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Abstract

In the language of hypergraphs, our main result is a Dirac-type bound: we prove that every

3-connected hypergraph H with δ(H) ≥ max{|V (H)|, |E(H)|+10
4 } has a hamiltonian Berge cycle.

This is sharp and refines a conjecture by Jackson from 1981 (in the language of bipartite

graphs). Our proofs are in the language of bipartite graphs, since the incidence graph of each

hypergraph is bipartite.
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1 Introduction

1.1 Long cycles in bipartite graphs

For positive integers n,m, and δ with δ ≤ m, let G(n,m, δ) denote the set of all bipartite graphs

with a partition (X,Y ) such that |X| = n ≥ 2, |Y | = m and for every x ∈ X, d(x) ≥ δ. In 1981,

Jackson [3] proved that if δ ≥ max{n, m+2
2 }, then every graph G ∈ G(n,m, δ) contains a cycle

of length 2n, i.e., a cycle that covers X. This result is sharp. Jackson also conjectured that if

G ∈ G(n,m, δ) is 2-connected, then the upper bound on m can be weakened.

Conjecture 1.1 (Jackson [3, 4]). Let m,n, δ be integers. If δ ≥ max{n, m+5
3 }, then every 2-

connected graph G ∈ G(n,m, δ) contains a cycle of length 2n.

Recently, the conjecture was proved in [7]. The restriction δ ≥ m+5
3 cannot be weakened because

of the following example.

Construction 1.2. Let n1 ≥ n2 ≥ n3 ≥ 1 be such that n1 + n2 + n3 = n. Let G3(n1, n2, n3; δ) ∈
G(n, 3δ−4, δ) be the bipartite graph obtained from Kδ−2,n1∪Kδ−2,n2∪Kδ−2,n3 by adding two vertices

a and b that are both adjacent to every vertex in the parts of size n1, n2, and n3. Then a longest

cycle in G3(n1, n2, n3; δ) has length 2(n1 + n2) ≤ 2(n− 1).

The goal of this paper is to find a best lower bound on δ guaranteeing the existence of a 2n-cycle

in a graph G ∈ G(n,m, δ) if G is not only 2-connected, but 3-connected. The following simple

extension of Construction 1.2 shows that the bound could not be larger than m+10
4 .
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Figure 1: An example of Construction 1.3.

Construction 1.3. Let n1 ≥ n2 ≥ n3 ≥ n4 ≥ 1 be such that n1 + n2 + n3 + n4 = n. Let

G4(n1, . . . , n4; δ) ∈ G(n, 4δ − 9, δ) be the bipartite graph obtained from
⋃4
j=1Kδ−3,nj

by adding 3

vertices a1, a2, a3, all of which are adjacent to every vertex in the parts of size n1, n2, n3, and n4.

Then a longest cycle in G4(n1, . . . , n4; δ) has length 2(n1 + n2 + n3) ≤ 2(n− 1).

The main result of the paper is that Construction 1.3 is indeed extremal for 3-connected graphs:

Theorem 1.4. Let m,n, δ be integers. If δ ≥ max{n, m+10
4 }, then every 3-connected graph G ∈

G(n,m, δ) contains a cycle of length 2n.

We discuss possible extensions of Theorem 1.4 to k-connected bipartite graphs and hypergraphs in

concluding remarks. We will apply this theorem in a forthcoming paper on so-called super-pancyclic

bipartite graphs and hypergraphs. This notion was introduced and discussed in [7].

In the next section, we discuss how Theorem 1.4 can be translated into the language of hamiltonian

Berge cycles.

1.2 Hamiltonian Berge cycles in hypergraphs

A hypergraph H is a set of vertices V (H) and a set of edges E(H) such that each edge is a subset

of V (H).

We consider hypergraphs with edges of any size. The degree, d(v), of a vertex v is the number of

edges that contain v. The minimum degree of a hypergraph H is δ(H) := minv∈V (H) d(v). The

co-degree of a vertex set A is the number of edges that contain A.

A Berge cycle of length ` in a hypergraph is a set of ` distinct vertices {v1, . . . , v`} and ` distinct

edges {e1, . . . , e`} such that vi, vi+1 ∈ ei for every i ∈ [`] (indices are taken modulo `). The vertices

{v1, . . . , v`} are the base vertices of the cycle.

Naturally, a Berge hamiltonian cycle in a hypergraph H is a Berge cycle whose set of base vertices

is V (H).

Let H = (V (H), E(H)) be a hypergraph. The incidence graph of H is the bipartite graph I(H)

with parts (X,Y ) where X = V (H), Y = E(H) such that for e ∈ Y, v ∈ X, ev ∈ E(I(H)) if and

only if the vertex v is contained in the edge e in H.

If H has n vertices, m edges and minimum degree at least δ, then I(H) ∈ G(n,m, δ). There is

a simple relation between the cycle lengths in a hypergraph H and its incidence graph I(H): If

{v1, . . . , v`} and {e1, . . . , e`} form a Berge cycle of length ` in H, then v1e1 . . . v`e`v1 is a cycle of

length 2` in I(H), and vice versa.
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For a positive integer k, call a hypergraph k-connected if its incidence graph is k-connected.

If one would like to prove an analog of Dirac’s theorem on hamiltonian cycles in graphs for hamil-

tonian Berge cycles in hypergraphs, then the bound on the minimum degree would be exponential

in n. One of the examples is the following construction from [7].

Construction 1.5 ([7]). Let V (H) = V1 ∪ V2 where |V1| = d(n + 2)/2e, |V2| = b(n − 2)/2c,
V1 ∩ V2 = ∅, and let E(H) = E1 ∪ E2, where E1 is the set of all subsets A of V (H) of size dn/4e
such that |V1 ∩ A| = 1 (and |V2 ∩ A| = dn/4e − 1), and E2 = {V1}. Then H has an exponential in

n minimum degree, high connectivity and positive codegree of each pair of the vertices. But H has

no Berge hamiltonian cycle.

On the other hand, rephrasing Theorem 1.4 in terms of hypergraphs, we get a reasonable and

sharp bound on the minimum degree in terms of the number of vertices and edges that provides

the existence of hamiltonian Berge cycles in 3-connected hypergraphs.

Theorem 1.6. Let positive integers n,m, δ be such that

δ ≥ max{n, m+10
4 }. (1)

Then every 3-connected n-vertex hypergraph with m edges and minimum degree at least δ has a

hamiltonian Berge cycle.

1.3 Notation and outline of the proof of Theorem 1.4

For a graph G, a cycle C in G, and a vertex x not appearing in C, let t(x,C) denote the size of a

largest x, V (C)-fan in G, i.e. the largest number of x, V (C)-paths such that any two of them share

only x. Since G is 3-connected, t(x,C) ≥ 3.

Our proof is by contradiction. We assume that for some positive integers m,n, δ with δ ≥
max{n, m+10

4 }, there is a counter-example: a 3-connected (X,Y )-bigraph G ∈ G(n,m, δ) with

no 2n-cycles. We study the properties of G.

We consider each cycle C in G equipped with a clockwise direction. For every vertex u of C,

x+C(u) denotes the closest to u clockwise vertex of X distinct from u. For every vertex u of C,

x−C(u) denotes the closest to u counterclockwise vertex of X distinct from u. For a set U ⊂ V (C),

X+
C (U) = {x+C(u) : u ∈ U}. When C is clear from the context, the subscripts could be omitted.

The vertices y+(u), y−(u) and the sets X−(U), Y +(U), Y −(U) are defined similarly.

We consider triples (C, x, F ) where C is a cycle, x ∈ X − V (C) and F is an x,C-fan. By D(C, x)

we will denote the component of G−C containing x. By definition, V (F )−V (C) ⊆ D(C, x).

Definition 1.7. A triple (C, x, F ) is better than a triple (C ′, x′, F ′) if

(a) |C| > |C ′|, or

(b) |C| = |C ′| and t(x,C) > t(x′, C ′), or

(c) |C| = |C ′|, t(x,C) = t(x′, C ′), and |V (F ) ∩ V (C) ∩ Y | > |V (F ′) ∩ V (C ′) ∩ Y |, or

(d) |C| = |C ′|, t(x,C) = t(x′, C ′), |V (F )∩V (C)∩Y | = |V (F ′)∩V (C ′)∩Y |, and |V (F )| < |V (F ′)|,
or
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(e) |C| = |C ′|, t(x,C) = t(x′, C ′), |V (F ) ∩ V (C) ∩ Y | > |V (F ′) ∩ V (C ′) ∩ Y |, |V (F )| = |V (F ′)|
and |V (D(C, x))| < |V (D(C ′, x))|.

Choose a best triple (C, x, F ). Let

2` = |C|, t = t(x,C), T = T (C, x, F ) = V (F ) ∩ V (C),

tX = |T ∩X|, tY = |T ∩ Y |.

Similarly, let T̃ = T̃ (C, x) be the set of all vertices of C adjacent to a vertex of D(C, x), and let

t̃ = t̃(C, x) = |T̃ |. By definition, T̃ ⊇ T and t̃ ≥ t. Viewing F as a tree (spider) with root x, any

two vertices u, v ∈ V (F ) define the unique u, v-path F [u, v] in F . For u, v ∈ V (C), let C[u, v] be the

clockwise u, v-path in C and let C−[u, v] be the counterclockwise u, v-path in C. If D = D(C, x)

and u, v ∈ D ∪ T̃ (C, x), then let PD[u, v] be a longest u, v-path all of whose internal vertices are

in D.

We will analyze the properties of best triples (C, x, F ) and in all cases will come to a contradiction,

either by finding a better triple or by proving that m ≥ 4δ− 9. For this, we will try to construct so

called good subsets W of X ∩ T , defined later, such that total neighborhood of W ∪ {x} will be too

large. One feature of a good set will be that no two members of such set have a common neighbor

outside of C, CON for short.

In the next section we prove basic properties of our best triple (C, x, F ). Then in Section 3 we

show that t = t̃ = 3. Since G is 3-connected, this means that for every x′ ∈ X − C, t(x′, C) = 3.

In Section 3.1, we discuss special types of components of G−C and possibilities to choose a triple

(C, x, F ) with x in such a component. After that we consider T = T (C, x, F ) and try to find a

4-element good subset of the set A = X+(T ) ∪ X−(T ). The main obstacles will be that some

members of A have many common neighbors, in particular, CONs. Section 4 is devoted to the case

analysis of different types of such CONs. We conclude the paper with some comments.

2 Preliminary lemmas

Lemma 2.1. The following inequalities always hold:

(i) ` ≥ t+ tX ; (ii) |X| − `+ tX ≥ 3; (iii) |X| ≥ t+ 3.

Proof. If w ∈ T ∩ X and y+(w) ∈ T , then the cycle wF [w, y+(w)]y+(w)C[y+(w), w]w is longer

than C, a contradiction. Similarly, y−(w), x+(w), x−(w) /∈ T . Thus, tX ≤ `/2 and tY ≤ ` − 2tX .

This proves (i).

Since δ ≥ |X| ≥ ` + 1 ≥ t + 1 = dF (x) + 1, there is y ∈ N(x) − NF (x). By (d) in the definition

of (C, x, F ), y /∈ V (F ). By the maximality of t, y /∈ V (C)− V (F ). Since G is 3-connected, G− x
has a y, C-fan F ′ of size 2. Let x′, x′′ be the neighbors of y in F ′. If, say x′ ∈ V (C), then by the

maximality of t, x′ ∈ T . Thus {x, x′, x′′} ⊂ (X − V (C)) ∪ (T ∩X). This yields (ii). Now (i) and

(ii) together imply (iii). 2

Lemma 2.2. If w ∈ T̃ ∩X, then

(i) y+(w) /∈ T̃ and
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(ii) y+(w) has no neighbors in X+(T̃ )− x+(w).

Proof. If y+(w) has a neighbor in D = D(C, x), then the cycle wPD[w, y+(w)]y+(w)C[y+(w), w]w

is longer than C. This contradiction proves (i).

Suppose y+(w)u ∈ E(G) for some u ∈ X+(T̃ ) − x+(w). Let u = x+(v) for v ∈ T̃ − w. Consider

the cycle C ′ = wC−[w, u]uy+(w)C[y+(w), v]vPD[v, w]w. Then C ′ is longer than C, unless v ∈ X
and v and w have a common neighbor y in D. In the last case, |C ′| = |C| and the only vertex

in V (C) − V (C ′) is y+(v) which by (i) does not have neighbors in D. Define an x,C ′-fan F ′ as

follows. If y /∈ V (F ), then let F ′ = F . If y ∈ V (F ), say y ∈ F [x, ui] for some ui ∈ T , then let

F ′ = F − E(F [y, ui]). In both cases, since y+(v) does not have neighbors in D(C ′, x) ⊂ D, the

triple (C ′, x, F ′) is better than (C, x, F ): if y /∈ V (F ), then by (e), otherwise either by (c) or by

(d). 2

Lemma 2.3. If x1 ∈ X+(T̃ ), then x1 cannot have a neighbor in D = D(C, x), i.e., x1 /∈ T̃ .

Proof. Suppose x1 has a neighbor y′ in D. Let u1 ∈ T̃ be such that x1 = x+(u1) and z be a neighbor

of u1 in D. Let P be a z, y′-path in D and the cycle C ′ be defined by C ′ = x1C[x1, u1]u1zPy
′x1. If

y′ 6= z, then C ′ is longer than C and we are done. Thus z = y′ and hence u1 ∈ X. In this case C ′

and C have the same length and t(x,C ′) = t(x,C). As in the proof of Lemma 2.2(ii), if y′ /∈ V (F ),

then let F ′ = F . If y′ ∈ V (F ), say y′ ∈ F [x, ui] for some ui ∈ T , then let F ′ = F − E(F [y′, ui]).

In both cases, since by Lemma 2.2(i), y+(u1) does not have neighbors in D(C ′, x) ⊂ D, the triple

(C ′, x, F ′) is better than (C, x, F ): if y′ /∈ V (F ), then by (e), otherwise either by (c) or by (d). 2

Given a cycle C and distinct x1, x2, x3 ∈ X ∩ V (C), we say that x1 and x2 cross at x3 if the

cyclic order is x1, x3, x2 and x1y
+(x3), x2y

−(x3) ∈ E(G) or if the cyclic order is x1, x2, x3 and

x1y
−(x3), x2y

+(x3) ∈ E(G). In this case, we also say that x3 is crossed by x1 and x2.

Lemma 2.4. Suppose that x1, x2 ∈ X+(T̃ ), cross at x3 ∈ X ∩ V (C). Then x3 /∈ T̃ .

Proof. Suppose that the cyclic order is x1, x3, x2 and x1y
+(x3), x2y

−(x3) ∈ E(G) (the other case

is symmetric). Let y be a neighbor of x3 in D. Let u1 ∈ T̃ be such that x1 = x+(u1) and z be a

neighbor of u1 in D. Let P be a z, y-path in D and the cycle C ′ be defined by

C ′ := x1y
+(x3)C[y+(x3), u1]u1zPyx3C

−[x3, x1]x1.

If y 6= z, then C ′ is longer than C and we are done. Thus z = y. In this case, C ′ and C have the

same length and t(x,C ′) = t(x,C). As in the proof of Lemma 2.2(ii), if y /∈ V (F ), then let F ′ = F .

If y ∈ V (F ), say y ∈ F [x, ui] for some ui ∈ T , then let F ′ = F −E(F [y, ui]). Again as in the proof

of Lemma 2.2, the triple (C ′, x, F ′) is better than (C, x, F ). 2

Recall that for two vertices in G, CON means “a common neighbor outside of C.”

Lemma 2.5. Suppose that x1, x2 ∈ X+(T̃ ). Then

(i) x1 and x2 have no CON;

(ii) neither of x1 and x2 has a CON with x.
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Proof. Part (ii) follows from Lemma 2.3. So, suppose x1 and x2 have a CON y, and u1, u2 ∈ T̃ are

such that x1 = x+(u1) and x2 = x+(u2). By Lemma 2.3, y /∈ D. Consider the cycle

C ′ := x1C[x1, u2]u2PD[u2, u1]u1C
−[u1, x2]x2yx1.

Cycle C ′ is longer than C, unless u1, u2 ∈ X and have a common neighbor y′ in D. In the last case,

|C ′| = |C| and the only vertices in V (C) − V (C ′) are y+(u1) and y+(u1) which by Lemma 2.3(i)

do not have neighbors in D. Define an x,C ′-fan F ′ as follows. If y′ /∈ V (F ), then let F ′ = F . If

y′ ∈ V (F ), say y′ ∈ F [x, ui] for some ui ∈ T , then let F ′ = F − E(F [y′, ui]). In both cases, since

y+(u1) and y+(u2) do not have neighbors in D(C ′, x) ⊂ D, the triple (C ′, x, F ′) is better than

(C, x, F ): if y /∈ V (F ), then by (e), otherwise either by (c) or by (d). 2

Lemma 2.6. Suppose u1, u2 ∈ T̃ are such that the path PD[u1, u2] contains an internal vertex

in X. If x1 = x+(u1) and x2 = x+(u2) cross at x3 ∈ X ∩ V (C), then

(i) x3 /∈ T̃ and if x3 = x+(u) where u ∈ T̃ , then u ∈ Y ;

(ii) G has a cycle C ′ containing (X ∩ V (C)− x3) ∪ (X ∩ PD[u1, u2]) such that |C ′| ≥ |C|;
(iii) x3 has no CON with any vertex in the set {x} ∪X+(T );

(iv) x3 has at most t neighbors on C.

Proof. Part (i) follows from Lemmas 2.2 and 2.4. The cycle

C1 := x1y
+(x3)C[y+(x3), u2]u2PD[u2, u1]u1C

−[u1, x2]x2y
−(x3)C

−[y−(x3), x1]x1

proves (ii).

To prove (iii), assume that y is a CON of x3 with a vertex in {x} ∪X+(T ), and consider all cases.

First note that by Lemma 2.4, y /∈ D; in particular, x3 has no CON with x. If uj ∈ T̃ , xj = x+(uj),

yxj ∈ E(G), and xj ∈ C[y+(x3), u1], then the cycle

C ′ := x1C[x1, x3]x3yxjC[xj , u1]u1PD[u1, uj ]ujC
−[uj , y

+(x3)]y
+(x3)x1

is longer than C, unless PD[u1, uj ] = u1y
′uj for some y′ ∈ D. If PD[u1, uj ] = u1y

′uj , then |C ′| = |C|
and the only vertices in V (C)− V (C ′) are y+(u1) and y+(uj) which by Lemma 2.3(i) do not have

neighbors in D. Define an x,C ′-fan F ′ as at the end of the proof of Lemma 2.3, and see that

(C ′, x, F ′) is better than (C, x, F ) exactly as there. Similarly, if xj ∈ C[u1, y
−(x3)], then the cycle

C ′ := x2C[x2, uj ]ujPD[uj , u2]u2C
−[u2, x3]x3yxjC[xj , y

−(x3)]y
−(x3)x2

is longer than C, unless PD[uj , u2] = ujy
′u2 for some y′ ∈ D. Again, defining F ′ as above, we get

a triple (C ′, x, F ′) better than (C, x, F ), a contradiction. This proves (iii).

By the choice of (C, x, F ) and (ii), x3 has at most t neighbors on C1. The only vertices in Y ∩
V (C)− V (C1) are y−(x1) and y−(x2). If x3y

−(x1) ∈ E(G), then the cycle

y−(x1)C[y−(x1), y
−(x3)]y

−(x3)x2C[x2, u1]u1PD[u1, u2]u2C
−[u2, x3]x3y

−(x1)
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x3 x4

x2
xx1 x2

x3

x4

Figure 2: Longer cycles when x1 and x2 in Lemma 2.7 have multiple crossings.

is longer than C. If x3y
−(x2) ∈ E(G), then the cycle

x1C[x1, x3]x3y
−(x2)C[y−(x2), u1]u1PD[u1, u2]u2C

−[u2, y
+(x3)]y

+(x3)x1

is longer than C. This proves (iv). 2

Lemma 2.7. Suppose u1, u2 ∈ T̃ are such that the path PD[u1, u2] contains an internal vertex

in X, x1 = x+(u1), and x2 = x+(u2). Then at most one vertex in C is crossed by x1 and x2.

Proof. Suppose vertices x3, x4 ∈ V (C)∩X are crossed by x1 and x2. We will show first that x3 and

x4 have no CON. Suppose there is some y ∈ (N(x3) ∩N(x4))− V (C). By Lemma 2.6, y /∈ V (D).

We consider two cases. If x3 and x4 both are on C[x1, x2] or both are on C[x2, x1], then we may

assume that their cyclic order is x1, x3, x4, x2. In this case, the cycle

x1C[x1, x3]x3yx4C[x4, u2]u2PD[u2, u1]u1C
−[u1, x2]x2y

−(x4)C
−[y−(x4), y

+(x3)]y
+(x3)x1

(see Figure 2, left) is longer than C.

If one of x3 and x4 is on C[x1, x2] and the other is on C[x2, x1], then we may assume that their

cyclic order is x1, x3, x2, x4. In this case, the cycle

x1C[x1, x3]x3yx4C
−[x4, x2]x2y

+(x4)C[y+(x4), u1]u1PD[u1, u2]u2C
−[u2, y

+(x3)]y
+(x3)x1

(see Figure 2, right) is longer than C. This proves that x3 and x4 have no CON.

Let A = X+(T )∪{x, x3, x4} (possibly, X+(T )∩{x3, x4} 6= ∅), and A′ = A−{x, x3, x4}. Note that

|A′| ≥ t− 2.

By definition, |N(x)−C| ≥ δ− tY . By Lemma 2.6(iv), |N(x3)−C| ≥ δ− t and |N(x4)−C| ≥ δ− t.
By Lemma 2.2, ∑

u∈A′
|N(u) ∩ V (C)| ≤ `|A′| − tX |A′|+ min{tX , |A′|}. (2)

By Lemmas 2.5 and 2.6(iii), no two distinct vertices in A have a CON. Thus, using (2) and

remembering about the ` vertices in Y ∩ V (C), we get

|Y | ≥ `+
∑
u∈A
|N(u)− V (C)|
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= `+ |N(x)− V (C)|+ |N(x3)− V (C)|+ |N(x4)− V (C)|+
∑
u∈A′
|N(u)− V (C)|

≥ `+ (δ − tY ) + (δ − t) + (δ − t) + (δ|A′| −
∑
u∈A′
|N(u) ∩ V (C)|)

≥ `+ (|A′|+ 3)δ − 2t− tY − (`− tX)|A′| −min{tX , |A′|}
≥ `+ (t− 2 + 3)δ − 2t− (t− tX)− (`− tX)(t− 2)−min{tX , t− 2}
= `+ (t+ 1)δ − (3t− tX)− (`− tX)(t− 2)−min{tX , t− 2}
≥ `+ (t+ 1)δ − 3t− (`− tX)(t− 3 + 1)

= (t+ 1)δ − 3t− (`− tX)(t− 3) + tX .

Since by Lemma 2.1, δ ≥ `− tX + 3, this yields

|Y | ≥ (t+ 1)δ − 3t− δ(t− 3) + 3(t− 3) + tX = 4δ − 9 + tX .

This contradiction proves the lemma. 2

The following lemma holds for any bipartite graph G (no restrictions on minimum degree or con-

nectivity).

Lemma 2.8. Let C be a cycle of G, and let u, v ∈ V (C)∩X. If u and v have at most a crossings,

then dC(u) + dC(v) ≤ |V (C)|/2 + 2 + a.

Proof. We induct on a. Suppose a = 0. Consider the two paths P1 = C[u, v] and P2 = C−[u, v]. In

P1 = v1 . . . vk (v1 = u, vk = v), each vi ∈ X satisfies at most one of the following: vi+1u ∈ E(G) or

vi−1v ∈ E(G). So dP1(u) + dP1(v) ≤ |V (P1) ∩X|. Similarly, dP2(u) + dP2(v) ≤ |V (P2) ∩X|. Since

(X∩V (P1))∩(X∩V (P2)) = {u, v} and V (P1)∪V (P2) = V (C), we get dC(u)+dC(v) ≤ |V (C)|/2+2.

For a ≥ 1, delete an edge incident to u that is used in a crossing, and apply induction. 2

3 Bounds on t and t̃ in best triples

Recall that (C, x, F ) is a best triple, D = D(C, x) is the component of G − V (C) containing x,

T = V (F ) ∩ V (C), and T̃ = NC(D).

A set of vertices W = {x1, . . . , xk} ⊆ X ∩ V (C) is good if

(i) dC(x) ≤ k,

(ii) the vertices of {x} ∪W pairwise have no CON, and

(iii) we can partition W into sets W1, . . . ,Ws such that for each j ∈ [s], |Wj | ≥ 2 and any two

distinct vertices in Wj cross at no more than one vertex in C.

Lemma 3.1. If W is a good set, then |W | < max{4, t}.

Proof. Suppose k ≥ max{4, t} and W = {x1, . . . , xk} is a good set. Note that δ ≥ |X| ≥ |W | ≥ 4.

Let (W1, . . . ,Ws) be a partition of W satisfying (iii) in the definition of a good set. By Lemma 2.8,

8



if xi and xj have at most one crossing, then dC(xi) + dC(xj) ≤ `+ 3. Hence

k∑
i=1

dC(xi) =
s∑
j=1

∑
w∈Wj

dC(w) ≤ k(`+ 3)/2.

Since |Y ∩ V (C)| = `, δ(G) ≥ δ and k ≥ t, we get

|Y | ≥ `+ (k + 1)δ − t− k `+ 3

2
≥ `

(
1− k

2

)
+ k

(
δ − 5

2

)
+ δ.

Since the net coefficient at ` is negative and ` ≤ |X| − 1 ≤ δ− 1, this is at least k
(
δ
2 − 2

)
+ 2δ− 1.

Now the net coefficient at k is nonnegative, so the minimum is attained at k = 4. Hence |Y | ≥ 4δ−9,

a contradiction. 2

Next, we show that both t and t̃ are small.

Lemma 3.2. t = 3.

Proof. Since G is 3-connected, t = |T | ≥ 3. Suppose t ≥ 4. We claim that X+(T ) is a good set.

Since F is a largest x,C-fan, x has at most t neighbors in C. By Lemma 2.7, for any xi, xj ∈ X+(T ),

xi and xj have at most one crossing in C. By Lemma 2.5, no two distinct vertices in X+(T )∪ {x}
have a CON. This certifies that X+(T ) is good, a contradiction to Lemma 3.1. 2

Lemma 3.3. |T̃ | = 3.

Proof. We have T ⊆ T̃ . Suppose |T̃ | ≥ 4. Choose a set U = {u1, . . . , u4} ⊆ T̃ so that T =

{u1, u2, u3}, and u4 ∈ T̃ − T . Let P be a shortest path from u4 to F − C in G[D + u4]. Let

j ∈ [3] be such that the end, p, of P distinct from u4 belongs to the x, uj-path in F . Assume

[3] = {j, j′, j′′}. The path uj′F [uj′ , p]pPu4 contains an internal vertex in X (namely, x). Partition

U into U ′ = {u4, uj′} and U ′′ = {uj , uj′′}.
By Lemma 2.7, each of the pairs U ′ and U ′′ has at most one crossing in C. Since F is a largest

x,C-fan, x has at most t neighbors in C. By Lemma 2.5, no two distinct vertices in X+(U) ∪ {x}
have a CON. This certifies that X+(U) is good, a contradiction to Lemma 3.1. 2

Remark 3.4. Lemma 3.3 implies that T = T̃ , i.e., the only vertices in C with neighbors in D are

the vertices of T . In particular, no vertex in V (C)− T has a CON with x.

3.1 More structure and fewer crossings

One of the results of this section is that for any best triple (C, x, F ), no vertices in X+(T ) cross in

C. Recall that by Lemma 3.2, |T | = |V (F ) ∩ V (C)| = 3.

A component D of V (G)−C is 2-rich if there is a set U = {u1, u2, u3} = V (C) ∩N(D) such that

for all distinct i, j, D contains a ui, uj-path with at least two internal vertices in X.

Lemma 3.5. If |T ∩X| ≤ 1, then D is 2-rich.
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Proof. Suppose T = {u1, u2, u3} where u1, u2 ∈ Y . If some y ∈ D ∩ Y is not adjacent to u3, then

all y, C-paths contain internal vertices in X, and hence D is 2-rich. Thus we may assume that each

y ∈ D ∩ Y is adjacent to u3. In particular, u3 ∈ X.

By Rule (d) of Definition 1.7, dF (x) = t = 3, so because δ ≥ |X| + 1 ≥ t + 3 + 1 ≥ 7, there is

y′ ∈ N(x) with y′x /∈ E(F ). Since G is 3-connected, it contains a y′, C-fan F ′ with 3 paths. Recall

that y′u3 is one of such paths. For i = 1, 2, let Pi be the y′, ui-path in F ′ and viy
′ ∈ E(Pi). Suppose

that for i = 1, 2, there is yi ∈ N(vi)− C − y′ − P3−i (possibly, y2 = y1). Then D is 2-rich: P1 ∪ P2

connects u1 with u2, and for i ∈ {1, 2}, path u3yiviy
′P3−i connects u3 with u3−i; and each of these

three paths contains {v1, v2} ⊂ X. Hence by symmetry we may assume that every neighbor of v1
is in V (C)∪P2. Note N(v1)∩V (C) ⊆ {u1, u2, u3}, since |T̃ | = 3. Then the cycle v1y

′P2C[u2, u1]v1
has at least 2δ vertices, a contradiction. 2

Lemma 3.6. Suppose D is not 2-rich. For any x′ ∈ X ∩ V (C), G− x′ has no cycle C ′ such that

(i) X ∩ V (C ′) ⊇ X ∩ V (C)− x′ + x, and

(ii) C ′ contains the neighbors y+(x′) and y−(x′) of x′ on C.

Proof. Suppose we have C ′ satisfying (i) and (ii). If we have strict containment in (i), then |C ′| >
|C|, contradicting (a) in the choice of (C, x, F ). Thus X ∩ V (C ′) = X ∩ V (C)− x′ + x.

Let D′ be the component of G − V (C ′) containing x′. Let M be the set of neighbors of D′ on

C ′. By (ii), {y+(x′), y−(x′)} ⊂ M . Since G is 3-connected, D′ − {y+(x′), y−(x′)} contains an

x′, C ′-path P . Then P together with the edges x′y+(x′) and x′y−(x′) forms an x′, C ′-fan F ′ with

|V (F ′)∩ V (C ′)∩ Y | ≥ 2. Moreover since D was not 2-rich, by Lemma 3.5, |V (F )∩ V (C)∩ Y | ≤ 1.

So (C ′, x′, F ′) is a better triple than (C, x, F ), a contradiction. 2

Lemma 3.7. No two vertices in X+(T ) cross in C.

Proof. Suppose xi = x+(ui) and xj = x+(uj) cross at some vertex x0 ∈ V (C) ∩X. By symmetry,

we may assume that their cyclic order is xi, x0, xj . Let

C ′ := xiC[xiy
−(x0)]y

−(x0)xjC[xj , ui]uiPD[ui, uj ]ujC
−[uj , y

+(x0)]y
+(x0)xi.

If D is 2-rich, then PD[ui, uj ] has at least 2 internal vertices in X, and so C ′ is longer than C. If

D is not 2-rich, then C ′ satisfies conditions (i) and (ii) of Lemma 3.6, a contradiction. 2

Let e be an edge of C, let u, v ∈ V (C), and let P be any u, v-path containing e, which we orient

from u to v. We say that P and C agree on the edge e if the orientation of e (oriented from u to

v) in the u, v-segment of C containing e is the same as the orientation of e in P .

Lemma 3.8. Let u, v ∈ X∩V (C). Suppose that there is a u, v-path P with (X∩V (C))∪{x} ⊆ V (P )

and there exists some z, z′ ∈ V (P ) such that V (P ) ∩ V (D) = V (P [z, z′]), i.e., P enters and leaves

D exactly once. Then

(i) u and v have no common neighbor outside of P , and

(ii) if P and C agree on an edge e, then u and v cannot have a crossing at an endpoint of e.
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Proof. Note that x ∈ P [z, z′]. If u and v had a common neighbor outside P , then we could extend

P to a cycle longer than C, so (i) holds.

To prove (ii), suppose that P and C agree on an edge e which lies on C[u, v], w ∈ X ∩ V (C) is

an endpoint of e, and u and v cross at w. Suppose that the edges of C[u, v] incident to w are y′w

and wy′′, so that uy′′ and vy′ are the two edges forming u and v’s crossing on w. Without loss of

generality, e = y′w. The condition that P and C agree on e guarantees that P [u,w] contains y′.

There are two cases to consider: either both y′w and wy′′ are edges of P , or just y′w.

In the first case, let C ′ := uP [u, y′]y′vP [v, y′′]y′′u. Then V (C ′) ⊇ V (C) − {w} + {x}. If we have

strict containment, then |C ′| > |C|, a contradiction. So we may assume V (C ′)∩X = (V (C)∩X)−
{w} + {x}. Observe that C ′ satisfies Lemma 3.6 for x′ = w. So D is 2-rich. Let a be the vertex

in P preceding z and a′ the vertex in P succeeding z′ (so a, a′ ∈ V (C)). Let P ′ be a a, a′-path

internally disjoint from C that contains at least 2 internal vertices in X. Let C ′′ be obtained by

replacing in C ′ the segment P [a, a′] with P ′. We have |V (C ′′) ∩X| > |X + {x} − {w}|. Therefore

|C ′′| > |C|, a contradiction.

In the second case, the cycle uP [u, y′]y′vP [v, w]wy′′u is longer than C, since it contains all of

X ∩ V (C) as well as x, a contradiction. 2

4 Handling the case t̃ = 3

4.1 Short, medium, and long-type configurations

We continue to study properties of a best triple (C, x, F ). Recall that by Lemma 3.3, t̃ = |T̃ | = 3,

so we will assume that N(D)∩ V (C) = {u1, u2, u3}. Partition V (C)− {u1, u2, u3} into U1, U2 and

U3, where for i ∈ [3], Ui = V (C[ui, ui+1])− {ui, ui+1}, i.e. Ui is the set of vertices on C from ui to

ui+1 not including either endpoint. Here and in the remainder of the paper, we let the indices on

D’s neighbors wrap around modulo 3, so that, for example, u0 = u3 and u4 = u1.

Let Xi = Ui ∩X and Yi = Ui ∩ Y . For j > 0, let xi,j be the jth vertex in Xi clockwise; let xi,−j
be the jth vertex in Xi−1 counterclockwise. For example, xi,1 = x+(ui) and xi,−1 = x−(ui). Define

yi,j similarly.

One of the lines of attack in this section is trying to find a 4-element good subset of X+(T )∪X−(T ),

which will contradict Lemma 3.1. This will not work if several of these vertices have many CONs.

We will classify the obstacles to this approach into three types. For each i ∈ [3], we say that:

• i has short type if xi,−1 and xi,1 have a CON.

• i has medium type if xi,1 and xi+1,−1 have a CON.

• i has long type if xi,−1 and xi+1,1 have a CON.

These three configurations are shown in Figure 3.

We first prove that each segment Ui contains at least two vertices in X.

Lemma 4.1. For any x′ ∈ X+(T ), dC(x) + dC(x′) ≥ 8. In particular, dC(x′) ≥ 5.
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x

u1

u2u3

x

u1

u2u3

x

u1

u2u3

Figure 3: Short-type, medium-type, and long-type configurations.

Proof. Suppose x′ = x1,1 and dC(x) + dC(x′) ≤ 7. No two vertices in the set X+(T ) ∪ {x} have a

CON or cross in C. By Lemmas 3.7 and 2.8, dC(x2,1) + dC(x3,1) ≤ `+ 2. Therefore

|Y | ≥ 4δ − (dC(x) + dC(x1,1))− (dC(x2,1) + dC(x3,1)) + ` ≥ 4δ − 7− (`+ 2) + ` = 4δ − 9.

This contradiction proves dC(x) + dC(x′) ≥ 8. Since dC(x) ≤ t = 3, dC(x′) ≥ 5. 2

Lemma 4.2. For each i ∈ [3], xi,1 6= xi+1,−1.

Proof. Let C ′ = uiF [ui, ui+1]ui+1C[ui+1, ui]ui. Then |C ′| ≥ |C|. If the component D of G − C
containing x is 2-rich, then |C ′| > |C|. So by Lemma 3.5, |T ∩Y | ≤ 1, and hence dC(x) ≤ 1. By the

choice of (C, x, F ) as a best triple, dC′(xi,1) ≤ 1 as well. Since V (C) − {y−(xi,1), y
+(xi,1), xi,1} ⊆

V (C ′), NC(xi,1) ⊆ NC′(xi,1)∪{y−(xi,1), y
+(xi,1)}, and therefore dC(xi,1) ≤ 1 + 2. This contradicts

Lemma 4.1. 2

It is possible that some segments Ui contain only two vertices of X, but in that case, we can deduce

some additional structure we will use later.

Lemma 4.3. For each i ∈ [3], if xi,2 = xi+1,−1, then i+ 1 does not have short or long type.

Proof. If i+ 1 has short or long type, we can find a cycle C ′ such that X ∩C ′ includes x but leaves

out xi,1.

If i+ 1 has short type and y is a CON of xi+1,−1 and xi+1,1, then

C ′ := ui+1C
−[ui+1, xi+1,−1]xi+1,−1yxi+1,1C[xi+1,1, ui]uiF [ui, ui+1]ui+1.

Note that C includes at most three vertices of Y which are not in C ′: y+(xi,1), possibly y−(xi,1)

(if ui ∈ X), and possibly y+(ui+1) (if ui+1 ∈ X).

If i+ 1 has long type and y is a CON of xi+1,−1 and xi−1,1, then

C ′ := xi+1,−1C[xi+1,−1, ui−1]ui−1F [ui−1, ui]uiC
−[ui, xi−1,1]xi−1,1yxi+1,−1.

Again, C includes at most three vertices of Y which are not in C ′: y+(xi,1), possibly y−(xi,1) (if

ui ∈ X), and possibly y+(ui−1) (if ui−1 ∈ X).
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In both cases, |C ′| ≥ |C|, with strict inequality if D is 2-rich. So we may assume D is not 2-rich.

By Lemma 3.5, |T ∩ Y | ≤ 1, and hence dC(x) ≤ 1. Therefore by the choice of (C, x, F ) as a best

triple, dC′(xi,1) ≤ 1. Then in either case dC(xi,1) ≤ 1 + 3, contradicting Lemma 4.1. 2

Lemma 4.4. For each i ∈ [3], one of the following configurations must appear:

(i) i has short type, or

(ii) one of i− 1 or i has medium type, or

(iii) i+ 1 has long type.

Proof. Suppose for some i ∈ [3] none of (i)–(iii) holds. Let W = {xi−1,1, xi,−1, xi,1, xi+1,−1}. By

Lemma 3.7 (applied to C and also to the backward orientation of C), the vertices inside the sets

W1 = {xi−1,1, xi,1} and W2 = {xi,−1, xi+1,−1} have no crossings. By Lemma 2.5, no vertex in W

can have a CON with x. Since by Lemma 3.1, W is not a good set, some two vertices in W have a

CON. By Lemma 2.5 again, xi−1,1 and xi,1 have no CONs, and xi,−1 and xi+1,−1 have no CONs.

This leaves the configurations in the statement of this lemma. 2

The plan of the remainder of this paper is as follows:

1. In the next subsection we define abundant indices and show that not all i ∈ [3] are abundant.

This will help to handle medium-type and short-type configurations.

2. In Subsection 4.3 we show that at most one i ∈ [3] has long type.

3. In Subsection 4.4 we prove that no i ∈ [3] has medium type. An important part of this proof

is Lemma 4.5 from Subsection 4.2.

4. In Subsection 4.5 we show that none of i ∈ [3] has long type. So, by Lemma 4.4, every i ∈ [3]

has short type.

5. Subsection 4.6 finishes the proof of the main theorem by handling the case that every i ∈ [3]

has short type.

4.2 On abundant indices

Call an i ∈ [3] abundant if each of the vertices xi,2, xi,3, . . . , xi+1,−2 has a CON with xi,1 and a CON

with xi+1,−1.

Lemma 4.5. At least one i ∈ [3] is not abundant.

Proof. Suppose all i ∈ [3] are abundant. For i ∈ [3], let wi = y+(x−(ui)). In other words, wi = ui
if ui ∈ Y , and wi = yi,−1 if ui ∈ X. Define W = {w1, y

−(w1), w2, y
−(w2), w3, y

−(w3)}. We claim

that for all i ∈ [3],

NC(xi,1) ⊆ Yi ∪W. (3)

Suppose that xi,1 has a neighbor yj,k where j 6= i and yj,k ∈ Yj−{wj+1, y
−(wj+1)}. By Lemma 2.2,

if uj ∈ X, then yj,k 6= yj,1. So yj,k lies strictly between xj,1 and xj+1,−2. Since j is abundant,
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x

xi,1

xj,1

yj,k

Figure 4: A longer cycle when xi,1 has a neighbor yj,k.

x+(yj,k) and xj,1 have a CON, say y. Then the cycle

C ′ := xi,1C[xi,1, uj ]ujF [uj , ui]uiC
−[ui, x

+(yj,k)]x
+(yj,k)yxj,1C[xj,1, yj,k]yj,kxi1

(see Figure 4) is longer than C, a contradiction. This proves (3).

Next we show that

if |Xj | = 2 and xi,1y
+(xj,1) ∈ E(G), then N(xj,1) ∩W = {y+(xj,1)}. (4)

Indeed, let P1 be a longest uj , ui-path all internal vertices of which are in D = D(C, x). Consider

the cycle

C ′′ := xi,1C[xi,1, uj ]ujP1uiC
−[ui, y

+(xj,1)]y
+(xj,1)xi1 .

If D is 2-rich, then C ′′ is longer than C, a contradiction. Thus D is not 2-rich, and hence by

Lemma 3.5, |Y ∩ T | ≤ 1. In this case, |C ′′| ≥ |C|. Let F ′′ be a best xj,1, C
′′-fan. Since the

triple (C ′′, xj,1, F
′′) is not better than (C, x, F ), |C ′′| = |C| and |N(xj,1) ∩ V (C ′′)| ≤ 1. Since

y+(xj,1) ∈ N(xj,1) by definition, and W ⊆ V (C ′′), (4) follows.

Now we show that similarly to (4),

if |Xj | ≥ 3 and xi,1y
−(wj+1) ∈ E(G), then |N(xj,1) ∩W | ≤ 1. (5)

Indeed, let P1 be a longest uj , ui-path all internal vertices of which are in D = D(C, x). Since

|Xj | ≥ 3 and j is abundant, xj+1,−1 and xj,2 have a CON, say y. Consider the cycle

C ′′′ := xi,1C[xi,1, uj ]ujP1uiC
−[ui, xj+1,−1]xj+1,−1yxj,2C[xj,2, y

−(wj+1)]y
−(wj+1)xi1 .

If D is 2-rich, then C ′′′ is longer than C, a contradiction. Thus D is not 2-rich, and by Lemma 3.5,

|Y ∩T | ≤ 1. In this case, |C ′′| ≥ |C|. Let F ′′′ be a best xj,1, C
′′′-fan. Since the triple (C ′′′, xj,1, F

′′′)

is not better than (C, x, F ), |C ′′′| = |C| and |N(xj,1)∩V (C ′′′)| ≤ 1. Since W ⊆ V (C ′′′), (5) follows.

If there are no distinct i, j ∈ [3] such that xi,1y
−(wj+1) ∈ E(G), then by (3),

∑
i∈[3] |NC(xi,1)| ≤∑

i∈[3](|Yi|+ 2), and hence ∑
i∈[3]

NC(xi,1) ≤ `+ 6. (6)

If there is only one j ∈ [3] such that y−(wj+1) is adjacent to xj−1,1 or to xj+1,1 (say, xi,1y
−(wj+1) ∈

E(G)), then by (3), |NC(xi,1)| ≤ |Yi| + 3 for i 6= j, but by (4) and (5), |NC(xj,1)| ≤ |Yj |. So
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again (6) holds.

Finally, if there are distinct j1, j2 ∈ [3] such that xis,1y
−(wjs+1) ∈ E(G) for s ∈ [2] and some is,

then by (4) and (5), |NC(xjs,1)| ≤ |Yjs |, and by (3), |NC(xi,1)| ≤ |Yi| + 4 for i ∈ [3] − {j1, j2}.
Thus (6) holds in all cases.

By Lemma 2.5, no two vertices in the set A = {x, x1,1, x2,1, x3,1} have a CON. Therefore, by (6),

|Y | ≥ `+ 4δ − 3− (`− 6) = 4δ − 9, a contradiction. 2

4.3 Eliminating multiple long-type configurations

Lemma 4.6. At most one i ∈ [3] has long type.

Proof. Suppose the lemma does not hold. By symmetry, we may assume that x3,−1 and x1,1 have a

CON a, and x1,−1 and x2,1 have a CON b. Since x1,1 and x2,1 cannot have a CON, a 6= b. Consider

the cycle

C ′ := u3C[u3, x1,−1]x1,−1bx2,1C[x2,1, x3,−1]x3,−1ax1,1C[x1,1, u2]u2F [u2, u3]u3

formed as shown in Figure 5.

x

u1

u2u3

Figure 5: The cycle C ′ formed by two long-type configurations.

Cycle C ′ includes x and all vertices of X ∩ V (C), except possibly u1, hence |C ′| ≥ |C|. If u1 ∈ Y ,

C ′ is longer than C, which is a contradiction. Moreover, if F [u2, u3] contains at least 2 internal X

vertices, then |C ′| > |C|.
If u1 ∈ X, let yu1 be the last edge of the x, u1-path of F . As G is 3-connected, there is a path P

from y to V (C)∩V (C ′) not containing x or u1. Since by definition, deleting {u1, u2, u3} disconnects

x, and therefore y, from C, path P must go from y to some vertex u′ on either the x, u2-path or

the x, u3-path in F . Without loss of generality, assume u′ is on the x, u2-path.

Consider the cycle

C ′′ := u2C
−[u2, x1,1]x1,1ax3,−1C

−[x3,−1, x2,1]x2,1bx1,−1C
−[x1,−1, u3]u3F [u3, y]yPu′F [u′, u2]u2

shown in Figure 6, obtained from C ′ by replacing the segment C ′[u′, x] contained in F by the union

of P and F [x, y]. This is longer than C ′ (and therefore longer than C) except in one case: when
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each of P and the F [x, y] is a single edge, and u′ = u2 (which must then be in X). In this case,

C ′′ := u2C
−[u2, x1,1]x1,1ax3,−1C

−[x3,−1, x2,1]x2,1bx1,−1C
−[x1,−1, u3]u3F [u3, x]xyu2.

x

y

u′

Figure 6: The cycle C ′′ formed using the path P .

Let F ′′ be the u1, C
′′-fan formed by the paths C[x1,−1, u1] and C[u1, x1,1], and the edge u1y. The

triple (C ′′, u1, F
′′) has |C ′′| = |C| and t(u1, C

′′) = t(x,C), so by our choice of the triple (C, x, F ),

we must have |V (F ′′) ∩ V (C ′′) ∩ Y | ≤ |V (F ) ∩ V (C) ∩ Y |. Since V (F ′′) ∩ V (C ′′) ∩ Y = {y},
|V (F ) ∩ V (C) ∩ Y | ≥ 1, which can only happen if u3 ∈ Y . Therefore the x, u3-path in F consists

of a single edge xu3, and the only vertices of V (C ′′)− V (C) are x, y, a, and b.

Let y′ be the vertex of F between x and u2 on the x, u2-path of F . Since G is 3-connected, there

is a path P ′ from y′ to V (C) ∪ V (C ′′) not containing x or u2. However, we know that deleting

{u1, u2, u3} disconnects x, and therefore y′, from C. Therefore either P ′ goes from y′ to a vertex

in V (C ′′)− V (C), which can only be y, or else P ′ goes from y′ to one of the vertices u1, u3.

x

y

y′ u2

x

y

y′

u1

x

y

y′
u3

Figure 7: Three ways to extend C ′′ to a longer cycle

In each of these cases, we obtain a longer cycle. If P ′ goes from y′ to y, we can extend C ′′ by

replacing edge u2y with u2y
′ followed by P ′ to get the cycle

u2C
−[u2, x1,1]x1,1ax3,−1C

−[x3,−1, x2,1]x2,1bx1,−1C
−[x1,−1, u3]u3F [u3, x]xyP ′y′u2,

as shown on the left in Figure 7. If P ′ goes from y′ to u1, we can extend C ′′ by replacing edge u2y

with u2y
′, P ′, and u1y to get the cycle

u2C
−[u2, x1,1]x1,1ax3,−1C

−[x3,−1, x2,1]x2,1bx1,−1C
−[x1,−1, u3]u3F [u3, u1]u1P

′y′u2,
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as shown in the middle of Figure 7. Finally, if P ′ goes from y′ to u3, we can extend C ′′ by replacing

edge xu3 with xy′ followed by P ′ to get the cycle

u2C
−[u2, x1,1]x1,1ax3,−1C

−[x3,−1, x2,1]x2,1bx1,−1C
−[x1,−1, u3]u3P

′y′F [y′, y]yu2,

as shown on the right in Figure 7. 2

Thus, no more than one i ∈ [3] can have long type.

4.4 Eliminating medium-type configurations

In this subsection, our goal is to show that no i ∈ [3] has medium type.

Recall that i ∈ [3] is abundant if each of the vertices xi,2, xi,3, . . . , xi+1,−2 has a CON with xi,1 and

a CON with xi+1,−1.

Lemma 4.7. If i ∈ [3] has medium type, then i is abundant.

Proof. Without loss of generality, we will assume that i = 1 has medium type. We will show that

for all j ≥ 1, x2,−1 and x2,−j share a CON. This is the same as showing x2,−1 and x1,a share a CON

for all a ≥ 1 such that x1,a 6= x2,−1. Showing that x1,1 and x1,j have a CON is symmetric.

Suppose there is an a such that x1,a shares no CON with x2,−1, but x1,a′ does for all 1 ≤ a′ < a.

Our goal is to show {x1,−1, x2,−1, x3,−1, x1,a} is a good set. Let y′ be the common neighbor of

x2,−1 and x1,a−1. Note that x1,−1, x2,−1, x3,−1 can have no CON by Lemma 2.5. Additionally, by

Lemma 3.7, x2,−1, x3,−1 have no crossings.

By our choice of a, vertices x1,a and x2,−1 have no CON. By Lemma 3.8 via the path

P := x1,aC[x1,a, x2,−1]x2,−1y
′x1,a−1C

−[x1,a−1, u1]u1F [u1, u2]u2C[u2, x1,−1]x1,−1

shown in Figure 8, x1,a and x1,−1 have no crossings and no CON outside P . However, y′ is the only

possible CON of x1,a and x1,−1 on P , and if x1,−1y
′ ∈ E(G), x1,−1 and x2,−1 would have a CON,

which also is impossible.

x1,a

x1,−1

x x2,−1

Figure 8: The path P from x1,a to x1,−1.

Finally, we argue x1,a and x3,−1 have no CON. Suppose y is such a CON; then the cycle

u3C[u3, x1,a−1]x1,a−1y
′x2,−1C

−[x2,−1, x1,a]x1,ayx3,−1C
−[x3,−1, u2]u2F [u2, u3]u3
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is a longer cycle than C. So x1,a has no CONs with any of x1,−1, x2,−1, x3,−1; x1,a and x1−1 have

no crossings, and neither do x2,−1 and x3,−1. This certifies that {x1,−1, x2,−1, x3,−1, x1,a} is a good

set, a contradiction to Lemma 3.1. 2

Lemma 4.8. If i has medium type, then for xi,j ∈ {xi,1, . . . , xi+1,−2},
(i) xi,j and xi+1,1 have no CONs and no crossings, and

(ii) xi,j and xi−1,1 have no CONs.

Symmetrically, xi,j ∈ {xi,2, . . . , xi+1,−1} and xi,−1 have no CONs and no crossings, and xi,j and

xi−1,−1 have no CONs.

Proof. Without loss of generality, let i = 1. Suppose x1,j and x2,1 have a common neighbor y (the

x1,−1 case is symmetric). By Lemma 4.7, x1,1 and x1,j+1 have a CON y′. By Lemma 3.8 and the

path

P := x1,jC
−[x1,j , x1,1]x1,1y

′x1,j+1C[x1,j+1, u2]u2F [u2, u1]u1C
−[u1, x2,1]x2,1,

shown in Figure 9, x1,j and x2,1 share no CONs (otherwise x1,1 and x2,1 share a CON) and no

crossings.

x

x1,j

x2,1

Figure 9: The path P from x1,j to x2,1.

Suppose that x1,j has a CON y with x3,1. By Lemma 4.7, x1,1 and x1,j+1 have a CON y′. Moreover,

by Lemma 2.5, x1,1 and x3,1 can have no CON, so y 6= y′. In this case, we obtain a longer cycle

than C: the cycle

x1,1C[x1,1, x1,j ]x1,jyx3,1C[x3,1, u1]u1F [u1u3]u3C
−[u3, x1,j+1]x1,j+1y

′x1,1.

This is a contradiction, so x1,j and x3,1 have no CON. The x3,−1 case is symmetric. 2

Lemma 4.9. If j ∈ [3] does not have medium type, then every i ∈ [3] that has medium type also

has long type.

Proof. Without loss of generality, suppose i has medium type but j = i − 1 does not. The case

where j = i+ 1 is symmetric, after reorienting C. It suffices to show that in such a case, i has long

type.

By Lemma 4.2, we may assume xi,1 6= xi+1,−1. Let A = {xi,2, xi+1,1, xi,−1, xi−1,1}. By Lemma 4.8,

xi,−1 and xi,2 have no CONs or crossings; by Lemma 2.5 and Lemma 3.7, xi−1,1 and xi+1,1 have no

CONs or crossings.
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If xi,2 6= xi+1,−1, then Lemma 4.8 further tells us that xi,2 has no CONs with xi−1,1 or xi+1,1. If

xi,2 = xi+1,−1 then Lemma 4.3 gives the same conclusion.

By assumption, i− 1 does not have medium type, so xi−1,1 and xi,−1 have no CONs. If xi,−1 and

xi+1,1 also have no CONs, then A is a good set, contradicting Lemma 3.1. Therefore xi,−1 and

xi+1,1 must have a CON; in other words, i has long type. 2

The three previous lemmas help us to prove the main result of this subsection:

Lemma 4.10. No i ∈ [3] has medium type.

Proof. Suppose the lemma does not hold. If all i ∈ [3] have medium type, then by Lemma 4.7, all

of them are abundant, a contradiction to Lemma 4.5. Thus there is a j ∈ [3] that does not have

medium type. Then by Lemma 4.9, each i ∈ [3] that has medium type also has long type. Now

Lemma 4.6 yields that only one i can have medium type. Suppose by symmetry that this i is 1.

Let b be the smallest integer such that x2,1 and x1,−b have no CON, and consider instead the set

X ′ = {x1,2, x2,1, x3,−1, x1,−b}. Let y be the CON of x1,−b+1 and x2,1. By Lemma 3.8 and the path

x1,−bC
−[x1,−b, u3]u3F [u3, u2]u2C

−[u2, x1,−b+1]x1,−b+1yx2,1C[x2,1, x3,−1]x3,−1

shown in Figure 10 (left), x3,−1 and x1,−b have no CON (otherwise x3,−1 and x2,1 have a CON,

making 2 medium-type) and can only cross at a vertex x1,j for j ≥ 1 or a vertex x1,−a where a < b.

Note by Lemma 2.6 they cannot cross at u1.

In the first case, if j > 1, let y− = y−(x1,j). Note that x2,−1 and x−(y−) share a CON y′. We get

a contradiction by the cycle

u3C[u3, x
−(y−)]x−(y−)y′x2,−1C

−[x2,−1, y
−]y−x3,−1C[x3,−1, u2]u2F [u2, u3]u3.

If j = 1, then let y′ be a CON of x1,1 and x1,2, and let y be a CON of x2,1 and x1,−b+1. Then we

get the longer cycle

x1,1y
′x1,2C[x1,2, u2]u2F [u2, u1]u1C

−[u1, x1,−b+1]x1,−b+1yx2,1C
−[x2,1, x1,−b]x1,−by

+(x1,1)x1,1.

In the second case, let y′ be a CON of x2,1 and x1,−a. Then we get a longer cycle

u3C[u3, y
−(x1,−a)]y

−(x1,−a)x3,−1C
−[x3,−1, x2,1]x2,1y

′x1,−aC[x1,−a, u2]u2F [u2, u3]u3.

By Lemma 4.8, x1,2 and x2,1 have no CONs and no crossings, and x1,2 shares no CONs with x3,−1.

Suppose y′ is a CON of x1,2 and x1,−b. By the choice of b, x2,1 and x1,−b+1 have a CON y. The

cycle

C ′ := x1,−b+1yx2,1C[x2,1, x1,−b]x1,−by
′x1,2C[x1,2, u2]u2F [u2, u1]u1C

−[u1, x1,−b+1]x1,−b+1

shown in Figure 10(right) excludes x1,1 but contains the rest of X ∩ V (C) − {x1,1}. Moreover,

C ′ contains all but at most four vertices in Y ∩ C: y+(x1,−b), y
+(x1,1), and possibly y−(x1,1) or

y−(x2,1), if u1 ∈ X or u2 ∈ X respectively. If D is 2-rich, then |C ′| > |C|, so we may assume that D

is not 2-rich, and dC(x) ≤ 1 by Lemma 3.5. By the choice of (C, x, F ) as a best triple, dC′(x1,1) ≤ 1
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x3,−1

x

x2,1

x1,−b

x

x2,1

x1,2
x1,−b+1

x1,−b

Figure 10: An x1,−b, x3,−1-path, and a longer cycle obtained when x1,2 and x1,−b have a CON.

as well. Then dC(x) + dC(x1,1) ≤ 1 + 1 + 4. This contradicts Lemma 4.1, which shows that x1,2
and x1,−b share no CONs.

Since 2 does not have medium type, x2,1 and x3,−1 share no CONs. By the definition of b, x1,−b
and x2,1 share no CONs. Thus, X ′ is good, a contradiction to Lemma 3.1. 2

4.5 Eliminating long-type configurations

Lemma 4.11. No i ∈ [3] has long type.

Proof. Suppose some i ∈ [3] has long type. By Lemma 4.6, there is only one such i. By symmetry,

assume x3,−1 and x1,1 have a CON a, i.e., only 3 has long type. Then by Lemma 4.4, since no j

has medium type, 1 has short type, which means x1,−1 and x1,1 have a CON b.

Let W = {x1,−1, x1,2, x2,1, x3,1}. We will show that W is a good set.

By Lemma 2.5 and Lemma 3.7, x2,1 and x3,1 have no CON or crossings. Also, x1,−1 and x1,2 have

no CON or crossings: This follows from Lemma 3.8, as shown on the left in Figure 11, where the

path

P := x1,−1C
−[x1,−1, u3]u3F [u3, u1]u1C[u1, x1,1]x1,1ax3,−1C

−[x3,−1, x1,2]x1,2

agrees with the cycle C on all edges.

We now show that the remaining pairs in W do not have CONs. If x1,−1 and x2,1 have a CON, then

we have a second long-type configuration. If x1,−1 and x3,1 have a CON, the we have a medium-type

configuration.

If x1,2 and x2,1 have a CON c, then the cycle

u3C[u3, x1,1]x1,1ax3,−1C
−[x3,−1, x2,1]x2,1cx1,2C[x1,2, u2]u2F [u2, u3]u3

is longer than C, as shown in the middle of Figure 11. Finally, if x1,2 and x3,1 have a CON c then

the cycle

x3,1C[x3,1, x1,−1]x1,−1bx1,1C
−[x1,1, u1]u1F [u1, u3]u3C

−[u3, x1,2]x1,2cx3,1

is longer than C, as shown on the right in Figure 11.
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x

x1,−1

x1,2

x

x1,2

x2,1

x1,1

x3,−1

x

x1,2
x1,−1 x1,1

x3,1

Figure 11: An x1,−1, x1,2-path, and longer cycles obtained if x1,2 has a CON with x2,1 or x3,1.

Therefore W is a good set, contradicting Lemma 3.1. 2

4.6 Eliminating short-type configurations and finishing the proof of Theorem 1.4

Lemma 4.12. If there are no long-type configurations and no medium-type configurations, then

every i ∈ [3] is abundant.

Proof. By Lemma 4.4, every i ∈ [3] has short type and no other types.

For definiteness, consider i = 1. By the definition of short type, x1,−1 and x1,1 have a CON. Let

b > 1 be the least integer such that x1,−1 has no CON with x1,b. Some such b exists, because x2,−1
has no CON with x1,−1. Moreover, if x1,b = x2,−1, then we find a cycle C ′ longer than C: if y1 is a

CON of x1,−1 and x2,−2, and y2 is a CON of x2,−1 and x2,1, then y1 6= y2 (since x1,−1 has no CON

with x2,−1) and therefore

u1C[u1, x2,−2]x2,−2y1x1,−1C
−[x1,−1, x2,1]x2,1y2x2,−1C[x2,−1, u2]u2F [u2, u1]u1

is a cycle longer than C. So b exists and x1,b 6= x2,−1. Note that this implies x1,2 6= x2,−1.

Consider the set Wb = {x1,−1, x1,b, x2,−1, x3,1}. We will show that it is almost a good set.

By Lemma 2.5 and Lemma 3.7, x1,−1 and x2,−1 have no CON or crossing. A CON of x1,b and x3,1
is distinct from any CON of x1,−1 and x1,b−1 because x1,−1 and x3,1 have no CON. Let c be the

CON of x1,−1 and x1,b−1. By applying Lemma 3.8 to the path

x3,1C[x3,1, x1,−1]x1,−1cx1,b−1C
−[x1,b−1, u1]u1F [u1, u3]u3C

−[u3, x1,b]x1,b,

as on the left in Figure 12, we see that they can have no other CON, and can only cross at a vertex

x1,a with a < b.

If such a crossing existed, however, then in particular x3,1 would be adjacent to a neighbor of x1,a
and letting c be the CON of x1,−1 and x1,a+1 we would obtain a longer cycle

x3,1C[x3,1, x1,−1]x1,−1cx1,a+1C[x1,a+1, u3]u3F [u3, u1]u1C[u1, y
−(x1,a+1)]y

−(x1,a+1)x3,1

as shown on the right of Figure 12. In the special case a = b − 1, the cycle looks only slightly
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different. Letting c be the CON of x1,−1 and x1,b−1, it is

x3,1C[x3,1, x1,−1]x1,−1cx1,b−1C
−[x1,b−1, u1]u1F [u1, u3]u3C

−[u3, y
+(x1,b−1)]y

+(x1,b−1)x3,1.

We conclude that x1,b and x3,1 have no CON or crossings.

By the choice of b, x1,−1 and x1,b have no CON. The pair x1,−1 and x3,1 have no CON, otherwise

a medium-type configuration would be formed. The pair x2,−1 and x3,1 have no CON, otherwise a

long-type configuration would be formed.

x

x1,b

x3,1

x1,b−1

x1,−1

x

x1,a+1

x3,1

x1,−1

Figure 12: An x3,1, x1,b-path, and a longer cycle obtained if x1,b and x3,1 have a crossing at x1,a.

If x1,b and x2,−1 have no CON, then Wb is a good set, a contradiction to Lemma 3.1. Thus, x1,b
and x2,−1 have a CON.

We now prove that

for each c ≥ b such that x1,c ∈ C[x1,b, x2,−2], vertices x1,c and x2,−1 have a CON. (7)

Indeed, suppose (7) does not hold and c is the least integer such that c ≥ b and x1,c has no CON

with x2,−1. By the previous paragraph, c > b. Consider the set Wc = {x1,−1, x1,c, x2,−1, x3,−1}. We

will show that this is a good set.

Indeed, x1,−1 and x2,−1 have no CON or crossing, by Lemma 2.5 and Lemma 3.7. Any CON of

x1,c and x3,−1 is distinct from any CON of x1,c−1 and x2,−1, since x3,−1 and x2,−1 have no CON.

They have no other CON or crossings, as shown by the path

x1,cC[x1,c, x2,−1]x2,−1qx1,c−1C
−[x1,c−1, u3]u3F [u3, u2]u2C[u2, x3,−1]x3,−1

(see the left in Figure 13) and Lemma 3.8, where q is the CON of x2,−1 and x1,c−1.

We show that the remaining pairs have no CONs. Indeed, x1,c and x2,−1 have no CON by our

choice of c. The pairs {x1,−1, x3,−1} and {x2,−1, x3,−1} have no CONs, by Lemma 2.5. Finally,

suppose r is a CON of x1,−1 and x1,c Let q be a CON of x2,−1 and x1,c−1. Then the cycle

u2C[u2, x1,−1]x1,−1rx1,cC[x1,c, x2,−1]x2,−1qx1,c−1C
−[x1,c−1, u1]u1F [u1, u2]u2

shown on the right of Figure 13 is longer than C.

Therefore we have a good set of size 4, a contradiction to Lemma 3.1. This proves (7). In other

words, x1,1, x1,2, . . . , x1,b−1 all have a CON with x1,−1 while x1,b, x1,b+1, . . . , x2,−2 all have a CON
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x

x1,c

x3,−1

x

x1,c

Figure 13: An x1,c, x3,−1-path, and a longer cycle obtained when x1,−1 and x1,c have a CON.

with x2,−1. Moreover, in this case, x2,1 and x2,−2 can have no CON, or else we obtain a longer

cycle,

x2,1C[x2,1, x1,−1]x1,−1rx1,b−1C
−[x1,b−1, u1]u1F [u1, u2]u2C

−[u2, x2,−1]x2,−1sx1,bC[x1,b, x2,−2]x2,−2tx2,1,

where r is the CON of x1,−1 and x1,b−1, s is the CON of x2,−1 and x1,b, and t is the CON of x2,−2
and x2,1, as shown in Figure 14.

x

x1,−1

x1,b

x2,−2

x2,1

Figure 14: A longer cycle obtained when x2,1 and x2,−2 have a CON.

We can apply the argument in this subsection in six possible ways: we can swap the roles of x1,1
and x1,−1 in the argument above, and we can choose any of the three short-type configurations in

place of the one formed by x1,1 and x1,−1. All six of these arguments must terminate in the same

case. In particular, just as we concluded that x2,1 and x2,−2 can have no CON, we also conclude

that x1,−1 and x1,2 can have no CON. This means that in the argument above (and in all variations

of the argument), we must have b = 2.

Therefore, for each i, the vertices xi,2, xi,3, . . . , xi+1,−2 all have a CON with both xi,1 and with

xi+1,−1. In other words, all i ∈ [3] are abundant. 2

By Lemma 4.10 and Lemma 4.11, no i ∈ [3] has medium or long type. Therefore by Lemma 4.12,

every i ∈ [3] is abundant. This contradicts Lemma 4.5, completing the proof of Theorem 1.4.
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5 Concluding remarks

1. Theorem 1.4 is a natural 3-connected strengthening of Conjecture 1.1 for 2-connected graphs.

Consider the following family of k-connected graphs.

Construction 5.1. Let k be a positive integer, and let n1 ≥ . . . ≥ nk+1 ≥ 1 be such that

n1 + . . .+nk+1 = n. Let Gk(n1, . . . , nk+1; δ) ∈ G(n, (k+1)(δ−k)+k, δ) be the bipartite graph

obtained from Kδ−k,n1 ∪ . . .∪Kδ−k,nk+1
by adding k vertices a1, . . . , ak that are each adjacent

to every vertex in the parts of size n1, . . . , nk+1. Let Gk(n, δ) be the collection of the graphs

Gk(n1, . . . , nk+1; δ) for all suitable choices of n1, . . . , nk+1.

When k = 2 or k = 3, Gk is the family of all graphs in Construction 1.2 or Construction 1.3

respectively.

Question 5.2. Let m,n, k, δ be integers. Suppose k ≥ 4, δ ≥ n and m ≤ (k + 1)(δ − k) +

k − 1. Is it true that every k-connected graph G ∈ G(n,m, δ) contains a cycle of length 2n?

Moreover, if k ≥ 3, are the graphs in the family Gk(n, δ) the only extremal examples with

m = (k + 1)(δ − k) + k?

If the answer is negative, it would also be interesting to find the value(s) of k at which other

extremal examples occur.

2. Jackson also made the following conjecture.

Conjecture 5.3 (Jackson [3]). Let m,n, δ be integers with n > δ. If a graph G ∈ G(n,m, δ)

is 2-connected and satisfies

m ≤
⌊

2(n− α)

δ − 1− α

⌋
(δ − 2) + 1

where α = 1 if δ is even and α = 0 if δ is odd, then G contains a cycle of length at least

2 min(n, δ).

This conjecture remains open. A weaker version is proved in [6] in the language of hyper-

graphs.
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