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ABSTRACT

We propose and test an exchange gas technique for improving the cooldown times of cryocooled gravitational-wave interferometers. The
technique works by utilizing low-pressure dry nitrogen gas to create a path for heat conduction to test masses while protecting the rest of the
in-vacuum equipment from unwanted heat leakage. We show that the technique is capable of shortening the total wait time to reach the
operating temperature by a factor of 3.5. Additionally, our tests show that the improvement in the heat transfer rate can be predicted to be
within 10% error by using the Sherman-Lees interpolation equation. The technique is compatible with vibration isolation requirements of
the cryogenic shielding of 124K silicon interferometers and has the potential to improve the iteration time for research and development.
The scalability of the prototype, the ability to predict the heat conduction, and the simplicity of the engineering make the strategy a good can-
didate to be included in the cryogenic design of future cryocooled gravitational-wave interferometers. The findings mark a first step in the

investigation for a strategy to mitigate ice formation on the interferometer optics during initial cooldown.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143940

The first direct detection of gravitational waves by the Advanced
LIGO Observatories in 2015' inaugurated the field of gravitational-
wave astronomy, paving the way for exciting astrophysical discovery.
To date, the LIGO and Virgo observatories have 90 astrophysical
observations” with more expected in the future. Despite these exciting
discoveries, much of the observable universe is still out of reach of cur-
rent gravitational-wave antennas.’

The efforts to improve the existing technology are distributed in
many areas, including in the design of next-generation terrestrial’ °
and extraterrestrial ** detectors and a maximization of detection capa-
bilities of the existing infrastructure.” "' The aim of these improve-
ments is to extend the detection-frequency band and increase the
uptime (or duty cycle) and sensitivity of the network of gravitational-
wave detectors. The avenue for improvement we discuss here is opera-
tion at cryogenic temperatures by using silicon test masses at 124 K.
This design choice is shared by LIGO Voyager,"” the second stage of
Cosmic  Explorer (CE2),” and the Nuclear Matter Extreme
Observatory (NEMO),” and it has a series of potential benefits."”

First, the low operating temperature reduces the Brownian
thermal noise from the optical coatings. Second, the high thermal
conductivity of silicon enables operation at higher circulating

optical power compared to current observatories,”” reducing
shot noise. Finally, silicon’s thermal expansion coefficient crosses
zero around 124 K,'* leading to a drastic reduction in the thermo-
elastic noise. "’

Operating at 124 K enables the use of radiative cooling to main-
tain the temperature of the test masses. Radiation-only cooling is
advantageous from a vibration isolation perspective because the closest
mechanical connection between the test masses and the cooling equip-
ment is the ground. A disadvantage of radiative cooling, however, is
that the rate of heat transfer decreases significantly as the temperature
of the optic decreases due to the T* dependence of radiation cou-
pling.13 To increase the uptime of the observatories, we must minimize
the impact of the cooldown time on operation. Two issues complicate
the picture: ice formation on the optical surfaces and the large thermal
mass of the test masses.

Deposition of water vapor on the surfaces of the optics at low
temperatures can have a deleterious effect on the performance of the
interferometer.'”'” Estimates'®'” suggest that under the ultimate vac-
uum conditions in Advanced LIGO, for a test mass at 124 K, an ice
layer will grow at a rate of around 5nm per day on the surface of the
cooled optics. One way to avoid ice formation is to start lowering the

Appl. Phys. Lett. 122, 114102 (2023); doi: 10.1063/5.0143940
Published under an exclusive license by AIP Publishing

122, 114102-1

Jpd-auluo™ L Z0L YL L/YE998.91L/0¥6EL0'G/£90 1 0 L/10p/Pd-alone/de/die/Bio-die'sqndy/:diy woy pepeojumoq


https://doi.org/10.1063/5.0143940
https://doi.org/10.1063/5.0143940
https://doi.org/10.1063/5.0143940
https://doi.org/10.1063/5.0143940
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0143940
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0143940&domain=pdf&date_stamp=2023-03-13
https://orcid.org/0000-0002-6284-9769
https://orcid.org/0000-0002-7404-4845
mailto:edgard@stanford.edu
https://doi.org/10.1063/5.0143940
https://scitation.org/journal/apl

Applied Physics Letters

temperature of the optics only after the water vapor partial pressure is
low enough to avoid ice deposition.

However, even when considering the geometry of the cryoshields
and their cryotrapping effect, the vacuum quality needed to ensure
that no ice grows on the surface of the test mass is only reached after
the ion pumps are engaged, 17 days after closing the vacuum chamber
in Advanced LIGO."*

On the other hand, the heavier proposed test masses (200 kg for
LIGO Voyager'" for example) result in an increased heat capacity,
pushing the expected radiation-only cooldown time to the order of
weeks.”

One proposed solution to this challenge is to supplement the
cryoshield array proposed in Ref. 21 with a fast cooldown strategy.
Faster initial cooldown would allow more flexible control of the tem-
perature of the test masses, which can be quickly cooled when desired.
This flexibility could then be used as part of a mitigation strategy for
the ice buildup. For example, the test masses could be held at a higher
temperature with an auxiliary heating system while the cryogenic
shields are cold, preventing ice buildup until the water vapor pressure
is low enough to be safe for the optics. This article is devoted to the
exploration of a fast cooldown strategy based on exchange gas in an
approach similar to the gas-gap heat switches in the cryogenics litera-
ture.”” ** We start by providing an overview of the theory of heat con-
duction through gases and conclude with a prototype to validate the
strategy.

Heat conduction through a gas happens as the gas molecules
interact with various surfaces, carrying energy between them.
Depending on the frequency of intermolecular collisions, there are two
extreme regimes of heat transfer: the free molecular flow and contin-
uum regimes. The regimes are identified by using the Knudsen num-
ber,” which is the ratio of the mean free path 2 of the particles and the
typical separation lengthscale L,

A
Kn = I (1)

The free-molecular flow regime occurs when Kn > 1 (typically
Kn = 10).”° Heat conduction happens mostly by direct interactions
between single particles and the walls, implying a linear relation
between heat transfer and pressure.

Under the assumption of steady state flow of particles from either
surface, the free-molecular heat transfer rate ¢, is found to be™ >

1 Sk
qFM:*“\/n_ni(1+j§)P<\/T_h*\/i)’ (2)

where P is the gas pressure, ( is the number of internal degrees of free-
dom of each gas particle, and m is the particle’s mass. T;, and T, repre-
sent the temperatures of a hot and cold surface, respectively.
0 < o <1 is the accommodation coefficient, which is a measure of
the elasticity of the collisions between the particles and the walls. A
value of oo = 1 implies that collisions are completely inelastic, and the
particles thermalize with both surfaces on collision.

The other extreme for heat transfer is the continuum regime,
occurring when Kn < 1072.°%" The heat transfer happens through a
diffusion process similar to any other continuum medium. The preva-
lence of intermolecular collisions implies the heat transfer is roughly
constant with pressure in this regime.” Let ko (7)) be the temperature-
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dependent, but pressure independent, thermal conductivity of the gas,
and let L be the separation between two surfaces. The heat flux from
the hot surface is given by”

1 (T
d= 1] k(ndr. ®
L T.

As we explore later, the ideal operating conditions for the fast
cooldown strategy lie in the transition regime between the two
extremes, where Kn ~ 1. In the transition regime, the assumptions
used to derive the previous equations break down, and it becomes
challenging to provide a closed form expression for the heat flux.”®
Nevertheless, there is a semi-empirical equation that has been vali-
dated experimentally for a variety of gases’** and is known to repro-
duce the results of various experiments to within 10% deviation.” The
conductive heat flux between two surfaces through a gas in the transi-
tion regime is approximately given by the Sherman-Lees interpolation
equation,

111
ar dc dru
where g}, and q¢. are given in Egs. (2) and (3), respectively.

The exchange gas fast cooldown strategy is depicted in Fig. 1.
The interior of the radiation shield is held at locally higher pressure
Pj, by injecting a suitable exchange gas. This increases the thermal
conductivity to the optics enclosed. However, the benefit of increased
heat transfer must be balanced with protecting the environment out-
side the cold shields from unwanted heat conduction. This can be
solved by creating a pressure differential between the environment sur-
rounding the test mass and the one outside the cryoshields despite
unintended leaks, as depicted in Fig. 1. A pressure Py, < Pj, to the
vacuum chamber ensures that the equipment outside of the cryo-
shields can remain at room temperature. A reasonable target is to hold
the outside pressure P,y about two orders of magnitude lower than

) 4

Good thermal connection Unintended leaks

—— w
|
|

Test Mass

124 K
nner Shield ~85 K

Outer Shield ~80 K
Poor thermal connection

Partial seal

Vacuum wall and Other components ~300K

FIG. 1. General approach of the exchange gas fast cooldown. A pressure differen-
tial is maintained to improve heat conduction inside the inner shield but poor con-
duction to the vacuum wall and other room-temperature components. A partial seal
must be applied to the cryoshields to minimize unwanted gas leakage.
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Pi,. This ensures that there will be negligible heat conduction between
the cold shields and the rest of the devices in the vacuum chamber.”*

Figure 2 shows a simplified plot for the heat flux between two
plates at fixed separation L with varying pressure. The ideal choice for
operating pressure for the exchange gas heat transfer scheme lies in
the transition regime, when Kn ~ 1. Adding more gas pressure to the
vicinity of the test mass will have negligible impact on the heat transfer
but will increase the amount of gas leaking into the main vacuum vol-
ume, increasing the risk of unwanted heat conduction to the room
temperature equipment.

In terms of the specific exchange gas, we must select a readily
available, high purity gas that can be easily pumped out of the vacuum
chamber once the initial cooldown is over and will not compromise
the functioning of any component of the vacuum system. We believe
that molecular nitrogen (N) and helium (He) are the best candidates
for the strategy. Between them, we chose molecular nitrogen (N,) as
the exchange gas for the cooldown strategy after analyzing tradeoffs
among heat transfer, availability, and compatibility with vacuum
requirements.

While helium has a higher heat transfer coefficient than nitrogen
in the continuum regime (7.5 times higher at 100K™) in the free-
molecular flow regime, its low accommodation coefficient (on the
order of 0.3 vs nitrogen’s 1°°) almost completely invalidates its
advantage over nitrogen. Additionally, a practical matter of concern is
that helium is commonly used for leak detection devices in vacuum
systems, which decreases its appeal as a choice for exchange gas.
Finally, since nitrogen is likely to be used as the primary coolant for
124 K cryocooled detectors, there will be a source of high-purity nitro-
gen readily available to be used as exchange gas. Nevertheless, there is
still room for discussion about the potential benefits of using a differ-
ent exchange gas both for future prototype facilities as well as the full-
scale observatories.”

To demonstrate the feasibility of using nitrogen as the exchange
gas, we must showcase a mechanism for feeding nitrogen into the inte-
rior of the inner shield and hold a pressure differential like the one in
Fig. 1 despite an engineered leak to the main vacuum volume. To this

1
Free molecular |
flow region

Continuum region
A<L

A> L

Heat Flux

A~ L

Pressure

FIG. 2. Simplified plot of gas-mediated heat flux vs gas pressure across multiple
orders of magnitude with other variables fixed. The heat flux increases with increas-
ing pressure but becomes approximately constant once the continuum regime is
reached. The goal of the fast cooldown strategy is to operate in the transition region
A/L=1.
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end, we will observe the cooldown curves for a 1-kg, 6-in. in diameter
cylindrical silicon mass separated by a distance of 1 mm from the inner
cryoshield surface by spherical glass beads under multiple exchange
gas conditions. To achieve Kn = 1, we calculate the pressure such that
the mean-free-path 4 ~ 1 mm for the range of operating temperatures
using the equation for the mean free path,””

K kg T
P= A ZmNz’ (5)

where u is the (temperature-dependent) dynamic viscosity of nitro-
gen,”’ my, is the mass of a nitrogen molecule, and kg is Boltzmann’s
constant. For the temperature range of 300-100 K, this yields a range
for the operating pressure:

10mTorr < P;, < 50 mTorr. (6)

We select the nominal operating pressure to be Py, = 30 mTorr, right
in the middle of this range. The pressure of the rest of the vacuum
chamber is expected to stay in the range of Py, ~ 10~* Torr. We
monitor the pressure inside the inner shield with a hot filament pres-
sure gauge, accurate down to 1 mTorr. The pressure in the main vac-
uum is monitored by a cold cathode gauge.

To achieve the pressure differential, we re-purpose the prototype
dual cryoshields from Ref. 21 to add a gas feedthrough. We include a
small turbopump connected to the outside of the outer shield to help
remove the excess exchange gas. We also create an artificial leak by
leaving some of the access holes of the outer shield open, totaling
around 1 cm? of opening to the main chamber.

The exchange gas feeding tube is connected to a nitrogen boiloff
subsystem that releases the exchange gas into the cryoshields by utiliz-
ing choked flow,” so that the gas flow rate is dependent only on the
upstream pressure. To attain the flow rate needed to hold the cryo-
shields at 30 mTorr by using a micrometer valve, the upstream pres-
sure is estimated to be in the 10-50Torr range. The vacuum
connections for the exchange gas feeding subsystem are shown in Fig.

X To cryo shields

® : Pressure Gauge

[y—rq : Needle Valve

N : Gate Valve
f,vleas:'lon @ : Scroll Pump

Intermediate
Vessel

FIG. 3. Vacuum diagram for the exchange gas feedthrough subsystem. The inter-
mediate vessel is filled with cold, low pressure boiloff nitrogen from a pool of liquid
nitrogen it rests on. By setting the “SYSTEM” needle valve to a given position and
manipulating the “FILL” valve, we can control the gas input to the cryoshields using
choked flow.
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3. The intermediate vessel is evacuated to a rough vacuum through the
“PUMP” connection. Next, it is filled through the “FILL” port with
cold, low pressure nitrogen boiloff from the liquid nitrogen pool it is
sitting on (which serves the double function of keeping the gas inside
the can at an acceptable temperature) up to the desired upstream pres-
sure. At that point, we feed exchange gas to the shields by opening the
“SYSTEM” valve. We control the pressure in the intermediate vessel
by adjusting the “FILL” valve while we keep the “SYSTEM” valve at a
set position, which controls the exchange gas flow rate to the cryo-
shields due to the properties of choked flow.

We set four temperature monitors in the system. They monitor
the inner and outer shields, the silicon mass, and the seismic isolation
table underneath the cryoshields. These temperature sensors allow us
to determine the impact of the exchange gas on the cooldown time of
the silicon mass, as well as the potential impact on nearby structures
that need to be kept at room temperature.

To assess the cooldown curves quantitatively, we must separate
the effects of radiative and exchange gas cooldown. We estimate the
effective emissivity ¢ for the silicon mass inside the inner shield by per-
forming a preliminary run with no exchange gas and fitting this
radiation-only cooldown data to the Stefan-Boltzmann law,

dTs;
dt

where Tsi and Tipner are the silicon-mass and inner-shield tempera-
tures, respectively. 6=5.67 %1078 m‘ZAII(4
stant, Ao is the total surface area of the silicon optic of mass m, and
¢p(T) is the (temperature dependent) specific heat capacity of silicon,
obtained from Ref. 39. We compute the numerical derivative of the
observed data % by using the total variation method described in
Ref. 40. This analysis results in an effective emissivity ¢ = 0.75 £ 0.02
in agreement with similar measurements for silicon."’

Figure 4 summarizes the effectiveness of the exchange gas on
reducing the cooldown time. For the nominal 30 mTorr operating
pressure, the time needed for the 1-kg silicon mass to reach 124 K was

reduced to about 3 h from the initial 11 h of radiation-only cooldown.

mCP(T) = *Atotalsa(Tgi - Ti‘;ner)7 (7)

is the Stefan-Boltzmann con-
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We also note that adding more gas beyond the point where Kn ~ 1
has diminishing returns in terms of cooldown time, as expected from
the sketch in Fig. 2. Our auxiliary sensors also verified that the seismic
isolation table remains essentially at room temperature (changes
observed are of less than 1K over several hours) under all exchange
gas conditions.

The blue traces in the quadrants of Fig. 5 show the measured
heat absorbed from the silicon mass as a function of time for different
exchange gas settings. We estimate the heat transferred from the 1-kg
silicon mass by the equation | % | = mc,(T)| %% | using the numerical
derivative of the temperature data. The specific heat of silicon as a
function of temperature was obtained from Ref. 39.

In order to estimate the heat flow through gas conduction, we
use the Sherman-Lees interpolation Eq. (4), which requires us to calcu-
late the free-molecular and continuum regime heat fluxes,

k
Qi = 0 8kp (1+%VZ>P(\/T;—\/E), (8)

Ty,

Tin
a1 | k(ndr ©)
Tsi

Tin and Tg; represent the measured inner shield and test mass
temperatures as a function of time, respectively. The accommodation
coefficient can be taken to be o =1 for most of the range of tempera-
tures considered,”” and the number of internal degrees of freedom for
the nitrogen molecule is {, = 2.%° The mass of a nitrogen molecule is
my, = 4.65 x 1072 kg. The thermal conductivity of gaseous nitrogen
is modeled according to™’

257x107°VT
1+ (235.5/T)(1071/T) Wit

ke (T) m - K)], (10)
where T is the temperature in kelvin. Finally, the inner shield pres-
sure was measured and plugged directly into Eq. (8). Manual con-
trol of the pressure explains the fluctuations in heat transfer
observed in Fig. 5.

300 T T T T T

280 .

260 .

240~ -
X, 220 7 FIG. 4. Measured cooldown curves for the
o 200 1kg mass under different exchange gas
270 b pressures inside the cryoshields. The
g 1801 i nominal operating pressure of 30 mTorr
Q achieves a cooling time 3.5 times shorter
aEJ 160 X 7 than the radiation-only condition. Further
~ >\ lo diation o, / increasing the pressure inside the cryo-

140 A /)’/B 2o ! ] shields has negligible impact on the cool-
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Figure 5 shows the results of the gas conduction analysis for the
four different pressure settings. The total theoretical prediction (purple
trace in Fig. 5) shows good agreement with the measured heat flux
from the silicon mass for the pressure range studied. The expected the-
oretical contributions from radiation and conduction are shown in the
red and yellow traces, respectively. It can be seen that gas conduction
continues to contribute a significant fraction of the heat transfer late
into the cooldown process, where radiation cooling is not effective
anymore. We highlight that the theoretical prediction from the inter-
polation equation underestimates the actual heat flux. Agreement
within 10% is consistent with other observations in the literature’ but
could also be due to having neglected convective heat transfer and
heat conduction through the 1-mm spacers separating the silicon
mass from the inner shield.

The results of our experiments show the potential of the
exchange gas strategy for faster cooldown of cryocooled gravitational-
wave interferometers. We show that with modest engineering, it is
possible to create a mechanism to feed and control exchange gas flux
into a vacuum chamber. With a 1 mm gap and 30 mTorr of nitrogen
pressure, we were able to improve the radiation-only cooldown by a
factor of 3.5.

Three reasons lead us to believe this strategy is viable for use in
cryocooled gravitational wave detectors. First, the use of dry nitrogen
as the exchange gas allows a return to normal vacuum operations
within minutes of completing the initial cooldown in line with estab-
lished knowledge of vacuum systems.”” This ensures that any time
gained by faster cooldown is not offset by the time it takes to pump
out the exchange gas.

The second reason is that the heat transferred by radiation and
conduction through exchange gas both scale with the surface area of

2

3 4 5
Time [h]

the mass, so we expect their relative contributions to be similar to
what was observed in the prototypes.

The third reason is our ability to make theoretical estimates
via the Sherman-Lees interpolation equation. The predictions
enable the design of the initial cooldown cycle, which can be made
to be fast and reliable and engineered to circumvent the ice buildup
on the surface of the optics. Furthermore, the designs can be
improved by adapting some of the current heat switch technologies
(see Ref. 43 for some examples) to the specific needs of
gravitational-wave detectors.

Beyond the horizon of the 124 K silicon technology, the ideas
and techniques presented here can also be applied to improve the
initial cooldown for other gravitational-wave detectors planning
to use cryogenic temperatures such as the Einstein Telescope, pro-
vided a suitable selection of the exchange gas.”* The inclusion of
fast cooldown strategies will shorten the iteration time for
research and development of the technologies and practices
needed to operate a cryocooled gravitational-wave observatory.
Additionally, the flexibility granted by faster cooldown can be uti-
lized as part of a mitigation strategy for the ice buildup on the sur-
face of the optics, an endeavor that must be further explored in
future work. We hope that this demonstration will inspire the
inclusion of exchange gas as an integral part of the design of cryo-
cooled gravitational-wave interferometers and their supporting
research facilities.
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