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ABSTRACT. Boundary feedback stabilization of a critical third—order (in time)
semilinear Jordan-Moore-Gibson-Thompson (JMGT) is considered. The word
critical here refers to the usual case where media—damping effects are non—
existent or non—measurable and therefore cannot be relied upon for stabiliza-
tion purposes. Motivated by modeling aspects in high-intensity focused ul-
trasound (HIFU) technology, the boundary feedback under consideration is
supported only on a portion of the boundary. At the same time, the remain-
ing part is undissipated and subject to Neumann/Robin boundary conditions.
As such, unlike Dirichlet, it fails to satisfy the Lopatinski condition, a fact
which compromises tangential regularity on the boundary [37]. In such a con-
figuration, the analysis of uniform stabilization from the boundary becomes
subtle and requires careful geometric considerations and microlocal analysis
estimates. The nonlinear effects in the model demand construction of suitably
small solutions which are invariant under the dynamics. The assumed small-
ness of the initial data is required only at the lowest energy level topology,
which is sufficient to construct sufficiently smooth solutions to the nonlinear
model.

1. Introduction.

1.1. PDE Model and an Overview. Let  C R? (d = 2,3) denote a bounded
domain with sufficiently smooth boundary I' := 02 within which a sound wave
propagates. In HIFU technology, as well as in other related areas, one is interested
in tracking — and often controlling — the evolution of an acoustic pressure u =
u(t,x) (t € Ry, z € Q) triggered by wave propagation. In media within which
heat propagates hyperbolically (which is the case of most biological tissues), the
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evolution of the acoustic pressure can be assumed to obey the semilinear JMGT
equation which is given by the third order in time abstract evolution equation

Ty + (o — 2ku)uy — A Au — (8 + 7¢?) Auy = 2ku?, (1)

where ¢, §, k > 0 are constants representing the speed and diffusivity of sound and
a nonlinearity parameter, respectively, while the function a : @ — R* accounts
for a natural frictional damping with the quantitative properties depending on the
media. The parameter 7 > 0 — also media—dependent — accounts for time relaxation
and essentially transfers the hyperbolicity of the heat to the acoustic wave.

The semilinear equation (1.1) can be viewed as a singular perturbation and, to

some extent, a refinement of the classical quasilinear Westervelt’s equation
(o — 2ku)ugy — 2 Au — §Auy = 2ku?. (2)

obtained by setting 7 = 0. Physically, the main difference between (1.1) and (1.1)
is that the latter accounts for finite speed of propagation of the heat waves. From
the modeling point of view, this results from using Maxwell-Cattaneo Law — rather
than Fourrier’s Law — to model the heat flux for the acoustic heat waves. More
details regarding the physical interpretation of the model (1.1), its derivation and
overall discussion see [18, 9, 10, 40, 12, 19]. An analysis of asymptotic behavior of
solutions when the parameter of relaxation tends to zero can be found in: [24, 25, 3].

The issues of wellposedness and stability of solutions under homogeneous Dirich-
let and Neumann boundary data were first addressed for both nonlinear and lin-
earized (k = 0) dynamics around 2010, see 22, 33, 23]. For the analysis of long—time
dynamics of (1.1), in both linear and nonlinear cases, the function

T62

7: Q=R 'y(a:)zoz(as)fT
plays a central role. In fact, the existence of a positive constant =y such that
v(x) = v > 0 a.e. in Q ensures both: that the linear dynamics is uniformly
exponentially stable and that stable nonlinear flows can be constructed via a barrier
method [23]. A natural question to ask appears to be: what about other profiles of
~? It is known that if v < 0 one may have chaotic solution [13] and if v = 0 then
the energy is conserved [22]. This raises an interesting question: which mechanisms
could be employed to ensure the stability of the dynamics when 7 degenerates, i.e.,
~v(x) = 0?7 Here “criticality” is used within the context of stability rather than
nonlinear parameters related to the validity of Sobolev’s embeddings.

From a practical point of view, the quantity v(x) is interpreted as the viscoelas-
ticity of the material point x € Q and, in particular, in the medical field, is not
expected to be known for all points of 2. By making the physically relevant as-
sumption that v € L®(Q), v(x) > 0 a.e. in Q (allowing the critical case v = 0,
or the case where measurements can only be made at isolated points of the do-
main), we ask the question of whether a non—invasive (boundary) action can drive
the acoustic pressure asymptotically to zero, regardless of the particular knowledge
of v (as long as it is nonnegative). This question, besides being of independent
interest in stability theory, is critical in ensuring global wellposedness of nonlinear
dynamics. Otherwise, the nonlinearity may cause blow-up of solutions [11].

It has been recently shown that added viscoelastic effects produce, in some cases,
the asymptotic decay of the energy. The type of the results obtained depend on
the properties of the viscoelastic kernel, which requires rather special structural
properties in order to produce the exponential decays in the critical case [30, 31, 14,
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FIGURE 1. Representation of the domain

15, 17, 16]. Even more, unlike a wave equation, it is known [17] that viscous effects
acting upon pressure only u(¢, z) can not produce uniform decays of the energy in
the critical case. Because of the above, the question of identifying other mechanisms
forcing the energy of critical MGT to decay uniformly to zero is of paramount
interest. Boundary dissipation is a natural, physically attractive candidate since
the control action is applied on the boundary only. Hence it is easily accessible to
external manipulations. As always in the case of boundary dissipation in hyperbolic
dynamics, geometric configuration for the damping plays a pivotal role.

Of particular interest is a configuration arising in the ultrasound technology,
where an acoustic medium is excited on one part of the boundary while the remain-
ing part is subject to absorbing boundary conditions, see Fig 1. This control model
was introduced in [21, 20] in the case of Westervelt—-Kuznetsov equation and later
pursued in [8] for a finite time horizon MGT equation. This corresponds to the
following boundary conditions

MO, u ~+ Ko(z)u =0 on g :== (0,T) x Ty

Oyu+ k1(x)uy =0on Xy == (0,7) x I'y (3)

with T'g,I'; C T relatively open, I'g # 0, TouT; =T, Ty NIy =0, A > 0,
Ko € LOO(].—‘())7 K1 € LOO(Fl), Kk; > 0.

Remark 1.1. Note that the boundary conditions imposed on I' change the struc-
ture from I'g to I';. This particular model is motivated by applications [21, 20] where
only one part of the boundary is subject to dissipation (I'; ), while the other part is
left free or subject to some control actions. When A = 0, the boundary conditions
in (1.1) are of mized type-involving both Dirichlet and Neumann boundary condi-
tions. It is known that mixed boundary conditions, imposed on the same part of the
boundary and not separated, lead to singularities of the corresponding elliptic solu-
tions [38]. Maximal amount of regularity in the case kg = k1 = 0, as shown in [38],
is up to BS/fO(Q), the latter stands for Besov’s space. Some regularity improvement
is possible, assuming that the two boundaries meet under a certain angle. For this
reason, when considering boundary stabilization problems for Dirichlet—Neumann
problem, it is typically assumed that I'g and I'y do not intersect.

However, the situation is different when A > 0 say, without loss of generality,
A = 1. This Neumann-Robin case is under consideration in the present paper. The
principal symbols associated with the boundary conditions on both parts I'y and I'y
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are the same, so the regularity of the elliptic solutions is dictated by the regularity
of the forcing on the boundary, in line with standard elliptic theory [32]. More on
this will be given later.

1.2. Past results. The boundary stabilization of MGT dynamics, in the critical
case, has been considered only very recently and for linear models only. In [4], linear
dynamics is considered in the Dirichlet—Neumann case, i.e., A=0and kg = k1 =1
in (1.1). However, this configuration, due to the regularity issues associated with
mized boundary value problems, as noted before, requires the two parts of the
boundary to be separated. Stabilization estimates require the domain €2 to be star-
shaped. This latter restriction has been removed in [6], still for the linear dynamics,
by resorting to a microlocal analysis argument. The final result in [6] holds without
any geometric conditions on the controlled part of the boundary, and only the
uncontrolled part is subject to the star-shaped condition. This is in line with the
physics of the problem.

In the case of boundary conditions in (1.1) with A > 0, both parts of the boundary
are adjacent, thus touching, and we are dealing with the Neumann—Robin problem.
This allows the propagation of higher-order regularity, up to H?(Q2). However,
the question of propagating stability through suitable flux multipliers now becomes
problematic. This is due to the failure of the Lopatinski condition [37] on the
non-dissipated part 'y of the boundary and is discussed below.

It is well known that the failure of the strong Lopatinski condition [42, 41] leads
to new challenges at the level of proving controllability or stabilization even for the
wave equation in dimensions higher than one. The mathematical-technical reason
for this is that the presence of tangential boundary derivatives on I'y cannot be
handled by the standard flux multiplier methods suitable for studying controllability
or stabilization from the boundary. Note that in the Dirichlet case the corresponding
tangential traces on the non-dissipated part are simply zero.

The first progress in solving this open problem in the MGT case was made in [5],
where linear model is considered. There it is shown that the energy decays expo-
nentially at the low (base) level. This result is obtained by a suitable construction
of flux multipliers under certain geometrical constraints imposed on the boundary.
The imposed geometric conditions require convezity of the level sets of the part of
the boundary that is not subject to dissipation. For the nonlinear case, one needs
to “boost” these estimates to higher topological levels. However, nonlinear effects
force a different functional environment in which the higher-level energy function-
als and the higher topology of the solutions must be controlled in time. Moreover,
quasilinear effects force one to consider appropriately small solutions. Thus, obtain-
ing stability estimates, at several topological levels, which are also invariant subject
to the dynamics lies at the heart of the matter of the nonlinear problem.

1.3. New Challenge. The main challenge of the present work is to study the
problem for the nonlinear dynamics. This is non-trivial for at least three reasons:
first, the nonlinear effects require a higher degree of regularity, which automatically
forces one to raise the stabilization estimates to higher topological levels. Combined
with the dynamics at the boundary, it is challenging to lift the linear estimates to
higher levels. This is due to the geometry and the fact that the usual multipliers are
not commutative with the generator. The second reason is that the initial data for
nonlinear problems must be well prepared. This includes compatibility conditions
and also suitable smallnesss of the energy solutions. To deal with the latter problem,
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the smallness requirement is imposed only for the lower topology of the initial data.
The analysis performed shows that this smallness is propagated by the dynamics
at the lower topological level so that the higher derivatives can remain large. This
is the crucial point for the claim that the presented framework preserves the fully
nonlinear properties of the model and the resulting acoustic waves remain genuinely
nonlinear. Finally, the third reason is that geometric configurations are necessary
for “trapping” the energy rays. The estimates must be boosted to higher energy
levels while maintaining smallness only at the lowest energy level, so this is not a
perturbation argument.

For other relatively recent references related to the questions of boundary regu-
larity for linear MGT equation, the interested reader is referred to: [7, 36, 43].

2. Main Results and discussion. Let {2 € BR?3 be a bounded domain with C?
boundary I' = 'y U I';, where T'g,I"; are relatively open, nonempty subsets of T
Consider the following PDE system:
T + Qg — 2 Au — (8 + 7¢2) Auy = u? + uuy in@Q:=(0,T) xQ
Oyu+ Ko(z)u =0 on Xo = (0,T) x Ty
u+ k1(x)ug =0 on X = (0,T) xI'y
u(0,x) = uo(x), w(0,2) = u1(z), un(0,2) =uz(x) in Q

(4)

where we assume without loss of generality that A =1 and 2k = 1 in (1.1).

Notation. Here and throughout the paper we denote by L?(Q) and L?(T") the sets of
measurable (in the Lebesgue and Hausdorff measures, respectively) functions whose
squares are integrable on ) and I respectively, equipped with the norms given by
the inner products

(u,v):/ude and (u7v)p:/uvdf‘.
Q r

and denoted respectively by || - ||2 and || - ||r. The remaining L?(Q2)— spaces (1 <
p < 00) will also have norms denoted by || - ||,. In addition, we denote by H*(2)
the (L?-based) Sobolev space of order s € R [32]. Let Bj (D) denote Besov spaces
of order s 20,1 < p < g < oo defined on a domain D (be it 2 or a boundary T),
see [34, Section 3.3].

2.1. Functional Analytic Setting. Let A : D(A) C L?(Q) — L%*(Q) be the
operator defined as

AL = —AE, D(A)={¢ € L*(Q); Aue Ly () and 0,&|r, =0, [0,¢ + ko], =0} -

In this case A is a positive self-adjoint operator with compact resolvent. With
Ko(z) > 0, on an open set of I'g, D (AY/2) = H'(Q) with the - equivalent to H*(£2)
~ topology of D(A'/?) given by

JulFyav o= IVl + [ ofuldre.

Lo
Moreover, with some abuse of notation, we (also) denote by A : L2(2) — [D(A)]
the extension (by duality) of the operator A.
The phase space H is given by

H := D(AY?) x D(AY?) x L*(Q) ~ HY(Q) x H'(Q) x L*().
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Since the main emphasis in the paper is on nonlinear dynamics, one needs to
work with more regular solutions. For this, an additional regularity of the co-
efficients x; will be required. In what follows, we shall assume (conservatively)
that x; € W, (I;),p > 2 .The above regularity implies that ; are the multipli-
ers on H*(I';),i = 0,1 and 0 < s < 1/2. Indeed, for the latter it suffices that
ki € Loo(Ti) N By/2(Ty),i = 0,1, [34, p. 126].

Under such assumption one has the following regularity of the domain D(A),

D(A) c H(Q); 6 <2

Remark 2.1. Note that the restriction 6 < 2 is due to possible singularity caused
by Robin-Neumann boundary conditions. Indeed, k; € Wz} (T;), p > 2, yields k;u €
H*(T;),s < 1/2 for u € H'(Q) [34]. However, the singularity of the characteristic
function across the interface (from I'y to I'y) propagates only H'/2~%(T") regularity
for the normal derivative on I'. If one assumes that k;’s are also of compact support
in I';, then 6 can be taken equal to two. For analysis in this paper 6 < 2 provides
sufficient regularity.

Next, we rewrite (2) as a first—order abstract system on H. For this, we introduce
the classical boundary — interior harmonic extension for the Neumann data on I'y
as follows: for ¢ € L?(I'1), let ¥ := N(y), be the unique solution of the elliptic
problem

A =0 in Q
WY = ¢|r, onI'y
(%1/1 + lio’ll) =0 on F().

From elliptic theory, it follows that that N € £L(H*(T1), H*t3/2(Q)), (0 < s < 1/2)

and
r
Neae=Jton D
Oon T,

for all £ € D(A), where N* represents the adjoint of N when it is considered as an
operator from L?(I'1) to L() [28, 32].
The u—problem can be written (via duality on [D(A)]') as

TUpes + s+ Au+bAuy —&—CQAN(mN*Aut) +bAN (k1 N* Auyy) :u? +uuy  (5)
Next, we introduce the operator A : D(A) C H — H with the action:

&1 0 I 0 &1
Alel= © 0 g &| (6)
2 2
&l -S4 —CaneaNa-ta “Panpantar-2rl|e
T T T T T

and the domain (with 55 (€1,&,63)T)
D(A) = {£eB; & e D (4Y2), &+ N(sN"Agia) € D(A), for i = 1,2}
This gives (see Remark 2.1 and the regularity of the Neumann-Robin map)
D(A) c HY(Q) x H?(Q) x H*(Q), 6 < 2

with a proper injection.
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The first order abstract version of the u—problem is thus given by

®(0) = ®o = (uo,u1,uz) ",
in the variable ® = (u, us, uy) " with A defined in (2.1) and F(®) " = (0,0, 7 (u?+
’U/U/tt)).

To treat the nonlinear problem one needs to consider “smoother” solutions than
those generated by the topology of H. This leads to the following construction of
the second phase space denoted by H;, which is“tighter” than H but strictly larger
than D(A). The new phase space Hj is defined as

Hy = {€ € H; A& € L2(Q);[0,61 + Ko&1]p, = 0;[0u&1 + k1], = 0}
and endowed with the norm

1€, = 115 + A& 3

We remark that the boundary conditions in the definition of the space H; are well
defined due to the property: A& € L*(Q) and & € H'(Q) then 9,& € H~'/2(I")
— the latter allowing to define the boundary conditions as a distribution. We also
note that since &1,& € HY(Q) we have &|r, € HY/?(T;) (i = 1,2) and therefore
d,& € HY?(T;), the latter a consequence of regularity of x; € Bi,/;(Q).This, along
with the elliptic regularity implies:

H; c HY(Q) x HY(Q) x L*(Q),0 < 2
with a proper injection, see also Remark 2.1. Note also the inequality
€113, < €13+ 1AEIZ + 10u€x 1220y ~ €T + 11611 Br=qer

The important property is that the nonlinear term in (2.1) is invariant under Hjy
topology in dimensions up to 3. This will be extensively used throughout the paper.

2.2. Formulation of Main Results. We begin with a preliminary result on the
generation of linear semigroups within the framework of spaces H and H;. The
operator A generates a Cy semigroup S(t) on H, as shown in [5] . We shall show
that the action defined by A with its natural domain also generates a Cp—semigroup
{T(t)}t>0 on Hl.

Theorem 2.2 (Generation). Let S(t) , t > 0, denote the Cy semigroup generated
by A on the space H. Then, the family T (t) :== S(t)|m,, t = 0, is also a Cy—semigroup
with the generator A and its realization on Hy.

The second result deals with an exponential stability of the semigroups on the
phase space H and H;. For this, one needs to introduce the following geometric
condition.

Assumption 2.3. The boundary I'g is star—shaped and convexr. This is to say:
there exists xg € R™ such that (x — xo) - v(x) < 0 for all x € Ty where v(x) is the
outwards normal vector to the boundary at x. In addition, there exists a conver level
set function which defines Ty, see [29]. We shall also assume that the coefficient kg
has its support nonempty and compact in Ty, while k1(x) > k1 > 0,2 € T'y.
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As shown in [5], Assumption 2.3 is sufficient for the semigroup S(¢) to be expo-
nentially stable on H. We shall show that exponential stability also holds on Hj.
This will be critical for the study of the nonlinear problem. The corresponding
result is formulated below.

Theorem 2.4 (Two level uniform stability). Let Assumption 2.3 on T be in
force and let v(x) = 0. Then the semigroup {T(t)}i>0 generated by A in H; is
uniformly exponentially stable with decay rate wi > 0, where w1 < wg with wy the
decay rate corresponding to the semigroup S(t).

Once linear wellposedness and uniform stability of the linear (k = 0) problem
are established with respect to the appropriate topologies, our next task is to prove
the wellposedness of nonlinear dynamics on Hy. To accomplish this, initial data
need to be assumed sufficiently small. How small? This is an important question
as argued in [3]. We will be able to show that some smallness will be imposed only
at the lowest level of regularity H, while higher derivatives can remain large. As
a consequence, in the following theorem, we establish the existence of Hj;—valued
solutions with given H; small initial data in H only. The proof, given in Section
5, relies on estimates derived via interpolation inequalities which allow exhibiting
certain “invariance” of a H-small ball under the nonlinear dynamics in Hj.

We start specifying the notion of solution for the semilinear problem (2). We
denote the initial data here by ®q = (ug, u1,u2)". Given T' > 0, we say that

D(t) = (u(t), us(t), usr(t))

is a mild solution for the system (2) provided ® € C([0,T],H;) and

O(t) =T(t)Do + /0 T(t —7)F(®)(r)dr. (8)

It is important to notice that the notion of mild solution given above cannot be
extended to the base topological level H. The reason is that the nonlinearity, here
described by the function F, is not invariant under H, hence justifying the need for
a smoother phase space.

Before stating the theorem, we denote by H” (for p > 0) the set

HP :={® € Hy; ||P|lu < p}.

Theorem 2.5 (Global Solutions). Let Assumption 2.3 be imposed on T'. Then,
there exists p > 0 sufficiently small (depending on the parameters in the equation),
such that, given any ®o € HP the formula (2.2) defines a continuous Hj —valued mild
solution for the system (2). Moreover, for such p > 0, there exists R = R(||®o/||m, )
such that all trajectories starting in Bye(0, R)' remain in Bye (0, Ry) for all t > 0,
for some Ry > R.

Once global solutions are shown to exist, we take on the issue of asymptotic (in
time) stability. The final result is positive and it and holds uniformly (w.r.t ) as
long as v € L>(2) and y(z) > 0 a.e. in Q.

Theorem 2.6 (Nonlinear Uniform Stability). Let Assumption 2.3 imposed on
T be in force and assume v € L>®(Q) and y(x) > 0. Then, there exists p > 0
sufficiently small and M (p),w > 0 such that if o € HP then

1ot le, < M(p)e™"||Pollz,, >0

IThe HP-ball centered at the origin and with radius R.
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where @ is the mild solution given by Theorem 2.5.

2.3. Discussion. The main novelty of the present paper is the study of stabiliz-
ability of a nonlinear critical JMGT equation with Neumann—Robin undissipated
portion of the boundary. Should the problem be subcritical (i.e. y(z) > v > 0
for x € Q), the difficulty created by the failure of the Lopatinski condition would
not enter the picture, simply because there would be no need to propagate stability
from the boundary into the interior. As already mentioned before, linear dynamics
with absorbing boundary conditions on I'; and zero Dirichlet data on I'y subject to
star—shaped conditions have been considered in [4, 6]. Mathematical difficulties in
propagating stability through the undissipated part of the boundary are not present
in this case, since the tangential traces are null on I'y. To cope with the new chal-
lenge we shall employ geometric constructs developed earlier in [29]. These results
allow for the construction of suitable-non-radial-vector fields from the tangential
bending of the radial and star—shaped fields. The newly constructed fields prop-
agate the needed estimates through the undissipated part of the boundary. This
method has been already used in [5] for the linear model. However, handling the
nonlinear effects, as in the present manuscript, brings another layer of difficulties.
First, stability estimates need to be boosted to the higher topological levels. And
this also involves “cooperation” of the new multipliers, in addition to topological
issues of keeping invariance of suitably small solutions. It should also be noted
that the nonlinear approach used in the past (for subcritical cases) relied on the
so-called barrier method which is based on a contradiction argument. However,
the application of this method in the boundary critical case meets several technical
difficulties even at the level of low frequencies (lower-order terms). In this paper,
we exploit another technique that, to the best of our knowledge, is new and makes
strong use of the fact that we only require initial data to be small in H. One of the
advantages of such construction (for JIMGT) was already exploited by the authors
in [3] in allowing extension by density in the nonlinear environment. In the present
paper, we discovered that it also allows to

a) prove global existence and exponential stability by the representation of the
solution and two-level stability of linear flows. Here, the smallness interplay
comes to the picture through a nonlinear propagation of an estimate of the
type

[F (@), < Cr(l|®]m) Co(| P, -)

where the size of C(||®|lm) can be controlled by p. See Theorem 2.5;

b) obtain a continuity property of the decay rate with respect to the H-size of
the initial data and the decay rate of the linear flow, w;. In general, we prove
that if e is the H-size of the initial data and w(e) is the corresponding decay
rate, then there exists w(e) such that w(e) > w(e) and w(e) — wy as e — 0T,

The rest of the paper is devoted to the proofs.

3. Generation of linear semigroups.

3.1. Preliminaries. The proof of generation of the linear semigroup on H is given
in [5]. Thus, the main task of this section is to prove generation on the space Hj.
To be reasonably self-contained, we shall be repeating a few — mainly notational —
details from [5]. These will be needed within the context of proving the generation
of higher regularity solutions.
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First note that H can be topologised by the inner product

& ©1 b
§2 5 |2 = (A2, A1) + ;(Al/zfz’ A200) + (&, 03),
§] |esl/w

for all (51; &2, 63)T’ ((pla P2, (103)T € H.

For notational convenience and future use, we introduce the following change of
variables bz = bu; +c?u which reduces the problem to a PDE-abstract ODE coupled
system. The change from the coordinates (u, u, us) to (u, 2, z¢) is described through
the isomophism M € L(H) given by (see [33])

0 0
2
C

02 1
0 i

b

The next lemma makes the above topological statement precise.

Lemma 3.1. Assume that the compatibility conditions

Oyug + koug = 0 on Ty, Oyug + k1up = 0 on I'y (9)
hold. Then ® € C1(0,T;H) N C(0,T;D(A)) is a strong solution of
q)t = Aq)
B(0) = By
if, and only if, ¥ = M® € C*(0,T;H) N C(0,T;D(A)) is a strong solution for
U, = AU
‘ (10)
W(0) = Ty = MB,
where A = MAM ™! with
& 0 2 1/2
D(A) =< |&| € [HY(Q)] xD (A / ) $ (0062 + Koalp, = 0,[0,62 + K1&3]p, =0
&

Proof. We only check the matching of the boundary conditions. Assume that ¥ =
(u,2,2;) € CH0,T;H) N C(0,T; D(A)) is a strong solution for (3.1). Let

T(t) :== (Opu(t) + kou(t))|ry, t =0

and notice that bY; 4 ¢ = 0 for all . This along with the compatibility condition
(3.1); (Y(0) = 0) implies that T = 0. The same argument mutatis mutandis
recovers the boundary condition for w on I'y. The loss of differentiability in D(A) is
due to the fact that the two parts of the boundary are not separated, see Remark
2.1. O

For convenience, we explicitly write a formula for the new operator A = M AM 1.

2

€ _?[ I 0 &1
A& = 0 0 I &2
4 2
1
€3 —’YLI ,yi[ _ QA —y =1 — éAN(,‘QN*A) &
Tb? T T T T
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2
where v = o — % € L (Q).

3.2. Proof of Theorem 2.2. In the first step, it is shown that A generates a Cp—
semigroup on H, from which the semigroup is generated by A can be recovered via
M. The semigroup on H; will then be obtained by a restriction argument. The

details are below.
We write A = Ay + P where

0 1 0
0 0 0
ct c?

T T 1707
is bounded in H and D(Ay) := D(A). It then suffices to prove generation of Ay
on H, see [35, p. 76] and this is done by verifying the hypothesis of Lummer—
Philips Theorem: dissipativity and maximality.The details of this argument are in
[5]. This yields that A4 is maximal dissipative, therefore generates a C— semigroup
of contractions due to Lummer—Phillips Theorem. Since P is bounded, A = A;+ P
generates a Cy—semigroup on H.

For generation in H;, one applies an argument inspired by the one presented
in ([33], p. 26) with the needed modifications to account for different boundary
conditions.. Since we already know that A generates a Cy semigroup {S(¢)}+>0 on
a larger space H, we only show that

{T®)}iz0 = {S(®)]m b0
is also a semigroup and that its infinitesimal generator is A when considered as an
operator in Hj.

This entails to the proof of two facts: {T'(t)},>0 satisfies the semigroup property
— which follows from the fact that the problem is autonomous — and invariance:
T(t)(Hy) C Hy for all ¢t > 0.

If &9 = (ug,us,uz)’ € Hy then d,ug + kyu; = 0 on T'y. We then need to show
that this condition is invariant under the dynamics and, in addition, the regularity
Au € C([0,T); L*(2)) holds true. This, along with the boundary conditions and
regularity of elliptic problems would lead to u € C([0,T); H%()) with 6 < 2.
Recall that an incremental loss of differentiability is due to change of the boundary
conditions from Ty to I'; with the normal direction having H/2~¢(I") regularity
across the interface.

In order to show that Au € C ([0,T); L?(€)), we appeal to the change of variables

zZ=us + %u. By the variation of parameters formula we have

P =

02 t (12
u(t) = e vty —|—/ e T2 (0)do
0

and since Aug € L*(Q) (@ € Hy), it suffices to verify that

b
/ e" T Az(0)do € LA(Q), Vt > 0.
0
To this end we recall that (z,2;) € C([0,7); H(Q2) x L*(2)). Writing the linear
solution of (1.1) (with & = 0) in the z—variable yields

T

t 2 2
/ e~ T Az(0)do = 3/ ™ T [24(0) + yuu(0)] do
0 0
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T

= 7 [2®) + et = T [z4(0) + ]

2
+ Z?/ e~ T2 (0) + yur(o)|do € L3 (),
0

as needed.

We show next that the boundary conditions are also invariant under the dynam-
ics. For this we again use the variation of parameters formula for v (and its time
derivative) to write (for continuous D(A)—valued solutions):

2 ¢ 2; -1
Oyu(t) + krug(t) = e~ 79 up +/ e ¢t =99, 2(0)do

0
+K)1 (—

t
C2 - -
:e_Tt&,uO—i—/ e’ 1(t_a)(r“),,z(a)da
0

SHIRY

C2 (32 t C2
e T lug +e T 2(0) —|—/ e_b(t_")zt(a)da)
0

2

c 2 2 c b2
+ K1 |:— " lug et <U1 + b“o) +/ eb(tg)zt(g)da}
0

t
= e_%t [Oyup + Kiug] + / e (=0 [0y2(0) + K12¢(0)] do = 0,
0

where the conclusion follows from the fact that the initial conditions for u satisfy the
absorbing boundary conditions and the variable z satisfies the absorbing boundary
conditions along the trajectory. This completes the proof of Theorem 2.2.

4. Exponential decays — Proof of Theorem 2.4.

4.1. Preliminaries. In this section we work with the linearized version of (1.1)
—i.e., we take kK = 0 — in the z—variable. Moreover, since 7 is fixed, we lose no
generality by setting 7 = 1 to be assumed for the rest of the paper. Recall the
2
change of variables z = u; + S-u transforming (1.1) into
zig + bA(z + N(k1N"Az)) = —yuy + f. (11)

We assume smooth initial conditions and a u—independent — L?(Q2)-valued and C*!
in time — forcing term f. This ensures the existence and uniqueness of strong
solutions which are, in addition, continuously dependent on the initial data. We
can eventually extend the results that follow to semigroup solutions by density.

The energy for a solution ® = (u, us, uy) € D(A) will be computed at two levels.
We define the lower energy functional by E(t) = Ey(t) + F1(t) where

b 1 c?
Bi(t) 1= S AY2 13 + Sl + Sl 2

1 c?
Eoft) = 1 023 + 5 4Y2u
and the higher energy functional £(t) = E(t) + F2(t) where
b
Ex(t) = & Al

where a and v may depend on x. We also note that
1A 2|3 = [|Vull3 + |vFoull?,
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By Poincare- Wirtinger inequality we have | AY?u|ls ~ |[u]| g1 (a).-

It is standard to see that E(t) ~ ||®(¢)||%, see [4] for details. The following
lemma follows from classical elliptic theory [32] and provides the estimate which
is necessary for justifying our choice of higher energy functional. As a remark,
here and hereafter we use the notation a < b to say that a < Cb where C is a
constant possibly depending on the physical parameters of the model (7,¢,b > 0)
but independent of space, time and v € L ().

Lemma 4.1. Let Q be a smooth domain and consider a function u :  — R such
that Au € L*(Q) and d,ulr € H3(T), 0 < s < 1/2, then u € H3/?*3(Q) and

[ell grarzes () S 1Aulle + (100w e (ry.-

4.2. Propagation of boundary dissipation — Flow multipliers. We begin
with energy identity for F;. Since the problem is linear we work with smooth so-
lutions (in the domain of the generator) which can be extended by density to the
phase space solutions.

Proposition 4.2 (Energy Identity). Let T > 0. If U = (u,z,2) is a weak

solution of (4.1) then
/ Dy (s)ds = Ey(t / / fz:dQds (12)

holds for 0 < t < T, where Dy represents the interior/boundary damping and is
given by

Dy := b/ k122dTy —|—/ yuZ,dQds (13)
r Q

Proof. The energy identity (4.2) is first derived for strong solutions and then ex-
tended by density to weak solutions. The details are the same as in [5]. We repeat
some of the calculations for the reader’s convenience. Consider the bilinear form
(-,+) : H x H — R given by

&1 ¥1 2 2 2
< &, | P2 > = b(A1/2€27A1/2<P2) (3,3) + ( (2 - 51),<P2 - b<p1>
&3] s

which is continuous. Moreover, recalling that ¥ = (u, 2, 2;) it follows that 2F; (t) =
(U(t), U(t)).Therefore, with G = (0,0, f) T, after straightforward calculations (de-
tails in [5])

2cle;l;t(t) _ <d‘i’h(€t))\1,(t)> = (AU(t) + G, T(t))

= 7/ ’yuftdﬂ—b/ mzfdr1+/ f2:dS2.
Q I Q

Identity (4.2) then follows by an integration in time on [t, T]. O

In the next step, we reconstruct the integral of the full energy on a truncated
time interval (s, T —s) for 0 < s < T'/2, in terms of the dissipation and lower order
terms. This step requires a transfer of dissipation from the boundary into the entire
spatial domain. Some comments are in order.

We study stability properties of both S(t) and T'(¢) assuming the general de-
generated case for v, ie., v € L*(Q) and y(z) > 0 a.e. in Q. This includes a
completely degenerate (critical) case when v = 0 and the uncontrolled dynamics is
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unstable. The stability of S(t) has been already considered in [5], however, to make
the arguments self-contained, some of the constructs will be repeated below. With
a feedback boundary control, it will be shown that the semigroups can be stabilized.
For this to happen, additional geometric conditions are needed which are stronger
than the ones typically assumed in a boundary stabilization theory of hyperbolic
dynamics. It is clear that if Iy = () then the entire boundary T is dissipated and
therefore stability results would hold without any additional geometric restrictions.
Assuming that 'y # 0, and Ty is star-shaped (standard condition), classical stabil-
ity methods (multipliers) do not work due to conflicting signs of radial vector fields
on the boundary I'y, when acting on the tangential derivatives. This fact has been
recognized already in [29].

However, the convexity of I'g and Assumption 2.3 save the situation due to the
following construction [29]: there exists a vector field h(z) = [h1(x), - , ha(z)] €
C?(Q) such that

h-v=0o0nTYy (14)

with v being the unit outward normal, and that for some constant 6 > 0 and all
vector v(z) € [L?(Q)]", we have

[ Il P> s [ oGP, (15)
Q Q
where J(h) represents the Jacobian matrix of the vector field h.

Remark 4.3. We note that the more general typical star—shaped condition h-v < 0
on I'y is not sufficient. This is due to the presence of tangential derivatives on
uncontrolled part of the boundary which can not be “absorbed” via dissipation by
the microlocal argument [27, 41, 26]. The latter requires time derivatives of the Ty
traces to be controlled according to the inequality:

10-ullz, < Clludlls, + Cllovulls, + lotq

valid on solutions. Above, lotg mean lower order terms on @ = Q2x[0,T]. By “bend-
ing” on the boundary I'y the radial vector field allows to eliminate its contribution
of the tangential derivatives. See Remark 4.7.

Remark 4.4. Convexity of I'g is only one sufficient condition. Several examples
where the construction in (4.2) holds for other types of domains are given in [29].

Proposition 4.5. Let T > 0 and assume that Assumption 2.3 holds. For any
strong solution of (3.1) (u, z, z¢) the following inequality is valid

/ o Er(t)dt < [Ei(s) + Er (T — 8)]+

Cr

T
/ Dy(s)ds + / £2dQ + lots(z)
0 Q
for 0 < s <T/2. Here, lots(z) is a collection of lower order terms satisfying

lots(2) < Cssup {12(0)3-s(ay + 2633 }
te[0,T]

for some 0 < § < 1/2.
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Proof. We start with energetic calculations performed first on regular (strong) so-

lutions [with at least H3/2%(Q) regularity ]. Let’s multiply equation (4.1) by h-Vz
and integrate by parts in (s, T — s) x Q, for s € [0,7/2). This gives

1 T—s T—s

5/ /(zf—b|v,z|2) (h~u)dth+b/ 0,2(h - Vz)dldt
s I s T

T—s

T—s
= / / yuge (h - Vz)dQdt +/ zi(h - V2z)dQ
Q s

T—s T—s
/ / R)|Vz|2dQdt + = / / 7 — b|V2|?) div(h)dQdt
T—s

- / F(h - V2)dat, (16)
s Q

where J(h) is the Jacobian with the properties in (4.2). Now notice that equipar-
tition of kinetic and potential energy appears in the above identity via the term

/ (27 = b|V2[?) div(h)dQ,
Q
We next multiply (4.1) by zdiv(h), integrate by parts to obtain the following identity

b T—s 1 T—s
5/ Oy zzdiv(h)dl'dt = 5/ /fyuttzdiv(h)det
s s Q

r
1 . T— 1 T—s 9 .

+ = [ zzdiv(h)dQ + = (b| V2| = 27) div(h)dQdt
2 Ja 2/)s Ja

b T—s Tes
N 5/5 /QZVZ - V(div(h))dQdt — %/s ; fzdiv(h)dQdt (17)

where we have, as in (4.2), kept the boundary terms on the left—-hand-side. Adding
(4.2) and (4.2) yields

1 T—s
§/ /(zf—b\VzP) (h - v)dDdt
s r

T—s T—s
+b/ Oyz(h - Vz)dl'dt + ZQ)/ Oy zzdiv(h)dl'dt

T—s T—s
/ /’yutt (h-V2z)dQdt + = / /vuttzdlv h)dQdt
T—s

/ J(h)|Vz| det—&—/zt(h Vz)dQ
Q

s
T—

1 T—s
v 2 / zdiv(n)d| -2 / / V2 - V(div(h))dQdt
2 Q s 2 s Q

T—s 1 T—s
- / F(h-V2)dQdt — = / Fdiv(h)dQt,
s Q 2 s Q

The boundary terms can be written more compactly in terms of the interior terms
as

T—s
/ B(T)(t)dt
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T—s

= /Ts/g2 (yuge — f) Mp(2)dQdt + /Q 2 My, (2)d S
/T 7 )|V z|?dQdt — /T 7sz V(div(h))dQdt. (18)

by defining Mj,(z) := h - Vz + $zdiv(h) and

1
5/ (27 = b|V2[?) (h-u)dl“—i—b/@l,th(z)dF.
r r

Now, the second part of geometrical condition (4.2) allow us to obtain an estimate
for the potential z—energy. Since M}, (z) is controlled by the potential energy

B(T) :

[ M (2)]|2 < sup(|h(z )+diV(h)(ff))<VZ|l2 + ;IIZIIfz) Szl S I14Y%2)2, (19)

T€EQ

due to Robin boundary condition imposed on I'y which allows to control L? norms
by the gradient. Moreover, the last term in (4.2) can be estimated as

/S T_S/Q V2V (div(h))dQdt

for any ¢ > 0, due to Young’s inequality and boundedness of D?h in . Similarly,

T—s
<e / [ 920t + Colloirnay: (20)

for any € > 0
T—s T—s T—s
Y My (2)dQdt| < 5/ / |AY 2|2 dQdt + CE/ / | g | 2dQdt
Q s Q s Q
and finally
T—s
Q s

Combining (4.2), (4.2), (4.2) and the second part of assumption (4.2) yields, for
€ > 0 sufficiently small,

T—s T
/ \V22dQdt < Ey(s) + By (T — s) + /D\p(s)ds
s Q 0
T—s
+ [ BO)@d+ /Q P2AQ + 2o sraeyy (22)

S

The reconstruction of kinetic energy comes next. To this end we multiply (4.1)
by z and again integrate by parts over (s,T — s) x Q to obtain

T—s T—s
/ / [b|V2]* — 2} det+b/ /28 dldt =
T—s
/ /'yuttzdﬂdt /ztde +/ fzdQddt. (23)
s Q
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Identity (4.2) implies the following upper estimate for the kinetic energy
T—s T—s T—s
/ |2|2dQdt < [Er(s) + E1(T — s)] + / |V22dQdt + / / 20, zdl'dt
s Q s Q s r

T
+/ D\I,(S)ds—‘r/Qf2dQ+||Z||2L2(37T—5;L2(Q))
0

(24)
and then combining (4.2) and (4.2) (adding and subtracting the boundary term
defining ||A'/?2||3 from the gradient), and noticing that the term ||y'/?u||2 in E; (t)
can be estimates from the first two inequalities, we conclude

/T_S El(t)dt S El(S) + El(T — 8) + /TD\I;(S)dS

T— s

+ [ B+ / £2AQ + |2 a o gray (29)
where
- 1
B(r);:§/(z§—b|vZ\2) (h-v)dT +b a,,th(z)err/zayde/ Ko|z|?dTy (26)
T r T To

We notice that all the computations carried up to now required only coercivity
of the Jacobian (4.2). Ounly at this point in the analysis of the boundary term B(T")
will we use the property (4.2),

Lemma 4.6 (Key Lemma). Let Assumption 2.3 be valid. The boundary term
B(T') satisfies the following estimate

T—s T—s
/ B(F)(t)dt§E1(3)+a/ V2|2t

T
+ CT/ D\IJ(S)dS + CT||fH?{71/2+6(Q) + CT,EZOttS(z)a
0

where lots(z) has the properties stated in Proposition 4.5.

Proof. We need to estimate all the terms in (4.2). We immediately notice that the
first boundary term contains |z;|?> — |V, z|? evaluated on the boundary. However,
on I'y we have no information on either tangential derivative — which provides
contribution unbounded with respect to the energy level. And it is at this point
that we will be using orthogonality of the constructed vector field i with respect to
the normal direction to the boundary. The details are given below.

First note that

T—s
/ /z@uzdth
T—s
/ z (ko(z dI‘Odt+/ / (—k1(z)z) dT'1dt
FO l—‘1

/FO Kkoz2dTg — = /1“1 k1(2)23(T — s)dTy + B /1“1 w1 (2)2%(s)dly
/ ri(2)2(s)dly S [|AY22(s)I13 S Ea(s), (27)

1

/T
b

l\.’)\»—l
f
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due to trace inequality on I'; and k; € L*°(T';). Next, we notice that

/STS/F (27 = b|Vz[?) (h-v)dTdt
) /ST_S (/1“0 +/F> (2 = bIV2[*) (h - v)dLdt

T T—s
< /Dq,(s)ds - b/ |Vz|?(h - v)dldt, (28)
0 s I
due to h-v =0 on I'y and the definition of the damping term (4.2).

Remark 4.7. Notice that assuming only h - v < 0, would allow to dispense with

the term
T—s
/ / 22(h-v) <0
s To
However, the gradient term

/STS /FO |Vz2(h-v) = /STS /Fo(ayzﬁ +10,2)2)(h - v)

where J; indicates derivative in the tangential direction, poses difficulties. Bound-
ary condition on I'y provide good estimate for the first part. However, for the second
no estimate is available unless z;|r, is under control, which may be given through
the dissipation or geometry h - v = 0.

Back to (4.2), for Ty a tangential-trace estimate is available. In fact, using
microlocal analysis estimate in [29, 26] one obtains

T—s
/ |0, 2|2dTy dt
s I

T
< CT/ / (10, 2| + 27)dT dt
0 Iy

+Cr {H'YUtt + fH}2LI*1/2+5(Q) + lOtg(z)]

T
SCr [ Da(s)ds + CrlfIBy-varag) + Crlots(2), (29)
0

with lots(z) complying with the condition stated in Proposition 4.5. With the above
we then improve estimate (4.2) as follows

T—s
/ / 2 B[V?) (h- v)dTdt
T—s
,S/Dq,(s)ds+/ / 10, 2[2dT'dt
0 s r

T
< CT/ Dy(s)ds + CTHfH?{fl/wra(Q) + Crlots(2),
0

due to (4.2). Finally, we tackle the tangential derivatives on the boundary. We
notice first that,

T-s T—s
/ / Oy zMp(2)dldt = / / Oz (h -Vz+ ;zdiv(h)> aidt  (30)
s r s r
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T—s
S / / Oyz (h-Vz)dl'dt + Eq(s),
s r

where we have used the fact that the second integral in (4.2) is exactly the one in
(4.2) up to an uniformly bounded term. For the first integral in (4.2), we use the
identity

Oy2(h-Vz) =10,2*(h-v) + 0,20, 2(h - T)
which is obtained by writing the coordinates of the vector Vz in the basis {7, v}.

This allows us to write, recalling the damping terms (4.2) and the tangential trace
inequality (4.2):

T—s T—s
/ Oyz (h-Vz)dldt < / 0y20;z(h - T)
s r s

To

T
+Cr | [ Da(s)ds + 113110050y + lots(2)
0

Now notice that the kg in Assumption 2.3 and the trace theorem applied to tan-
genial derivatives imply that, at each time t > 0, 8,2 = —koz € HY?(Ty),0,2 €
H~'/2(Ty), hence fFo 0,20, z(h - T) is well defined via duality. Thus, taking into
consideration the fact that support of kg is compact in I'g and again the regularity
of kg in Assumption 2.3, we estimate

T—s T—s
/ 0,20 z(h - T)dTodt = —/ / ko207 z(h - T)dTodt
s To S To
T—s T—s
= —1/2/ / ko0r |22 (h - T)dTg < O, / |z|2dTodt
s To s To

T—s
Se [ lBn@dt+ Crelalte: G
Estimate (4.2) finishes the proof of Lemma 4.6. O

Finally, Lemma 4.6 and the inequality (4.2) yield Proposition 4.5 after taking
small enough. O

The next result aims at improving Lemma 4.5 by absorbing lots(z) via the damp-
ing. For the linear problem, this is done by a compactness uniqueness argument as
in [5]. The corresponding result is stated below.

Proposition 4.8. For T > 0 there exists a constant Cp > 0 such that the following
inequality holds:

T
lots(z) < CT/ Dy (s)ds
0

Compactness follows from the compactness of Sobolev’s embeddings implicated
in the definition of lower order terms with respect to the finite energy space for vari-
ables (z, z;) which are H*(Q) x L?(Q). Uniqueness, instead, follows from the overde-
termination of the wave equation with overdetermined Neuman—Dirichlet data on
the boundary I'y. The details are in [5],
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4.3. Completion of the Proof of Theorem 2.4. We are ready to establish the
exponential decay of the the energy functional F;.

Theorem 4.9. Let Assumption 2.3 be valid. Assume that f = 0. The energy
functional Eq is exponentially stable, i.e. there exists T > 0 and constants M,w > 0
such that

Ei(t) < Me “'Ey(0), fort>0. (32)
Proof. For f =0, identity (4.2) implies

</ i /:) Ey(t)dt < 25E4(0).

Since s < T'/2 can be taken arbitrarily small, we fix s < 1/2 in the above inequality.
Then by dissipativity of E; (for f = 0) along with Propositions 4.5 and 4.8 we infer

/O " Byt < By(T) + Oy / " Da(s)ds. (33)
On the other hand, using identity (4.2) (with f = 0) once more, we deduce

TE\(T / By (t)dt + Cr / Duy(s (34)
Combining (4.3) and (4.3) we arrive at

(T C E1 / E1 dt < OT/ Dq;

for some C' > 0. Choosing T = 2C' and replacing the “damping” term using identity
(4.2) (with f = 0) we rewrite the above estimate as follows

E(T)+ /OT Eq(t)dt < Cp[E1(0) — Eq(T))

which implies

Cr
Bi(T) < E1(0) = uE4 (0),
1(T) 110, 1(0) = nE1(0)
where 0 < p < 1 does not depend on the solution. This implies (4.9) with w =
|[Inp|/T and M =1/p. O

The result of Theorem 4.9 is the key to establishing the exponential stability of
the semigroup S(t), generated by A on H.

Notice that the exponential decay for F; implies exponential decay of the quan-
tities [|2[|p(a1/2), [|2¢]|L2(q), and we will show that this implies exponential decay for
the total energy F(t), provided that the initial data ug is controlled with respect
to the topology induced by A'/2. For this, the only remaining quantity we need
to show exponential decay is |[u|lp(41/2) and this follows from the abstract ODE
bu; + c*u = z.The details for this step are the same as in [5].

To complete the proof of Theorem 2.4, the exponential stability on H is the main
task remained. This is argued below. The first step is to derive energy estimate
for the higher order energy functional F5. We start with the following multiplier
identity.
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Proposition 4.10. Let ¥ = (u,z,2;) be a weak solution for (4.1). Then for all
0 < s<t<T the following identity holds
¢
/ /zt&,zdI‘dU
s JI

¢ 1 ¢
b/ (Az, Au)do = [(zt,Au) + 2IIVZI§} +

+/: chzzt ﬂutt,Auﬂ do — /:(f, Awde  (35)

Proof. Arguing first for ”strong” solutions, we have Au, Au; € L?(Q) -the latter
allows to justify the formalism of calculations. We compute

d
(ze1, Au) = a(z,g7 Au) — (z¢, Auy)

d 2

= a(zt,Au) - (zt,A (2 - bu))
d*(ZuAU) 2dt”VZHz
1 2

-5 zt(ko(x)z)To —/ zt(k1(x)z)dly + 3Z,Au

F(] 1—‘1

d(Z AU)Jrffllv I3 ***ll S S | 52 Au
TR 2dt 2 ondt To i b '

Thus, taking the L?~inner product of z;; —bAz = —yuy + f with Au € L?(Q) gives
t t
b/ (Az, Au)do = / (ztt +yue — f, Au)do
S St .
= / (ze¢, Au)do + / (yuse — f, Au)do

1
= [ 300 + 319213 - 12,

+/St chzzt+~yutt,Au>] daf/s (f, Au)do

We now derive the estimate for E,. We take the L2-inner product of
A(bug + c?u) = bAz
with Awu and integrate in time. By connecting it with (4.10) one obtains that

1/2 2
- [ o

T T
bIIAUII§+C2/O 1 Aul13 ZbIIAuO\Ingb/0 (Az, Au) = bl Auo]3

T T
_/ k1222, do
0 0
Tr/e2 T
+/ {<b2t+7utt;Au>:| da*/ (f, Au)do (36)
0 0

Since all terms in (4.3) are benign in the sense that all (but f and Au) are either
subordinated by E(t) or they are bounded above by the damping, it follows that
for each € > 0 there exists C; > 0 such that

T T
AT +¢* [ aul} S )+ <||Au|§ + ||Au||%da>
0 0

1 1/2
+ [ B0 IV 3l 1,
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T
+ C. <E1 (t)+ [ Ei(o)do + / f2dQ> .
0 Q

Then, taking € small and using (4.9) we have

T T
bl Au(T) 3 + ¢ / |Aul2 < £(0) + / Ey(o)do + /Q £dQ. (37)

From (4.3) we have obtained that Au(t) € L?(Q2). In addition (u,us,uy) € H
implies that u(t) € H*(Q) and w(t) € H'(Q). By standard duality argument one
this obtains that d,u(t) € H~'/2(I"). We will be able to improve this regularity by
appealing to H regularity already obtained in the previous section. On the other
hand, by using invariance of boundary conditions along with the fact that x; are

the multipliers on H'/27%(T;) (recall x; € Bl/2 (L) [34]) , we also have
dyu(t)|r, = —rou(t) € HY25(Ty)  dyu(t)|r, = —rrue(t) € HY275(Iy).
By the definition of the norm in Hy, the above implies that (u,wus, uy) € Hy, as
desired. Moreover we have a control of the norms:
[ (uy we, wee) |11, < O, ue, wer) |1 + [| Au(t) |2
+ [IWVeou(®)l grz—<(ro) + IWVE1we @)l gre—cry)

which proves the desired regularity in H;. We are ready to complete the proof of
Theorem 2.4.

Recall that £(t) == FE(t) + F2(t) and let f = 0. Adding E(T) + fo o)do to
both sides of (4.3) we obtain,
T T
E(T) + E(o)do S E(0) + E(T) —|—/ E(o)do
0 0

t

< E(0) + ME(0)e™*" + M E(0) / e “do

0

=£(0) + ME(0)e " —w ' ME(0) [e™" — 1] < 400,

for all ¢ > 0, for some w, M > 0. By making T — oo we see that
oo
/ E(o)do < +o0,
0

and the result follows by Pazy-Datko’s Theorem [35]. O

>k ok sk ok ok sk ok ok ok sk sk ok ok sk sk sk ok skoskoskok skok sk ok sk koskoskokoskokkokskok sk

5. Proof of Theorem 2.5 — Construction of Global H;— valued Solutions.
Our goal now is to prove that fixed—point solutions can be constructed for the
nonlinear problem in H;. To this end, fix 7 > 0 such that ||®o||m, < r and let X/
be the set defined as

w
Xf: U=|w |€C([0, T);Hy); sup [|[¥(t)|m, Sr+1and sup [|U()||lm< B
Wy t€[0,T7] t€[0,T]

where 8 > 0 is for the time being a given positive number but we will take it to

be sufficiently small later. Moreover, the condition sup ||¥(¢)||lm, <7+ 1 simply
t€[0,T)
means that solutions will exist in bounded sets of C([0,T];H;) with respect to Hy
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but this introduces no small size restriction on the data in Hy. The number 1 could,
then, be replaced by any other positive number. Let’s equip X/ it with the norm

12155 = S 1w(@®)E,: ¥ e X7

)

We start with a following regularity lemma.

Lemma 5.1. For ¥ = (w,ws,wy) ", let the action F on W be given by
0
F(¥) = 0
wf + wwy
Then the following assertions hold true:
(i) F defines a continuous map F : X? — C([0,T];H,) and for each t the in-
equality
IFEO) g, < CBITE) 1, ¥ eX] (38)
holds for some C > 0 fized.
(ii) Stronger than continuity, the following estimate holds:

||‘7:((D)||C([O,T];H1) S 62 + BI—HX(T + 1)1—01’ a € (07 1/2) (39)
Proof. Recall that w, € Hp () — L°(Q) and then wf € C([0,T]; L*(£2)). More-
over, since H?(Q) < L>®(Q) for # > 3/2, it follows that wwy € C([0,T]; L*(2)).

We shall frequently invoke the following interpolation inequalities.

1/4
wlla < [lw]ly*||wl]

—3/2 — (40)
—937/€’€>0.

3/4
Hl

-«
Ho , O = 9 o 1
where we recall H; ¢ HY(Q) x H' () x Ly(Q) with 3/2 < # < 2. So that with
a € (0,1/2),

IF@)®) e, = 1w (1) + w(Owa®ll2 S Nwe®IE + 08 ool (1)
< awo|[) + 42w kOl el @
S IO+ IOIE T O S 819 s,

which yields (5.1) and, by taking the supremum over time ¢ on both sides, (5.1)
follows. Moreover, returning to the intermediate estimate (5), we further notice

[wlloo S 1wl [w]l

2 «@
@) Ol 5[40+ [[ 420 ol el

2
+

l—a

14+«
S [ sup || ¥(t)[|m LS[%PT] ‘IJ(t)IIHI]
€0,

t€[0,T]

sup |9 (t)]|m
t€[0,T)

A+ sup || ()]
te[0,T]
which yields (5.1) and completes the proof. O
The validity of the previous Lemma along with the fact that A generates Cp—

semigroups T'(t) and S(t) on H; and H respectively, guarantees that, for each ¥ € X
there exists a unique ® = (u,us,us)' =: O(¥) € C([0,T];H;) solution of (2.1)
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characterized as the variation of parameters formula with forcing term F(¥) and
initial condition ®¢ = (ug, u1,usz) € Hy, i.e.,

O(T)(t) = T(#) Dy + /0 Tt — o) F(0)(0)do (42)

Note that the same formula is valid if we replace T'(t) by S(t). Moreover, uniform
exponential stability implies the existence of positive constants wq, w1y, My, M1 > 0
such that

IT(t)®oler, < Mye™ || Pol|m, and [|T(t)Polle < Moe™“°"|| o]l (43)

for all ¢ > 0. Among other properties, the exponential stability of the linear problem
implies invariance of the map © in X?, as we make precise below.

Lemma 5.2. Given &g € Hy such that |[®o|lu, < 557, M = max{Mo, M}, there
exist f > 0 and pg > 0 with the property that if || @ol|lm < pp then the map © is
XPB —invariant.

Proof. Proving this claim is equivalent to prove that there exists g > 0 for which
10 )|lm, <7+ 1 and [|[O(Y)(t)|g < B for all t € [0,T) and each ¥ € X7,
provided ||®g|lm < pg, with pg conveniently chosen. From (5) and (5) it follows, for
each t € [0,T),

t
000l < 1)@l + [ 1T ) F()o)ll, do
t
<oty (ol + [ | F o) s do
0
S M| ®ollm, + Cloy sup [ F (W) ()]
te[0,7)

S M C+ M Cy, (B24 8T (r+ 1)) Sr+1, (44)

provided f is sufficiently small. Moreover, by Lemma 5.1 (and again (5) and (5))
t
[O(W)(®)lle < I1T(#)Pollm + /0 [T (t = o) F(V)(0)]|g do

t
<My (|<1>o||H v e—mf-f’)||f<w><a>||Hlda)
0
S Mollbolli+ MoCey s 7))
T

te[o
Sop+ (B2 45T (r+ 1)) < B, (45)
provided 8 and pg < 1/23 are sufficiently small. O

We are then ready to prove that for a (possibly smaller) 8, the map O is a
contraction.

Lemma 5.3. There exist B > 0 and pg > 0 with the property that if | Po|lu < pgs
then © is a contraction.

Proof. Let Wy, Wy € X5 W) = (v,v4,v5) " and Wy = (w,wy, wy) . The key point
of this proof is to estimate ||F(¥1) — F(V2)||¢(jo,7);m,), Which is where we start.
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First notice that, since the first two coordinates of both F(¥) and F(¥3) are zero,
we just care about the third one, whose difference, for each t, is given by

vf + VU — wf —wwy = (v +wy) (v — wi) + (v — w)vy + w(vy — wy)

=1 =Is =13
=1+ 1+ Is.

Now we estimate the supremmum of the L2-norm of I;. For this we notice that a
combination of Holder’s inequality with the Sobolev embedding H} (Q) < L*(Q)
yields
[Mall2 = [ (ve + we)(vr — wi)lly < (lvella + lwella) loe — wella
S IVorllz + [[Vwell2) [V (ve = wi)lly S BI®1 — W2 s,

for each t. Then sup |[[I1]]2 < B[|¥1— Vsl 5. Next, for estimating the suppremum
tc[0,T) "
of the L?*-norm of I, we notice that the Sobolev embedding Hf. < L>°(Q) yields

[[2]l2 = [lvee (v — w)ll2 < [Jvgel2][v — w0
S llveell2ll(v — W)l o) < BIW1L — Taf s,

for each t € [0,T). Then sup |[[I2(t)[2 < B sup ||[Wi(t) — Wy(t)|| 5. Finally, for
te[0,T) te[0,T) "

estimating the supremum of the L?-norm of I3 we will use the (in addition to the
Sobolev emdedding H{. (€2) < L>°()) the interpolation inequality (5) which holds
for all w € H{ (€2). We have

[13]]2 = [lw(vie — wer)|l2 < [[wlloo lvee — wiel2
S IVwlg ] wliade, v — will2
S B Wali 10y = Wall s S B (r+ 1) Wy — Wy s,

for each ¢ € [0,T). Then sup |[[I3(t)]]2 S B*(r + 1)~ sup [|¥q(t) — Ua(t)|| 6.
t€[0,T] t€[0,T] "

The above allows to complete the proof of contractivity:

10(W1) — O(Ws)]| s < sup / T(t - o) [F(¥)) - F(¥)]do

te[0,T) H;

Cu,
< sup 7 || F(¥1)(t) — F(¥)(1) g,

T tel0,1]

< sup ([[L(@)|2 + [[12()[]2 + [[15(2)]]2)

te[0,T)
S 28+ 870+ 1)) W1 — Wl s
= Cp W1 — o[ s (46)

owning the property Cg < 1 achieved through the smallness of j. O

Notice that exponential stability of the linear problem in H and H; allows we to
obtain the estimates (5), (5) and (5) with right hand side time-independente, which
allows us to take T' = oo , yielding global in time solutions. The proof of Theorem
2.5 is completed by taking p = pg.



26 MARCELO BONGARTI AND IRENA LASIECKA

6. Proof of Theorem 2.6-Uniform decay rates for the nonlinear problem.
In this section we show that one can easily obtain that the solution of the nonlinear
problem decay exponentially to zero as t — oo by taking advantage of three facts
established in this paper.
(i) The fact that the solution is a fixed point of the map © defined in (5), and
therefore can be implicitly represented as

B(t) = T(#) Do + /0 Tt - o) F(®)(0)do (47)

(ii) The fact that our existence of global solution result requires smallness of initial
data only in the lower topology and the use of this along with interpolation
inequalities allowed us to obtain the key estimate (5.1).

(ii) The fact that the semigroup 7'(¢) in (6) is uniformly exponentially stable in
both H and Hj.

The final result of this section is the following.

Theorem 6.1. There exists p > 0 such that the solution ® constructed in (2.5) is
such that
_e
1)z, < 2Mre™ =" @0,

for allt > 0, where My,w; are the constants describing the uniform stability of the
linear semigroup T'(t).

The proof of this result relies heavily on the facts (i)—(ii) outlined above and a
Grownwall type inequality. This inequality seems to have been originally introduced
in [1], but here we are using [2, Corollary 1, p. 389]. We state the inequality here
for convenience, but in a version which is suitable for our use in what follows. We
invite the reader to consult [1, 2] and references therein for more details

Lemma 6.2 (Grownwall-Beesack Inequality). Let u, f,g,h : R — R measurable
functions such that fh,gh and uh are integrable. If u, f, g, h are nonnegative and

ult) < F(2) + gt) / h(o)u(o)do

then
¢

ult) < () + g(t) / ' f(o)h(o) exp { / g(s)h(s)ds} do

Proof of Theorem 6.1. We use the same constants as in (5), that is, we use that
1T £y < Mye™ (48)

for all . Moreover, we know that the solution ® exists in some X2 for 3 > 0 small
and that the whole argument of the proof for the existence of global solution would
still be true if one decreased . Therefore, by possibly taking it smaller, we assume
w1

B < 50,0 (49)
where w; is the rate of exponential decay of the semigroup T'(¢) in H; for a fixed
7 = 1. As in the proof of global wellposedness, we take p = pg. We then compute,
via (6) and (5.1)

10(8) [, < 17(6)Po s, + / IT(t — 0) F(@)(0) 1, do
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t
< My By, + / M=) | F(@)(0) |, do
0

t
< Mye™ (| ®o||m, +M10ﬂ6*““t/ e 7)|®(0)||m, do-
0

We then apply the Grownwall-Beesack inequality with
u(t) = |0y, f(t) = Mie™ | Qollm,, g(t) = MiCBe™™", h(t) = '

to obtain

t
128, < Mre™* |||, +MfCﬂH‘I>o||H1€7mt/ exp {M1CB(t — o)} do
0

= Mye™ || @o|ls, + M| ®oller, exp {(M1CB — wi) t} (1 — exp {—MiCPt})
< Mye™|[@g sz, + M| @ol|s, exp {(M1CB — wi)t} < 2Mie™ 2| Doy,

and we observe that due to (6) we have
MiCB —wy < —% <0.

The proof is complete.
O

Corollary 1. Let By be the largest number such that the map © has a fized point
in X5 which is, moreover, uniformly exponentially stable as in Theorem 2.6. Let
w: (0, B0] = Ry be the function that maps each > 0 to the decay rate w(B). Then
there exists another function w : (0, Bo] = Ry such that w(B) = w(B) for all feasible
B and

li —
ﬁlg%)@(ﬂ) wi,

where wy is the decay rate of the linear semigroup T(t).

Proof of Corollary 1. The proof of Theorem 2.6 already provides a proof of
Corollary 1. Indeed, it suffices to define w : (0, 8g] — Ry by

w(f) =w1 — MCB > 0.
O

As a final note, a question of constructing decay rates which are independent on
the relaxation parameter is relegated to future work. Such result ,in the case of
internal dissipation, has been obtained in [3].
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