Φ0‖H +

∫ t

0

e−ω0(t−σ)‖F(Ψ)(σ)‖H1
dσ

)
.M0‖Φ0‖H +M0Cω0 sup

t∈[0,T ]

‖F(Ψ)(t)‖H1

. ρβ +
(
β2 + βα+1(r + 1)1−α) < β, (45)

provided β and ρβ < 1/2β are sufficiently small.

We are then ready to prove that for a (possibly smaller) β, the map Θ is a
contraction.

Lemma 5.3. There exist β > 0 and ρβ > 0 with the property that if ‖Φ0‖H < ρβ
then Θ is a contraction.

Proof. Let Ψ1,Ψ2 ∈ Xβ
r , Ψ1 = (v, vt, vtt)

> and Ψ2 = (w,wt, wtt)
>. The key point

of this proof is to estimate ‖F(Ψ1) − F(Ψ2)‖C([0,T ];H1), which is where we start.
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First notice that, since the first two coordinates of both F(Ψ1) and F(Ψ2) are zero,
we just care about the third one, whose difference, for each t, is given by

v2
t + vvtt − w2

t − wwtt = (vt + wt)(vt − wt)︸ ︷︷ ︸
=I1

+ (v − w)vtt︸ ︷︷ ︸
=I2

+w(vtt − wtt)︸ ︷︷ ︸
=I3

= I1 + I2 + I3.

Now we estimate the supremmum of the L2-norm of I1. For this we notice that a
combination of Holder’s inequality with the Sobolev embedding H1

Γ1
(Ω) ↪→ L4(Ω)

yields

‖I1‖2 = ‖(vt + wt)(vt − wt)‖2 6 (‖vt‖4 + ‖wt‖4) ‖vt − wt‖4
. (‖∇vt‖2 + ‖∇wt‖2) ‖∇(vt − wt)‖2 . β‖Ψ1 −Ψ2‖Xβr ,

for each t. Then sup
t∈[0,T ]

‖I1‖2 6 β‖Ψ1−Ψ2‖Xβr . Next, for estimating the suppremum

of the L2–norm of I2 we notice that the Sobolev embedding Hθ
Γ1
↪→ L∞(Ω) yields

‖I2‖2 = ‖vtt(v − w)‖2 6 ‖vtt‖2‖v − w‖∞
. ‖vtt‖2‖(v − w)‖Hθ(Ω) . β‖Ψ1 −Ψ2‖Xβr ,

for each t ∈ [0, T ). Then sup
t∈[0,T ]

‖I2(t)‖2 6 β sup
t∈[0,T ]

‖Ψ1(t) − Ψ2(t)‖Xβr . Finally, for

estimating the supremum of the L2–norm of I3 we will use the (in addition to the
Sobolev emdedding Hθ

Γ1
(Ω) ↪→ L∞(Ω)) the interpolation inequality (5) which holds

for all w ∈ Hθ
Γ1

(Ω). We have

‖I3‖2 = ‖w(vtt − wtt)‖2 6 ‖w‖∞‖vtt − wtt‖2
. ‖∇w‖α2 ‖ w‖1−αHθ(Ω)

‖vtt − wtt‖2
. βα‖Ψ2|1−αH1

‖Ψ1 −Ψ2‖Xβr . βα(r + 1)1−α‖Ψ1 −Ψ2‖Xβr ,

for each t ∈ [0, T ). Then sup
t∈[0,T ]

‖I3(t)‖2 . βα(r + 1)1−α sup
t∈[0,T ]

||Ψ1(t)−Ψ2(t)‖Xβr .

The above allows to complete the proof of contractivity:

‖Θ(Ψ1)−Θ(Ψ2)‖Xβr ≤ sup
t∈[0,T ]

∥∥∥∥∫ t

0

T (t− σ) [F(Ψ1)−F(Ψ2)] dσ

∥∥∥∥
H1

6
Cω1

τ
sup
t∈[0,T ]

τ ‖F(Ψ1)(t)−F(Ψ)(t)‖H1

. sup
t∈[0,T ]

(‖I1(t)‖2 + ‖I2(t)‖2 + ‖I3(t)‖2)

.
(
2β + β1−α(r + 1)1−α) ‖Ψ1 −Ψ2‖Xβr

= Cβ‖Ψ1 −Ψ2‖Xβr (46)

owning the property Cβ < 1 achieved through the smallness of β.

Notice that exponential stability of the linear problem in H and H1 allows we to
obtain the estimates (5), (5) and (5) with right hand side time–independente, which
allows us to take T =∞ , yielding global in time solutions. The proof of Theorem
2.5 is completed by taking ρ = ρβ .
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6. Proof of Theorem 2.6-Uniform decay rates for the nonlinear problem.
In this section we show that one can easily obtain that the solution of the nonlinear
problem decay exponentially to zero as t → ∞ by taking advantage of three facts
established in this paper.

(i) The fact that the solution is a fixed point of the map Θ defined in (5), and
therefore can be implicitly represented as

Φ(t) = T (t)Φ0 +

∫ t

0

T (t− σ)F(Φ)(σ)dσ (47)

(ii) The fact that our existence of global solution result requires smallness of initial
data only in the lower topology and the use of this along with interpolation
inequalities allowed us to obtain the key estimate (5.1).

(ii) The fact that the semigroup T (t) in (6) is uniformly exponentially stable in
both H and H1.

The final result of this section is the following.

Theorem 6.1. There exists ρ > 0 such that the solution Φ constructed in (2.5) is
such that

‖Φ(t)‖H1
6 2M1e

−ω1
2 t‖Φ0‖H1

for all t > 0, where M1, ω1 are the constants describing the uniform stability of the
linear semigroup T (t).

The proof of this result relies heavily on the facts (i)–(ii) outlined above and a
Grownwall type inequality. This inequality seems to have been originally introduced
in [1], but here we are using [2, Corollary 1, p. 389]. We state the inequality here
for convenience, but in a version which is suitable for our use in what follows. We
invite the reader to consult [1, 2] and references therein for more details

Lemma 6.2 (Grownwall–Beesack Inequality). Let u, f, g, h : R → R measurable
functions such that fh, gh and uh are integrable. If u, f, g, h are nonnegative and

u(t) 6 f(t) + g(t)

∫ t

0

h(σ)u(σ)dσ

then

u(t) 6 f(t) + g(t)

∫ t

0

f(σ)h(σ) exp

{∫ t

σ

g(s)h(s)ds

}
dσ

Proof of Theorem 6.1. We use the same constants as in (5), that is, we use that

‖T (t)‖L(H1) 6M1e
−ω1t (48)

for all t. Moreover, we know that the solution Φ exists in some Xβ
r for β > 0 small

and that the whole argument of the proof for the existence of global solution would
still be true if one decreased β. Therefore, by possibly taking it smaller, we assume

β <
ω1

2M1C
(49)

where ω1 is the rate of exponential decay of the semigroup T (t) in H1 for a fixed
τ = 1. As in the proof of global wellposedness, we take ρ = ρβ . We then compute,
via (6) and (5.1)

‖Φ(t)‖H1 6 ‖T (t)Φ0‖H1 +

∫ t

0

‖T (t− σ)F(Φ)(σ)‖H1dσ
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6M1e
−ω1t‖Φ0‖H1 +

∫ t

0

M1e
−ω1(t−σ)‖F(Φ)(σ)‖H1dσ

6M1e
−ω1t‖Φ0‖H1

+M1Cβe
−ω1t

∫ t

0

eω1σ‖Φ(σ)‖H1
dσ.

We then apply the Grownwall–Beesack inequality with

u(t) = ‖Φ(t)‖H1
, f(t) = M1e

−ω1t‖Φ0‖H1
, g(t) = M1Cβe

−ω1t, h(t) = eω1t

to obtain

‖Φ(t)‖H1
6M1e

−ω1t‖Φ0‖H1
+M2

1Cβ‖Φ0‖H1
e−ω1t

∫ t

0

exp {M1Cβ(t− σ)} dσ

= M1e
−ω1t‖Φ0‖H1

+M1‖Φ0‖H1
exp {(M1Cβ − ω1) t} (1− exp {−M1Cβt})

6M1e
−ω1t‖Φ0‖H1

+M1‖Φ0‖H1
exp {(M1Cβ − ω1) t} 6 2M1e

−ω1
2 t‖Φ0‖H1 ,

and we observe that due to (6) we have

M1Cβ − ω1 < −
ω1

2
< 0.

The proof is complete.

Corollary 1. Let β0 be the largest number such that the map Θ has a fixed point
in Xβ0 which is, moreover, uniformly exponentially stable as in Theorem 2.6. Let
ω : (0, β0]→ R+ be the function that maps each β > 0 to the decay rate ω(β). Then
there exists another function ω : (0, β0]→ R+ such that ω(β) > ω(β) for all feasible
β and

lim
β→0

ω(β) = ω1,

where ω1 is the decay rate of the linear semigroup T (t).

Proof of Corollary 1. The proof of Theorem 2.6 already provides a proof of
Corollary 1. Indeed, it suffices to define ω : (0, β0]→ R+ by

ω(β) = ω1 −M1Cβ > 0.

As a final note, a question of constructing decay rates which are independent on
the relaxation parameter is relegated to future work. Such result ,in the case of
internal dissipation, has been obtained in [3].
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