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Abstract
We calculate the number of open walks of fixed length and algebraic area on
a square planar lattice by an extension of the operator method used for the
enumeration of closed walks. The open walk area is defined by closing the
walks with a straight line across their endpoints and can assume half-integer
values in lattice cell units. We also derive the length and area counting of walks
with endpoints on specific straight lines and outline an approach for dealing
with walks with fully fixed endpoints.
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1. Introduction

The enumeration of walks of a given length and enclosed algebraic area on various lattices is a
fascinating problem [1]. It is of interest in pure combinatorics, where it has its own justification
in terms of counting of objects among pre-defined ensembles, but also in physics, as it maps
to various models in quantum and statistical physics. The most famous among these models is
the Hofstafdter Hamiltonian [2], which describes the dynamics of a quantum particle hopping
on a lattice in a perpendicular magnetic field and leads to the celebrated ‘butterfly’ energy
spectrum. In addition, the lattice walk enumeration problem is related [3] to even more exotic
quantum concepts such as exclusion statistics [4], which generalizes standard Fermi statistics
to particles obeying a stronger exclusion principle parametrized by an integer g⩾ 2 (usual
Fermi statistics is g= 1; g= 2 is relevant for square lattice walks).
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The connection to quantum statistics offers an approach for addressing the enumeration
problem of more general classes of walks on various lattices. For example, chiral walks on a
triangular lattice, with a nonHermitian Hofstadter-like quantum Hamiltonian generating the
biased hopping on the lattice, have been analyzed [3] in terms of particles obeying g= 3
exclusion statistics. Walks on the honeycomb lattice can also be examined in this framework
[5] and involve particles obeying a mixture of Fermi and g= 2 exclusion statistics. These
developments have also born new results in quantum statistics, leading to a full description
of exclusion statistics particles in a nondegenerate discrete 1-body quantum spectrum and to
explicit expressions for their cluster coefficients and ensuing thermodynamics [6]. In addition,
this approach establishes a connection [7] between planar lattice walk enumeration and spe-
cific one-dimensional walks (‘paths’) of generalized Dyck or Motzkin form (also known as
Lukasiewicz paths [8]). The various algebraic enumeration formulae obtained for walks admit
a combinatorial interpretation in terms of paths [9], which leads to cross-pollination between
the two subjects.

The algebraic area enumeration was up to now restricted to closed walks that return to
their starting point on the lattice. In that case the algebraic area is the area enclosed by the
walk weighted by the winding number of the walk around each area patch. However, it is also
possible to define the algebraic area of an open walk using a ‘closing’ prescription, the most
natural one being joining its two endpoints by a straight line. In the case of square lattice walks,
it is easy to see that the algebraic area defined this way is always an integer or half-integer in
units of elementary lattice cells.

Once the algebraic area of an open walk is defined, the enumeration of open walks of given
length and algebraic area starting from a fixed point on the lattice becomes an interesting
issue. In principle, the tools developed earlier for the case of closed walks [1, 3] are not directly
applicable to open walks, and their enumeration for fixed length and area was an open problem.
Still, we will demonstrate in this work that the problem of open walks on the square lattice
can be recast in terms quite similar to the closed walk case through the introduction of a new
operator σ, in addition to the usual u,v hopping lattice operators that were useful for closed
walk enumeration, thus enlarging the usual ‘quantum torus’ algebra uv= Qvu to a ‘reflection
quantum torus’ algebra. This algebra also appeared, in a different guise and representation,
in the enumeration of closed walks on the honeycomb lattice [5], and it is remarkable that it
reappears in the seemingly different context of open square lattice walks.

In the following sections we will calculate the generating function of planar open walks
weighted by their algebraic area and will derive explicit formulae for the multiplicity of open
walks of given length and area. The case of walks with endpoints fixed on a straight line is also
readily tractable with our method, and we will derive the corresponding generating functions.
We will also briefly address the problem of walks with fully fixed endpoints and will highlight
possible approaches for a complete algebraic area enumeration.

2. Open walks

We consider open random walks of fixed length n (number of steps) on the square lattice
starting at the origin and ending at an arbitrary lattice point (k, l). We assign to such open walks
an algebraic area by closing them with a straight line from (k, l) to the origin [10]. With this
‘radial’ definition the algebraic area measured in units of lattice plaquettes can be half-integer.

We note that other closing prescriptions can be defined, such as, e.g. a ‘rectangular’
prescription of first returning vertically from the endpoint to the horizontal axis where the
starting point lies and then returning to the origin horizontally. The algebraic areas for the two

2



J. Phys. A: Math. Theor. 55 (2022) 485005 S Ouvry and A P Polychronakos

Figure 1. A square lattice walk (purple) starting at the origin and ending at the point
(5,3), closed radially with a (green) straight line from its endpoint to the origin. If it
were closed with a rectangular (blue) line from its endpoint to the horizontal axis and
then to the origin, the area of the closed walk in plaquette units would be an integer.
The difference of the areas between the two closings is the area of the right triangle with
vertices at (0,0), (5,0) and (5,3), that is 5× 3/2= 7.5, making the area of the radially
closed walk half-integer.

prescriptions are trivially related by the area of the orthogonal triangle on the lattice with ver-
tices on the two endpoints of the walk, but they still group the walks differently in terms of their
area and lead to different counting formulae. This also explains the fact that the radially closed
walk area can be half-integer (see figure 1). We adopt the radial definition as more natural and
symmetric, although the rectangular one can also be examined with minor modifications.

2.1. Algebraic construction

Similarly to closed walks, we define the algebraic area generating function of open walks as

Gn(Q) =
∑
A

Cn(A)Q
2A (1)

with Cn(A) the number of walks of length n and area A and Q a parameter dual to the area. The
exponent of Q was chosen to be 2A to avoid fractional powers arising from half-odd-integer
values of A.

The calculation of Gn(Q) can be achieved by establishing an algebraic framework similar
to the one for closed walks, with an additional twist. Define operators u,v,σ satisfying the
defining relations

vu= Q2 uv , uσ = σu−1 , vσ = σv−1 (2)

3



J. Phys. A: Math. Theor. 55 (2022) 485005 S Ouvry and A P Polychronakos

and a formal trace operation Tr( ·) on their algebra such that

Trσ = Tr(uσ) = Tr(vσ) = 1 , Tr(vuσ) = Q. (3)

We define the Hamiltonian for the random walk as

H= u+ u−1 + v+ v−1. (4)

Then the area generating function is obtained as

Gn(Q) = Tr(Hnσ). (5)

The proof is along similar lines as in the closed walk case (where σ is absent). Expanding
Hn produces 4n monomials of the form vliuki . . .vl1uk1 , each corresponding to a walk with k1
horizontal steps followed by l1 vertical steps etc concluding with ki horizontal and li vertical
steps, and representing all possible walks with n steps. Using vu= Q2uv to rearrange the terms
brings Hn to the form

Hn =
∑
k,l

gk,l(Q)v
luk , |k± l|⩽ n (6)

reducing each walk ending at lattice point (k, l) to a rectangular walk with k horizontal steps
followed by l vertical steps and produces a coefficient Q2A ′

, with A′ the area between the
original walk and the corresponding rectangular walk. gk,l(Q) accounts for all paths ending
on (k, l) weighted by the corresponding area factors. Finally, using commutation and trace
relations (2) and (3) we can show that

Tr(vlukσ) = Qkl (7)

kl/2 is the area of the rectangular walk closed with a straight line to the origin. Overall,

Tr(Hnσ) =
∑
k,l

gk,l(Q)Tr(v
lukσ) =

∑
k,l

gk,l(Q)Q
kl (8)

gives the full sum over walks of all possible endpoints weighted by Q2A, A= A ′ + kl
2 being

their total area, reproducing Gn(Q).

2.2. Representation of u,v,σ

The main task is to evaluate the trace Tr(Hnσ). This is made possible by finding an explicit
matrix representation for the operators u,v,σ, for which Tr would become the usual matrix
trace tr .

The subalgebra generated by u,v is the standard clock-shift (or quantum torus) algebra
and has finite dimensional irreducible representations (irreps) for Q2 = exp(2iπp/q) with p,q
mutually prime positive integers. The full u,v,σ algebra (2) has been analyzed in [5] with the
extra condition σ2 = 1. Since σ2 is a central element of the algebra, it becomes a constant in an
irrep and can be absorbed by an algebra-preserving redefinition σ → λσ, so the irreps found in
[5] also apply to our case. Note that the algebra has two additional central elements (Casimirs),
A= uq+ u−q and B= vq+ v−q.

In general, irreps are of size 2 q. In block form:

u=

(
uo 0
0 u−1

o

)
, v=

(
vo 0
0 v−1

o

)
, σ =

(
0 1
1 0

)
, (9)

with uo,vo the q-dimensional irrep of the u,v algebra and Casimirs A= 2cosqkx and B=
2cosqky. This representation, however, does not fulfill the trace conditions (3), giving van-
ishing traces. The remaining possibility is the reduced, q-dimensional irrep that exists when
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the quantum torus Casimirs uq = eiqkx and vq = eiqky become ±1 (kx,ky ∈ {0,π/q}), and is
given by the action on periodically defined basis states | j⟩

u| j⟩= ei(kx+2πpj/q)| j⟩, | j⟩ ≡ | j (mod q)⟩
v| j⟩= eiky | j− 1⟩
σ| j⟩= eiky(2j−r)|r− j⟩, rp+ qkx/π = 0 (mod q). (10)

The ‘pivot’ r in the inversion action of σ is r= 0, if kx = 0, or the primary solution of the Dio-
phantine equation kq− rp= 1, if kx = π/q. Imposing the trace conditions (3) further restricts
q to an odd integer q= 2s+ 1 (an even q gives vanishing traces). It is convenient to fix the
Casimirs kx = ky = 0 and take j in the range −s⩽ j⩽ s, thus placing the pivot state |0⟩ in the
middle. We obtain the specific realization

u| j⟩= Q2j| j⟩, v| j⟩= | j− 1⟩, σ| j⟩= | − j⟩ (11)

trσ = tr(uσ) = tr(vσ) = 1, tr(vuσ) = Q

with Q= ei
2πp(s+1)

2s+1 , | − s− 1⟩ ≡ |s⟩, |s+ 1⟩ ≡ |− s⟩

Note that Q is a specific square root of the quantum torus algebra parameter Q2 = ei
2πp
2s+1 and

that Q2s+1 = 1. This corresponds to the (2s+ 1)-dimensional matrix realization

u =



Q−2s 0 · · · 0 · · · 0 0
0 Q−2s+2 · · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · 1 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · Q2s−2 0
0 0 · · · 0 · · · 0 Q2s


, v=



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0


,

σ =



0 0 · · · 0 · · · 0 1
0 0 · · · 0 · · · 1 0
...

...
. . .

...
...

...
...

0 0 · · · 1 · · · 0 0
...

...
...

...
. . .

...
...

0 1 · · · 0 · · · 0 0
1 0 · · · 0 · · · 0 0


.

2.3. Calculation of traces

In the realization (11) σ2 = 1, and the (2s+ 1)-dimensional space decomposes into an (s+ 1)-
dimensional subspace with σ= 1 and an s-dimensional subspace with σ =−1. The Hamilto-
nian H= u+ u−1 + v+ v−1 commutes with σ, therefore

tr(Hnσ) = trHn
+ − trHn

− , H± = H
1±σ

2
(12)

and we can evaluate the trace separately in each subspace.
To further facilitate the calculation, we use the trick [11] of adopting a realization of u,v,σ

that eliminates the diagonal terms in H. This is achieved by the redefinition

u→ Quv , v→ v. (13)
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One can check that the algebra and trace relations (2) and (3) as well as the Casimirs uq =
vq = 1 remain invariant under this redefinition. The Hamiltonian becomes

H= (1+Qu)v+
(
1+Qu−1

)
v−1. (14)

Choosing the basis | j⟩± for the subspaces

| j⟩± =
1√
2

(
| j⟩± |− j⟩

)
, j ̸= 0

|0⟩+ = |0⟩, |0⟩− = 0 ; | − j⟩± =±| j⟩, |s+ 1⟩± =±|s⟩ (15)

the action of H on these subspaces becomes

H| j⟩± =
(
1+Q−2j−1

)
| j+ 1⟩± +

√
2
δj,1 (

1+Q2j−1
)
| j− 1⟩± , j ̸= 0,s

H|0⟩+ =
√
2
(
1+Q−1

)
|1⟩+

H|s⟩± =±2 |s⟩± +(1+Q2s−1)|s− 1⟩± (16)

we note that there is a single remaining diagonal term ±2 for j= s.
We can view both H+ and H− as acting on the same states | j⟩, j= 0,1, . . . ,s with common

matrix elements connecting states j and j± 1, differing only on 0 ↔ 1 and s→ s transitions:

(H+)01 = (H+)
∗
10 =

√
2(1+Q) , (H−)01 = (H−)10 = 0 , (H±)ss =±2.

(17)

Traces can be expressed in terms of periodic ‘paths’ of indices i1, i2, . . . , in, i1

trHn
± =

∑
i1,i2,...in

(H±)i1i2(H±)i2i3 . . .(H±)ini1 (18)

The contribution of paths not going through j= 0 and not containing s→ s steps is the same for
H± and will cancel in (12). Therefore, only paths that touch 0 or ‘creep’ on s will contribute.
Further, all paths will have an equal number of steps i− 1 → i and i→ i− 1, and each pair of
such transitions will contribute an amplitude

si =
(
1+Q−2i+1

)(
1+Q2i−1

)
=
(
Q−i+ 1

2 +Qi− 1
2

)2
i> 1

s1 = 2
(
2+Q−1 +Q

)
= 2

(
Q− 1

2 +Q
1
2

)2
(19)

the above observations allow us to evaluate the trace in a combinatorial way, by examining
separately the cases of walks of even and odd length. We will assume, for the moment, that
n⩽ 2s, which eliminates paths that would span the full width of states (0,s), and will extend
the results to arbitrary n in the next section.

(a) Even length n= 2n: Paths must have an even number of steps s→ s, since all remain-
ing steps come in pairs, and these steps will contribute the same factor in H2n

+ and H2n
− .

Therefore, such paths will cancel unless they touch 0. Only H+ contributes for such paths.
Assuming n⩽ s, these paths cannot have any steps s→ s. (Paths of vertical increments±1,
are known as Dyck paths in the mathematics literature.) A typical such path is depicted in
figure 2.
Assuming the path reaches maximum level j, and calling li (1⩽ i⩽ j) the number of (up
or down) transitions between levels i− 1 and i, the trace is expressed as

tr(H2nσ) = trH2n
+ =

∑
∑

i li=n

2nc(l1, l2, . . . , lj)s
l1
1 s

l2
2 . . .s

lj
j (20)

6
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Figure 2. A typical path contributing to tr(Hnσ) for s= 6, with even length
n= 2n= 10, starting and ending at index i= 1, and touching 0 at i4 = 0. It reaches
a maximal level j= 3 and has transitions l1 = 1, l2 = 3, l3 = 1.

the sum is over all nonvanishing integers summing to n, that is, over all compositions of
n, and 2nc(l1, . . . , lj) is the numbers of distinct periodic paths with the given number li
of transitions per level (the prefactor 2 n is introduced to conform with previous conven-
tions4). The counting of these paths is known, derived combinatorially or via a secular
determinant method, and c2(l1, . . . , lj) takes the form

c(l1, l2, . . . , lj) =
1
l1

j−1∏
i=1

(
li+ li+1 − 1

li+1

)
=

1
lj

j−1∏
i=1

(
li+ li+1 − 1

li

)
. (21)

combining (20), (19) and (21), we obtain

G2n(Q) = 2n
∑

l1,l2,...,lj
composition of n

2l1 c(l1, l2, . . . , lj)
j∏

i=1

(
Q−i+ 1

2 +Qi− 1
2

)2li
(22)

= 2n
∑

l1,l2,...,lj
composition of n

2l1

l1
(2+Q−1 +Q)l1

j∏
i=2

(
li−1 + li− 1

li

)

×
(
2+Q−2i+1 +Q2i−1

)li
(b) Odd length n = 2n− 1: Paths must have an odd number of steps s→ s, so these steps

will contribute opposite factors for H+ and H−. Assuming, again, n⩽ s, such paths never

4 c(l1, . . . , lj) is related to the nth cluster coefficient of identical particles with quantum exclusion statistics and was
denoted c2(l1, . . . , lj) in [3], the index 2 referring to exclusion of order 2.
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Figure 3. A typical path contributing to tr(Hnσ) for s= 6, with odd length
n= 2n− 1 = 11, starting and ending at index i= 4, with one step on i= s between
i5 = i6 = 6. It dips to a minimal level s− j= 2 (j= 4) and has transitions l0 = 1, l1 =
1, l2 = 2, l3 = 1, l4 = 1.

touch 0 and thus the total amplitude for H2n−1
− is the opposite of that for H2n−1

+ . Such a
path is depicted in figure 3.
Assuming a path dips down to minimum level s− j, we call li (i⩾ 1) the number of (down
or up) transitions between level s− i+ 1 and s− i, and 2l0 − 1 (l0 > 0) the (odd) number
of s→ s steps. The total number of steps is 2l0 − 1+ 2

∑j
i=1 li = 2n− 1, so

∑j
i=0 li = n.

The total trace can be expressed combinatorially as

tr(H2n−1σ) = 2trH2n−1
+ = 2

∑
∑

i li=n

(2n− 1) c̄(l0, l1, . . . , lj)2
2l0−1sl1s . . .s

lj
s−j+1

(23)

where (2n− 1) c̄(l0, l1, . . . , lj) denotes the number of discrete periodic paths with the given
number of s→ s steps and transitions. By taking each s→ s step and extending it to an
s→ s+ 1 → s set of transitions by adding a fictitious s+ 1 level, such paths become the
mirror-image of paths touching 0 upon mapping levels i→ s+ 1− i, so

c̄(l0, l1, . . . , lj) = c(2l0 − 1, l1, . . . , lj) =
1

2l0 − 1

(
2l0 + l1 − 2

l1

) j∏
i=1

×
(
li−1 + li− 1

li

)
. (24)

(The fact that the promotion of s→ s to two transitions s→ s+ 1 and s+ 1 → s increases
the length of the chain by 2l0 − 1 is compensated by the fact that paths cannot start at
s+ 1.) Noting also that

8
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ss−i+1 = 2+Q−2s+2i−1 +Q2s+2i+1 = 2+Q−2i+Q2i = (Q−i+Qi)2 (25)

we obtain the final result

G2n−1(Q) = (2n− 1)
∑

l0,l1,...,lj
composition of n

c(2l0 − 1, l1, . . . , lj)
j∏

i=0

(Q−i+Qi)2li (26)

= (2n− 1)
∑

l0,l1,...,lj
composition of n

4l0
(2l0 + l1 − 2)!(l0 − 1)!
(l0 + l1 − 1)!(2l0 − 1)!

j∏
i=1

×
(
li−1 + li− 1

li

)(
Q−i+Qi

)2li
.

2.4. Generalization for all lengths and specific examples

We finally address the assumption made so far that n⩽ 2s. In general, for n> 2s states near
both |0⟩ and |s⟩ need be considered and would lead to ‘umklapp’ effects5. However, formu-
lae (22) and (26) do not involve s explicitly, Q being the only parameter. Consequently, we
can simply ignore the constraint n⩽ 2s and treat Q as a formal expansion parameter as in the
original defining relation (1). Therefore, (22) and (26) are valid for all values of n without
restriction.

It is reassuring to give a few examples of the generating function formulae for low values
of the length:

• for length n= 1, setting n= 1 in (26) only the term l0 = 1 survives and we obtainG1(Q) = 4.
• For length n= 2, setting n= 1 in (22) only the l0 = 1 term survives and we obtain G2(Q) =
8+ 4(Q−1 +Q).

• For length n= 3, setting n= 2 in (26) only the l0 = 2 and l0 = l1 = 1 terms survive and we
obtain G3(Q) = 40+ 12(Q−2 +Q2).

• For length n= 4, setting n= 2 in (22) only the l0 = 2 and l0 = l1 = 1 terms survive and we
obtain G4(Q) = 80+ 48(Q−1 +Q)+ 16(Q−2 +Q2)+ 16(Q−3 +Q3)+ 8(Q−4 +Q4).

It can be checked that these reproduce the correct number of open walks with the corres-
ponding length and area (exponent of Q2), and that the total number of walks, obtained by
setting Q= 1 in the generating function Gn(Q), is 4n as required.

2.5. Walk enumeration

From the generating functions (22) and (26) we can infer the number of paths of given length
and algebraic area A/2 by expanding in powers of Q and isolating the coefficient of the term
QA. It is already clear from the form of (22) that the expansion in powers of Q will involve
both even and odd powers, reflecting the fact that paths of even length can have half-integer
algebraic area, while (26) clearly involves only even powers, consistent with the fact that paths
of odd length can only have an integer area.

5 By ‘umklapp’ effects we mean walks with algebraic areas differing by multiples of s+ 1
2
being counted together,

since Q2s+1 = 1. Their algebraic counterparts are paths of indices that wind around the periodic states |i⟩= |i+ q⟩,
which in the H± formulation manifest as paths that both touch 0 and creep over s.

9
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A binomial expansion of the upper expression in (22) gives

C2n(A) = 2n
∑

l1,l2,...,lj
composition of n

2l1 c(l1, . . . , lj)
l2∑

k2=−l2

. . .

lj∑
kj=−lj

×
(

2l1
l1 +

∑j
r=2(2r− 1)kr− 2A

) j∏
s=2

(
2ls

ls+ ks

)
(27)

while a similar expansion of the upper expression in (26) gives

C2n−1(A) = (2n− 1)
∑

l0,l1,...,lj
composition of n

4l0 c(2l0 − 1, l1, . . . , lj)
l2∑

k2=−l2

. . .

lj∑
kj=−lj

×
(

2l1
l1 +

∑j
r=2 rkr−A

) j∏
s=2

(
2ls

ls+ ks

)
. (28)

In all expressions, binomial coefficients with entries outside of their range vanish and products
with lower term rank higher than the upper one become unity.

2.6. Paths with fixed endpoints

We conclude with a brief discussion of the most general situation, namely, the enumeration of
walks of given length and area and with a fixed endpoint (the starting point is always placed at
the origin). As before, we will focus on evaluating the algebraic area generating function for
such walks.

To fix the endpoint of the walks there are two possible approaches. One approach would
be to consider a generating function that assigns specific weights to the endpoint of the walk.
This can be achieved by considering operators u,v with nontrivial Casimirs uq,vq through the
substitution

u→ eikxu , v→ eikyv (29)

and evaluating tr(Hnσ) as before. Note that, for such u,v,

σu= e2ikxu−1σ , σv= e2ikyv−1σ , tr(vlukσ) = eikkx+ilkyQkl (30)

so

Gn(Q;kx,ky) = tr(Hnσ) (31)

reproduces the generating function of open walks, weighted by phase factors eik kx+il ky depend-
ing on their endpoint. Walks ending at k, l can then be isolated by

G̃n(Q;k, l) =
1

4π2

ˆ 2π

0
dkxdkye

−ik kx−il kyGn(Q;kx,ky). (32)

The explicit evaluation of the trace in (31), however, is nontrivial, asH does not commute with
σ any more.

10
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An alternative approach would be to evaluate a general matrix element of the function Hn,
which, as we shall explain, yields the generating function of walks ending on a straight line
weighted by their endpoint on this line. Specifically, consider walks starting at the origin and
ending on the even-parity sublattice k+ l= 2I, with I a fixed integer, and define the quantity
G(2I,J)

2n (Q) depending on I and another integer J

G(2I,J)
2n (Q) := ⟨J+ I|H2n|J− I⟩=

〈
|J+ I|

∣∣(H2n
+ + sgn(J2 − I2)H2n

− )
∣∣|J− I|

〉
(33)

with H as in (14), referring to the modified realization u→ Quv, and states as defined in (11).
Monomials vluk become

vluk → vl(Quv)k = Q−k2vl+kuk (34)

and their J+ I,J− I matrix elements become

⟨J+ I|Q−k2vl+kuk|J− I⟩= Q−k2+2(J+I)k δk+l,2I = Q2Jk+lk δl,2I−k (35)

therefore,G(2I,J)
2n (Q) gives the area-weighted sum ofwalks ending on even-parity points k+ l=

2I, weighted by the factor Q2 Jk depending on their final position (k,2I− k). Multiplying by
Q−2 Jk0 and summing over J would isolate the term k= k0 (mod(2s+ 1)), thus reproducing
the generating function of walks ending at an even-parity sublattice point (k0,2I− k0) up to
an ‘umklapp’ periodicity k0 ∼ k0 + 2s+ 1. The umklapp effect becomes relevant for walks of
length long enough to reach more than one periodic copies, and can be eliminated by assuming

∑
J

Q2 Jx = qδx,0 (36)

thus ignoring the finiteness of q= 2s+ 1. A similar construction generalizing (33) would work
for walks ending on an odd-parity sublattice point. The full calculation of thesematrix elements
and corresponding sums is yet to be done. In appendices A and B we provide the evaluation
of G(2I,0)

2n (Q) for J= 0, which gives the area-weighted generating function of walks with end-
points on the line k+ l= 2I without additional weights for their endpoint.

3. Conclusions and closed walks

We conclude with some comments on closed walks of necessarily even length n= 2n, for
which an expression for their generating function and the corresponding algebraic area count-
ing formula are known [1]. The methods in the present work offer an alternative way of
calculating these closed walk quantities, and one could hope to obtain alternative equival-
ent expressions. The main reason for this hope is that the method based on traces involving σ,
or corresponding general matrix elements as in section 2.6, seems to at least partially evade
‘umklapp’ effects, as stressed in section 2.4.

In more detail, the first approach exposed here, based on kx,ky, has no umklapp effects
whatsoever. The second approach, relying on matrix elements for states |J± I⟩, has a partial
umklapp effect relating to the position of the endpoint on the paradiagonal, but has no umk-
lapp effect with the position of the paradiagonal. The complexity of calculating G2I,J

2n (Q), and
especiallyG2n(Q;kx,ky), is the main impediment in deriving expressions for closed walks, and
their evaluations remains a task for the future.

Note that, putting I= 0 in (33) and summing over J amounts to calculating the trace trH2n,
reproducing the known trace expression for the generating function of closed walks. Similarly,

11
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the integral in (32) for x= y= 0 would isolate terms v0u0 inH2n and would reduce tr(H2nσ) to
(1/q)trH2n, again reproducing the known closed walk counting formula in terms of the trace.
It is the evaluation of G2n(Q;kx,ky) as an explicit function of kx,ky, using the techniques of the
present work, that might yield alternative formulae. This is yet to be accomplished.
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Appendix A. ‘Diagonal’ walks

The simplest case is walks that start at the origin and end anywhere along the line of lattice
points with coordinates k+ l= 0. Such walks necessarily have an even length. The evaluation
of their generating function G(0,0) is achieved by simply calculating the 00 matrix element

G(0,0)
2n (Q) = ⟨0|H2n|0⟩ (37)

with H as in (14), referring to the modified representation u→ Quv, and states as defined
in (11). Monomials vluk become in this representation

vluk → vl(Quv)k = Q−k2vl+kuk (38)

and the 00 matrix element becomes

⟨0|Q−k2vl+kuk|0⟩= Q−k2δk+l (39)

constraining the walks to the k+ l= 0 subset and reproducing the radial area of such walks.
We note that walks ending on the diagonal k= l trivially have the same generating function,
due to the invariance of the algebraic area under lattice π/2 rotations.

The evaluation of the matrix element is done in analogy to the trace of Hnσ: since σ|0⟩=
|0⟩, only the part ⟨0|H2n

+ |0⟩ will contribute. We obtain an expression similar to (20), with the
difference that now the combinatorial prefactor counts only paths that start from 0 and end at
0. This counting differs from the full counting 2nc(l0, . . . , lj) by a factor of l1/(2n). We obtain

G(0,0)
2n (Q) =

∑
l1,l2,...,lj

composition of n

2l1 l1 c(l1, l2, . . . , lj)
j∏

i=1

(
Q−i+ 1

2 +Qi− 1
2

)2li
(40)

=
∑

l1,l2,...,lj
composition of n

2l1(2+Q−1 +Q)l1
j∏

i=2

(
li−1 + li− 1

li

)

×
(
2+Q−2i+1 +Q2i−1

)li
12
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and a corresponding expression for the enumeration of walks

C(0,0)
2n (A) =

∑
l1,l2,...,lj

composition of n

2l1
l2∑

k2=−l2

. . .

lj∑
kj=−lj

(
2l1

l1 +
∑j

r=2(2r− 1)kr− 2A

) j∏
i=2

×
(
li−1 + li− 1

li

)(
2li

li+ ki

)
. (41)

Appendix B. ‘Paradiagonal’ walks

With a similar reasoning, we can consider walks that end in an even-parity paradiagonal k+ l=
2I, I⩾ 0. (The cases I < 0, and k− l= 2I, are, again, trivially related to the present one by π
or π/2 lattice rotations.) These have as generating function

G(2I,0)
2n (Q) = ⟨−I|H2n|I⟩= ⟨I|H2n

+ |I⟩− ⟨I|H2n
− |I⟩ (42)

only index paths that touch 0 contribute, through ⟨I|H2n
+ |I⟩.

The evaluation of the matrix element process similarly to the case I= 0: we call again
li (1 ⩽ i⩽ j) the number of up or down transitions between levels i− 1 and i, where now
necessarily j⩾ I. The number of paths P(I; l1, . . . , lj) starting and ending at level I with steps
l1, . . . , lj is given by

P(I; l1, . . . , lj) = (lI+ lI+1)c(l1, l2, . . . , lj) (l0 = lj+1 ≡ 0) (43)

with c(l1, . . . , lj) as in (21). (The term proportional to lI above is the number of paths starting
downwards at I, and the term proportional to lI+1 is the number of paths starting upwards.)
Note that summing over all I gives

j∑
I=0

P(I; l1, . . . , lj) = [l1 +(l1 + l1)+ . . .+(lj−1 + lj)+ lj]c(l1, . . . , lj)

= 2(l1 + . . .+ lj)c(l1, . . . , lj) = 2nc(l1, . . . , lj) (44)

reproducing the full counting of paths for unrestricted walks. Overall we obtain

G(2I,0)
2n (Q) =

∑
l1,l2,...,lj; j⩾I

composition of n

2l1 (lI+ lI+1)c(l1, l2, . . . , lj)
j∏

i=1

(
Q−i+ 1

2 +Qi− 1
2

)2li

(45)

clearly (40) is a special case of (45) with I= 0.
Odd-parity paradiagonal walks ending at x+ y= 2I+ 1 (I⩾ 0) necessarily have an odd

length 2n− 1. Their generating function can be expressed as

G(2I−1,0)
2n−1 = ⟨s− I|H2n−1| − s+ I⟩= ⟨s− I|(H2n−1

+ −H2n−1
− )|s− I⟩. (46)

Index paths for such walks will have an odd number of transitions s→ s, so the contributions
of H+ and H− are equal. Assuming an index path that dips down to minimum level s− j,
where necessarily j⩾ I, we call li (i⩾ 1) the number of (down or up) transitions between level
s− i+ 1 and s− i, and 2l0 − 1 (l0 > 0) the (odd) number of s→ s steps. Using the trick of
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adding a fictitious s+ 1 level and mapping levels i→ s+ 1− i, the number of index paths that
start and end at level s− I becomes

c̄(I; l0, l1, . . . , lj) = (lI+ lI+1)c(2l0 − 1, l1, . . . , lj) , I⩾ 1 (47)

= (2l0 − 1+ l1)c(2l0 − 1, l1, . . . , lj) , I= 0.

Note that summing over all I we have∑
I=0

c̄(I; l0, l1, . . . , lj) = 2l0 − 1+ 2l1 + . . .+ 2lj = 2n− 1 (48)

reproducing the full counting (2n− 1) c̄(l0, . . . , lj) of (24). Overall we obtain

G(2I−1,0)
2n (Q) =

∑
l0,l1,...,lj; j⩾I

composition of n

(lI+ lI+1)c(2l0 − 1, l1, . . . , lj)
j∏

i=0

(
Q−i+Qi

)2li
.

(49)

The number of paradiagonal walks of fixed length and area can be found by isolating the
term Q2A in expressions (45) and (49), as in (27), (28), and (41) and we will not write the
explicit formulae.
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