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Abstract

In the language of hypergraphs, our main result is a Dirac-type bound: we prove that every
3-connected hypergraph H with 6(#) > max{|V ()|, W} has a hamiltonian Berge cycle.

This is sharp and refines a conjecture by Jackson from 1981 (in the language of bipartite
graphs). Our proofs are in the language of bipartite graphs, since the incidence graph of each
hypergraph is bipartite.
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1 Introduction

1.1 Long cycles in bipartite graphs

For positive integers n,m, and § with 6 < m, let G(n,m,d) denote the set of all bipartite graphs
with a partition (X,Y’) such that |X| =n > 2,|Y| = m and for every x € X, d(x) > ¢. In 1981,
Jackson [3] proved that if § > max{n, 42}, then every graph G € G(n,m,d) contains a cycle
of length 2n, i.e., a cycle that covers X. This result is sharp. Jackson also conjectured that if
G € G(n,m,d) is 2-connected, then the upper bound on m can be weakened.

Conjecture 1.1 (Jackson [3, 4]). Let m,n,§ be integers. If 6 > max{n, ™2}, then every 2-
connected graph G € G(n,m,d) contains a cycle of length 2n.

Recently, the conjecture was proved in [7]. The restriction 6 > mT‘FE’ cannot be weakened because
of the following example.

Construction 1.2. Let ny > ng > n3 > 1 be such that ny + ng + n3 = n. Let G3(ny1,n2,n3;0) €
G(n,30—4,9) be the bipartite graph obtained from Ks_g n, UKs_9 n, UK5_ 25, by adding two vertices
a and b that are both adjacent to every vertex in the parts of size ni,ns, and ng. Then a longest

cycle in Gg(ni,n2,n3;9) has length 2(n; +n2) < 2(n —1).

The goal of this paper is to find a best lower bound on § guaranteeing the existence of a 2n-cycle

in a graph G € G(n,m,d) if G is not only 2-connected, but 3-connected. The following simple

extension of Construction 1.2 shows that the bound could not be larger than %10.

*University of Illinois at Urbana—Champaign, Urbana, IL 61801 and Sobolev Institute of Mathematics, Novosibirsk
630090, Russia. E-mail: kostochk@math.uiuc.edu. Research is supported in part by NSF grant DMS-1600592 and
grants 18-01-00353A and 19-01-00682 of the Russian Foundation for Basic Research.

fDepartment of Mathematics, University of Illinois at Urbana—Champaign, IL, USA, mlavrov@illinois.edu.

HUniversity of Califonia, San Diego, La Jolla, CA 92093, USA and University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA. E-mail: ruluo@ucsd.edu. Research is supported in part by NSF grants DMS-1600592 and
DMS-1902808.

$University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. E-mail: zirlin2@illinois.edu. Research
is supported in part by Arnold O. Beckman Research Award (UIUC) RB20003.



Figure 1: An example of Construction 1.3.

Construction 1.3. Let ny > no > ng > ng > 1 be such that ny + ng +ng +ng = n. Let
Ga(ny,...,n4;9) € G(n,46 — 9,6) be the bipartite graph obtained from Ujle Ks 35, by adding 3
vertices ai, as,as, all of which are adjacent to every vertex in the parts of size ni,no,ng, and ny.
Then a longest cycle in G4(ni,...,nq;0) has length 2(n1 + ng +n3) < 2(n —1).

The main result of the paper is that Construction 1.3 is indeed extremal for 3-connected graphs:
Theorem 1.4. Let m,n,0 be integers. If 6 > max{n, leO}’ then every 3-connected graph G €
G(n,m,0) contains a cycle of length 2n.

We discuss possible extensions of Theorem 1.4 to k-connected bipartite graphs and hypergraphs in
concluding remarks. We will apply this theorem in a forthcoming paper on so-called super-pancyclic
bipartite graphs and hypergraphs. This notion was introduced and discussed in [7].

In the next section, we discuss how Theorem 1.4 can be translated into the language of hamiltonian
Berge cycles.

1.2 Hamiltonian Berge cycles in hypergraphs

A hypergraph H is a set of vertices V() and a set of edges E(H) such that each edge is a subset
of V(H).

We consider hypergraphs with edges of any size. The degree, d(v), of a vertex v is the number of
edges that contain v. The minimum degree of a hypergraph H is §(H) := min,cy (3 d(v). The
co-degree of a vertex set A is the number of edges that contain A.

A Berge cycle of length ¢ in a hypergraph is a set of ¢ distinct vertices {v1,...,vs} and ¢ distinct
edges {e1,...,es} such that v;,v;11 € e; for every ¢ € [¢] (indices are taken modulo ¢). The vertices
{v1,..., v} are the base vertices of the cycle.

Naturally, a Berge hamiltonian cycle in a hypergraph H is a Berge cycle whose set of base vertices
is V(H).

Let H = (V(H), E(H)) be a hypergraph. The incidence graph of H is the bipartite graph I(H)
with parts (X,Y) where X = V(H), Y = E(H) such that for e € Y,v € X, ev € E(I(H)) if and
only if the vertex v is contained in the edge e in H.

If H has n vertices, m edges and minimum degree at least §, then I(H) € G(n,m,d). There is
a simple relation between the cycle lengths in a hypergraph # and its incidence graph I(H): If
{vi,...,vs} and {eq,...,es} form a Berge cycle of length ¢ in H, then vie; ... vpepv; is a cycle of
length 2¢ in I(H), and vice versa.



For a positive integer k, call a hypergraph k-connected if its incidence graph is k-connected.

If one would like to prove an analog of Dirac’s theorem on hamiltonian cycles in graphs for hamil-
tonian Berge cycles in hypergraphs, then the bound on the minimum degree would be exponential
in n. One of the examples is the following construction from [7].

Construction 1.5 ([7]). Let V(H) = V1 U Vo where |Vi| = [(n + 2)/2], |Va| = [(n — 2)/2],
ViNnVa =0, and let E(H) = E1 U Ey, where Ey is the set of all subsets A of V(H) of size [n/4]
such that [ViMA| =1 (and |VaN Al = [n/4] — 1), and Ey = {V1}. Then H has an exponential in
n mainimum degree, high connectivity and positive codegree of each pair of the vertices. But H has
no Berge hamiltonian cycle.

On the other hand, rephrasing Theorem 1.4 in terms of hypergraphs, we get a reasonable and
sharp bound on the minimum degree in terms of the number of vertices and edges that provides
the existence of hamiltonian Berge cycles in 3-connected hypergraphs.

Theorem 1.6. Let positive integers n,m,d be such that

§ > max{n, "t10} (1)

Then every 3-connected n-vertex hypergraph with m edges and minimum degree at least § has a
hamiltonian Berge cycle.

1.3 Notation and outline of the proof of Theorem 1.4

For a graph G, a cycle C in G, and a vertex x not appearing in C, let t(x,C') denote the size of a
largest , V(C)-fan in G, i.e. the largest number of x, V(C)-paths such that any two of them share
only z. Since G is 3-connected, t(x,C) > 3.

Our proof is by contradiction. We assume that for some positive integers m,n,é with § >
max{n, +19} " there is a counter-example: a 3-connected (X,Y)-bigraph G € G(n,m,d) with

no 2n-cycles. We study the properties of G.

We consider each cycle C in G equipped with a clockwise direction. For every vertex u of C,
xé(u) denotes the closest to u clockwise vertex of X distinct from u. For every vertex u of C,
z(u) denotes the closest to u counterclockwise vertex of X distinct from w. For a set U C V/(C),
XL(U) ={zf(v) : ue U}. When C is clear from the context, the subscripts could be omitted.

The vertices y*(u),y ™ (u) and the sets X~ (U),Y ™ (U),Y(U) are defined similarly.

We consider triples (C, z, F') where C' is a cycle, x € X — V(C) and F'is an z, C-fan. By D(C, z)
we will denote the component of G — C containing =. By definition, V(F) -V (C) C D(C, x).
Definition 1.7. A triple (C,z, F) is better than a triple (C',2', F') if

(a) |C] > |C|, or
(b) |C| =1|C"| and t(xz,C) > t(z',C"), or
(c) |C|=|C"], t(z,C) =t(a',C"), and |[V(F)NV(C)NY| > |V(F)NV(C")NY]|, or

(d) |C| = |C"], t(z,C) = t(z',C"), [V(F)NV(C)NY | = |V(F')NV(C)NY |, and |V (F)| < |V(F')],



(e) [C] = |C"], (z,C) = t(2",C"), [V(F)NV(C)NY| > [V(F)nV(C)NY], [V(F)] = [V(F)]
and |V (D(C,x))| < |V(D(C', x))].

Choose a best triple (C,z, F'). Let

20=\C|, t=t(z,C), T=TCx,F)=V(F)NnV(C),
tx = ’TﬂX’, ty = |TﬂY’.

Similarly, let T = T(C,z) be the set of all vertices of C' adjacent to a vertex of D(C,z), and let
t = 1(C,z) = |T|. By definition, T D T and { > t. Viewing F as a tree (spider) with root z, any
two vertices u,v € V(F) define the unique u, v-path F[u,v] in F. For u,v € V(C), let Clu,v] be the
clockwise u, v-path in C' and let C'~[u, v] be the counterclockwise u,v-path in C. If D = D(C, x)
and u,v € DU T (C,x), then let Pplu,v] be a longest u,v-path all of whose internal vertices are
in D.

We will analyze the properties of best triples (C, z, F') and in all cases will come to a contradiction,
either by finding a better triple or by proving that m > 4§ — 9. For this, we will try to construct so
called good subsets W of X NT, defined later, such that total neighborhood of W U {z} will be too
large. One feature of a good set will be that no two members of such set have a common neighbor
outside of C', CON for short.

In the next section we prove basic properties of our best triple (C,z, F'). Then in Section 3 we
show that t = ¢ = 3. Since G is 3-connected, this means that for every 2/ € X — C, t(«',C) = 3.
In Section 3.1, we discuss special types of components of G — C' and possibilities to choose a triple
(C,z, F) with z in such a component. After that we consider T' = T(C,z, F) and try to find a
4-element good subset of the set A = X*(T) U X~ (T). The main obstacles will be that some
members of A have many common neighbors, in particular, CONs. Section 4 is devoted to the case
analysis of different types of such CONs. We conclude the paper with some comments.

2 Preliminary lemmas

Lemma 2.1. The following inequalities always hold:

(i) 0>t+tx; (i) |X|—C+tx >3 (i) | X]| >t +3.

Proof. If w € TN X and y*(w) € T, then the cycle wF[w,y" (w)]y™ (w)Cly™ (w), w|w is longer
than C, a contradiction. Similarly, ¥y~ (w), 2" (w),x™ (w) ¢ T. Thus, tx < £/2 and ty < £ — 2tx.
This proves (i).

Since 0 > |X| >4+ 1>t+1=dp(x)+ 1, there is y € N(z) — Np(x). By (d) in the definition
of (C,z,F),y ¢ V(F). By the maximality of ¢, y ¢ V(C) — V(F). Since G is 3-connected, G — =
has a y, C-fan F’ of size 2. Let 2/, 2" be the neighbors of y in F’. If, say 2’ € V(C), then by the
maximality of ¢, 2’ € T. Thus {z,2’,2"} C (X — V(C)) U (T'N X). This yields (ii). Now (i) and
(ii) together imply (iii). O

Lemma 2.2. [fw € THX, then

(i) y*(w) ¢ T and



(ii) y*(w) has no neighbors in X+ (T) — z™ (w).

Proof. Tf y* (w) has a neighbor in D = D(C, z), then the cycle wPplw,y™ (w)]y™ (w)C[y™ (w), w]w
is longer than C. This contradiction proves (i).

Suppose yt(w)u € E(G) for some v € XT(T) — 2t (w). Let u = xt(v) for v € T — w. Consider
the cycle C' = wC ™ [w, ujuy™ (w)C[y™ (w), vJvPp[v, wjw. Then C’ is longer than C, unless v € X
and v and w have a common neighbor y in D. In the last case, |C’| = |C] and the only vertex
in V(C) — V(C") is y*(v) which by (i) does not have neighbors in D. Define an z,C’-fan F’ as
follows. If y ¢ V(F), then let F/ = F. If y € V(F), say y € Flx,u;] for some u; € T, then let
F' = F — E(Fly,u;]). In both cases, since y*(v) does not have neighbors in D(C’,z) C D, the
triple (C',z, F') is better than (C,z, F): if y ¢ V(F), then by (e), otherwise either by (c) or by
(d). O

Lemma 2.3. If 1 € X1 (T), then z1 cannot have a neighbor in D = D(C,z), i.e., 1 ¢ T.

Proof. Suppose 1 has a neighbor 3/ in D. Let u; € T be such that 71 = 2+ (u1) and z be a neighbor
of u; in D. Let P be a z,y'-path in D and the cycle C’ be defined by C' = x1C[z1, u1]ui 2Py'xzy. If
y' # z, then C’ is longer than C' and we are done. Thus z = 3’ and hence u; € X. In this case C’
and C have the same length and ¢(z,C’) = ¢(x,C). As in the proof of Lemma 2.2(ii), if ¢’ ¢ V(F),
then let F/ = F. If y € V(F), say y € Flz,u;] for some u; € T, then let I = F — E(F[y, u]).
In both cases, since by Lemma 2.2(i), y*(u1) does not have neighbors in D(C’,x) C D, the triple
(C',z, F") is better than (C,z, F): if y/ ¢ V(F), then by (e), otherwise either by (¢) or by (d). O

Given a cycle C' and distinct z1, 29,23 € X N V(C), we say that 1 and xo cross at xs if the
cyclic order is z1, 23,72 and x1y™ (x3), 12y~ (23) € E(G) or if the cyclic order is 1,2, 3 and
21y~ (23), w2y T (z3) € E(G). In this case, we also say that z3 is crossed by x1 and xs.

Lemma 2.4. Suppose that 1,70 € X (T, cross at x3 € X NV (C). Then x5 ¢ T.

Proof. Suppose that the cyclic order is 1,23, 22 and z1y™ (x3), 22y~ (z3) € E(G) (the other case

is symmetric). Let y be a neighbor of x3 in D. Let u; € T be such that x; = 27 (u;) and z be a
neighbor of u1 in D. Let P be a z,y-path in D and the cycle C’ be defined by

C" = 2y (23)Cly ™ (23), u1]ur 2PyxsC~ [x3, 1] 21

If y # 2, then C’ is longer than C' and we are done. Thus z = y. In this case, C’ and C have the
same length and t(z, C") = t(x,C). As in the proof of Lemma 2.2(ii), if y ¢ V(F'), then let F' = F.
If y € V(F), say y € Flz,u;] for some u; € T, then let F' = F — E(F[y,u;]). Again as in the proof
of Lemma 2.2, the triple (C”, z, F’) is better than (C,z, F). 0

Recall that for two vertices in G, CON means “a common neighbor outside of C.”
Lemma 2.5. Suppose that z1,z5 € X+ (T). Then
(i) 1 and x2 have no CON;

(ii) neither of x1 and xo has a CON with x.



Proof. Part (ii) follows from Lemma 2.3. So, suppose z; and z9 have a CON y, and uj, us € T are
such that z; = 27 (uy) and zo = 7 (ug). By Lemma 2.3, y ¢ D. Consider the cycle

C'" := 21Clx1, uz)ua Pplug, uyJui C~ [uy, xo]zoy®: .

Cycle C’ is longer than C, unless u1,us € X and have a common neighbor 3/ in D. In the last case,
|C’'| = |C] and the only vertices in V(C) — V(C’) are y*(u1) and y*(u;) which by Lemma 2.3(i)
do not have neighbors in D. Define an x,C’-fan F’ as follows. If y ¢ V(F), then let F/ = F. If
y € V(F), say v € Flz,u;] for some u; € T, then let F/ = F — E(F[y’,u;]). In both cases, since
yT(u1) and y*(uz) do not have neighbors in D(C’,z) C D, the triple (C’,z, F') is better than
(C,z, F): if y ¢ V(F), then by (e), otherwise either by (c) or by (d). O

Lemma 2.6. Suppose ui,us € T are such that the path Ppluy,us] contains an internal vertex
in X. If 11 = 27 (u1) and z2 = 21 (ug) cross at x3 € X NV (C), then

(i) 23 ¢ T and if x5 = 2 (u) where u € T, then u € Y;
(i) G has a cycle C' containing (X NV (C) — x3) U (X N Ppluy,uz]) such that |C'| > |C|;
(iii) x3 has no CON with any vertez in the set {z} U X (T);

(iv) x3 has at most t neighbors on C.
Proof. Part (i) follows from Lemmas 2.2 and 2.4. The cycle
Cy = 21y ™" (23)Cly™ (23), uglua Ppluz, ur]ui O [us, xolway ™ (23)C ™[y~ (23), m1]2

proves (ii).

To prove (iii), assume that y is a CON of z3 with a vertex in {z} U X+ (T), and consider all cases.
First note that by Lemma 2.4, y ¢ D; in particular, 23 has no CON with z. If u; € T, z; = 27 (u;),
yz; € E(GQ), and z; € Cly™ (x3),u1], then the cycle

(

C' = xlC[xl,xg]:cgyij[xj,uﬂulPD[ul,uj]ujC*[uj,yﬂmg)]y x3)T]

is longer than C, unless Pplui,u;] = w1y'u; for some y' € D. If Ppluy, u;] = uiy'u;, then |C'| = |C|
and the only vertices in V(C) — V(C') are y*(u1) and y*(u;) which by Lemma 2.3(i) do not have
neighbors in D. Define an z,C’-fan F’ as at the end of the proof of Lemma 2.3, and see that
(C",x, F’) is better than (C,x, F) exactly as there. Similarly, if z; € C[u1,y ™ (z3)], then the cycle

Cl = 1‘20[1‘2, U]]’LL]PD [U], UQ]UQCi [U27 $3]$3y$gc[$]a yi (‘/Eg)]yi (xg)l‘g

is longer than C, unless Ppluj, ug] = u;y'us for some y' € D. Again, defining F’ as above, we get
a triple (C', z, F") better than (C,z, F'), a contradiction. This proves (iii).

By the choice of (C,x, F') and (ii), x3 has at most ¢ neighbors on C;. The only vertices in Y N
V(C) =V (Cy) are y~ (1) and y~ (z2). If 23y~ (1) € E(G), then the cycle

y (21)Cly (z1),y™ (@3)ly~ (23)22C w2, us|us Pplu, uzJusC™ [ug, z3]x3y ™ (1)
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Figure 2: Longer cycles when x1 and x2 in Lemma 2.7 have multiple crossings.

is longer than C'. If x3y~(x2) € E(G), then the cycle

21C[z1, z3)z3y ™ (22)Cly~ (22), w1 |ur Pplur, uglusC ™ [ug, y* (23)]y ™ (z3)z1

is longer than C. This proves (iv). O

Lemma 2.7. Suppose ui,us € T are such that the path Ppluy,ug] contains an internal vertex
in X, x1 = 27 (u1), and xo = 2+ (uz). Then at most one vertex in C is crossed by x1 and 3.

Proof. Suppose vertices 3,24 € V(C)NX are crossed by z1 and x5. We will show first that x3 and
x4 have no CON. Suppose there is some y € (N(z3) N N(z4)) — V(C). By Lemma 2.6, y ¢ V(D).

We consider two cases. If x3 and x4 both are on C|x1,x3] or both are on C[zg,z1], then we may
assume that their cyclic order is x1, x3, 4, z2. In this case, the cycle

21C[xy1, 3]23y24Cl2y, ugug Pplug, ui]u1 C™ [ur, x2]xey™ (4)C ™ [y~ (24),y

(see Figure 2, left) is longer than C.

If one of z3 and x4 is on C[z1, z2] and the other is on C[ze,z1], then we may assume that their
cyclic order is x1, x3, T2, 4. In this case, the cycle
F(a3)ly™ (x3)2

21C[21, 23]23y24C ™ (34, o) w2y ™ (24)Cly ™ (24), ut]us Pplur, ususC~ [ua, y* (3)]y

(see Figure 2, right) is longer than C. This proves that x3 and x4 have no CON.

Let A= X" (T)U{w, 3,24} (possibly, X (T)N{x3,24} # 0), and A’ = A — {x, x3,24}. Note that
|A'| >t —2.
By definition, |N(x) —C| > 6 —ty. By Lemma 2.6(iv), |N(x3) —C| > d —t and |N(z4) —C| > 6 —t.
By Lemma 2.2,
>IN NV(C)| < LA — tx|A| + min{tx, |A]}. (2)
u€cA’
By Lemmas 2.5 and 2.6(iii), no two distinct vertices in A have a CON. Thus, using (2) and
remembering about the ¢ vertices in Y NV (C), we get

Y| > 04 [N(u) - V(O)

ueA



=+ |N(z) = V(O)| + [N(w3) = V(O)| + [N(za) = V(C)| + Y [N(u) = V(C)|
ucA’

>0+ (6—ty)+ (0 —t)+ (@ —1)+ (|4 = D INw) NV (C)))
ueA’

(4 (|A'|+3)0 — 2t —ty — (0 — tx)|A'| — min{tx, |A'|}

(4t —2+43)0 -2t — (t—tx) — (0 —tx)(t —2) — min{tx,t — 2}

(4 (t+1)6 — (Bt —tx) — (0 —tx)(t —2) — min{tx,t — 2}

0+ (

(t+

ARV}

Y

t+1)6—3t—(—tx)(t—3+1)
1)0 —3t— (0 —tx)(t—3) +tx.

Since by Lemma 2.1, § > £ — tx + 3, this yields
Y|>(@t+1)0—-3t—6(t—3)+3(t—3)+tx =46 — 9+ tx.
This contradiction proves the lemma. O

The following lemma holds for any bipartite graph G (no restrictions on minimum degree or con-
nectivity).

Lemma 2.8. Let C be a cycle of G, and let u,v € V(C)NX. Ifu and v have at most a crossings,
then do(u) + da(v) < |[V(C)|/2+ 2 + a.

Proof. We induct on a. Suppose a = 0. Consider the two paths P = C[u,v] and P, = C ™ [u,v]. In
Py =v;...v; (v1 = u,v, =), each v; € X satisfies at most one of the following: v;y1u € E(G) or
v;i—1v € E(G). So dp,(u) + dp,(v) < |V(P1) N X|. Similarly, dp,(u) + dp,(v) < |V (P2) N X]|. Since
(XNV(P))N(XNV(P2)) = {u,v} and V(P)UV (P2) = V(C), we get do(u)+deo(v) < [V(C)|/2+2.

For a > 1, delete an edge incident to u that is used in a crossing, and apply induction. O

3 Bounds on t and ¢ in best triples

Recall that (C,z, F) is a best triple, D = D(C,z) is the component of G — V(C) containing x,
T=V(F)nV(C),and T = N¢(D).

A set of vertices W = {z1,...,2p} C X NV(C) is good if
(i) do(z) <k,
(ii) the vertices of {x} U W pairwise have no CON, and

(iii) we can partition W into sets W1, ..., W, such that for each j € [s], |[W;| > 2 and any two
distinct vertices in W; cross at no more than one vertex in C'.
Lemma 3.1. If W is a good set, then |W| < max{4,t}.

Proof. Suppose k > max{4,t} and W = {z1,..., 2} is a good set. Note that § > |X| > |[W| > 4.
Let (W1,..., W) be a partition of W satisfying (iii) in the definition of a good set. By Lemma 2.8,



if z; and z; have at most one crossing, then dc(x;) + do(z;) < ¢+ 3. Hence

k

ch(mi) = ZS: Z do(w) < k(L + 3)/2.

i=1 j=1 weW;
Since [Y NV (C)| =4, §(G) > 6 and k > t, we get

]Y]2€+(k+1)5—t—k:£;32€<1—§>+k<5—2>+6.

Since the net coefficient at ¢ is negative and ¢ < |X|—1 < 0 — 1, this is at least k (g —2)+25—1.
Now the net coefficient at k is nonnegative, so the minimum is attained at k& = 4. Hence |Y| > 40—9,
a contradiction. O

Next, we show that both ¢ and ¢ are small.
Lemma 3.2. ¢t = 3.

Proof. Since G is 3-connected, t = |T| > 3. Suppose t > 4. We claim that X*(7T') is a good set.

Since F'is a largest , C-fan, x has at most ¢ neighbors in C'. By Lemma 2.7, for any z;,z; € X (T),
z; and z; have at most one crossing in C. By Lemma 2.5, no two distinct vertices in X (7T") U {x}
have a CON. This certifies that X*(T') is good, a contradiction to Lemma 3.1. 0

Lemma 3.3. |T| = 3.

Proof. We have T C T. Suppose \f! > 4. Choose a set U = {uy,...,us} C T so that T =
{uy,uz,us}, and ug € T —T. Let P be a shortest path from uy to F — C in G[D + uy]. Let
J € [3] be such that the end, p, of P distinct from u4 belongs to the x,uj-path in F. Assume
(3] = {4,7',7"}. The path u; F[uj,p]pPuy contains an internal vertex in X (namely, x). Partition

U into U’ = {ua,u;} and U” = {u;j,u;n}.

By Lemma 2.7, each of the pairs U’ and U” has at most one crossing in C. Since F is a largest
x,C-fan, x has at most ¢ neighbors in C. By Lemma 2.5, no two distinct vertices in X (U) U {z}
have a CON. This certifies that X (U) is good, a contradiction to Lemma 3.1. O

Remark 3.4. Lemma 3.3 implies that T' = CF, i.e., the only vertices in C' with neighbors in D are
the vertices of T'. In particular, no vertez in V(C) —T has a CON with x.

3.1 DMore structure and fewer crossings

One of the results of this section is that for any best triple (C,x, F), no vertices in X (T') cross in
C'. Recall that by Lemma 3.2, |T| = |[V(F)NV(C)| = 3.

A component D of V(G) — C' is 2-rich if there is a set U = {u1,uz,us} = V(C) N N(D) such that
for all distinct 7, j, D contains a u;, u;-path with at least two internal vertices in X.
Lemma 3.5. If [T NX| <1, then D is 2-rich.



Proof. Suppose T = {u1,uz,us3} where uj,uy € Y. If some y € DNY is not adjacent to usz, then
all y, C-paths contain internal vertices in X, and hence D is 2-rich. Thus we may assume that each
y € DNY is adjacent to us. In particular, usz € X.

By Rule (d) of Definition 1.7, dp(x) =t = 3, so because 6 > |X|+1 >t +3+1 > 7, there is
y' € N(z) with y'x ¢ E(F). Since G is 3-connected, it contains a y’, C-fan F’ with 3 paths. Recall
that y'ug is one of such paths. For i = 1,2, let P; be the ¢/, u;-path in F’ and vy’ € E(P;). Suppose
that for ¢ = 1,2, there is y; € N(v;) — C —y' — P5_; (possibly, y2 = y1). Then D is 2-rich: P, U P,
connects u; with ug, and for i € {1, 2}, path usy;v;y’ Ps_; connects uz with us_;; and each of these
three paths contains {v1,v2} C X. Hence by symmetry we may assume that every neighbor of v;
isin V(C)U Pa. Note N(v1)NV(C) C {uy,uz,us}, since ]T\ = 3. Then the cycle v1y' PoClug, uivy
has at least 2§ vertices, a contradiction. O

Lemma 3.6. Suppose D is not 2-rich. For any ' € X NV (C), G — 2’ has no cycle C" such that
(i) XNV(IC")2XNV(C)—a'+x, and

(ii) C' contains the neighbors y*(z') and y~(x') of ' on C.

Proof. Suppose we have C’ satisfying (i) and (ii). If we have strict containment in (i), then |C’| >
|C], contradicting (a) in the choice of (C,z, F). Thus X NV (C") =X NV(C) — 2/ + z.

Let D’ be the component of G — V(C’) containing z’/. Let M be the set of neighbors of D’ on
C'. By (ii), {y*(2/),y (')} € M. Since G is 3-connected, D' — {y*(2’),y~(2')} contains an
2/, C’-path P. Then P together with the edges 2/y* (') and 2y~ (2') forms an 2/, C’-fan F’ with
[V(F')NV(C")NY| > 2. Moreover since D was not 2-rich, by Lemma 3.5, [V(F)NV(C)NY| < 1.
So (C', 2/, F') is a better triple than (C,z, F'), a contradiction. O

Lemma 3.7. No two vertices in X+ (T') cross in C.

Proof. Suppose z; = 2" (u;) and z; = 27 (u;) cross at some vertex zo € V(C') N X. By symmetry,
we may assume that their cyclic order is x;, zo, ;. Let

C" = a;Clayy™ (wo)ly~ (w0)z;Clay, uilui Pplus, ujlu;C [ug, y™ (20)]y™ (zo)a;.
If D is 2-rich, then Pplu;, u;] has at least 2 internal vertices in X, and so C” is longer than C. If
D is not 2-rich, then C’ satisfies conditions (i) and (ii) of Lemma 3.6, a contradiction. O

Let e be an edge of C, let u,v € V(C), and let P be any u,v-path containing e, which we orient
from u to v. We say that P and C agree on the edge e if the orientation of e (oriented from wu to
v) in the u, v-segment of C' containing e is the same as the orientation of e in P.

Lemma 3.8. Let u,v € XNV (C). Suppose that there is a u,v-path P with (XNV(C))U{z} C V(P)
and there exists some z,z' € V(P) such that V(P) NV (D) = V(P|[z,?7']), i.e., P enters and leaves
D exactly once. Then

(i) uw and v have no common neighbor outside of P, and

(ii) if P and C agree on an edge e, then u and v cannot have a crossing at an endpoint of e.
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Proof. Note that x € P|z,2/]. If v and v had a common neighbor outside P, then we could extend
P to a cycle longer than C, so (i) holds.

To prove (ii), suppose that P and C' agree on an edge e which lies on Clu,v], w € X N V(C) is
an endpoint of e, and u and v cross at w. Suppose that the edges of C|u,v] incident to w are y'w
and wy”, so that uy” and vy’ are the two edges forming u and v’s crossing on w. Without loss of
generality, e = y’w. The condition that P and C agree on e guarantees that P[u,w] contains y'.

There are two cases to consider: either both 3w and wy” are edges of P, or just y/'w.

In the first case, let C' := uP[u,y']y'vP[v,y"]y"u. Then V(C') 2 V(C) — {w} + {x}. If we have
strict containment, then |C’| > |C|, a contradiction. So we may assume V(C")NX = (V(C)NX)—
{w} 4+ {z}. Observe that C’ satisfies Lemma 3.6 for ' = w. So D is 2-rich. Let a be the vertex
in P preceding z and @’ the vertex in P succeeding 2z’ (so a,a’ € V(C)). Let P’ be a a,a’-path
internally disjoint from C' that contains at least 2 internal vertices in X. Let C” be obtained by
replacing in C’ the segment Pla,a’] with P’. We have |V(C")N X| > | X + {z} — {w}|. Therefore
|C"| > |C|, a contradiction.

In the second case, the cycle uP[u,y'|y'vP[v, wjwy’u is longer than C, since it contains all of
X NV(C) as well as x, a contradiction. O

4 Handling the case ¢t = 3

4.1 Short, medium, and long-type configurations

We continue to study properties of a best triple (C,z, F). Recall that by Lemma 3.3, t = \f| =3,
so we will assume that N(D) NV (C) = {u1,u2,us}. Partition V(C) — {u1,ug,us} into Uy, Uz and
Us, where for i € [3], U; = V(Clu;, uit1]) — {wi, uit1}, i.e. U; is the set of vertices on C from u; to
ui+1 not including either endpoint. Here and in the remainder of the paper, we let the indices on
D’s neighbors wrap around modulo 3, so that, for example, ug = ug and ug = u;.

Let X; =U;NnX and Y; = U; NY. For j > 0, let x; ; be the jth vertex in X; clockwise; let x; _;
be the j' vertex in X; 1 counterclockwise. For example, z;1 = 2% (u;) and x; 1 = 2~ (u;). Define
Y;,; similarly.

One of the lines of attack in this section is trying to find a 4-element good subset of X T(T)UX (T,
which will contradict Lemma 3.1. This will not work if several of these vertices have many CONs.
We will classify the obstacles to this approach into three types. For each i € [3], we say that:

e i has short type if x; _1 and x; ;1 have a CON.

e ¢ has medium type if x;1 and x;11,—1 have a CON.

e i has long type if x; 1 and x;411 have a CON.
These three configurations are shown in Figure 3.

We first prove that each segment U; contains at least two vertices in X.
Lemma 4.1. For any 2’ € XT(T), do(z) + do(2') > 8. In particular, do(x') > 5.
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/) : ,

us u2 ug ug u3 2
Figure 3: Short-type, medium-type, and long-type configurations.

Proof. Suppose ' = 11 and do(x) 4+ de(2') < 7. No two vertices in the set X+ (T') U {z} have a
CON or cross in C. By Lemmas 3.7 and 2.8, do(x2,1) + dco(x3,1) < £+ 2. Therefore

‘Y‘ > 45 — (dc(l‘) + do(m1,1>) — (d(j(xQJ) + dc(l‘&l)) +0>46 -7 — (ﬁ—l— 2)+ 0 =45 —-9.

This contradiction proves do(z) + de(2’) > 8. Since do(z) <t =3, do(2') > 5. O
Lemma 4.2. For each i € [3], z;1 # Tit1,—1-

Proof. Let C" = u;Fluj, ujt1]uit1Cluis1, u;)u;. Then |C'| > |C|. If the component D of G — C
containing x is 2-rich, then |C’| > |C|. So by Lemma 3.5, |[TNY| < 1, and hence do(z) < 1. By the
choice of (C,z, F) as a best triple, dev(x;1) < 1 as well. Since V(C) — {y (zi1), vy (zi1),zi1} C

V(C"), No(xi1) € No(zia) U{y™ (zi1),y" (z;1)}, and therefore de(z;1) < 1+ 2. This contradicts
Lemma 4.1. O

It is possible that some segments U; contain only two vertices of X, but in that case, we can deduce
some additional structure we will use later.
Lemma 4.3. For each i € [3], if z;2 = xiy1,—1, then i + 1 does not have short or long type.

Proof. If i+ 1 has short or long type, we can find a cycle C’ such that X N C” includes z but leaves
out x;1.

If 7 + 1 has short type and y is a CON of z;11,—1 and 41,1, then
C" = ui1C ™ [Wit1, Tit1,-1)Tit1,-1YTip11Cl@i 1,1, wilwi F[ug, wigr Juiga.

Note that C' includes at most three vertices of Y which are not in C”: y*(z;1), possibly y~ (1)
(if u; € X), and possibly y* (u;11) (if ui11 € X).

If i + 1 has long type and y is a CON of x;41 1 and x;_1,1, then
C" = 2ip1,1C[@ig1,—1, Uim1Juim1 Flui—1, uguiC ™ [wg, ©i—11]@i—1,1YZig1,—1-

Again, C includes at most three vertices of Y which are not in C”: y*(x;1), possibly vy~ (z;1) (if
u; € X), and possibly y*(u;—1) (if u;—1 € X).
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In both cases, |[C'| > |C|, with strict inequality if D is 2-rich. So we may assume D is not 2-rich.
By Lemma 3.5, |TNY| < 1, and hence d¢(z) < 1. Therefore by the choice of (C,z, F') as a best
triple, dev(x;,1) < 1. Then in either case do(x;1) < 1+ 3, contradicting Lemma 4.1. O

Lemma 4.4. For each i € [3], one of the following configurations must appear:

(i) i has short type, or

(ii) one of i — 1 ori has medium type, or
(iii) i+ 1 has long type.
Proof. Suppose for some i € [3] none of (i)—(iii) holds. Let W = {x;_11,%i—1,%i1,Tit1,-1}. By
Lemma 3.7 (applied to C and also to the backward orientation of '), the vertices inside the sets
Wi = {zj—11,zi1} and Wy = {x; _1,2i41,—1} have no crossings. By Lemma 2.5, no vertex in W
can have a CON with z. Since by Lemma 3.1, W is not a good set, some two vertices in W have a
CON. By Lemma 2.5 again, x;—1,1 and z;1 have no CONs, and z; —1 and x;41,—1 have no CONs.
This leaves the configurations in the statement of this lemma. O

The plan of the remainder of this paper is as follows:

1. In the next subsection we define abundant indices and show that not all i € [3] are abundant.
This will help to handle medium-type and short-type configurations.

2. In Subsection 4.3 we show that at most one i € [3] has long type.

3. In Subsection 4.4 we prove that no ¢ € [3] has medium type. An important part of this proof
is Lemma 4.5 from Subsection 4.2.

4. In Subsection 4.5 we show that none of ¢ € [3] has long type. So, by Lemma 4.4, every i € [3]
has short type.

5. Subsection 4.6 finishes the proof of the main theorem by handling the case that every i € [3]
has short type.

4.2 On abundant indices

Call an i € [3] abundant if each of the vertices x; 2, ;3,...,zi11,—2 has a CON with z; ; and a CON
with Tit1,—1-
Lemma 4.5. At least one i € [3] is not abundant.

Proof. Suppose all i € [3] are abundant. For i € [3], let w; = y* (2~ (u;)). In other words, w; = u;
if u; €Y, and w; = y;,—1 if u; € X. Define W = {wy,y™ (w1), w2,y (w2), w3,y (w3)}. We claim
that for all ¢ € [3],

Ne(zin) CY; UW. (3)

Suppose that x;; has a neighbor y; ;, where j # i and y; 1 € Y; —{w;41,y (wj41)}. By Lemma 2.2,
if uj € X, then y;1 # yj1. So y;x lies strictly between x;; and xj;41,_2. Since j is abundant,
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Figure 4: A longer cycle when z;; has a neighbor y; .

7 (y;x) and x;; have a CON, say y. Then the cycle
C" = i1 Claiy, wjluFlug, wiluiC [wiy o™ (y0))e ™ (y0)y250 Ol yiklys e

(see Figure 4) is longer than C, a contradiction. This proves (3).

Next we show that
if | X;| =2 and mi71y+(xj,1) € E(G), then N(zj1) "W = {y+($]~71)}. (4)

Indeed, let P; be a longest u;,u;-path all internal vertices of which are in D = D(C,z). Consider
the cycle
C" = 21 Clai1, wiluy PruiC ™ g,y (2,0)ly ™ (2,0) @iy

If D is 2-rich, then C” is longer than C, a contradiction. Thus D is not 2-rich, and hence by
Lemma 3.5, |Y NT| < 1. In this case, |C”| > |C|. Let F” be a best zj1,C"-fan. Since the
triple (C”,z;1,F") is not better than (C,z,F), |C”| = |C| and |N(z;1) N V(C")] < 1. Since
y*(zj1) € N(zj1) by definition, and W C V(C”), (4) follows.

Now we show that similarly to (4),
if | X;| >3 and z;1y~ (wjy1) € E(G), then |[N(z;1) N W| < 1. (5)

Indeed, let P; be a longest uj, u;-path all internal vertices of which are in D = D(C,z). Since
|X;| > 3 and j is abundant, ;41,1 and z;2 have a CON, say y. Consider the cycle

C" = 231 Clws 1, ujluy PruiC™ [ug, 241, 1)241,-192520 2,2, y~ (wjg1) |y~ (wis1) i,

If D is 2-rich, then C" is longer than C, a contradiction. Thus D is not 2-rich, and by Lemma 3.5,
Y NT| < 1. In this case, |C”| > |C|. Let F"" be a best x; 1, C"'-fan. Since the triple (C", z; 1, F")
is not better than (C,z, F), |C"| = |C| and |[N(z;1) NV(C")| < 1. Since W C V(C"), (5) follows.

If there are no distinct 4, j € [3] such that z; 1y~ (wj+1) € E(G), then by (3), Zz‘e[?,] INo(z:1)] <
>icqy) (1Yil +2), and hence

Z Nc(xi,l) < /?¢+6. (6)
1€[3]

If there is only one j € [3] such that ¥y~ (w;41) is adjacent to x;_1,1 or to 11,1 (say, i1y~ (wjt1) €
E(G)), then by (3), |[No(zin)| < [Yi| 4 3 for i # j, but by (4) and (5), |[No(zj1)| < [Yj]. So
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again (6) holds.

Finally, if there are distinct ji, jo € [3] such that x; 1y~ (wj,+1) € E(G) for s € [2] and some i,
then by (4) and (5), |[Nc(zj, 1) < |Yj,|, and by (3), |No(zi1)| < |Yi| + 4 for ¢ € [3] — {j1, 72}
Thus (6) holds in all cases.

By Lemma 2.5, no two vertices in the set A = {z, 211,221,231} have a CON. Therefore, by (6),
Y| >£¢+40 —3— (¢ —6) =45 — 9, a contradiction. O

4.3 Eliminating multiple long-type configurations
Lemma 4.6. At most one i € [3] has long type.

Proof. Suppose the lemma does not hold. By symmetry, we may assume that z3 _1 and z 1 have a
CON a, and x1,—1 and z2; have a CON b. Since x;; and z2; cannot have a CON, a # b. Consider
the cycle

C" = u3Clug, x1,-1)x1,-1bx21Clw21, 23, —1]23 —1021,1C 21,1, U2]U F [UU2, U3] U3

formed as shown in Figure 5.

Figure 5: The cycle C’ formed by two long-type configurations.

Cycle C'" includes x and all vertices of X N V(C), except possibly uj, hence |C'| > |C|. If u; €Y,
(" is longer than C, which is a contradiction. Moreover, if F[ug,us] contains at least 2 internal X
vertices, then |C’| > |C|.

If uy € X, let yuy be the last edge of the z,ui-path of F. As G is 3-connected, there is a path P
from y to V(C)NV(C") not containing x or uy. Since by definition, deleting {uy, us, ug} disconnects
x, and therefore y, from C, path P must go from y to some vertex u' on either the x, us-path or
the x,us-path in F'. Without loss of generality, assume v’ is on the x, us-path.

Consider the cycle
C" = ugC ™ [ug, x11]21 1073 1C ™ [w3,_1, T2.1) 21021, 1C ™ [21,-1, uslus Flus, yly Pu' F v, uglug

shown in Figure 6, obtained from C’ by replacing the segment C’[v/, 2] contained in F' by the union
of P and Flz,y]. This is longer than C’" (and therefore longer than C') except in one case: when
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each of P and the Fz,y] is a single edge, and v’ = us (which must then be in X). In this case,

C" = uaC ™ [ug, x11)m1 1023, 107 (23,1, w21]@2,1b21,_1C [21,-1, us|us Fluz, x]zyus.

&

Figure 6: The cycle C” formed using the path P.

Let F” be the u;, C”-fan formed by the paths Clz1 _1,u1] and Clui, z1,1], and the edge u1y. The
triple (C”,u1, F") has |C"| = |C| and t(u1,C”) = t(x,C), so by our choice of the triple (C,z, F),
we must have [V(F")NV(C")NnY| < |[V(F)NV(C)NY]|. Since V(F")NV(C")NY = {y},
[V(F)NV(C)NY| > 1, which can only happen if ug € Y. Therefore the z, us-path in F' consists
of a single edge zus, and the only vertices of V(C”) — V(C) are z, y, a, and b.

Let 3/ be the vertex of F' between z and ug on the x,us-path of F. Since G is 3-connected, there
is a path P’ from 3/ to V(C) U V(C”) not containing x or uz. However, we know that deleting
{u1,uz,us} disconnects z, and therefore ¢/, from C. Therefore either P’ goes from y' to a vertex
in V(C") — V(C), which can only be y, or else P’ goes from ¥’ to one of the vertices uy, us.

Figure 7: Three ways to extend C” to a longer cycle

In each of these cases, we obtain a longer cycle. If P’ goes from ¢’ to y, we can extend C” by
replacing edge uoy with usy’ followed by P’ to get the cycle

uaC ™ [ug, z1 1211028 1C [13, 1, 221 |T2 1021, _1C ™ (11,1, usus Flus, x]zy P’y us,

as shown on the left in Figure 7. If P’ goes from 3/ to u;, we can extend C” by replacing edge uay
with usy/, P, and w1y to get the cycle

usC ™ [ug, x11|w1 1023 10~ (3,1, T2,1] 20,1021, —1C ™ [w1 1, us|ugF [us, uiui P’y us,
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as shown in the middle of Figure 7. Finally, if P’ goes from 3’ to ug, we can extend C” by replacing
edge zuz with xy’ followed by P’ to get the cycle

uaC ™ [ug, x1 1|71 1073 1C 13 _1, T2 1|T2 1071 1C ™ [11 1, us|us Py Fy', ylyus,
as shown on the right in Figure 7. O

Thus, no more than one i € [3] can have long type.

4.4 Eliminating medium-type configurations

In this subsection, our goal is to show that no i € [3] has medium type.

Recall that i € [3] is abundant if each of the vertices x;2,%;3, ..., xi+1,—2 has a CON with z;; and
a CON with LTi+1,—1-
Lemma 4.7. If i € [3] has medium type, then i is abundant.

Proof. Without loss of generality, we will assume that ¢ = 1 has medium type. We will show that
forall j > 1, x5 1 and x2 _; share a CON. This is the same as showing x2 _1 and z1 4 share a CON
for all @ > 1 such that 1, # x2,—1. Showing that x; 1 and z1; have a CON is symmetric.

Suppose there is an a such that x;, shares no CON with xza 1, but z; , does for all 1 < d' < a.
Our goal is to show {x1 1,22 1,231,214} is a good set. Let vy’ be the common neighbor of
22,1 and x1 4—1. Note that x1 1,22 1,23 -1 can have no CON by Lemma 2.5. Additionally, by
Lemma 3.7, 2 _1, 23,1 have no crossings.

By our choice of a, vertices z1 , and x9 _1 have no CON. By Lemma 3.8 via the path
P :=11,Cx1,4,721]T2 1Y 71,4-1C [11,0-1, w1 Jur F[uq, u2)usCluz, x1 —1]x1, -1

shown in Figure 8, z1 4 and x1,_1 have no crossings and no CON outside P. However, 3 is the only
possible CON of 1, and x; 1 on P, and if x; _1y' € E(G), 21,1 and x5 _; would have a CON,

which also is impossible.

T 1

x1,—1

Figure 8: The path P from x1, to 1 1.

Finally, we argue 1, and x3 _1 have no CON. Suppose y is such a CON; then the cycle

u3Clus, ¥1,a-1]71,0-1Y 72,107 [T2,-1, T1,4]T1,0YT3,-1C " [T3,—1, u2)us F[ug, uslus
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is a longer cycle than C'. So 1, has no CONs with any of 1 _1,22 1,23 -1; 1,4 and x1_1 have
no crossings, and neither do xo —; and x3 1. This certifies that {x1 1,22 —1,23 1,214} is a good
set, a contradiction to Lemma 3.1. O

Lemma 4.8. Ifi has medium type, then for xz;; € {xi1,...,xit1,—2},
(i) x;j and xi41,1 have no CONs and no crossings, and
(it) x;; and x;—11 have no CONs.
Symmetrically, x;; € {T;2,...,Tiy1,-1} and x; 1 have no CONs and no crossings, and x;; and

Zi—1,—1 have no CONs.

Proof. Without loss of generality, let i = 1. Suppose z; ; and x2 1 have a common neighbor y (the
x1,—1 case is symmetric). By Lemma 4.7, z1 1 and 1 ;41 have a CON y’. By Lemma 3.8 and the
path

P =11 ;C7 (215, 211)211Y 21,j41CT1 j11, ulus Flug, urJur C ™ [ug, z2.1]@2 1,

shown in Figure 9, x1; and x9; share no CONs (otherwise 1,1 and x2; share a CON) and no

N\

crossings.

91
Figure 9: The path P from z1; to z2,1.

Suppose that x1 ; has a CON y with x3 ;. By Lemma 4.7, x1 1 and 21 j41 have a CON y'. Moreover,
by Lemma 2.5, 11 and z3; can have no CON, so y # y'. In this case, we obtain a longer cycle
than C: the cycle

21,1C 11,21 5|21 y231Clw3.1, Ut Jur Flugus|usC ™ [ug, x1 j41)21,j41Y 21,1

This is a contradiction, so 1 ; and x31 have no CON. The x3 _; case is symmetric. O

Lemma 4.9. If j € [3] does not have medium type, then every i € [3] that has medium type also
has long type.

Proof. Without loss of generality, suppose ¢ has medium type but j = ¢ — 1 does not. The case
where j = ¢+ 1 is symmetric, after reorienting C. It suffices to show that in such a case, i has long

type.

By Lemma 4.2, we may assume ;1 # xijt1,—1. Let A = {x;2,it+11,%i—1,%i—1,1}. By Lemma 4.8,
x;,—1 and x; 2 have no CONSs or crossings; by Lemma 2.5 and Lemma 3.7, ;1,1 and ;41,1 have no
CONSs or crossings.
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If ;0 # 2i41,—1, then Lemma 4.8 further tells us that x; 2 has no CONs with z;_11 or ;41 1. If
Z;2 = Ziy+1,—1 then Lemma 4.3 gives the same conclusion.

By assumption, ¢ — 1 does not have medium type, so x;—1,1 and x; _1 have no CONs. If z; _; and
x;+1,1 also have no CONs, then A is a good set, contradicting Lemma 3.1. Therefore z; _1 and
Zi+1,1 must have a CON; in other words, 7 has long type. O

The three previous lemmas help us to prove the main result of this subsection:
Lemma 4.10. No i € [3] has medium type.

Proof. Suppose the lemma does not hold. If all ¢ € [3] have medium type, then by Lemma 4.7, all
of them are abundant, a contradiction to Lemma 4.5. Thus there is a j € [3] that does not have
medium type. Then by Lemma 4.9, each i € [3] that has medium type also has long type. Now
Lemma 4.6 yields that only one ¢ can have medium type. Suppose by symmetry that this ¢ is 1.

Let b be the smallest integer such that x2; and x; _; have no CON, and consider instead the set
X' ={x12,221,23-1,21_p}. Let y be the CON of z; _4+; and x2;. By Lemma 3.8 and the path

21,C™ [ —p, uzlug Fug, ua)ugC™ [ug, ©1 —pp1]21,—pr 19221 Clr2,1, 23 1|23, 1

shown in Figure 10 (left), x3 _; and 1 _; have no CON (otherwise z3 1 and z2; have a CON,
making 2 medium-type) and can only cross at a vertex xy ; for j > 1 or a vertex x1,_, where a < b.
Note by Lemma 2.6 they cannot cross at u;.

In the first case, if j > 1, let y~ =y~ (21;). Note that x5 _; and 2~ (y~) share a CON y'. We get
a contradiction by the cycle

uzClug,z~ (y )™ (y7 )y wo,1C ™ [wo,—1,y |y~ x3,-1C[m3,—1, uslus Flug, uslus.

If j =1, then let ¥ be a CON of z1; and x12, and let y be a CON of z3; and 21,—p+1. Then we
get the longer cycle

21,1y 21,2C 21,2, uolua Flug, wi|ur C~ [ur, 21 —p11]21,—611y221C~ (21, 21,—plT1,—0y " (21,1)T11.
In the second case, let ¥’ be a CON of z9; and x; _,. Then we get a longer cycle

u3Clus, Yy~ (21,-0)|y ™ (21,—0)23,-1C " [w3,-1, T2,1]721Y 71, —oC[21,— 0, u2]ua F'[ug, uglus.

By Lemma 4.8, z12 and x2 1 have no CONs and no crossings, and 1 2 shares no CONs with z3 _1.
Suppose y' is a CON of z1 9 and x1_. By the choice of b, x5 and x1,—p+1 have a CON y. The
cycle

C' =21 _pp1y221C[T21, 11 —p) 1 by 71 2C (21 2, u2]ua Flug, ui)ur C~ [u1, @1 —p41]71,—bt1

shown in Figure 10(right) excludes x1; but contains the rest of X NV (C) — {z11}. Moreover,
C’ contains all but at most four vertices in Y N C: y*(z1—4),y"(z1,1), and possibly y~ (x1,1) or
Yy~ (x21), if ug € X or ug € X respectively. If D is 2-rich, then |C’| > |C|, so we may assume that D
is not 2-rich, and d¢(z) < 1 by Lemma 3.5. By the choice of (C,z, F') as a best triple, dcv(z1,1) < 1
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Figure 10: An z1 _p, x3 _1-path, and a longer cycle obtained when z1 2 and z; _; have a CON.

as well. Then dc(x) + dc(x1,1) < 1+ 14 4. This contradicts Lemma 4.1, which shows that x1
and x1 _ share no CONs.

Since 2 does not have medium type, x21 and x3 1 share no CONs. By the definition of b, z1
and z2 share no CONs. Thus, X’ is good, a contradiction to Lemma 3.1. O

4.5 Eliminating long-type configurations
Lemma 4.11. No i € [3] has long type.

Proof. Suppose some i € [3] has long type. By Lemma 4.6, there is only one such i. By symmetry,
assume x3 1 and x11 have a CON g, i.e., only 3 has long type. Then by Lemma 4.4, since no j
has medium type, 1 has short type, which means 1,1 and z1,; have a CON b.

Let W = {z1,_1,21,2, 22,1, 23,1 }. We will show that W is a good set.

By Lemma 2.5 and Lemma 3.7, 221 and x31 have no CON or crossings. Also, x1 1 and x1 2 have
no CON or crossings: This follows from Lemma 3.8, as shown on the left in Figure 11, where the
path

P =21 1C [x1,-1, us|usFlug, ui)u1 Cluy, x11]a1 1023 1C™ [23,-1, 21,2712

agrees with the cycle C' on all edges.

We now show that the remaining pairs in W do not have CONs. If 1 _; and z2; have a CON, then
we have a second long-type configuration. If z1 _; and x3 1 have a CON, the we have a medium-type
configuration.

If 12 and 21 have a CON ¢, then the cycle
ugClus, x11)z1 1003 1C ™ 231, T2 1]x2 1021 2C 21 2, U] U2 F[U2, uslus

is longer than C', as shown in the middle of Figure 11. Finally, if 12 and 231 have a CON c¢ then
the cycle
x31C 231, x1,-1]1,—1b211C [21,1, w1 ]ur Flug, ug|usC™ [us, x1 2]21 2¢23 1

is longer than C, as shown on the right in Figure 11.
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Figure 11: An 1 __1, z12-path, and longer cycles obtained if 1 2 has a CON with 2 or z3;.

Therefore W is a good set, contradicting Lemma 3.1. O

4.6 Eliminating short-type configurations and finishing the proof of Theorem 1.4

Lemma 4.12. If there are no long-type configurations and no medium-type configurations, then
every i € [3] is abundant.
Proof. By Lemma 4.4, every i € [3] has short type and no other types.

For definiteness, consider ¢ = 1. By the definition of short type, x1,—1 and x1,; have a CON. Let
b > 1 be the least integer such that xq 1 has no CON with z ;. Some such b exists, because x2 _1
has no CON with 1, _1. Moreover, if 213 = x2_1, then we find a cycle C’' longer than C: if y; is a
CON of z1,—1 and z2,_2, and yo is a CON of g _; and x3 1, then y; # y2 (since z1,—1 has no CON
with 23 1) and therefore

u1Clur, X2 )T —2y121,1C™ [21,-1, X2.1]T2,1y222, —1C 2, 1, ug)ua Fug, ur]us

is a cycle longer than C. So b exists and x;j, # 2 —1. Note that this implies 12 # x2 _1.
Consider the set Wy = {x1, 1,21, 72,1, 23,1}. We will show that it is almost a good set.

By Lemma 2.5 and Lemma 3.7, 1, _1 and 22 _1 have no CON or crossing. A CON of 1 ; and x31
is distinct from any CON of x1 _; and x ;1 because x1 _; and x3; have no CON. Let ¢ be the
CON of 1,1 and z1—1. By applying Lemma 3.8 to the path

x31C 3,1, 21,-1]21,—1c21 p—1C™ (1 p—1, U1 ]ur Fug, uzlusC™ [uz, x1p] 214,

as on the left in Figure 12, we see that they can have no other CON, and can only cross at a vertex
T1,4 With a <b.

If such a crossing existed, however, then in particular 31 would be adjacent to a neighbor of z1 4
and letting ¢ be the CON of x1 _; and 21 441 we would obtain a longer cycle

x31Cxs 1, 21, —1]21,—1621,041C 21,041, uglug Fluz, ui)ui Clur, Yy~ (T1,041)]y~ (@1,a41)23,1

as shown on the right of Figure 12. In the special case a = b — 1, the cycle looks only slightly
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different. Letting ¢ be the CON of x1 _1 and x 41, it is

231Cx371,71,—1)21, —1081 510 (@1 51, ur)ur Flu, uslusC~ [ug, y (z1p-1)]y T (@1,0-1) 231

We conclude that x5 and x3; have no CON or crossings.

By the choice of b, x1,_1 and 1 have no CON. The pair z7,_1 and 231 have no CON, otherwise
a medium-type configuration would be formed. The pair z2 _; and 31 have no CON, otherwise a
long-type configuration would be formed.

T,
L1,a+1

3

Figure 12: An z3 1, z1-path, and a longer cycle obtained if x; ; and x31 have a crossing at 1 4.

If 1, and 22 _1 have no CON, then W} is a good set, a contradiction to Lemma 3.1. Thus, x4
and w2 _1 have a CON.

We now prove that
for each ¢ > b such that x1 . € Clxyp, T2, 2], vertices x1,. and x2 _1 have a CON. (7)

Indeed, suppose (7) does not hold and c is the least integer such that ¢ > b and z1 . has no CON
with xo _;. By the previous paragraph, ¢ > b. Consider the set W, = {x1 _1, 21,22 1,231} We
will show that this is a good set.

Indeed, z1,—1 and x2 _1 have no CON or crossing, by Lemma 2.5 and Lemma 3.7. Any CON of
z1,. and x3 1 is distinct from any CON of 1 .—1 and x2 _1, since x3 _1 and x2 _; have no CON.
They have no other CON or crossings, as shown by the path

21,0210, X2, 1]22, 1921 c—1C ™ [1,0—1, us|us Fug, ug)usClug, 3 _1]x3 1

(see the left in Figure 13) and Lemma 3.8, where ¢ is the CON of x5 1 and 21 1.

We show that the remaining pairs have no CONs. Indeed, x1,. and 2 _; have no CON by our
choice of ¢. The pairs {x1 1,231} and {22 1,231} have no CONs, by Lemma 2.5. Finally,
suppose 7 is a CON of z1 _; and x1 . Let ¢ be a CON of 29 _1 and x1 1. Then the cycle

uaClug, x1,—1]21,-1701,CX1 ¢, T2,—1]X2, 192 1,c—1C ™ [T1,c—1, wr]ur Flu1, uslus

shown on the right of Figure 13 is longer than C.

Therefore we have a good set of size 4, a contradiction to Lemma 3.1. This proves (7). In other
words, 21,1,%1,2,...,71—1 all have a CON with x1 1 while x5, 21 p41,...,22 2 all have a CON
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Figure 13: An x1 ., x3 _1-path, and a longer cycle obtained when z; 1 and z . have a CON.

with zo 1. Moreover, in this case, 21 and 2 _2 can have no CON, or else we obtain a longer
cycle,

221Cr2,1, 21,—1]1,—1721 p—1C ™ [T1,p—1, wr]ur Flur, ugusC™ [ug, xo, —1]w, 1521 ,C[21 p, T2, —2]T2 —2tx2 1,

where 7 is the CON of 21,1 and 1 3_1, s is the CON of x5 _1 and 13, and ¢ is the CON of x5 _»
and 2 1, as shown in Figure 14.

Figure 14: A longer cycle obtained when z2; and x2 _» have a CON.

We can apply the argument in this subsection in six possible ways: we can swap the roles of x1 i
and x1 1 in the argument above, and we can choose any of the three short-type configurations in
place of the one formed by z1; and z1 ;. All six of these arguments must terminate in the same
case. In particular, just as we concluded that x5 1 and x2 _» can have no CON, we also conclude
that 1 1 and z 2 can have no CON. This means that in the argument above (and in all variations
of the argument), we must have b = 2.

Therefore, for each i, the vertices ;2,%;3,...,%i+1,—2 all have a CON with both z;; and with
Zi+1,—1. In other words, all i € [3] are abundant. O

By Lemma 4.10 and Lemma 4.11, no i € [3] has medium or long type. Therefore by Lemma 4.12,
every ¢ € [3] is abundant. This contradicts Lemma 4.5, completing the proof of Theorem 1.4.
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5 Concluding remarks

1. Theorem 1.4 is a natural 3-connected strengthening of Conjecture 1.1 for 2-connected graphs.
Consider the following family of k-connected graphs.
Construction 5.1. Let k be a positive integer, and let ny > ... > ng11 > 1 be such that
ni+...+ngr1 =n. Let Gg(ny,...,ng+1;0) € G(n, (k+1)(6 —k)+k,0) be the bipartite graph
obtained from Ks_jp, U. ..U Ks—ny,, by adding k vertices ay, ..., ay that are each adjacent
to every vertex in the parts of size ni,...,ngy1. Let Gp(n,d) be the collection of the graphs
Gr(ni,...,nky1;0) for all suitable choices of ny,...,Mgy1.

When k£ = 2 or k = 3, Gy, is the family of all graphs in Construction 1.2 or Construction 1.3
respectively.

Question 5.2. Let m,n,k,0 be integers. Suppose k >4, 6 >n and m < (k+ 1)(d — k) +
k — 1. Is it true that every k-connected graph G € G(n,m,d) contains a cycle of length 2n?
Moreover, if k > 3, are the graphs in the family Gi(n,0) the only extremal examples with
m=(k+1)(0—k)+k?

If the answer is negative, it would also be interesting to find the value(s) of k at which other

extremal examples occur.

2. Jackson also made the following conjecture.
Conjecture 5.3 (Jackson [3]). Let m,n,d be integers with n > 0. If a graph G € G(n,m,?)

is 2-connected and satisfies
2(n — «)

< |2\ 77
= \‘5—1—04

J (6—2)+1
where o = 1 if § is even and o« = 0 if § is odd, then G contains a cycle of length at least
2min(n,J).

This conjecture remains open. A weaker version is proved in [6] in the language of hyper-
graphs.
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