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Benet of Interpolation in Nearest Neighbor Algorithms
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Abstract. In some studies [e.g., 43] of deep learning, it is observed that over-parametrized deep neural networks
achieve a small testing error even when the training error is almost zero. Despite numerous works
towards understanding this so-called \double descent" phenomenon [e.g., 8, 10], in this paper, we
turn into another way to enforce zero training error (without over-parametrization) through a data
interpolation mechanism. Specically, we consider a class of interpolated weighting schemes in the
nearest neighbors (NN) algorithms. By carefully characterizing the multiplicative constant in the
statistical risk, we reveal a U-shaped performance curve for the level of data interpolation in both
classication and regression setups. This sharpens the existing result [11] that zero training error
does not necessarily jeopardize predictive performances and claims a counter-intuitive result that a
mild degree of data interpolation actually strictly improve the prediction performance and statistical
stability over those of the (un-interpolated) k-NN algorithm. In the end, the universality of our
results, such as change of distance measure and corrupted testing data, will also be discussed.

Key words. Interpolation, Nearest Neighbors Algorithm, Regret Analysis, Double descent, Regression, Classi-
cation

1. Introduction. Statistical learning algorithms play a central role in modern data analy-
sis and articial intelligence. A supervised learning algorithm aims at constructing a pre-
dictor h, which uses training samples to predict testing data. Given a loss function and
the class of candidate predictors H, the function h 2 H is usually selected by minimizing
the empirical loss. To avoid over-tting, classical learning theory [1, 7] suggests controlling
the capacity of model space H (e.g., VC-dimension, fat-shattering dimension, Rademacher
complexity), and discourages data interpolation. On the other hand, recent deep learning
applications reveal a completely dierent phenomenon from classical understanding, that is,
with heavily over-parameterized neural network models, when the training loss reaches zero,
the testing performance is still sound. For example, [25, 32, 43] demonstrated experiments
where deep neural networks have a small generalization error even when the training data
are perfectly tted and gave discussions towards this phenomenon. This counter-intuitive
phenomenon motivates various theoretical studies to investigate the testing performance of
estimators belonging to the \over-tting regime." For instance, [2, 3, 5, 14, 29, 39] established
generalization bounds for shallow neural networks with a growing number of hidden nodes;
[6, 10, 15, 16, 24] provided the theoretical characterization of the interpolated estimators in
some particular models, e.g. linear regression and binary classication. Some later studies
also characterize how the learning curve changes in dierent models [18], or its universality
beyond natural training [28]. All these aforementioned results deliver proper explanations
for the phenomenon that \(proper) over-tting does not hurt prediction" under parametric
modelings.

Inspired by these studies, this paper aims to sharpen the existing results on the relation-ship
between over-tting and testing performance in a nonparametric estimation procedure
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and provide insights into the phenomenon, \over-tting does not hurt prediction", from a
dierent perspective. To be more specic, we study the interpolated nearest neighbors al-
gorithm (interpolated-NN, [9]), which is a nonparametric regression/classication estimator
that interpolates the training data. [9, 11] have proved the rate optimality of interpolated-NN
regression estimation. Beyond rate optimality claim, so far, there is no insight about the
behavior of nearest neighbor estimations within the overtting regimes, such as how dierent
interpolation schemes aect the characteristics of interpolated-NN.

We conduct a comprehensive analysis to quantify the risk of interpolated-NN estimators,
including its convergence rate and, more importantly, the associated multiplicative constant.
The interpolated-NN estimator, h, is indexed by a parameter , which directly represents the level
of interpolation. As increases, the value of h(x) is more inuenced by data point value Y 1(x) in
the sense that [im 1 h(x) = Y1(x), where X1(x) denotes the nearest neighbor of x and Y 1(x) is
the response of X1(x). As the interpolation level increases within a proper range, the rate of
convergence of the squared bias term and the variance term in the variance-bias decomposition
are not aected. Under proper smoothness conditions, as increases, the multiplicative
constants associated with the squared bias and the variance terms decrease and increase,
respectively. More importantly, when is small, the decrease of squared bias dominates the
growth of variance; hence mild level interpolation strictly improves interpolated-NN compared
with non-interpolated k-NN estimator. Overall, the risk of interpolated-NN, as a function of
interpolation level , is U-shaped. Therefore, within the over-tting regime, the risk of
interpolated NN will rst decrease and then increase concerning the interpolation level. A
graphic illustration can be found in Figure 1 below with data dimension d = 2. Besides, we
conduct a similar analysis to study the statistical stability [35] of interpolated-NN classier and
obtain similar results where the stability of interpolated-NN is U-shaped in the interpolation
level as well. Our major nding, which in spirit claims that increasing degree
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Figure 1. Relationship between testing performance and level of interpolation in interpolated-NN.

of overtting potentially benet testing performance, is somewhat similar to the recently
discovered \double-descent phenomenon" [8]. A graphical illustration of the \double-descent
phenomenon" is shown in Figure 2. In the rst regime of the double-descent phenomenon, the
\classical regime", the model complexity is below some \interpolation threshold" and the
population loss is U-shaped when the model complexity increases. If the model complexity
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Figure 2. Double-descent Phenomenon in modern machine learning theory

keeps increasing, in the second regime, \overtting regime", the training loss will be exactly
zero, and the generalization performance will get better in the model complexity. In both the
double-descent phenomenon and our result, the estimator gets improved with a proper level of
interpolation. However, besides the fact that our work focuses on nonparametric models while
the double-descent phenomenon results are mostly on parametric models, it is noteworthy to
emphasize the crucial dierences between this double descent phenomenon and our result. The
literature of the double-descent phenomenon studies the change of interpolated estimators’
performance for the level of over-parameterization, while our work focuses on the level of
interpolation. Although both are related to model over-tting, they are not equivalent. The
level of over-parameterization refers to the complexity of model space H. In contrast, the level of
interpolation is merely a measure of the estimating procedure (i.e., how much h(x) is aected by
the nearest neighbor of x) and has nothing to do with the complexity or dimensionality of H.
Hence, in the double-descent literature, one compares the risk of estimator h() across dierent
dimensional setups, while in our work, the data dimension is xed. It is worth noting that some
recent works (e.g., 26) discover the double-descent phenomenon for nonparametric regression as
well (e.g., kernel ridge regression), which also considers that the dimension of model space
increases.

Besides the main contributions, there are some minor contributions. First, we notice
that the convergence rate given in [9] for classication tasks is sub-optimal, and we improve it to
optimal rate convergence via technical improvements. Second, we study interpolated-NN
under some other scenarios, e.g., change on distance metric and corruptions in testing data
attributes. To be more specic, (1) We consider how the choice of distance metric used aects
the asymptotic behavior of interpolated-NN. Traditional NN estimation usually utilizes L,
distance to determine the neighborhood set, and we will investigate whether or not the eect of
interpolation is universal among dierent choices of distance metric. (2) Since interpolation-NN
leads to a rather rugged and non-smooth regression estimation function, i.e., the
nonparametric estimation function h(x) will have a big jump, especially around the training
samples (refer to Figure 9 in Section A), we will also investigate in whether interpolation
aects the prediction performance when testing data is slightly perturbed.

Finally, we want to emphasize that this paper does not aim to promote the practical use
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of this interpolation method, given that k-NN is more user-friendly. Instead, our study on the
interpolated-NN algorithm is used to describe the role of interpolation in generalization ability
precisely, which is a new and interesting phenomenon motivated by the deep neural network
practices.

The structure of the paper is as follows: in Section 2, we introduce interpolated-NN and the
level of interpolation in this method. We further present theorems regarding to rate optimality
and multiplicative constant in Section 3 and 4 respectively. A measure of statistical instability is
also considered in Section 3 and 4. In Section 4, in addition to the main theorems, some
discussions relating to double descent, or more specically, about the interpolation regime, will
be given in Section 4.6, followed by numerical experiments in Section 5 and conclusion in
Section 6.

2. Interpolation in Nearest Neighbors Algorithm. In this section, we rst review the
notations and the detailed algorithm of interpolated-NN. Denote (X;; Y;i) as training samples
for i = 1;::;n. Given a data point x for testing, dene Ry+1(x) to be the distance between x

fRi(x)gk , and fY '(x)gl, (fRigk ; and fY 'gk , in short) as distances between x and X ' and
the corresponding responses.

For regression models, the aim is to estimate E(Y jX = x). Denote (x) as the target
function, where (x) = E(Y jX = x), and 2(x) = Var(YjX = x). A NN regression estimator at
X, based on nearest k neighbors, is dened as

Xk
(2.1) bion(x) = Wi(x)Y '
i=1

where W;(x) (write as W; later) represent?, the (data-dependent) weight for each neighbor.
The weighting scheme satises W; 0 and :(=1 W; = 1. For traditional k-NN, W; = 1=k for
all i = 1;::5; k.
For binary classication, denote (x) = P(Y = 1jX = x), with g(x) = 1f(x) > 1=2g as the
Bayes classier. The interpolated-NN classier is further dened as
KL WiYi> 1=2

( . J
=
gk;n(x) - 0 P k - WiYi 1=2

The asymptotics of traditional k-NN algorithm have been extensively studied in the litera-
ture (e.g., 17, 20, 22, 33, 35, 37, 40). Variants of k-NN have been proposed to improve the
convergence, stability or computational performance, e.g.,optimally weighted NN [31], locally
weighted NN [13], stabilized NN [35], distributed NN [21], pre-processed 1NN [41], and robust
NN [38].

An interpolating algorithm will interpolate training data, i.e., the tted value/label is the
same as the response/label of the training data. From this aspect, traditional k-NN does not
interpolate unless k = 1. To incorporate interpolation with NN algorithm, we follow [9] to



adopt the interpolated weighting scheme below:

R; (Ri=Rk+1) (Ri=Rk+1) jo
(2.2) Wi= P 5. PR=Rie) S RRe=Ria

fori = 1;:::;k and some 0. Rewrite b ;, and B ;n asb ;n; and p ;n; to emphasize the

choice of . In interpolated-NN, the function is chosen as (t) = t . In general, if the
positive function satises lim¢ig (t) = 1 and decreases in t, through replacing the in W;, we
can create dierent interpolating weighting schemes.

The parameter 0 controls the level of interpolation: with a larger > 0, the al-gorithm
will put more weights on the closer neighbors, especially the nearest neighbor. In particular,
when = 0, the interpolated-NN reduces to the common k-NN, and when = 1, interpolated-NN
reduces to 1-NN. [9] showed that given any xed 2 R*, the interpolated estimator using (2.2) is
minimax rate-optimal for mean squared error in regression, but only provided a suboptimal
upper bound for the Regret of binary classication tasks.

To evaluate the predictive performance of a NN algorithm, we adopt the conventional mea-
sures as follows: assume the random testing data X and its corresponding response variable Y
follow the same distribution as the training data, then

Regression: MSE(k; n;) = E((b ;u:(X) (X))?);
Classication: Regret(k;n;)= P (b ;nk(X) = Y) P(g(X)=1Y);

where E and P are the expectation and probability measure with respect to the joint distri-
bution of training data and testing data.

For regression, MSE is adopted to evaluate the predictive accuracy of mean responses.
For classication, the Regret measures the dierence between the testing accuracies of the
estimated classier and the oracle Bayes classier, i.e., the excessive mis-classication rate. The
Regret can be equivalently rewritten as

(2.3) Regret(k; n;) = E[2j(X) 1=2jP (Bi;n; (X) = Y)I;

that is, the Regret can be viewed as a weighted mis-classication rate, where less weight is
assigned on the region closer to decision boundary fx : (x) = 1=2g.

3. Rate Optimality of Interpolated-NN. In this section, the convergence rate results for
interpolated-NN are provided. We show that both MSE (of regression task) and Regret (of
classication task) converge at the optimal rate. Besides, the statistical instability (dened by
[35]) of interpolated-NN is evaluated, revealing that interpolated-NN is as stable (in terms of
asymptotic rate) as k-NN.

3.1. Model Setup. The theorems in this section are developed under assumptions as
those in [17] and [9]. We state these assumptions as follows:
A.1 X is a d-dimensional random variable on a compact set and satises the following
regularity condition [4]: there exists positive (cg; ro) such that for any x in the support
X,

(X \ B(x;r)) co(B(x;r)); 5



for any 0< r rp, where denotes the Lebesgue measure on R9.
A.2 The density of X is between [my; My] for some constants 0 < my My < 1.

A.3 Smoothness condition: j(x) (y)j Akx yk for some > 0.
A.4 For classication, the model satises Tsybakov margin condition [36]: P (j(X) 1=2j< t)
Bt

A.5 For regression, the variance of noise is nite, i.e., 2(x) M < 1 forany x 2 X.

Assumption A.1 regulates the shape of X and avoids spiky support, it essentially ensures
that for any x 2 X, all its k nearest neighbors are suciently close to x with high probability. If
X is compact and convex, this regularity condition is automatically satised. Assumption A.2
regularizes the neighborhood set for any testing sample x 2 X: the upper bound of the density
prevents neighbors from clustering at x, i.e., Ri’s converge to 0 too fast; the lower bound of
the density prevents the neighbors from being too far from x. Assumption A.1 and A.2 together
guarantee that R; (k=n)¥=9 in probability. If this lower bound assumption is violated and
the density of x goes to zero, classical k-NN may not perform well, and a locally-weighted
NN [13] allows the weight assignment to depend on x, is preferred. As shown in [13], locally-
weighted NN improves the empirical performance of k-NN. Readers of interest can design
interpolated locally-weighted NN algorithm and study its asymptotic behavior as those in our
later theorems. The constants cg; rg; A; B;; are distribution-specic (i.e., can change w.r.t. the
distribution of (X; Y ) or the dimension d) but are independent to n. Among them, only and
are the two key values that aect the convergence rate (w.r.t. n) of the NN estimator.

For regression tasks, assumption A.1-A.3 and A.5 are commonly used in the literature (e.g.,
9), under which one can prove that the NN type regression estimators achieve the minimax
rate O(n 2=(2+d)), via the technical tools of [36]. For assumption A.3, a smaller value of,
i.e., a less smooth true , implies that estimating is more dicult. Assumption A.5 is
imposed to restrict the variation of y given x. Assumption A.5 only requires that the variance
at each x is nite, which is a fairly weak condition.

For classication tasks, the smoothness condition A.3 and margin condition A.4 usually
appear in the Regret analysis of k-NN [e.g., 9, 17, 35]. These two conditions together describe
how large the probability measure is near the decision boundary fxj(x) = 1=2g. Under A.1 to
A.4, it is well known that the optimal rate for Regret of nonparametric classication is O(n
(+1)=(2+d)) due to [36]. Note that our theorem allows that = 0, i.e., it applies to k-NN as well.

Besides the detailed analysis in the following sections, we also provide a concrete ex-
ample with an intuitive explanation of why interpolation does not hurt the convergence of
interpolated-NN in Section A.

3.2. Rate of Convergence. In the following theorem, we present the convergence rate of
interpolated-NN for both regression and classication under a mild level of data interpolation,
i.e., is within some suitable range. This theorem is a rened result of [9], which only obtains the
optimal convergence rate of MSE for regression tasks. Note that our rate for MSE is the same
as in [9]. We include both regression and classications results in the following theorem for the
sake of completeness.

Theorem 3.1. Assumed 3 C > 0 for some constant C > 0 and 0. For regression, 6



under A.1-A.3 and A.5,

MSE(; n) := miEMSE(k;;n) = O(n 2=(2+d)y.

For classication, under A.1-A.3 and A.4 if < 2,

Regret(; n) := mi? Regret(k;; n) = O(n (+1)=(2+d)).

In addition, denote () as the smallest even number that is greater than + 1. If 2,whend
() >0,
Regret(; n) = O(n (*1)=(2+d)).

In below we discuss the critical steps of proving Theorem 3.1. For regression, MSE at x
can be decomposed into
k 2 k
E(b () 002 AZE Xwikx' xk o+ & w2y (x)  (x1)?;
k i=1 i=1
and our convergence rate of MSE is thus based on careful derivations of upper bounds for
EW;, EWiZ, and EkX' xk. Although interpolation introduces obvious biased prediction at
the training data points by forcing b(X;) = Y;, after taking expectation over both training and
testing data, such a bias eect is averaged out. For classication, we note that (X'; Y ')’s fori =
1;:::; k are i.i.d. samples within the ball B(x; r) conditional on Rk*1 = r. Consequently, we can
apply (non-uniform) Berry-Esseen Theorem to approximate P (® ;n;(x) F g(x)) by normal
probability, i.e.,
]
1:2 E(bk;n; (X)) .
" Var(bg,, ()

(3.1) P (b;n;(x) < 1=2jg(x) = 1)

which is related to the mean and variance of B .5.(x). Similar to the regression case, the
pointwise mis-classication rate is barely aected by data interpolation when x = X;, thus the
Regret of interpolated-NN has the same rate as the traditional k-NN. For dierent regions( < 2
and 2), dierent restrictions on are imposed for technical simplicity. This restriction is used
to control the reminder term that appears in the non-uniform Berry-Esseen Theorem. A
detailed proof for the Regret convergence part of Theorem 3.1 is postponed to the
supplementary material. For the MSE convergence part, we refer readers to [9, 11].
Our technical contributions of Theorem 3.1 (and Theorem 4.1 later) lie in the adaptations
of the existing analysis framework of [17, 31].
(a) Compared to Theorem 4.5 in [9] that is derived based on the Chebyshev’s inequality,
the Berry-Esseen Theorem applied in Theorem 3.1 leads to a tighter Regret bound.
(b) By the denition of W;, the weighted samples W;Y; are no longer independent with each
other, so some transformations are made to enable the use of concentration
inequalities in the approximation (3.1).
The insight of Theorem 3.1 is that under proper a interpolation scheme and reasonable
overtting level, data interpolation does not hurt the rate optimality of the NN algorithm for
both regression and classication tasks.



3.3. Statistical Stability. In this section, we explore how interpolation aects the sta-
tistical stability of NN algorithms in classication. For a stable classication method, it is
expected that with high probability, the classier can yield the same prediction label when
being trained by dierent data sets sampled from the same population. Therefore, [35] intro-
duced a type of statistical stability, named as classication instability (CIS), to quantify how
stable the classier is. Denote D; and D, as two i.i.d. training sets of the same sample size n.
Then CIS for interpolated-NN is dened as

CISk;n() = Ppy;py;x (B 0;(X; D1) = B ;ni(X; D2));

where p,.n;(x; Dj) is the predicted label of B ;,. at x when the training data set is D; forj =
1; 2. Therefore, the CIS can be viewed as a counterpart of the variance measure of nonpara-metric
regression estimator: Ex V ar(b ;n;(X)) = 1—E[)1;|32;§(b ;n; (X5 Dy) b;n;(X; D,))2.

From the formula of CIS, a larger value of CIS indicates that the classier is less statis-
tically stable. Both misclassication rate and classication instability should be taken into
account when evaluating the merits of any classication algorithm. Thus, our theory aims to
characterize the CIS of interpolated-NN under the choice of k that attains its optimal clas-
sication performance (i.e., the Regret). Besides, it is noteworthy that CIS is dierent from the
algorithmic stability in the literature [12, 19, 23], where the two data sets D; and D, are
identical except for one sample, rather than independent identically distributed.

The following theorem studies the CIS of interpolated-NN. In short, we show that the CIS
for interpolated-NN and k-NN converge under the same rate:

Theorem 3.2. Under A.1, A.2, A.3 and A.4, if satises the conditions stated in Theorem
3.1, when taking k = cn=(2*d) for any constant ¢ > 0, we have

CISk.n() = On =(2*d);

Note that k n1=(2+d) js the choice of k, which attains the optimal rate of Regret for both k-
NN and interpolated-NN.

Based on Theorem 3.2, the rate of CIS of interpolated-NN is the same as traditional k-NN (i.e.,
taking = 0) when we either (i) select the best k value for k-NN and apply it to both k-NN and
interpolated-NN, or (ii) select the optimal k for k-NN and interpolated-NN respectively. Also,
this rate of CIS matches the minimax lower bound described below. Let P be the marginal
distribution of X, and P

denotes the joint distribution of (X; y) determined by P and conditional mean function , then
the following proposition holds:

Proposition 3.3 (Theorem 4 in [35]). Let P, be the set of probability distributions that
contains all distributions of form P
, where P and satisfy A.1, A.2, A.3 and A.4. If < d, then there exists some constant C > 0
such that for any estimator #,

sup  CIS(A) Cn =(2*d).p
2P,

4. Quantication of Interpolation Eect. Our results presented in Section 3 show that
interpolated-NN retains the rate minimaxity in terms of MSE, Regret, and statistical stability.
8



To further reveal the subtle relationship between data interpolation and estimation perfor-
mance, we sharply quantify the multiplicative constants associated with the convergence rates of
MSE, Regret, and statistical instability of interpolated-NN algorithm.

4.1. Model Assumptions. To facilitate our theoretical investigation, a slightly dierent
set of assumptions are imposed:

A.1’ X is a d-dimensional random variable on a compact R4 manifold X with boundary
@X.

A.2” The density of X is in [my; My] for some 0 < my My < 1, and twice dierentiable.
A.3’ For classication, the set S = fxj(x) = 1=2g is non-empty. There exists an open
subset Up in RY which contains S such that, for an open set containing X (dened as

U), is continuous on UnUg.

A.4’ For classication, there exists some constant c, > 0 such that when j(x) 1=2j cy,
has bounded fourth-order derivative; when (x) = 1=2, the gradient _(x) = 0 when (x)
= 1=2, and with restriction on x 2 @X, @(x) = 0 if (x) = 1=2, where @(x) denotes
the restriction of to @X. Also the derivative of (x) within restriction on the
boundary of support is non-zero.

A.5" For regression, the second-order derivative of is smooth for all x.

A.6" For regression, sup2(x) M < 1 and 2(x) is twice-continuously dierentiable.

The smoothness coxnzc)l(ition A.4’ describes how smooth the function is, which aects the
minimax performance of k-NN given a class of ’s. cx is a distribution-specic value. The
existence of nonzero cx and the high-order smoothness condition allows us to rigorously analyze
the near decision boundary region where most of the mispredictions are made (Step 2 in the
proof of Theorem 4.1 in Appendix E.2). Note that the validity of our results doesn’t depend on
the magnitude of cx. Assumptions A.3’ and A.4’ describe how far the samples are away from
fxj(x) = 1=2g. The assumptions are mostly derived from the framework established by [31].
Note that the additional smoothness required in and f is needed to facilitate the asymptotic
study of the interpolated weighting scheme. We also want to point out that these assumptions
are generally stronger than A.1 to A.5, but they allow us to obtain a sharper bound. Using
A.1 to A.5, one can only obtain some upper bound rate for the approximation error in (3.1),
while using A.1’ to A.6’ one can obtain the exact value of the approximation error in (3.1)
(except for high order remainder terms).

Remark 1. There is a heuristic relationship between smoothness conditions A.1-A.4 and
A.1’-A.4’. First of all, Assumption A.1’ to A.4’ also imply the marginal condition A.4 with
= 1. In addition, as mentioned by [17], A.2 in fact implies

(4.1) ix)  (B(x;r))j Lr;

while [31] showed the approximation E(X) (xp) + tr[e(xg)E(X xo)(X xg)”] underA.2’
and A.4’. Therefore, by matching result (4.1) and the above approximation, we can view
A.1’-A.4’ as a special case of conditions A.1-A.4 under smoothness parameter = 2and = 1.
Furthermore, for classication, the minimax rate under conditions A.1-A.4 is O(n (*1)=(2+d))
which becomes O(n 4=(4*d)) under (;) = (2;1). It coincides with con-vergence rates result [31]
under condition set A.1'-A.4’.



4.2. Main Theorem. The following theorem examines the asymptotics of MSE and Re-
gret of interpolated-NN and k-NN under Assumptions A.1°-A.6’. We rst dene some useful
qguantities. Let Py and P, (and f1, f;) be the conditional distributions (and densities) of X
given Y = 0;1 respectively, and 1;, be the marginal probability P(Y = 0) and P(Y = 1).
Denote P = 1Py + P, P = P71 Py, f(x) = 1f1(x) + 2f2(x), and also denote

(x) = 1f1(x)  2f2(x). Dene
8 9
< xd =

[_i () FR(x) + o5 (x)f(x)= 2]

=1

1
a(x) = m

Then the following decomposition of MSE/Regret holds:

Theorem 4.1. Assume d 3 C > 0 for some constant C and 0. For regression, suppose
that assumptions A.1’, A.2’, A.5’, and A.6’ hold. If k satises n k n! 49 for some > 0, then

(4.2) M%Wm”_dw 2)ki}(ﬂ

v}
dd ) 2 (d +2)?
f +2 )2 d2

(4.3) E a @X)E PR ) +Remainder;

z_ _ .

Bias

where Remainder = o(MSE(k; n;)).
For classication, under A.1’ to A.4’, the excess risk w.r.t. becomes

(d )21Z flx ),

d 1
d1d 2) 4k k( )g“v"' (xo)

(4.4) Regret(k; n;) =

Varlance 7 }
L (d )2 2? TF (xolb Ho 2
fd+2 )2 d? N k(xgg

B

(4.5)

(RZjX = x )gVol? *(x )g
}

+Remainder;

where Remainder = o(Regret(k; n;)).

The proof of Theorem 4.1 is postponed to Section E.3 of the supplementary material.
The basic ideas are the same as Theorem 3.1. Since the stronger conditions of A.1’ to A.6’
enables a detailed Taylor expansion on MSE/Regret, the multiplicative constants associated
with variance and bias can be gured out.

Similar as in [31], when taking k = n#=(d+4) E(RZjX) = O(n 2=(d*4)), thus it is easy to
see that the MSE and Regret of interpolated-NN are of O(n 4=(d4+4)), which is the same rate
of k-NN, optimal weighted NN [31], stabilized-NN [35], and distributed-NN [21].

Theorem 4.1 provides an exact variance-bias decomposition for MSE and Regret, except for
a negligible remainder term, which enables us to quantify the eect of interpolation carefully.

10



Given xed (k; n) satisfying the conditions in Theorem 4.1, the coecient in the variance
terms (4.2) and (4.4) are increasing functions in , i.e.,
1(d )?% 1 2 1 2

i 2k YTad ok Hae 7

which behaves like a quadratic function around = 0; the coecient in the bias terms in (4.3)
and (4.5) are decreasing functions in , i.e.,

(d )* (d+2)? 2 ? 4
fd+2—p——d—= 1 d>+2d—d— 142 +2d—

which behaves like a linear decreasing function around = 0. Therefore, it is clear that tuning the
interpolation level leads to a trade-o between the bias and variance of interpolated-NN
estimation: interpolated-NN will introduce a larger variance and reduce the bias when
increasing . In addition, given a small value of , since a quadratic increase of variance (O(?))
is always dominated by a linear decrease of bias (O()), it is possible for interpolated-NN to
achieve a better performance than k-NN.

The above analysis can be extended to a general class of weight functions, and the same
variance-bias trade-o occurs, in the sense that a weighting scheme allocating more weights on
closer neighbors tends to have a smaller bias and larger variance. The detailed analysis can
be found in Section | of the supplementary material.

4.3. U-shaped Asymptotic Performance of Interpolated-NN. In this section, we aim
to rene our results stated in Theorem 4.1, and characterize the asymptotic performance of
interpolated-NN with respect to the interpolation level . Two choices of k are considered.
In rst choice, k is -independent and only relies on the value of n. To be more specic, we
choose k = argmin MSE(k; n; = 0) (or k = argminRegret(k; n; = 0) for classication)
which is the optimal choose for k-NN algorithm. This same k value is used regardless of
the interpolation level, and we study how the performance of interpolation-NN changes as
increases. In the second choice, we allow k to depend on interpolation level as well (henceis
denoted by k), such that k = argmin MSE(k; n;) (or k = argmin Regret(k; n;) for
classication). In other words, the k value is optimally tuned with respect to the interpolation
level.

Under the rst choice of k, we quantify the asymptotic performance of interpolated-NN
using k-NN as the benchmark reference. Dene

1 (d )2 d(d )2(d+ 2)21
PR(d;) := +-d=4— dld—2}— + 4 -d2{d+2—)2—
Then the following result holds:
Corollary 4.2. Under conditions in Theorem 4.1, for regression, when k is chosen to min-

imize the MSE of k-NN, then for any 2 [0; d=3), the performance ratio satises,

MSE(k; n;) |
MSE(k; n; 0)
11
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For classication, when k is chosen to minimize the Regret of k-NN, then for any 2 [0; d=3),
the performance ratio becomes

Regret(k; n;)

Regret(k; n; 0) PR(d;):

When k is chosen based on k-NN, the interpolation aects regression and classication in
exactly the same manner through PR(d; ). In particular, this ratio exhibits an interesting U-
shape curve of for any xed d: as increases from 0, PR(d; ) rst decreases and then increases.
Therefore, within the range (0; 4) for some threshold value 4 which depends on dimension d
only, the asymptotic performance ratio PR(d;) < 1. It is noteworthy that although PR(d; ),
as a function of , is U-shaped on 2 R, our Corollary 4.2 is restricted to that < d=3. Thus 4 is
the minimum value between =3 and the second root of function PR(d;) = 1. When PR(d;)
< 1, the interpolated-NN is strictly better than the k-NN. Moreover, the eect of interpolation
is asymptotically invariant for any distributions of (X; y) as long as the assumptions hold, and
PR(d;) ! 1 as the dimension d grows to innity.

In the second choice, we let the interpolated-NN utilize the optimal k with respect to .
From Theorem 4.1, k kg(:= k=g) nd+4, bUAt k=ko > 1 for > 0, i.e., interpolated-NN needs
to employ slightly more neighbors than k-NN to achieve the best performance.

Corollay 4.3 below asymptotically compares interpolated-NN and traditional k-NN in
terms of the above measures. It turns out that the performance ratio (the ratio of two MSE’s or

two Regret’s), asymptotic converges to
N 2 d+4 4 (d ) ) (d 2)2d+4.7d
dd—2 (d+22 1y g

which is a function of d and only, and is independent of the underlying data distribution.

PRO(d;) := 1

Corollary 4.3. Under conditions in Theorem 4.1, for any 2 [0;d=3),

... ! PRY(d;); and Regret(n; ) 0 asn! 1:
MSE(R: ) ° v Regret(n;0) | pR (d;); S

Note that MSE(n; 0)/Regret(n; 0) is the optimum MSE/Regret for k-NN.

Denote © s the threshold such that PRO(d;) < 1for any < ©. From, Corollary 4.3, starting
from 1 when = 0, the performance ratio PRO(d;) will rst decrease in then increase; see
Figure 1 in introduction. Some further calculations can show that ¢ < d=3 when g 3; 0=
d=3 when d 4. |t can also be gured out that whether interpolated-NN is better or not does not
depends on the distribution of (X;y).

In addition, comparing the results in Corollary 4.2 and 4.3, since interpolated-NN selects
the k to minimize its Regret in PR%(d; ), the region of where PR%(d;) is smaller than 1 is

wider than that for PR(d; ) as in Corollary 4.2, i.e.,% >,d-

Remark 2. It is easy to show that the limiting values of P R and P R? converge to 1in d,i.e.,
limgii[minc<g=3 PR(d;)] = 1 and limgi1[mincg=3 PRY(d;)] = 1. This indicates that high
dimensional model benets less from interpolation, or said dierently, high dimensional model is
less aected by data interpolation. This phenomenon can be explained by the fact that, as d
increases, Ri=Rk+1 ! 1 fori = 1;::;k due to high dimensional geometry.
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On the other hand, [31] worked out a general form of Regret and MSE for a weighted NN
estimator and thereafter proposed the optimally weighted nearest neighbors algorithm
(OWNN) by minimizing Regret for classication with respect to the values of weight W;’s. We
extend their results to regression and compare them with interpolated-NN.

Combining Theorem 4.3 with [31], we have

R(n; OWNN) o d+ 2 ., 2 et (d )2 (d+ 2)2 el
—R(m ! 2 d¥w g 1+dd—2y— (d¥2 )2 o /

which is always smaller than 1. Here R(n; OWNN) denotes the MSE/Regret of OWNN given its
optimum k, and R(n;) denotes the one of interpolated-NN given its own optimum k choice.
Again, the above ratio reects the dierence in convergence for OWNN and interpolated-NN, at
the multiplicative constant level. This ratio converges to 1 as d diverges (just as the case of
PR(d;); see Remark 2). Thus, under ultra high dimensional setting, the performance
dierences among k-NN, interpolated-NN, and OWNN are almost negligible even at the mul-
tiplicative constant level when n! 1.

4.4. Statistical Stability. Similar to MSE and Regret, we perform a precise quantication
analysis for the convergence of CIS: Theorem 4.4 below illustrates how CIS is aected by
interpolation. In short, if interpolated-NN and k-NN algorithms share the same value of k,
then interpolated-NN is less stable than k-NN; otherwise, the interpolated-NN will be more
stable for 2 (0;9) if k is allowed to be chosen optimally based on .

The following theorem quanties CIS for general choices of (k;):

Theorem 4.4. Under the conditions in Theorem 4.1, the CIS of interpolated-NN is derived

as S
2

CISial) = (14 o(1)) pPEp— 10 ) 5
The proof of Theorem 4.4 is postponed to Section F in the supplementary material. Compared
with Theorem 4.1, one can gure out that CIS is related to the variance term in total Regret, but
not related to the bias term. This is because the two data sets D; and D, are drawn
independently from the same distribution, thus the estimators share the same bias, while how
dierent the predictions depends on the variance.

In Section 3.3, we show that under either (i) using the optimum k’s for these two methods
respectively; or (ii) using the same k (the optimum for k-NN) for both k-NN and interpolated-
NN, CIS for both k-NN and interpolated-NN converges in the same rate. Based on Theorem
4.4, we can further compare the multiplicative constants as in Corollary 4.5 below:

Corollary 4.5. Following the conditions in Theorem 4.4, when the same k value is used for
k-NN and interpolated-NN (as long as the k satises conditions in Theorem 4.1), then as

n! 1, S

CISal) (@ )2

CISen(0) - dd 2 T

On the other hand, if we choose optimum k’s for k-NN and interpolated-NN respectively,

13



i.e., k = argmin kRegret(k; n;), whenn! 1, we have
2

ClSk !) I PRO(d;):
0;Nn

Therefore, when 2 (0;0),dinterpolated—NN with optimal k has higher accuracy and stability
than k-NN at the same time.

From Corollary 4.5, the interpolated-NN is not as stable as k-NN if both algorithms use
the same number of neighbors. However, this is not the case if an optimal k is tuned w.r.t
An intuitive explanation is that under the same k, k-NN has a smaller variance (more
stable) given equal weights for all k neighbors. On the other hand, by choosing an optimum
k, interpolated-NN can achieve a much smaller bias, which osets its performance lost in the

variance through enlarging k.

4.5. Eect of Corrupted Testing Data. When applying machine learning algorithms in
practice for classication, the testing data may be corrupted, and its distribution diers from the
training data. For example, the testing data may be randomly perturbed due to the
inaccuracy of data collection (e.g., an image has noise due to an optical sensor system mal-
function). In some other scenarios, the testing data may be deliberately modied to induce the
learning algorithm to make a wrong decision (e.g., spam email sender will try to hack the
email Iter system). From the denition of interpolated-NN, the prediction is forced to jump to
a label if the testing sample is suciently closed to some training data, and the estimated
regression function () could be rather rugged (refer to Figure 9). These obser-vations
potentially imply a certain degree of adversarial instability in the sense that a small change of
x may lead to a huge change of b .n.(x). This,motivates us to investigate the performance of
interpolated-NN further when encountering random perturbed/adversarial at-tacked input
testing samples. In short, when the corruption is independent with training data, i.e., random
perturbation or black-box attack, a small positive improves the performance. When the
corruption is data-dependent, i.e., white-box attack, interpolated-NN is vulnerable. Some
existing literature focused on design attack / adversarial robust nearest neighbors-type
algorithms, e.g., [34, 38, 40], and they worked on un-interpolated NN algorithms.

Denote ! as the corruption level of testing data, i.e., instead of observing the testing
data x, we observe another value 8 which is inside an L, ball B(x; !) centering at x with
radius !. Three types of corruptions are considered in this paper: (1) random perturbation:
Brand IS randomly drawn from the ball B(x; !); (2) black-box attack: the adversary has no
information on our training data and the trained model, hence it trains a dierent machine ()
using an independent dataset. The adversarial attack thereafter is designed as &pack = arg
max,,g(x;1) €(z) if (x) < 1=2 and Bpjack = arg min,,g(4;1) €(z) if (x) > 1=2; (3) white-box
attack: the adversary has full access to the trained model b .i;,, and designed white-box attack
as @white = argMaXx,,p(x;1) b k:(2) ifn(x) < 1=2 and 8yhite = arg mr}nzzB(X;!) b .k;(z)if (x)n> 1=2.

We rst display the sucient condition when the testing Regret still converges in the rate of
4=(d+4)
n .

Corollary 4.6 (Informal description). Under conditions in Theorem 4.1, taking k n*=(d+4),
for corruption scheme ®,ang and ®pjack, When | = O(n 2=(d+4))  the Regret P(®n;(XE =
14



Y) P(g(X)=Y)= O(n 4(d+4)) When ! = o(n 2=(d+4)) for corruption scheme B;angand
®plack, the Regret ratio (Regret of interpolated-NN over Regret of k-NN) is the same as the one
for un-corrupted data. When 13 = o(n %4=(9+3)), the regret decreases when slightly
increases from zero.

For corruption scheme &ywhite, When ! = O(n 2=(d*4))Ag(n 1=d) the Regret P (B ;n;(XE= Y
) P(g(X) = Y)= O(n 4=(d*4)) for any satisfying conditions in Theorem 4.1. When!
= o(n 2=(d+4))Ao(n 1=d), the Regret ratio (Regret of interpolated-NN over Regret of k-NN)
is the same as the one for un-corrupted data.

For the formal representations for random perturbation and black-box attack, we postpone
them to Section H of the supplementary material.

Corollary 4.6 reveals that when the corruption level is small enough, we can still ben-
et from interpolation since the performance ratio between interpolated-NN and k-NN is
unchanged. However, interpolated-NN is more vulnerable to the white-box attack.

On the opposite, when ! is not suciently small, the testing data corruptions lead to a sub-
optimal convergence rate, especially under white-box attacks. The reason is that unless 2
f0; 1g, there are always (innitely many as n increases) training samples, denoted as D%, whose
labels are dierent from the Bayes classier. Then for any testing sample x, such that
B(x; !) overlaps with DY, the white-box attack can be designed as &ynite 2 B(x; !) \ D9, and
will yield a wrong prediction, as the prediction of interpolated-NN always interpolate D°.

For k-NN, such a problem will not happen since the predictor always takes an average
among k training samples. Based on [9], the misclassied labels are dense in interpolated-NN.
However, for (1) random perturbation and (2) black-box attack, the phenomenon is dierent:

Corollary 4.7. Under the conditions of Theorem 4.1, for white-box attack ®wnhite, When

I=(n 1=4) I 1, there exists some constant ¢ > 0 (depending on f and ) such that the

Regret is asymptotically greater than c. For random perturbation #.5,4 and black-box attack
Bplack, When !1=(n 179) 1 1, the Regret is in O(!2).

4.6. Bless of Interpolation and Eect of Distance Metric. As shown by the results in
the previous section, data interpolation leads to a more accurate and stable performance than
traditional k-NN when k = k and 2 (0;9). §imi|ar|y, in the literature of double descent,
[e.g., 10, 24] use a linear regression model to demonstrate a U-shaped curve (w.r.t. data
dimension d) of MSE in the over-tting regime (i.e., the number of linear covariates is larger
than the number of observations).

To compare interpolated-NN and linear regression, although we observe a U-shaped perfor-
mance ratio curve for both interpolated-NN estimator and ridgeless estimator in high dimen-
sional linear regression when over-tting occurs, they benet from interpolation in dierent ways.
For the ridgeless estimator in the regression problem, an increasing over-parametrization level
causes a larger bias, but the coecients all tend to zero. Therefore, following the analysis in [10]
and [24], the variance is very small and leads to a descent of MSE in the over-tting regime.
This descent in MISE in this interpolation regime is the second descent of MSE in the double
descent phenomenon.

On the other hand, for interpolated-NN, the benet of increasing the level of interpolation is
the reduction of bias. As a result, although the double descent phenomenon is observed in

15



many dierent estimation procedures [e.g., 8], a detailed study is needed to comprehensively
understand how each machine learning technique enjoys the benet of interpolation.

Besides, it is worth mentioning that the benet of interpolation in interpolated-NN is not
aected by the choice of distance metric. In the previous discussions, the L, norm is used to
determine the neighborhood set and measure the distance Rj. If we replace it by a dierent
norm, e.g., L1 or Ljnf, it turns out that the eect of interpolation is the same as under L,
measure:

Corollary 4.8. Assume the optimum k’s for k-NN and interpolated-NN are chosen, respec-
tively. Under assumptions in Corollary 4.3, if L, (p 1) distance is used to calculate the
distances among all data points, as well as for deciding interpolation weighting scheme, then the
performance ratio between interpolated-NN and k-NN shares the same shape as in Corol-lary
4.3, and CIS ratio shares the same shape as in Corollary 4.4.

5. Numerical Experiments. In this section, several simulation studies are presented to
justify our theoretical discoveries for regression, classication, and stability of the interpolated-NN
algorithm, together with some real data analysis.

5.1. Simulations. In Section 4.3, two scenarios of the performance of interpolated-NN are
presented: (1) interpolated-NN utilizes the same k as k-NN; (2) k is chosen optimally for each .
In Section 5.1.1, the experiment setups are described in details and the numerical results are
presented for scenario (1). The numerical results for scenario (2) are postponed to Section 5.1.2.

5.1.1. k is Chosen Optimally for = 0. We aim to estimate the performance ratio curve
via numerical simulations and compare it with the theoretical curve PR(d; ) (in Corol-lary 4.2).
We take training sample size n = 2048 and use 5000 testing samples to evaluate

MSE/Regret/CIS for all simulations. This procedure is repeated 500 times to obtain the
mean and standard deviation of the performance ratios. As observed in [31], the empirical
performance ratio is not stable, with 0:02 dierence to the theoretical value when n = 1000. Since
our goal of this simulation is to empirically validate the performance ratios rather than
promoting an interpolated-NN based method, instead of tuning k via cross-validation over
training data, we select k which minimizes the MSE/Regret over independently simulated
large testing data set.

For regression simulation, each attribute of X follows i.i.d. uniform distribution on [ 1;1]
withd= 2or5,andY = (x)+ " with " N(0; 1) where

x>

e
(5.1) X)= owy e ows

wi=1i d=2 0:5 i=1;:d:

w

A sequence of levels of interpolation =d = 0;0:05;0:1;:::;0:35 are used to evaluate the
performance of interpolated-NN.

The results are summarized in Figure 3. The trends for theoretical value and simulation
value are close. The small dierence is mostly caused by the small order terms in the asymp-totic
result and shall vanish if larger n is used. Note that =d = 0:35 is outside our theoretical range =d
< 1=3, but the empirical performance is still reasonable.
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Figure 3. Performance Ratio in Regression when k is Chosen Optimally for k-NN

For classication, two models are generated. For the rst model, each dimension of Py,
the marginal distribution of X given Y = 0, follows independent standard Cauchy. The rst
bd=2c dimensions of P,, the marginal distribution of X given Y = 1, follows independent
standard Cauchy, and the remaining dimensions of P, follow independent standard Laplace
distribution. Through the design of the rst model, the two classes have the same center at the
origin. In the second model, each dimension of P; follows independent N(0; 1)=2 + N(3; 4)=2,
and each dimension of P, follows independent N(1:5;1)=2 + N(4:5;4)=2. For both P, and P,
in the second model, the distributions are multi-modal.

The CIS of interpolated-NN classier is estimated by calculating the proportion of testing
samples that have dierent prediction labels, that is

1 X
dis() = o 1(d p;(xi; D1) = B ;ni(xi; D2)); i=1
where D1, D, are two independent training data sets, and x;’s are independently sampled
testing data points.

Similar to Figure 3, the classication results are summarized in Figures 4 and 5. Similar
to the regression setup, the theoretical value and empirical value trends are closed for the
Regret ratio. Compared with the Regret ratio, the standard deviation of the CIS ratio is
much larger due to the randomness of the two training sample sets; thus, its trend is slightly
away from the theoretical value.

5.1.2. k is Chosen Optimally for each . For all the three models in Section 5.1.1, the
performance ratios are also calculated when interpolated-NN uses the k value, which optimizes
its testing performance. The formula for the performance ratio in this scenario can be foundin
Corollary 4.3. The results are shown in Figures 6, 7 and 8. Similar to the results in Section 5.1.1,
the empirical curves are mostly closed to the theoretical curves.

5.2. Real Data Analysis. In the real data experiments, we compare the classication
accuracy of interpolated-NN with k-NN when k is optimally tuned (via cross-validation) with
respect to values.

Five data sets are considered in this experiment. The data set HTRU 2 from [27] uses 17,897
samples with 8 continuous attributes to classify pulsar candidates. The data set Abalone
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Figure 4. Performance Ratio in Classication, Model 1, when k is Chosen Optimally for k-NN
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Figure 5. Performance Ratio in Classication, Model 2, when k is Chosen Optimally for k-NN

contains 4,176 samples with seven attributes. Following [38], we predict whether the number of
rings is greater than 10. The data set Credit [42] has 30,000 samples with 23 attributes and
predicts whether the payment will be default in the next month given the current payment
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Figure 7. Performance Ratio in Classication, Model 1, when k is Chosen Optimally for each

information. The built-in data set of digits in sklearn [30] contains 1,797 samples of 88
images. For images in MNIST are 26 26, we will use part of it in our experiment. Both the data
set of digit and MNIST have ten classes. Here for binary classication, we group 0 to 4 as the
rst and 5 to 9 as the second class.

For each data set, a proportion of data is used for training, and the rest is reserved for
testing. Note that the same testing data set is also used to tune the optimal choice of k. For
Abalone, HTRU?2, Credit, and Digit, we use 25% data as training data and 75% as testing
data. For MNIST, we randomly choose 2000 samples as training data and 1000 as testing
data, which is sucient for our comparison. The above experiment repeats 50 times, and the
average testing error rate is summarized in Table 1.

For all data sets, the best testing error among interpolated-NN’s with dierent choices of
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Figure 8. Performance Ratio in Classication, Model 2, when k is Chosen Optimally for each

Data d Error ( = 0) Error (best =d) best =d
Abalone | 7 0.22239 0.22007 0.3
HTRU2 8 0.02315 0.0226 0.2

Credit 23 0.1933 0.19287 0.05

Digit 64 0.01745 0.01543 0.25
MNIST | 784 0.04966 0.04656 0.05

Table 1

Prediction Error of k-NN, interpolated-NN under the best choice of , together with the value of the best for
interpolated-NN.

> 0 (column \best =d") is always smaller than the k-NN(column \ = 0"), which veries that
the nearest neighbor algorithm can benet from mild-level interpolation.

6. Conclusion. Our work precisely quanties how data interpolation aects the perfor-
mance of the nearest neighbor algorithms beyond the rate of convergence. For both regression
and classication problems, the asymptotic performance ratios between interpolated-NN and k-
NN converge to the same value, independent of data distribution, and depend on d and only.
More importantly, when the interpolation level =d is within a reasonable range, the
interpolated-NN is strictly better than k-N, attaining both faster convergence and better
stability performance.

Classical learning frameworks oppose data interpolation as it believes that over-tting
means tting the random noise rather than the model structures. However, in the interpolated-
NN, the weight degenerating occurs only on a nearly zero-measure set, and thus there is
only \local over-tting", which may not hurt the overall rate of convergence. Technically,
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through balancing the variance and bias, data interpolation potentially improves the overall
performance. Essentially, our work precisely quanties such a bias-variance balance. It is of
great interest to investigate how our theoretical insights can be carried over to the real deep
neural networks, leading to a complete picture of the double descent phenomenon.

Finally, as mentioned in this paper, dierent algorithms (regression, nearest neighbors
algorithm) may enjoy the benet of interpolation in dierent ways; thus, an in-depth explo-ration
on each algorithm is necessary to obtain a comprehensive understanding of the double descent
phenomenon. Nonetheless, although the mechanisms behind these results are dif-ferent, all
these tell us that a carefully designed statistical method can overcome harmful over-tting.
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The supplementary material is organized as follows. In Section A, we demonstrate a con-crete
example with an intuitive explanation of why interpolation does not hurt the convergence of
interpolated-NN. Section B-H provide the proofs for the main theorems in the manuscript.

Section | extend the class of function interpolating weighting scheme to general class of
functions which enjoys the benet of variance-bias trade-o.

Appendix A. Variance-Bias Trade-o in NN Algorithms . In this section, we present an
intuitive comparison between the interpolated-NN and traditional k-NN. For any weighted-
NN regressor dened in (2.1), if the smooth condition j(x1) (x2)j Akxi x2k, holds for
some and A, then we have the following bias-variance decomposition (9):

(A.1)
E (bgn(x) (x))? = Ef(E(b jo(x))  (x)?g+ Ef(b ju(x)  E(bga(x))’g; where
X 2
EF(E(b n(x))  (x))’g = bias” A”E wikox Xk ;
i=1
Xk
Ef(bgn(x) E(bgn(x)))?g = variance= E WZ2(Y' (x')? :

i=1
Several insights are developed based on the decomposition in (A.1). First, if Var(Y jX) (or
E[(Y' (X'))2jXT]) is invariant among X (e.g., the regression setting with i.i.d. noise ;, or
the classication setting with constant function ), then k-NN (W; 1=k) represents the optimal
weight choice which minimizes the variance term. Second, if the weight assignment
prioritizes closer neighbors, i.e., larger W, for smaller kX?  xk, it will lead to a smaller value
for the weighted average :;1 WikXi xk. In other words, interpolated-NN can achieve
smaller upper bound for the bias term. Therefore, we argue that k-NN and interpolated-NN
employ dierent strategies in reducing the upper bound of MSE. The former emphasizes
reducing the variance, while the latter emphasizes reducing the bias.

The above intuitive arguments are well-validated by the following toy examples.

We take 30 training samples x; = 5; 4;::;25 with responses generated by the three
choices: (1) y = 0 x+,(2)y= x2+0,and (3) y = (x 10)2=8+ 5 where N(0;1). In
other words, the mean function (x) are (1) (x) 0, (2) (x) = x2, and (3) (x) = (x 10)2=8
respectively. The number of neighbors k is chosen to be 10. Three dierent weighting schemes
are considered: (1) (t) = 1=k, (2) (t) = 1 log(t), and (3) (t) = t 1, where the second and
third choices are both interpolated weighting schemes, and the rst choice is simply the
traditional k-NN.

The regression estimators (by;n(x)) under dierent choices of and are shown in Figure 9,
along with the \true" curve which represent the underlying true (x). Note that we only
present the b,.n(x) within a smaller range of x where the NN estimator does not suer from
the boundary eect. There are several observations from the results of these toy examples.

First of all, interpolated weight does ensure data interpolation. As x gets closer to the any
observed x;, the estimator b ;,(x) is forced towards y;. As a consequence, b ;,(x) is spiky for
interpolated-NN. In contrast, the k-NN estimator is much more smooth.

Secondly, dierent weighting schemes lead to dierent balance between bias and variance of
b .nk In the rst setting where 0, the NN algorithm with any weighting scheme is
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Figure 9. Three Toy Simulations: Upper: 0; Middle: (x) = x2; Lower: (x) = (x 10)%=8.

unbiased, hence it corresponds to the extreme situation where bias is always 0. The second
model is noiseless (i.e., 2=0), thus it corresponds to the opposite extreme case where variance is
always 0. In the no-bias setting, k-NN performs the best, and interpolated-NN estimators lead
to huge uctuation. In the noiseless case, k-NN has the largest bias, and (t) = t ! leads to the
smallest bias. These observations are consistent with our arguments above, i.e., k-NN
prioritizes minimizing the variance of the nearest neighbor estimator, while interpolated-NN
prioritizes reducing the estimation bias instead. For the comparison between the two dierent
interpolated weighting schemes in this example, we comment that the faster (t) increases to
innite as t ! 0, the smaller bias it will yield. Thus (t) = t ! leads to smaller bias than (t) = 1
log(t), at the expense of larger estimation variance. The third model, (x) = (x 10)2=8,
involves both noise and bias. From Figure 9, the estimation of (t) = 1=k tends to stay above the
true , i.e., high bias, due to the convexity of . The estimators are more rugged for
interpolated-NN but uctuate along the true (x). In this case, it is dicult to claim which one is
the best visually, but the trade-o phenomenon between bias and variance is clear.
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In conclusion, a faster decreasing leads to a smaller bias but a larger variance, and
non-interpolated weights such as k-NN leads to a larger bias but a smaller variance.

Appendix B. Preliminary Proposition. This section provides an useful result when inte-
grating c.d.f:

Proposition B.1. From Lemma S.1 in [35], we have for any distribution function G,

z . z
[G( bu a) lgecogldu= = a+ tdG(t) ;

Z ® La 2 z
U[G( bu @) lruegldu= 2 + ©_ t2dG(t)+ a  tdG(t):

Appendix C. Proof of Theorem 3.1. This section demonstrates the proof of Theorem
3.1.

Based on the same argument used in [17] and [9], conditional on Rys+1(x), X1 to Xk are
i.i.d. variables whose support is a ball centered at x with radius Rx+1(x), and as a consequence,
R1(x) to Rk(x) are conditionally independent given Ry+1(x) as well.

The analysis of classication is very subtle especially when (x) is near 1=2. Hence, we need
to have the following partition over the space X. Let p = 2k=n. Denote E = f9R; > rp; i =
1;:::;kg, and ERg;n(x) R(x) as the excess risk. Then dene

ecn:(XjRk+1) = E[(R1=Rk+1) (X*)]=E(R1=Rk+1) ;

as well as

. 1 1
*Xp;z fx 2 Xj(x) > _se(x) )t 8Ri+1 < r2p(x)g; X, =

2
fx 2 Xj(x§1»< 2;e(x])

5 ; 8Rk+1 < rap(x)g;

with the decision boundary area:

@ = X n(X,, 1 X,,):

Given @, X +p,, and X 0 similar with Lemma 8 in [17], the event of g(x) = B .4 (X)
can be covered as:

When e(xjRk+1) > 1=2 and x 2 ij, assume b .4.(x) < 1=2, then
ek;n;(Xij+1) bk;n;(x) > e ;In;(Xij+1) 1=2 :

The other two events are easy to gure out.
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In addition, from the denition of Regret, assume (x) < 1=2,

P(B(x)= YjiX =x) (x)

(x)P(&(x) = 0jX = x) + (1 (x))P(d(x) = 1jX = x)  (x)

(x)P(&(x) = g(x)jX = x) + (1 (x))P(&(x) = g(x)jX = x)  (x)

(x)  (x)P(d(x) = g(x)jX = x)+ (1 (x))P(d(x) = g(x)jX = x)  (x)
(1 2(x))P(&(x) = g(x)jX = x):

Similarly, when (x) > 1=2, we have
P(b(x) = YjX =x) 1+ (x)=(2(x) 1)P (b(x) = g(x)jX = x):
As a result, the Regret can be represented as
Regret(k;n;) = E(j1  2(X)iP(g(X) = B s0;(X))):

For simplicity, denote p = k=n. We then follow the proof of Lemma 20 of [17]. Without loss
of generality assume (x) > 1=2. Under A.1, A.2, and A.3, dene

0= sup je(xjRk+1) (x)j = O(r )5 O(k=n)=*;

X

(x) = j(x) 1=2j;

then 1
e(xjRk+1) (x) 0= ,+ ((x) 0);

+
hence x 2 Xp;(x) o
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When (x) > o, under A.1 and A.2, the Regret can be upper bounded as

P(bi;n;(X) =Y) P(g(X)=1Y)

2(x) P(r(e1) > Vap)+ P X< WiY (X')  e(xjRks1) > (X) o
i=1
exp( k=8)
X , X
#2(x)P (R{ERk+1) Y(X') > (e(xjRis1) + (x) o) (Ri=Rys1)
i=1 i=1
= exp( k=8)
X .
#2(x)P (R{ERys+1) Y(X') KE(R1=Rys1) (X1)
i=1
X k
(e(xjRk+1) + (x) o) (Ri=Rk+1) E(R1=Rk+1)
i=1

> k(e(xjRks1) + (X) 0)E(R1=Ri+1) KE(R1=Rk+1) (X1)

X .
= exp( k=8)+ 2(x)P " (Ri=Ris1) (¥ (X) e(xjRes1))
i=1
Xk !
(C.1) ((x) 0) (Ri=Rk+1) KE(R1=Rk+1)
i=1 5
k((x) 0)E(R1=Rk+1)
Since
Xk

E (Ri=Rks1) (Y(X')  e(xjRks1)) = O;
i=1
Xk
E((x) 0) (Ri=Rk+1) KE(R1=Rk+1) = 0;
i=1

we can use Markov inequality to the power of () to bound the probability in (C.1). Denote

zix) = R (v(x') e(xjR,,.)) ((x) o) Ri_ +((x) o)E R1
Rk+1 Rk+1 Rk+1

for simplicity. Note that
Var(Zi(x)) = O((x) 0):

For dierent settings of and , the following steps have the same logic but dierent
details:
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Case 1: < 2 and < d=3:. Considering the problem that the upper bound can be much
greater than 1 when (x) is small, we dene ; = 2p, taking ip = minfi 1j (; 02 >
1=kg. In this situation, since EZ, fx) < 1, we can adopt non-uniform Berry-Essen Theorem for
the proof:

P(bi;n;(X) = Y)  P(g(X)=1Y)

= E(Rk;n(x) R(X))lf(x)iog"' E(Rk;n(x') R(X))lf(X)NOEpi | #
2ioP ((X) ip) + exp( k=8)+ 4E (X)1f, <(x)g pvki\(:(z)(x)}c))<)
1
+4E (X)1 €t 1
flo<tXle 1 1RT33=7((x) o)?

Due to -margin condition, the two terms from Berry-Essen Theorem in the above inequality
become

1 C 1
E (X)1: ) —
(X) fi<(X)<i+18 1+p|47§=2((x) 0)3
+1 (Epli 1
PRI e o
1 p +1 C 1 1
B k(+1)=2{ Kiv1) k 1+ k3=2(; 0)3’
and
n I#
o I
E (X)1 _ k((x) 0)
X fosXle YV ar(Z,(X)jX)
o [
E (X)1f, <x)g c3 k((x) o)
+1
i1 2 2 .
Gp——* —exp ¢k )" :
k(o) <

p b
The quantity exp( c3k(; 0)?) is larger than 1 if ; cs= k. When ; > cs= k, for some
constant ¢cs > O,

+1
e csk(? o) 2 1 201 1 exp  c2k(; 0)? i
- (
20)2 201 exp  cgk(i 1 0)?

+1
0)9@ csk(i 1

exp  c3k(; 0)?
exp cik(i 1 0)?

< 1=2:
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Therefore the sum of the excess risk can be bounded. When < 2,

¢ 1
E(X)1fic(x)<isig K1+ Rézif j RE

1 X p 2
o E(TZFT [ k(i+1 I)] iio
1 X p_ 2 i 2)
(+2)=2 k d 2
o i 0(
k 2 |
1 ( 2)=2 2 [
= 0 o=k io =0 —
and
n !#
p
e 01 Fkx) o)
fo<(Xle PV ar(Z: (X)X
X +1
(e} i+1, ex c?k(i 2
plk iio(i i o) p 3(l o)
=0 'p;-__i0+1 exp C3kz(io 0)2:
k
Recall that j, > g and; > l%k, hence when ; = O(1%k), we can obtain the minimum
upper bound
Pk
1 (+1)=2
P(bi;n;(X)=Y) P(g(X)=Y) O(")g O
Taking k (n=(2*4)), the upper bound becomes O(n (*1)=(2+d)), Casel2:

< d=(): . In this case, we have

P(Qk;n;(x)=Y) P(g(X)=1Y)
= E(Ri;n(X)  R(X))1fx);,g + E(Ri;n(X) RIX))Lt(x)>, 8
2i,P((X) i) + exp( k=8)

2

P\ 0
E - f L Z,(X)

+4E2(X)1fi0<(x)g((){) 0)()k()E()(R1=Rk+1)

| i
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while for some constant c; > 0,

2 P 0 3
E X Z(X)
E&(X)l i=1 | - 7
fi<(X)i+1g((X) 0)OKkOEO(R1=Rk+1) 5
P ()
E “  Z(X)
E (X)1 —
fi<(X)i+18 (; 0)VkOEO(R1=Rk+1)
P, 0
B0 Z(X)
i=
i+1P ((X) i+1)
i+ ) o) OKOEO(Ry=Ry1q)
()=2
1 1
g o1 =0, 0)Y;

where the last inequality is obtained from -margin condition and the assumption that d
() > 0. Note that since () > + 1, for some constant 0< c< 1,

+1 1
iv1 =(i 0)()+ =(i
(c.2) R <c
Therefore the sum of the excess risk for can be bounded, where
2 P, 0 3
E - Zi(X) .
ER00 11, <e () JTKOED (R =Ryq) >
()=2
(C.3) o 1 S T (TS
+1

it
Recall that j, > g and 2 > 1I:Ok, hence when 2 = O(lIO:k), we can obtain the minimum upper
bound
I
(F1)=2 P(p*

n:(X) =Y) P(g(X)=Y)=0( " )+0 ¥

Taking k (n=(2*d)), the upper bound becomes O(n (+1)=(2+d)),

Appendix D. Proof of Theorem 3.2. This section provides the proof of Theorem 3.2.
For CISk.n(), since we are considering two independent sets of data, it can be upper
bounded by two times misclassication error:

CISi;n() = 2P (81(X) = g(X); g2(X) = g(X))
= 2E[1 P (£2(X) = g(X)jX)]P(&1(X) = g(X)jX)
2EP (g1(X) = g(X)jX)

= 2P (g(X) = g(X)):
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Following the same procedures as in Theorem 3.1, when < 2 and < d=3, we have

P (&k;n;(X) = g(X))
= EP(8i;n;(X) = 8(X))1fx), g + EP (Bi;n;(X) = g(X))lf(X)> " P((X)g

io) + EXp( k:8)+ E 1fio<(X)g k((X) )O
0 ar(ZﬂXUX)
+E 1f <(X) 1 1
0P8 R TREE(X) o?

The two terms from Berry-Essen Theorem becomes

C p c
E1. . 1 k. 1 1 ;
fi<(X)<i+1g klf’ﬂl?:%ﬁ*)—o)#( i+1) k=2 kﬁ-—kP"]%(i 0>
and . | g
p_ !
k((X) )o o F
o b 41 ey c :
B Lrig<xe "V oar(Z4(X)jX) pk( i o) oLl o)

Thus summing up j < (X) < j+1 for all i > ip, we have CISk.n ()
O(y) + O(1=k)=>:

When k n=(2*d) we have CIS = O(n =(2+d)), The proof for 2 s similar.

Appendix E. Proof of Theorem 4.1 .

This section is the proof of Theorem 4.1.

To prove Theorem 4.1, we rst prove the following theorem, then represents the multi-
plicative constants as functions of .

Theorem E.1. Assume d 3 C > 0 for some constant C. For regression, suppose that

assumptions A.1’, A.2’, A.5’, and A.6’ hold. If k satises n k n! 4= for some > 0,
we have . 4
SR a(X)=Ral X)) ? 5,
r \
( ﬂ{{i(x)=R{k1(X)) )?

\l{arignce
R1(X)2(R1(X)=Rk+1(X))
2 2 2 ha 1 _
+kI E a"(X)E p le(F{(i(X)=Rk+1(X)) X }+Rema|nder,
z

Bias

MSE(k; n;) = kE
I

#1

where Remainder = o(MSE(k; n;)).
For classication, under A.1’ to A.4’, the excess risk w.r.t. becomesZ

Regret(k; n;) = 4 BlESan (X)+ k t)kn(xo)dVoId Y(xo) +Remainder;
{ } A
V ariance }

Blas
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where

Remainder = o(Regret(k; n;));
_ f(xo) d 10y .
Bl = S WdVOI (XO)r
E(R1=Rg+1) 2
S%;n; (x) = ) _ ;
E (Rl—Rk+1)
ER2(R,=R
tk;n; ( )= 1( 1 k+1)

E(R1=Rg+1)
E.1. Regression. Rewrite the interpolated-NN estimate at x given the distance to the

k + 1th neighbor Ri.1, interpolation level as

X k
Si;n;(X; Rks1) = WYy,
i=1

where the weighting scheme is dened as

_ (Ri=Rk+1)
"k (Ri=Ris1)

Wi=

For regression, we decompose MSE into bias square and variance, where

n k #2 n k #2
X , X )
E[(Sk;n;(x; Rks1)  (x))%jx] = E Wi((X') (x)) +E wilYi  (XY)
i=1 i=1
in which the bias square can be rewritten as
n #2
XK ‘
E Wi((X')  (x)) = KE(Wa((X')  (x))*+ (k*  K)EX(Wa((X')  (x)));
i=1
and the variance can be approximated as
n #2
XK .
E WilYi (X)) = kEWZ(X')? = k(x)’EW? +, 0

i=1

Following a procedure similar as Step 1 for classication, i.e., use Taylor expansion to approx-
imate the bias square, we obtain that for some function a, the bias becomes

EW1((X)  (x)) = a(x)EW’R; % o
As a result, the MSE of interpolated-NN estimate given x becomes,
E[(Sk:n: (X Rks1)  (X))2jx] = k(x)?EW 2 +, k?a(x)2E?W %R} +,0:

Finally we integrate MSE over the whole support.
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E.2. Classication. The main structure of the proof follows [31]. As the whole proof is long,
we provide a brief summary in Section E.2.1 to describe things we will do in each step, then in
Section E.2.2 we will present the details in each step.

where

(Ri=Ry,q) (Y(X)  1=2)
E(Ri(x)=Rk+1(x)) ’

Zi(x; Rk+1) =

then the probability of classifying as 0 becomes

Xk
P(Sk;n;(x) < 1=2)= P Zi(x; Rk+1) < O
i=1

The mean and variance of Zij(x; Rk+1) can be obtained through Taylor expansion of and
density function of x:

1

=+ a(x) R%(R1=$ +?)

2 EE(R]_:Rk 41)
1E Fy Redr 2

1k Ty

for some function a. The smoothness conditions are assumed in A.4 and A.5.

Note that on the denominator of Z;, there is an expectation E(R;j(x)=Rg+1(x)). From
later calculation in Corollary 4.3, the value of this expectation in fact has little changes given or
without a condition of Rk+1, and it is little aected by x either.

Step 2: One can rewrite Regret as

z

+ oV

E(Z1(x; Rk+1)) = (x)

1
P W;Y; E 1f(x)<1=2g dP(X):

d
R i=1

From Assumption A.2, A.4, the region where b is likely to make a wrong prediction is
near fxj(x) = 1=2g, thus we use tube theory to transform the integral of Regret over the d-
dimensional space into a tube, i.e.,

7 & 1! !
P wiY; = 1f(x) < 1=2g dP(x)
- 2
|—Zl 7
= f1+ o(l)g tk —(xo)k P (Si;n(x%) < 1=2)  1gcog dtdVol® *(xo) + o
S

Rd

The term will be dened in detail later. Basically, when is within a suitable range, the
integral over t will not depend on asymptotically.
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Step 3: given Ry+1 and x, the nearest k neighbors are i.i.d. random variables distributed
in B(x; Rk+1), thus we use non-uniform Berry-Esseen Theorem to get the Gaussian approxi-
mation of the probability of wrong prediction:

Z Z
tk —(xo)k P (Sk;n(x%) < 1=2)  1scog dtdVol® *(xo)
Z 7 ! !

t.
= tk_(X())kERk+1 P kEZl(XO’ Rk+1) 1ft<0g dthO|d 1(Xo)+ 0:
s kV ar(Zi(xy; Risq))

Step 4: take expectation over all Rx+1, and integral the Gaussian probability over the
tube to obtain

7 7 . ! !
kEZl(Xo; Rik+1)

tk _(x )KE 1 dtd ol (xo)

s o e UKV ar(Z:i(x Re,g)) oe °

0 0 1 Vo1

zz tk_(xo)k  E(R1=Ri+1) t)R2
_ (X0 1=Rk+1) a X d 1
= tk —(x, )k @@ g - &= 0A 1 1ft<OgA dtdVol® *(x,)

S R Sk;n;=k sk;n;=k

+0 7

B1 E(R1=Rk+1) 2 k—(xo)k E2(R1=Rk+1) R2

- 1 d 1
IKEZ(Ri=Rie1) * s koolkZ @ KO Ez(R=R,)  avol (xo)+ o
1

z
k4(x )k
il 2 {14 2
= 8kBlEskm;+ ¢ 2 x &2 2(xo)tk;n;dVoId Y(xq) + o

E.2.2. Details. Denote aq is the Euclidean ball volume parameter
ag = Vol(B(0;1)) = (=2)9=2= (d=2+ 1):

Dene p = k=n and rpp = sup ERyk(x). Denote E be the set that there exists R; such

X
that Rj > ryp, then for some constant ¢ > 0,

Hence from Claim A.5 in [9], there exist ¢; and c, satisfying
P(E) cikexp( czk):

Step 1: in this step, we gure out the i.i.d. random variable in our problem, and calculate
its mean and variance given x.
Denote

(Ri=Rk+{) (Y(X') 1=2)

E.1 Zi(x; R = ;
( ) |( k+1) E Ri=Rk+1)
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then the dominant part we want to integrate becomes
1
P Sk;n(X; Rk+1) 27 =P

k .
(Ri=R&1) (Y(X') 1=2) < ORsy
i=1
P !
K Zi(x; Rks1)  KEZ1(x; Ris1) KEZ1(x; Rk+1) .
n < 0n
MKV ar(Zi(x; Ree1)) M KVar(Zi(x; Re1)) <+

Therefore, one can adopt non-uniform Berry-Essen Theorem to approximate the probability
using normal distribution. Unlike [31] in which EY (X') is calculated, since the i.i.d. item in
non-uniform Berry-Essen Theorem is Z rather than Y, we now calculate mean and variance of
Z. Under Rg+1,

E(R1=Rk RL1(Y (X1) 1=2)
:n;(X; Ri+1) 1= EZ1(X; Rk+1) =
k; ,(X k+1) 1(x; Rk+1) (E =1 Reat)
_ E(R1=Rg+1) ((x1) 1=2) _
- E(R1=Rk+1) ’

and

E(Ri=Rk+1) 2 (Y (X1) 1=2)2
E2(R1=Rk+1)

E(R1=Rk+1) 2

4E2(Ri=Ry+1)

k;zn;(x; Rk+1) := Var(Z1(x; Rk+1)):

5 k
EZ{(x;R 4+1) =

Then the mean and variance of Z; can be calculated as

1 E(R1=R b (X1)
2 E(RAR 1 )

E(R1=Rk+1)  (x') 4 (X? Xpl (g + 1=2(X xg)e(x QX xG) + o(R3 )

I

k;n(xo:tRk+1) = Ezl(xo;tRk+1) +

E(R1=Rk+1) k+1
E(R1=Rk+1) (X1 Xt)>_(Xto)
= (x b+ E(Ri=Rie1)
TE(R1=Rks1) tre(xt) (XT  xE)(XT xt)> ]
2 E(R10=Rk+1) : : * O(Réva):

Fixing R1 and R+1, denoting f(jx»; R) as the conditional density of X given x, and kX
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x2k = R1, we have
BU(XT xg)"_(x9jR1)

(x x5 _(xTPf(xjx'5 Ri+1)dx

Z
= (x xE_(XYIF(x"gx's R1) + fO(xojx'5 R1)”(x  x§) + oldx
=O+Z(x x0)7_(x)f2(x'gx§; R1)7(x  x§)dx+ o
Z
(E.2) =tr _(YFO(x'gx& R (x xB(x x§)7dx + o
and

1
tr “e(xp)E(X'  x")(X'  x')7jRg
0 0

2z
=tr le(x§) (x x§(x x§)f(xjx'y Ry)dx
1 2 ‘
= tr ‘Z{Xt)o (x x5 (x x5 IF(xGixt; Ry) + fO(xoixE; R1)”(x  xb) + oldx

FxitoiRa) oo 1 e .
(E.3) = tr 42-4x )o (X X ) () Xo) dx + o;

Then taking function a(x) for x such that
a(x)R? = E((x* x")"_(x")jRa) + tr ofx")E (X XT) (X" x")7jRq + o:
0 1 0 0 - o 0 0
The dierence caused by the value of R; is only a small order term.
Finally,

n;(Xo; Ri1) = (o) + tk_(xo)k + a(xo)tk;n;(Rk+1) + O:

Step 2: in this step we construct a tube based on the set S = fxj(x) = 1=2g, then gure
out that the part of Regret outside this tube is a remainder term.

Assume ., satises sk.n. = O(k:n) and k.n = O(sk:n;k'™2), then the residual terms
throughout the following steps will be o(si_n_ + tﬁ_n_ ). Hence although the choice of ;, is
dierent among choices of k and n, this does not aect ‘the rate of Regret. Note that we ignore
the arguments x and Ry;1 as from A.2 and A.4, s,g;n;(x; Ri+1) 1=k and t..n.(X; Rk+1)
(k=n)2=9 for all x while Rx+1 (k;n)Z=9 in probability.

By [31], recall that (x) = d(1P1(x) 2P2(x)), then 2

I I

Xk 1
P WiYi 5 lf(x)<1=2g dP(x)
Rd i
Zz,.,
= f1+ o(l)g tk —(xo)k P (Si;n(x*) < 1=2) LtrcogdtdVol® *(xq) + ry;
S k;n
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where

z k
X 1
ri= P WY = lf(x)<1=2¢ dP(x)
RdnSkin 2
i=1 | |
VA Xk ! |
= ERk+1 P Zi(X; Rk+1) <0 1f(x)<1=2g dP(X)Z
RdnS k;n i=1
For rq,
| |
Z Xk ! !
0 Ery.s P  Zi(x;Rk+1) O Lt(x)<1=2¢ AP (x)
Rdniki”\ij(x)<1=2g i=1

RAnSkin\fxj(x)<1=2g

Xk
ERiwr P Zi(x; Rk+1) KEZ1(x; Rk+1) >  KEZ1(X; Rks+1) dP(x):
i=1

Using non-uniform Berry-Essen Theorem, when EZ31(x; Rk+1) < 1, i.e., < d=3, it becomesZ

RdnSk?n \fxj(x)<1=2g -

k
X
ERkJrl P Zi(X,' Rk+1) kEZl(X,' Rk+1) > kEZl(X;Rk+1) dP(X)
1
y4 ' p_ !
Er,.. kEZl(X., Rk+1) dP (x)
RInSk:"\fxj(x)<1=2g Var(zl(xl Rk+1))
1 1
tC1Pp-— Er,. —- —oP (x);
K RanskMxj(x)<i=2g < 1+ k32JEZ1(X; Rs1)j3
where (x) = 1 (x). Since si;n;(X; Ris1) = 0(i;n), r1 = o(s* | (X; Ris1)).

By the denition of .n, we have

exp( k;2n=sk2;n;(x; Rk+1)) = O(sk;nz;) + O(1=k),
inf  j(x) 1=2] ¢ 3 .,°
x2RdnS kin
As a result, using Berstain inequality, r1 is a smaller order term compared with skz;“; when
St (Rks1) = o(1), hence ry = ofs. ).
Step 3: now we apply non-uniform Berry-Esseen Theorem. From Step 3, we have

zz
k;n
ERe.itk —(xo)k P (Sk;n(x") < 1=2jRks1)  LrecogdtdVol® *(xo)
S kin I |
zz ' '
in kEZl(Xt; Rk+1) d 1
= Er.,,tk —(xo)k p 0 1¢ dtdVol (xg) + ro;
S "kV ar(Z:(x%; Rirq)) roe
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where based on non-uniform Berry-Esseen Theorem:

P
o Zi(x§; Rikr1)  KEZ1(X§; Ris1) ‘e KEZ1(x§; Rk+1)

P
" kVar(Zi(x; Ria) " kVar(Zi(x; Rie1))
KEZ1(x§; Rk+1)
P kvar (Zl(xei Ri+1))
KEjZ1(x§; Rien)j3 1 |
k3=2V ar3=2(Z1(x4; Rk+1)) o KEZ1(xhiRie1) 3
" kVar(Zi(xh;Ree1))
and
Z Z
- . kin
Jraj S
k;n
KEjZ, kE&; R K 1
Ery., th (X kg 31;‘0 kt”)‘ dtdvol® L(x ):
o k372Var32 (Z1(x%;R+1)) o KEZy(x8;Reus) 0
T kVar(zi(xh;Res1))
For ry,
Z Z
k;n
ro S
k;n

KEjZ1 &k&; Resr)j 1
Er,. tk —(x )k - J 31__26(0 kt+1)J .
o k3¥2Var32 (Z1(xXy; Rk+1)) . o KEZilxGiRG )

T kVar(Zi(xt;Rie1))

—, dtdvol® 1(x0)

¢ £ Zwn 1 g
= p— Er  tk—(xo)k dtdVol? 1(xq)
k S k;n krt 1+ k 1, prk+l 3
S 5 Pty
C2

= p— tk _(xo)kdtdVol® *(xq)
k SZ J.E<Sk;n;(x)
C3

1 d 1
+ g tk —(xo)k———_dtdVol® “(xo)
pT( S si;n;(x)<jti<i;n 1+ k3=2t3
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Step 4: the integral becomes

z L KEZ1(x5; Ris1) | |
Er,. Ttk —(x0)k p 1\X0; Rk+1 1 dtd ol (xo)
s ke in ° kV ar(Z1(x}; Re+1)) freoe °
Z Z Vv
k;n
= S ERk+1 tk —(xo)k
0o o0 1 1
t_(xo)k E(R1=Riss) alxtPR23 v
e@ o —ilbo) - 1ft<ogAdtd ol? 1(x0)
Sk;n;<X;Rk+1)=k Sk;n;(X} Rk+1)=k
'iz-l’g + 0 7
= ERy .y tk —(xo)k
\
Mlk— JM@LMLM
@@ 1ft<ogAdtd ol 1(x0)
Sk,n,(x Rk+1)=k (X Rk+1)=k
+rz3+ rg+ o0 0 0 1 1
Z Z Vv
Tk (ol Em;qwcuu\
- ~(xO)k@@ —%( lftcogAdtd ol? *(x0)
s (x) k (x) k
+rz3+ rg+ rg+ 0 7
By E(R=Rys1) 2 flo) o E2(Ri=Ria) R® y 4
= + ol Xo)+ r3+ ra+ rs+ o:
4K E2(R =R < K (X gk° (o) E2(Ry=Ry .} (Xo) + r3+ ra+rs

\Y

Note that k —(xg)k=k_(xg)k = 2f(xg). The last step follows Proposition B.1 and the fact that
Rk+1 does not aect the dominant parts. The term E((R1=Rk+1) jRk+1) is almost the same for
all Rg+1. For the small order terms, following [31] we obtain

y4 y4 !
kin KEZ1(x5; Ris1)
ra = Er,. tk (xo)k p 1170s Tk
3 s Riet kin ° kV-ar(Zi(xq; Rk+1))
0 t 1
tk_(xg)k E(R1=Rk a(x")R
@ q t-bo (,,1. «1) 2) 1Adtdvol? (x );
SEn (G Re1l=K . S S ARG Rkt =K 0
= O(Sﬁ;n; + tk;zn;);
and
k —(xo)k z
Fg = U w2 ER
k_(xo)k2 ~"kr? L
S 0 0 Rn[ k;n k,n] 1 1
Y
= t)RD
th_(xok@@ lsol E(Ri=Rugrl aDCIROAL 1 ooy o1 1(0)
k;n;_k skn =k
= o(sﬁ;n.)
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The term rs is the dierence between the normal probability given R¢:1 and the one after
taking expectation. Similar with [13], for each x, when jtj < {.n, we have

0 1
tk_(xo)k E(R1=Rk+1) a(x')R?
Eren @ g g NE
sﬁ;n;(x; Rk+1)=k S%;n;(X; Rk+1)=k
0 1
E - t 2
=@ q th_(xo)k (n.Rl Ri+1) alx })R A + O(kVar(t Ko (x; Rpq))) + 00

\4'
S%in; (% Rie1)=k k2 (x; Ris1)=k
Following step 3 in [13], we obtain

1X kg 2 1,
Var(ti;n;(x; Res1))  — _E((X7) (x))" = O riprj=1
k2 k 2
For the case when jtj si;n; + ty;n;, dierentiate normal cdf twice still leads to very small

probability, thus for each xg, we have

(X ) R k+1
0 1
Z tE @ g . 0 1A dt
R tk_ Hokz E(R1=Rk+1) a(xt)‘“ 2
0% . (%; Rie1)=k sk .06 Rie1) =k 1
Z
tk k E(R1=R t)R?
- @ q _(xo) (q 1=Rir1) X WR7 A 40 ofs?, +t ):
5%, (%; Ris1)=k sk2 (x; Ris1)=k o

E.3. Connecting Multiplicative Constants w.r.t . To show Theorem 4.1, we need to
work out the multiplicative constants.

For classication, given x, we know that if X follows multi-dimensional uniform distribu-
tion with density 1=f(x), for some constant cq that only depends on d,

d
E(R1=R 2= ——+0;
(R1=Rik+1) i 2+
d
E(R1=Rk+1) = q + 0;
2
k d d
_ 2 _ _ 2 — 4+ .
E(R1=Rk+1) R?7# E(R1=Ris+1)?® Ry, 7= cq Ny dv a2 o:
For regression, one more step needed compared with classication is to evaluate
n # n #!
R 1=R 2 RZ(R1=R
ke _p R 1=Rka) E(X)2 + K2E aZ(X)E2 p kl( 1=Ri+1)

(r :(zl(Ri=R k+1) )2 i=1(Ri=Rk+1)

P
The sum of ratios ik=1 (Ri=Rk+1) is hard to evaluated directly in the denominator,
hence we use upper bound and lower bound on it. Since d 3 > 0, using non-uniform
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Berry-Essen Theorem, given Ri+1, we have

|
Xk ' !
P (Ri=Rk+1) KE(R1=Rg+1) > B 1
=1 KVar({R1=Rk+1) )
c
__.p_ :
1+ (= k)3
Therefore, taking = «kE(R1=Rg+1) ,
|
Xk '
P (Ri=Rg+1) > (k+ 1)kE(R1=Rg+1) Rks1 =1
k KE(R1=Rk+1) | c
ar((R1=Rk+1) ) 1+ ( ki)3
p Rke1 + —p—:
Note that (R1=Rk+1) is always larger than 1, hence
n #
(R1=Rys1) ?
F
( Ii(=1(Ri=Rk+l) )2
E(R1=Rk+1) 2
E r
DA k)ikZEZ(R1=Rk+1) | "
X " E(R1=R 2
+Ery,, P (Ri=Rk+1) < (1 k)KE(R1=Rk+1) Rk+1 (Rs k|;+1) +0
i=1 |
1 E(R1=Rk+1) 2 . E(R1=Rg+1) 2 k PRE(R1=Rys1)
k2(1 W)2 EZ(R1=Rs1) k2 Var((Ri=Ris1) )
N E(R1=Ri+1) 2 C ‘o
k2 1+ (7 Ky)3 ’
while
n #
E o (R1=Rk+1) 2 1 E(R1=Rk+1) 2 E(R1=Rk+1) 2 c
(" kL (RER1) )2 k2(1+ )% E2(R1=Rg+1) k2 1+ (7 k)3
+0:

P
Hence taking  such that (! 0 whiley k! 1, we have

" #
_ (R1=Ry+1) 2 1 (d )%

p _ m = ———+ 0,
.!(=1(R'=Rk1) )2 k2d(d 2)

and similarly

# 2
nRzl(R1=Rk+1) 1 k ¢ d

= — + 0:
" :<=1(Ri=Rk+1) k nf(x) d+ 2
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Appendix F. Proof of Theorem 4.4,
The proof is similar with Theorem 1 in [35].
From the denition of CIS, we have

Z
ClS()=2 = P(Sk;n;(x) 1=2) (1 P(Sk;n;(x) 1:2))dP(x)ZR
= P (Sk;n;(x) 1=2) lfx)1=2¢ dP(x)
Rz
P2(Sk;n;(x) 1=2) ltpg1-2¢ dP (x):

R

Based on the denition of Zi(x; Rx+1) in (E.1), the derivation of .n.(x; Rk+1) and

Sk:n;(X; Rk+1), follow the same procedures as in Theorem 4.1, we obtain
Z

P (Sk;n;(x) 1=2) 1f(x)1=2gdP (x)
zZRz
k;n
= f(X") ER,uy P Skons(XY) < 1=2jRisn ltrcog dtdVol? Y(xo) + o
ZS k;nZ % O 1 g
tk k  E(R1=R t)R2 B
= E, flx,) @ q—(XO)i (R1 kalm 0A1 1 dtdvold (x.)
k+1 . t<0g_ 0
S R . Sﬁ;n;zk S%;n;zk ;
+0;
and similarly,
Z
zRZPkfn(sk;n; 1=2jR) Lt(x)122¢0P (X)
= f(xtng Sk;n;(xt)<0 1=2 ltrcog dtdVol® (xo) + o
7> gz
= ERk+1
0 1 9
< tk k E(R1=R t) 2 =
f(Xo) 2@ q_(XO) ( 1 ka'-l) a(X )ROAl 1ft<0g dtdvold 1(X0)+ o:
: 2 ;

Si.n.=K sk;n;=k

Adopting Proposition B.1 and the fact that si;n.(x; Rk+1) is little changed by x and Rg.:1,
treating and 2 as two distribution functions, we have

a__
B : _ Bi 1 2
CIS() = p%&k sE (X)+ 0= pp - 1+ ICR R

Appendix G. Regret under Testing Data Corruption. This section is the proof for Regret
under testing data corruption.
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k;n;! = .
tk —(xo)k klsE“ 2 Vi) ltecog dtdVol?® %(xo)
ZSZ k;n;! kVar(Yl)
= tk —(xo)k
SoR 0 1 1
n . v
—xotk——epign{tHhk—{xotk-  b{xedticrtxeH
@@ 2 o2 A 1pegAdtd ol (xg) + 0
k;n k;n
S 5 0 0 1 1
Vv
1 th—{xo ke Le—lxo Hk— b xo Y tigmbxe) 1
=3 L tk_(xk@@ ™= = Droitiants LicogPdtd ol® ¥(xo)
k;n k;n
Z Z
+ 1 tk —(xo)k
2 s R g 0 1 1
Vv
—xotk—gtk—{xotk— b (xe ) tigmixeH -
ee tk -2 bl S2 Lrcog™ dtd ol? *(xo)
k;n k;n
+rs + OZ
By 17 k-(xp)k
- - 22 2 2 2 d 1 .
= K + 2 ¢ k(% K2 b(xg) E“R1(x)° + !“k_(xo)k= dVol® *(xg) + rs + o:
0 1
£ % tk_(xo)k g 'k_(xo)k b(xo)tgalxo) , v s
2r5 = (t 21k _(x0)k@ "= = = Adtd ol Y(x )0
0 0 sk;n Sk;n 1
z z,
! b(Xo)tx.
N (t+ 2!)k_(xo)k@ tk_(xo)k i k_(xo)k (xo) %n@Adthold 1(x )s,
2 2
2! Sk;n Sk;n
+0
22y Otk()k b(Xo)ti:n(Xo) '
=2 th_(x Jk@ =g ° OO A dtdvold (x ) oS
! Stin Stin
0 1
Z 7,
! b(xo)tx.
= 2 th_(x k@ TRl POxoltignlXo) g gy gyre 1 )5
0 S¢.n Stin
0 1
z z,
b(xo)ty.
+2 th —(x k@ tk—g"O)k (%o) 5'“ﬁ)Adtde|d L(x ) % 0

! Skin Skin
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and some further calculation reveals that

0 1
Z Z, S
b ty.
ors = 2 tk —(xo)k@" ( ok b(xo) én(ﬁ) dxdVol? *(xq)
! SEn S:n
ZoZ 0
0 b(xp)t
vz tk(x @ Polg 200Nl ageavort 1)+ 05
sk;n SE;n
0 1
zz,
_ tk_(xo)k  b(xo)ty;n(xXo)
=2tk (xk@ T . i As
) ;n ;n
+@0 tk_(xo)k + b(XO)tk;n(XO)Adltdvold l(X )
§ > ¢ > Zo
Sk;n Sk;n
+12 Kk_(xo)kdVol? Y(xo) + o

S

Taking gradient on rs w.r.t. ty;,, the gradient is positive. As a result, when introducing
interpolation and xing k, rs becomes smaller. [ |

Appendix H. Formal Representations for Corollary 4.6. This section is a formal repre-
sentations for Corollary 4.6.

Corollary H.1. Under the conditions stated in Corollary 4.6, for
random perturbation: if 13 = o(n 4=(d*3))  the following result holds:

y. d o)1 f(X )y 1
Regret(k; n;) = did 2Vak k( )$< dVol® *(xg)

v }
arlance Z
v
(d )2 (d 2)2 ()( %(X E
Fat2 o @ Tk E( 2J'l><=X)‘HoId 1(X?}
I Bias - - - -
z

E Z_k_(xo)kdVol® 1(xg) +Remainder:
p_s d {z }

Corruption

The corruption is not related to .
black-box attack: for simplicity, we use instead of e. In this case, if 13 = o(n 4=(d+3)), the
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regret becomes

Z
d )2 1° flx)
d(d 2) 4k k
@2 SVT(Zx K }
(d )2 (d+22% f(xo)a(xo)?
* fd+2 2 dz k_(@)k

Regret(k; n;) = dvold Y(x0)

E(RZjX = xo)dVol® *(xo)

1
Bias
+Corruption + Remainder;
where Corruption decreases when slightly increases from zero.
Appendix |. Variance-Bias Trade-o in General Weighting Schemes. This section

discusses the variance-bias trade-o in general weighting schemes.

Besides OWNN and interpolated-NN, we found that the benet from the variance-bias

trade-o exists for a general class of weights (not essential to be interpolated). Similar as for
interpolated-NN, when is closed to zero, the increase of variance is approximately a

guadratic function in , while bias is linearly reduced.

Corollary I.1. Denote x as R1=Rk+1 and (x;) : [0;1] [0;1) ! [0;1) as a function such

that (x; 0) 1, and taking %(x;) = @=@. If
Z Z Z Z

1 1 1 1
:= O(x; 0)x4*1dx x4 dx O(x; 0)x¢ dx x%*ldx < 0;

0 0 0 0

then when sightly increasing (to cause interpolation / allocating more weight on closer

neighbors), it is guaranteed that the overall MSE / Regret will get decreased.

R
Proof of Corollary I.1. When is chosen that 01 (x;)3x9 1dx is nite, the ratios of

variance and bias in weighted-NN using (x; ) and (x; 0) become

R 2
Rol(x;)zxd 19 (xp0)xd ldx

K .
Ol(x;)xc| 1dx o (x;0)2x9 Ldx

2 2
R1(x; )x9 1x2dx R1(x;O)xd Ldx
0 0
and

) 2 R, 20
(x; 0)xd 1x2dx 0 (x;)xd ldx

In the context of (x;) = x , the above two ratios refer to s2
Theorem 4.1 respectively.
For the ratio of variances, its gradient w.r.t is 0 at = O:

k;n; k;n;0

R 2
Rol(x;)zxd 1dx 1xdoldx

R 2 Ry
o (x;)xd Ldx o x4 tdx

=g?2 and tﬁ, )
;n;

—4+2
_tk;n;O

in



However, for bias, it becomes

2
Rol(x;)xzxd Ldx Rol(x;O)xd Ldx

R 2 R 2
1 1
8‘2Xd ldx C{x;)xd ldx

2 R1Xd+1dx Rlxd ldX
- O( F"’ 0 0

1 2 Ry 20
x2xd 1ldx 0 (x;)xd 1dx

As a result, the increase of variance is of O(2), and the decrease of bias is a linear function
of since < 0.

47



