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Iĺıdio Lopes,

1
V. Dexheimer,

4
A. A. Usmani,

2
and S. K. Patra

5, 6

1Centro de Astrof́ısica e Gravitação-CENTRA,
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ABSTRACT

The e↵ects of strong magnetic fields on the deconfinement phase transition expected to take place in
the interior of massive neutron stars are studied in detail for the first time. For hadronic matter, the
very general density-dependent relativistic mean-field (DD-RMF) model is employed, while the simple,
but e↵ective vector-enhanced bag model (vBag) model is used to study quark matter. Magnetic-field
e↵ects are incorporated into the matter equation of state and in the general-relativity solutions, which
also satisfy Maxwell’s equations. We find that for large values of magnetic dipole moment, the maximum
mass, canonical mass radius, and dimensionless tidal deformability obtained for stars using spherically
symmetric Tolman–Oppenheimer–Volko↵ (TOV) equations and axisymmetric solutions attained through
the LORENE library di↵er considerably. The deviations depend on the sti↵ness of the equation of state
and on the star mass being analyzed. This points to the fact that, unlike what was assumed previously
in the literature, magnetic field thresholds for the approximation of isotropic stars and the acceptable
use of TOV equations depend on the matter composition and interactions.

Keywords: Equation of State – Magnetic fields – Quark matter– Neutron stars

1. INTRODUCTION

Matter under extreme densities, temperatures, and
magnetic fields is among the most popular and fasci-
nating current topics of research. Neutron stars (NSs)
provide the perfect environment to study physics under
extreme conditions. Recent advances in NS observa-
tion have yielded intriguing conclusions regarding their
maximum mass, canonical mass (1.4 M�), radius, tidal
deformability, and so on (Abbott et al. 2017, 2018, 2021;
Miller et al. 2019; Riley et al. 2019; Miller et al. 2021;
Riley et al. 2021). However, there is still a large uncer-
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tainty concerning the equation of state (EoS) of dense
matter. The density inside NSs reaches several times nu-
clear saturation density (⇢0 = 1014 g cm�3 = 0.15 fm�3),
making it di�cult to determine their inner structure. As
interior densities approach 1015 g cm�3, theoretical mod-
els describing cold and dense matter, calibrated around
⇢0 for isospin-symmetric nuclear matter (SNM), must be
extrapolated in both density and isospin asymmetry. To
test these ideas, the structure of NSs is computed starting
from the energy–momentum tensor, solving equations for
hydrostatic equilibrium, and comparing them to astro-
physical observations. One constraint that all NS models
must meet is the ability to explain the highest measured
NS mass, which according to recent astrophysical data
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is above 2 M� (Antoniadis & Freire et al. 2013; Fonseca
et al. 2021).
The existence of these massive NSs rules out a number

of soft EoSs, in which the expected maximum mass of
the compact object is less than the observed maximum
mass. Meanwhile, it has been long accepted in the nu-
clear physics community that hyperons emerge in dense
medium under NS conditions at a few times ⇢0 (Ambart-
sumyan & Saakyan 1960; Glendenning 1982, 1985). The
EoS softens in the presence of hyperons ruling out the
occurrence of 2 M� NSs in many models. To prevent
this, the EoS without hyperons can be very sti↵ but that
would lead to a large stellar radii. Together, all of this
gives rise to the so-called hyperon puzzle, which is a
tremendous challenge in nuclear physics (Chamel et al.
2013). A possible way to solve this problem would be to
consider deconfinement to quark matter, as discussed in
the following.
NSs are not just extremely dense objects, but they are

also known to present extremely strong magnetic fields.
But a few X-ray isolated NSs and rotating radio tran-
sients present even stronger magnetic fields. Soft gamma
repeaters (SGRs) and anomalous X-ray pulsars (AXPs)
present the strongest magnetic fields found in NSs with
surface values of the order 1014-1015 G (Mereghetti et al.
2015; Kaspi & Beloborodov 2017; Harding & Lai 2006;
Turolla et al. 2015). But, more interestingly, data from
the source 4U 0142+61 for slow phase modulations in
hard X-ray pulsations (interpreted as free precession)
suggests magnetic fields of the order of 1016 G (Mak-
ishima et al. 2014; Dall’Osso et al. 2018) inside this
pulsar. Magnetic fields of the order of 1016 G or higher
are also expected to be produced in NS mergers (Ciolfi
& Rezzolla 2013; Giacomazzo et al. 2015; Ciolfi 2020;
Palenzuela et al. 2021; Ruiz et al. 2021).
Because the maximal magnetic field in the interior of

magnetars cannot be measured directly, it is commonly
predicted using the virial theorem - most estimates lead
to a theoretical maximum of the order of 1018 G (Lai &
Shapiro 1991). A strong magnetic field can have several
implications for NSs, such as modifying the EoS due to
Landau quantization of the constituent charged parti-
cles (Landau & Lifshitz 1965; Strickland et al. 2012),
changing the energy–momentum tensor, and breaking
the stellar spherical symmetry. Several studies have
shown the e↵ect of the magnetic field on the NS EoS and
on stellar properties (Chakrabarty et al. 1997; Broder-
ick et al. 2000; Rabhi et al. 2008; Mallick & Schramm
2014; Bandyopadhyay et al. 1997; Gomes et al. 2017;
Pili et al. 2017; Felipe et al. 2008; Casali et al. 2014;
Dexheimer et al. 2021b; Marquez et al. 2022; Gomes,
R. O. et al. 2019; Fogaça et al. 2016; Sotani & Tatsumi

2015; Tolos et al. 2016; Ferrer & Hackebill 2019; Pelicer
& Menezes 2022; Chatterjee et al. 2019, 2015). Most of
the previous studies that include magnetic field e↵ects
on the EoS use isotropic Tolman–Oppenheimer–Volko↵
(TOV) equations to determine the relevant stellar prop-
erties. However, it should be emphasized that for strong
magnetic fields, below the threshold at which Landau
quantization e↵ects on the EoS become non-negligible,
the deviations from spherical symmetry can already be
considerable (Gomes, R. O. et al. 2019; Chatterjee et al.
2015). Strong magnetic fields can substantially deviate
NS configurations from spherical symmetry, and in this
case, spherically symmetric TOV equations can no longer
be used to describe their macroscopic structure.
Concerning the EoS, in a density regime, which ab ini-

tio methods fail to describe, relativistic mean field (RMF)
models have been successful in characterizing both finite
and infinite nuclear matter (Walecka 1974). The primary
mechanism in this case consists of hadrons interacting
through a mean field of mesons. The use of di↵erent
mesons such as �, !, ⇢, and � has improved the predic-
tions of SNM properties and constrained them well inside
the expected regime (Boguta & Bodmer 1977; Serot 1979;
Sugahara & Toki 1994; Horowitz & Piekarewicz 2001).
The density-dependent RMF (DD-RMF) model replaces
the self- and cross-coupling of various mesons in the
classic RMF model with density-dependent coupling con-
stants (Brockmann & Toki 1992). Parameter sets like
DD-ME1 (Nikšić et al. 2002) and DD-ME2 (Lalazissis
et al. 2005) generate very massive NSs with a 2.3� 2.5
M� maximum mass. Several new DD-RMF parameter
sets such as DD-LZ1 (Wei et al. 2020) and DD-MEX
(Taninah et al. 2020) also produce sti↵ EoSs. Note that
the density-dependent functional DD2 EoS (Typel et al.
2010; Typel & Wolter 1999; Banik et al. 2014) with ex-
cluded volume correction (Typel 2016), which accounts
for the finite size of nucleons caused by the repulsive
attraction between their internal quarks caused by Pauli
blocking e↵ects, is widely used in simulations of, for ex-
ample, binary NS mergers (Sekiguchi et al. 2016; Radice
et al. 2018; Lehner et al. 2016; Tootle et al. 2022) and
supernovae (Fischer 2021; Jakobus et al. 2022).
The idea of deconfined quark matter in the interior of

NSs has been studied since the 1980s (Witten 1984). An
NS with hadronic matter in the core followed by a phase
transition to quark matter at least a couple of times
saturation density is referred to as a hybrid star. To
study quark matter in NS cores, several di↵erent models
have been used. The simple MIT bag model (Chodos
et al. 1974; Freedman & McLerran 1978; Farhi & Ja↵e
1984) was the first realistic description proposed to study
pure quark and hybrid stars. The Nambu-Jona-Lasinio
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(NJL) model, which originally described the mass gap
in the Dirac spectrum of nucleons (in analogy to the
BCS mechanism for superconductivity) (Nambu & Jona-
Lasinio 1961a,b), was modified to describe interacting
quark matter (Kleinert 1976; Volkov 1984; Hatsuda &
Kunihiro 1984). Somehow between these, the modified
version of the Bag model, vector-enhanced bag model
(vBag) (Klähn & Fischer 2015), was introduced as an
e↵ective model for studying astrophysical processes. This
model is preferred over the simple bag model because
it takes into consideration repulsive vector interactions
as well as dynamic chiral symmetry breaking (D�SB).
The repulsive vector interaction and the introduction of
a mixed phase allow one to reproduce hybrid stars with
masses larger than the 2 M� limit.
An alternative for a sharp first-order phase transition

emerges when one considers that the surface tension of
quark matter is not infinite. This so-called non-congruent
phase transition gives rise to a mixture of phases in which
quantities such as electric charge neutrality are fulfilled
globally (Glendenning 1992). In astrophysics, this is re-
ferred to as a Gibbs construction and generates a phase
in which hadrons melt into their constituent quarks grad-
ually over kilometers inside NSs. See Ref. (Hempel et al.
2013) and references therein for an extended review of the
topic. A more thorough treatment of the mixed phase,
including contributions from surface and Coulomb ef-
fects requires accurate knowledge of the surface tension
between two phases, which is still unknown, having an
estimated value ranging from 10-100 MeV fm�2 (Farhi
& Ja↵e 1984; Kajantie et al. 1991; Alford & Reddy 2003;
Lugones et al. 2013; Lugones & Grunfeld 2017). The
Gibbs construction produces results that are somehow
similar to those obtained with the lower value of the
abovementioned surface tension range, and so the contri-
bution from surface and Coulomb e↵ects can be ignored
(when calculating properties such as stellar masses and
radii) (Maruyama et al. 2007; Voskresensky et al. 2002).
In this work, we study hybrid stars by means of a Gibbs
construction that gives rise to a mixed phase connecting
the hadronic phase described by the DD-RMF model
and the quark phase described by the vBag model.
When the magnetic field e↵ects in hadronic and quark

phases are compared, it is found that changes in the
population of charged particles in the hadronic phase
are larger than for uncharged particles, noting that all
quarks have an electric charge (Casali et al. 2014; Rabhi
et al. 2009; Dexheimer et al. 2014). Also, a di↵erence
due to particle masses is observed with baryons having
a substantially larger mass than quarks and leptons
(Peterson et al. 2021). These two characteristics imply
that magnetic field e↵ects should be more pronounced

in quark matter. On the other hand, it has been shown
that changes in the amount of (baryonic) charge fraction
a↵ect more strongly the hadronic phase than the quark
phase (Aryal et al. 2020)
To understand better how these e↵ects a↵ect macro-

scopic stellar properties, we use our EoS with quark
deconfinement in the publicly available Language Ob-
jet pour la RElativité NumériquE (LORENE) library
(LORENE -; Chatterjee et al. 2015) for the first time
to investigate in detail quark deconfinement. LORENE
solves the coupled Einstein-Maxwell field equations in
order to determine stable anisotropic magnetic-star con-
figurations. However, to highlight and calculate the
deviation from spherical symmetry produced in stellar
properties, we also analyze results from TOV solutions.
Our paper is organized as follows: the hadronic and

quark matter EoSs, the mixed phase region, and the
deconfinement phase transition properties together with
the pure electromagnetic contribution to the energy-
momentum tensor, are discussed in Sec. 2. NS structure,
which contains the TOV equations along with a descrip-
tion of the LORENE library, and a discussion of the
magnetic field distribution are discussed in Sec. 3. The
results of magnetic field e↵ects on the EoS with quark
deconfinement and hybrid stars are explained and dis-
cussed in Sec. 4. Finally, a summary and concluding
remarks are presented in Sec. 5.

2. MICROSCOPIC FORMALISM

2.1. Hadronic matter

The most basic and simple RMF Lagrangian involves
the scalar-isoscalar � and vector-isoscalar ! mesons with-
out higher-order interactions (Horowitz & Serot 1981),
resulting in a huge SNM incompressibility K0 (Walecka
1974). A nonlinear self-coupling of the � field was then
incorporated by Boguta and Bodmer (Boguta & Bodmer
1977), which reduced the value of SNM incompressibility
to realistic levels. The contribution from the vector-
isovector ⇢ and scalar-isovector � mesons was later intro-
duced to study isospin asymmetry e↵ects.
The various nonlinear meson coupling terms present

in the RMF models are replaced by the density-
dependent nucleon-meson coupling constants in the DD-
RMF (Brockmann & Toki 1992; Nikšić et al. 2002;
Lalazissis et al. 2005; Wei et al. 2020; Taninah et al.
2020; Typel et al. 2010), Density-Dependent Relativis-
tic Hartree (Brockmann & Toki 1992) and also in the
Density-Dependent Relativistic Hartree-Fock (DD-RHF)
(Bouyssy et al. 1987; Brockmann 1978; Long et al. 2006)
models. Their couplings allow for a consistent study of
NSs and yield results that are comparable to other more
complicated models. The contribution of the rearrange-
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ment term self energies to DD-RMF field equations is
the most significant di↵erence from normal RMF models
and ensures thermodynamical consistency.
The hadronic matter DD-RMF matter Lagrangian

density (with a free Fermi gas of leptons) is given by

Lm =
X

b

 ̄b

(
�µ

 
iD

µ � g!(⇢b)!µ � 1

2
g⇢(⇢b)⇢µ⌧

!

�
 
Mb � g�(⇢b)�

!)
 b +

1

2

 
@
µ
�@µ� �m

2
�
�
2

!

� 1

4
W

µ⌫
Wµ⌫ +

1

2
m

2
!
!µ!

µ � 1

4
R

µ⌫
Rµ⌫ +

1

2
m

2
⇢
⇢µ⇢

µ

+
X

l

 ̄l(i�µD
µ �ml) l , (1)

where b sums over the baryon octet
(n, p,⇤,⌃+

,⌃0
,⌃�

,⌅0
,⌅�) and l over leptons e

� and
µ
�.  b and  l represent the baryon and lepton Dirac

fields and Mb and ml the baryon and lepton masses,
respectively. ⌧ and �µ denote the baryon isopsin pro-
jection operator and the 4-dimensional Dirac matrices,
respectively.
The mesonic tensor fields and covariant derivatives are

defined as

W
µ⌫ = @

µ
W

⌫ � @
⌫
W

µ
,

R
µ⌫ = @

µ
R

⌫ � @
⌫
R

µ
,

D
µ = @

µ + iQA
µ
, (2)

where Wµ⌫ and Rµ⌫ are the antisymmetric tensor fields
of ! and ⇢ vector mesons. � is a scalar meson. Aµ is the
photon field that couples to baryons and leptons with
electric charge Q.
The isoscalar density-dependent coupling constants for

the DD-RMF parameter set are written as a function of
baryon (number) density ⇢b

gi(⇢b) = gi(⇢0)fi(x) , (3)

where the function fi(x) is given by

fi(x) = ai
1 + bi(x+ di)2

1 + ci(x+ di)2
, i = �,! , (4)

with x = ⇢b/⇢0. Additional constraints for the function
fi(1) = 1,f

00

�
(1) = f

00

!
(1), f

00

i
(0) = 0 reduce the number of

free parameters from eight to three in the Eq. 4. Among
them, the first two constraints are

ai =
1 + ci(1 + di)2

1 + bi(1 + di)2
, 3cid

2
i
= 1 . (5)

For the isovector ⇢ and � mesons, the density-dependent
coupling constants are given by an exponential depen-
dence

gi(⇢b) = gi(⇢0) exp[�ai(x� 1)] . (6)

The coupling constants of the nucleons to the � and !
mesons at saturation are determined from fitting satura-
tion density and binding energy for SNM. The coupling
constant of the nucleons to the ⇢ meson at saturation is
fitted by reproducing the empirical saturation properties
of nuclear matter, such as the symmetry energy. The
coupling constants of the hyperons to the vector mesons
at saturation are determined from SU(6) symmetry

1

2
g!⇤ =

1

2
g!⌃ = g!⌅ =

1

3
g!N ,

1

2
g⇢⌃ = g⇢⌅ = g⇢N , g⇢⇤ = 0 . (7)

The coupling constants of the hyperons to the � meson
at saturation are determined by fitting the ⇤ hyperon
optical potential for SNM

U
N

⇤ (⇢) = g!⇤!0 +
X

R

�g�⇤�0 , (8)

to results obtained from lattice calculations (In-
oue 2019a,b), reproducing the following potentials:
U

N

⇤ (⇢0) = �30 MeV, U
N

⌃ (⇢0) = +30 MeV, and
U

N

⌅ (⇢0) = �14 MeV. They correspond to the follow-
ing coupling values at saturation: g�⇤/g�N = 0.6105,
g�⌅/g�N = 0.3024, and g�⌃/g�N = 0.4426.
For a uniform magnetic field locally pointing in the

z-direction, B = Bẑ, the Fermi energy of a charged
baryons and leptons, respectively, becomes (Broderick
et al. 2000)

E
⇤
b
=
q

k
2
zb

+M
⇤2
b

+ 2⌫|Qb|B , (9)

El =
q

k
2
zl
+m

2
l
+ 2⌫|Ql|B , (10)

where the baryon e↵ective mass is M⇤
b
= Mb � g�(⇢b)�.

The quantity ⌫ =
⇣
n+ 1

2 �
1
2

q

|q|�z

⌘
= 0, 1, 2, ... indicates

the Landau levels, n is the orbital angular momentum
quantum number, and �z the Pauli matrix. The highest
value of ⌫ is obtained under the condition that the Fermi
momentum of each particle is real. This gives us

⌫max =

$
E

⇤2
b

�M
⇤2
b

2|Qb|B

%
,

⌫max =

$
E

2
l
�m

2
l

2|Ql|B

%
, (11)

for charged baryons and leptons, respectively.
With all baryons from the octet and leptons included,

the NS chemical-equilibrium conditions between di↵erent
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particles are

µb = µn = µ⌃0 = µ⌅0 ,

µp = µ⌃+ = µn � µe,

µ⌃� = µ⌅� = µn + µe,

µµ = µe . (12)

The (electric) charge neutrality condition is as follows:

⇢p + ⇢⌃+ = ⇢e + ⇢µ� + ⇢⌃� + ⇢⌅� . (13)

The EoS and equations of motion in the presence of a
magnetic field are discussed in the Appendix (A).

2.2. Quark matter

The MIT bag model has been extensively used to de-
scribe quark matter in NSs. In the original description
(Farhi & Ja↵e 1984; Chodos et al. 1974; Freedman &
McLerran 1978), quarks are considered to be free inside
a bag and thermodynamic properties are simply derived
from a free Fermi gas model. The vBag model (Klähn
& Fischer 2015), a modified version of the bag model,
was introduced as an e↵ective model for studying astro-
physical processes. It is preferred over the simple bag
model because it takes into consideration D�SB as well
as repulsive vector interactions. The repulsive vector
interaction is important as it permits hybrid stars to
achieve the 2 M� maximum mass limit (Cierniak et al.
2018; Rather et al. 2021a,b; Lopes et al. 2021; Dexheimer
et al. 2021a; Kumar et al. 2022) and hence, satisfy the 2
M� mass constraints (Antoniadis & Freire et al. 2013;
Fonseca et al. 2021).
The Lagrangian density for the vBag model (with a

free Fermi gas of leptons) reads as

L =
X

f

[ f (i�µ@µ �mf �Bbag) f ]⇥H

�GV

X

f

( ̄f�µ f )
2 +

X

l

 l�µ(i@µ �ml) l , (14)

where u, d, and s quarks and e
� and µ

� leptons are
denoted by subscripts f and l, respectively. Bbag denotes
the bag constant and ⇥H is the Heaviside step function
which allows for the confinement/deconfinement of the
bag (Farhi & Ja↵e 1984). The vector interaction is
introduced via the coupling of vector-isoscalar meson
to the quarks with coupling constant GV . Quarks u, d,
and s with mass mu = md = 5 and ms = 100 MeV are
considered.
The total energy density and pressure are

EQ =
X

l

El +
X

f=u,d,s

EvBag,f �Bdec , (15)

PQ =
X

l

El +
X

f=u,d,s

PvBag,f +Bdec , (16)

where Bdec represents the deconfined bag constant, which
lowers the energy per particle, and thus, favors stable
strange matter. The energy density and pressure of a
single quark flavor are defined as

EvBag,f = Ef (µ⇤
f
) +

1

2
K⌫n

2
f
(µ⇤

f
) +B�,f , (17)

PvBag,f = Pf (µ
⇤
f
) +

1

2
K⌫n

2
f
(µ⇤

f
)�B�,f . (18)

The expressions for the free quark matter energy density
and pressure in the presence of a magnetic field are shown
in the Appendix A. The coupling constant parameter
K⌫ results from the vector interactions and controls the
sti↵ness of matter (Wei et al. 2019). In the present study,
the coupling constant parameter K⌫ is fixed at 4 GeV�2

for a three flavor configuration. The bag constant for a
single quark flavor is denoted by B�,f .
The e↵ective chemical potential µ⇤

f
of the system and

the quark density are defined as

µ
⇤
f
= µf �K⌫nf (µ

⇤
F
) . (19)

nf (µf ) = nf (µ
⇤) (20)

In order for the phase transition to occur at the same
chemical potential µB = µu + 2µd for all flavors, the
e↵ective bag constant Be↵ is defined in the vBag model
as

Be↵ =
X

f=u,d,s

B�,f �Bdec . (21)

Two di↵erent values of e↵ective bag constant are used
in this work B

1/4
eff

= 130 and 160 MeV, and in the final
discussion, 180 MeV is also considered.
In the presence of a magnetic field, the transverse

component of the momentum of all quarks is quantized
into Landau levels

Ef =
q
k
2
z,f

+m
2
f
+ 2⌫|Qf |B , (22)

For quark matter, we obtain the highest value of Landau
levels, similar to Eq. 11 as

⌫max =

$
E

2
f
�m

2
f

2|Qf |B

%
, (23)

The charge neutrality and chemical-equilibrium condi-
tions for the quark matter are

2

3
⇢u � 1

2
(⇢d + ⇢s)� ⇢e � ⇢µ = 0, (24)

µs = µd = µu + µe (25)

µµ = µe. (26)
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2.3. Mixed Phase

In this work we assume that the deconfinement phase
transition is of first order and that the quark-matter
surface tension is low enough for a mixture of phases to
appear. By means of a Gibbs construction (Glendenning
1992), charge neutrality is achieved globally, while the
hadronic matter is positively charged and quark matter
is negatively charged. Within chemical equilibrium, the
sti↵ness of the phase determines the extension of the
mixed phase in density.
The expressions for the chemical potential and pressure

within the mixed phase are defined as

µb,H = µb,Q; µe,H = µe,Q , (27)

and

PH(µb, µe) = PQ(µb, µe) = PMP , (28)

where the subscripts H, Q, and MP represent the
hadronic phase, quark phase, and the mixed phase, re-
spectively, all containing lepton contributions. From the
global charge conservation of the electric and baryon
charges, we have

�⇢Q + (1� �)⇢H ,

�⇢bQ + (1� �)⇢bH = ⇢bMP
. (29)

Here, � is the quark phase volume fraction given by
� = VQ/(VQ + VH) and (1 � �) is the hadronic phase
volume fraction. The charge densities in the hadronic
and quark phases are represented by ⇢Q and ⇢H .
The total energy density of the mixed phase then reads

as

EMP = �EQ + (1� �)EH , (30)

The mixed phase is characterized by a value of � which
varies from 0, the onset of mixed phase to 1, the onset
of the pure quark phase. The equations above determine
the properties of the mixed phase, and combined with
the equations for hadronic and quark phases, allow us
to calculate macroscopic properties for hybrid stars.

2.4. Electromagnetic Contribution

For the pure electromagnetic part, the Lagrangian
density is written as

L� = � 1

16⇡
Fµ⌫F

µ⌫
, (31)

where Fµ⌫ is the electromagnetic field tensor,
Fµ⌫=@µA⌫ � @⌫Aµ. Hence, the total Lagrangian density
in the presence of a magnetic field is

L = Lm + L� , (32)

where “m” stands for matter, including the hadronic,
quark, and mixed phases.
For the energy density and pressure in the presence of

a magnetic field B, the expressions can be obtained by
solving the energy-momentum tensor relation

T
µ⌫ = T

µ⌫

m
+ T

µ⌫

�
, (33)

where (Huang et al. 2010; Khalilov 2002)

T
µ⌫

m
= Emu

µ
u
⌫ � P (gµ⌫ � u

µ
u
⌫)

+MB

 
g
µ⌫ � u

µ
u
⌫ +

B
µ
B

⌫

B2

!
,

T
µ⌫

�
=

B
2

4⇡

 
u
µ
u
⌫ � 1

2
g
µ⌫

!
� B

µ
B

⌫

4⇡
. (34)

Here, M is the magnetization per unit volume and
B

µ
Bµ = �B

2 where Bµ = ✏
µ⌫↵�

F⌫↵u�/2 with ✏µ⌫↵� be-
ing the totally antisymmetric Levi-Civita tensor, andB =
|B|. The signature of the metric tensor is gµ⌫=diag(1, -1,
-1, -1). The field contribution to the energy-momentum
tensor takes the form T

µ⌫

�
= diag(B2

/2, B2
/2, B2

/2,
-B2

/2). For matter in the presence of a magnetic field,
the single particle energies of all charged baryons, quarks,
and leptons are quantized in the direction perpendicular
to the magnetic field.
The expressions for the matter energy density, pressure,

and baryon density obtained in the presence of a magnetic
field are shown in Appendix A. From Eq. 34, the total
energy density is

E = Em +
B

2

8⇡
. (35)

The total pressure in the perpendicular and the parallel
directions to the local magnetic field are

P? = Pm �MB +
B

2

8⇡
,

Pk = Pm � B
2

8⇡
, (36)

where the magnetization is calculated as

M = @Pm/@B . (37)

When we use TOV solutions for macroscopic stellar
properties, we only consider the pressure in the perpen-
dicular direction to determine the maximum possible NS
mass obtained with the magnetic field. When we use
solutions from LORENE, we do not account for magnetic
field e↵ects in the EOS, as this was shown not to modify
significantly stellar masses and radii (Chatterjee et al.
2015; Franzon et al. 2016).
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3. NS STRUCTURE

3.1. TOV

The properties of spherically static NSs are obtained
using the well-known TOV coupled di↵erential equations
given by (Tolman 1939; Oppenheimer & Volko↵ 1939)

dP (r)

dr
= � [E(r) + P (r)][M(r) + 4⇡r3P (r)]

r2

✓
1� 2M(r)

r

◆ , (38)

and
dM(r)

dr
= 4⇡r2E(r) , (39)

where M(r) represents the gravitational mass inside
radius r. The boundary conditions P (0) = Pc and
M(0) = 0 at the center and P (R) = 0 at the surface al-
low one to solve the di↵erential equations and determine
the properties of an NS for each given central pressure
Pc.

3.2. LORENE

For strong magnetic fields, the spherically symmetric
solutions obtained by solving the TOV equations lead
to an overestimation of the mass and underestimation
of the equatorial radius (when the pressure in the local
perpendicular direction to the magnetic field is applied
in all directions), and hence, cannot be used for deter-
mining stellar properties. For this reason, we use the
LORENE library (LORENE -; Chatterjee et al. 2015),
which solves the Einstein-field Maxwell’s equations with
an axisymmetric deformation, to determine the stellar
properties of magnetic NSs.
The maintenance of the divergenceless constraint

(r.B = 0) is one of the most di�cult problems in the
evolution of the relativistic magnetic field equations.
Since the LORENE library solves the coupled Einstein-
Maxwell field equations allowing for stable magnetized
stars, the divergenceless constraint is preserved implying
the no-monopole constraint.

The maximal-slicing-quasi-isotropic (MSQI) metric is
employed for polar spherical symmetry, which allows
stars to deform by letting the metric potentials rely on
the radial r and angular coordinates ✓ with respect to
the magnetic axis. By employing this approach, the field
is produced self-consistently by a macroscopic current,
which is a function of the stellar radius, angle ✓ with re-
spect to the symmetry axis, and dipole magnetic moment
µ for each EoS. This allows one to control the strength
of the magnetic field throughout the star either by the
magnetic dipole moment µ or the dimensionless current
function f0. In this work, we vary the former.

However, since the TOV equations are still widely used
(although incorrectly) to study the stellar properties of
stars with any value of the magnetic field, we have also
discussed the results from TOV equations in order to
quantify the error the use of TOV introduces in the mass
and deformation of stars.
To study the magnetic field e↵ects on the microscopic

EoS, we employ a chemical-potential dependent magnetic
field, fitted from the solutions of the Einstein-Maxwell’s
equations. The relation between the magnetic field and
the chemical potential depends on the magnetic dipole
moment and is given by the relation (Dexheimer et al.
2017)

B
⇤(µB) =

(a+ bµB + cµ
2
B
)

B2
c

µ , (40)

where µB is the baryon chemical potential in MeV and
µ is the dipole magnetic moment in units of Am2, so
as to produce B

⇤ in units of the electron critical field
Bc = 4.414⇥1013 G. The coe�cients a, b, and c taken as
a = �0.786 G2/(Am2), b = 1.24⇥ 10�3 G2/(Am2 MeV)
and c = �3.51 ⇥ 10�7 G2/(Am2 MeV2) are obtained
from a fit for the magnetic field in the polar direction of
a star with a baryon mass of 2.2 M�.
Fig. 1 shows the magnetic field profile as a function

of baryon density obtained for two EoSs with quark de-
confinement and mixed phase, one with a larger value
of e↵ective bag constant (dashed lines) and one with a
smaller value (full lines). They di↵er because the e↵ective
bag constant a↵ects how baryon density and chemical po-
tential relate, with the larger value reproducing a softer
quark matter EoS and lower density ⇢B = @P/@µB (at
a given µB or B

⇤) along the mixed phase for a given
value of dipole magnetic moment. Regardless, at large
densities, a dipole magnetic moment approximately de-
termines the strength of the magnetic field reproduced
(see Tab. 1), reaching either 1017 or 1018, depending
on the dipole magnetic moment. At low densities, the
magnetic field is less than one order of magnitude lower
than its maximum value, showing a large contrast with
ad hoc exponential profiles (Bandyopadhyay et al. 1997;
Dexheimer et al. 2012; Lopes & Menezes 2015).

We discuss how high the density can become inside
stars depending on dipole magnetic moment and EoS in
the next section.

4. RESULTS AND DISCUSSION

Fig. 2 displays NS EoSs with quark deconfinement in
the presence of the magnetic field profiles previously dis-
cussed for di↵erent values of the magnetic dipole moment.
The left panel shows EoSs with e↵ective bag constant
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Figure 1. Magnetic field profile as a function of baryon den-
sity for the EoSs calculated with di↵erent values of e↵ective
bag constant. Di↵erent values of the magnetic dipole moment
are shown.

Table 1. Magnetic field profile values at low and high densities
calculated for EoSs with di↵erent e↵ective bag constants and
dipole magnetic moments.

B1/4
e↵ = 130 MeV B1/4

e↵ = 160 MeV

µ (Am2) Blow Bhigh Blow Bhigh

5⇥1031 1.1⇥ 1017 3⇥ 1017 1.1⇥ 1017 3.2⇥ 1017

2⇥ 1032 4.5⇥ 1017 1.2⇥ 1018 4.5⇥ 1017 1.3⇥ 1018

B
1/4
e↵ = 130 MeV, while the right panel shows EoSs with

B
1/4
e↵ = 160 MeV. The solid black lines show the EoS at

µ = 0 Am2, which corresponds to the zero magnetic field
case. All curves include the contribution from matter
only (no pure electromagnetic part).
As already mentioned, a larger value of e↵ective bag

constant reproduces a softer quark matter and mixed
phase EoS (lower pressure). As a consequence, the onset
of the mixed and pure quark phases occurs at higher
energy densities and densities for the larger value of the
e↵ective bag constant (Rabhi et al. 2009; Menezes &
Providência 2003). These statements do not change in
the presence of magnetic fields.
For the magnetic dipole moment of µ = 5⇥ 1031 Am2,

which corresponds to a high-density magnetic field of ⇠
1017 G, for the lower e↵ective bag constant the hadronic
phase in the low-density region is not a↵ected by the
magnetic field, while the pure quark phase in the high-
density is slightly sti↵er than the EoS without magnetic
field. The mixed phase region extends to higher densities.
Similar behavior is observed for the EoSs with a higher
e↵ective bag constant. For the magnetic dipole moment
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M
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3
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2
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3
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MP
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Figure 2. EoS (transverse pressure vs. energy density) for
di↵erent values of dipole magnetic moment. The left (right)

panel shows the EoS with e↵ective bag constant B1/4
e↵ = 130

MeV (B1/4
e↵ = 160 MeV). The hadronic, mixed, and quark

phases are identified, respectively, by HP, MP, and QP.

of µ = 2⇥1032 Am2, which corresponds to a high-density
magnetic field of ⇠ 1018 G, both the hadronic phase and
pure quark phases become sti↵er. The mixed phase
region is even broader (than with lower µ). The pure
quark phase appears at very large densities, and hence,
will occupy a small part (if any) of NSs. For the larger
e↵ective bag constant, the onset of mixed phase and
pure quark phase is strongly a↵ected. This is because
at the densities at which it occurs the magnetic field is
much stronger. Thus, we see that the transitions to the
mixed phase and to the pure quark phase are a↵ected by
the inclusion of the magnetic field and depend upon its
strength. See Tab. 2 for the exact density of the phase
boundaries.
Fig. 3 shows the normalized particle population of

baryons, leptons, and quarks without and with magnetic
field e↵ects with di↵erent values of the magnetic dipole
moment. These plots correspond to the EoSs obtained
with the e↵ective bag constant B

1/4
e↵ = 130 MeV. For

µ = 0 Am2, the hadrons disappear in the mixed phase
and quarks appear smoothly. Even though hyperons are
included in the calculations, they are partially suppressed
by the appearance of the quark phase, a small amount
of ⇤ hyperons appears at density around 2.2 ⇢0, just
before the hadron-quark mixed phase starts, and a small
amount of ⌃� appears in the mixed phase. The density
of leptons, e� and µ

�, is significant in the hadron phase
but vanishes in the mixed phase. Since the quarks (d
and s) are negatively charged, there is no necessity for
leptons in the quark phase to maintain beta equilibrium
and charge neutrality conditions. For the lower value
of the magnetic dipole moment (when compared with
µ = 0), oscillations appear in the particle population of
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Figure 3. Normalized particle fraction of baryons, leptons,
and quarks as a function of normalized baryon density for the
e↵ective bag constant B1/4

e↵ = 130 MeV without magnetic field
(a) and with magnetic field with di↵erent magnetic dipole
moments, µ=5⇥1031 Am2 (b) and µ=2⇥1032 Am2 (c).
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Figure 4. Same as Fig. 3 but with e↵ective bag constant
B1/4

e↵ = 160 MeV.

charged particles, which arise due to the Landau levels.
With the increasing density, charged particles (especially
leptons) are enhanced, as seen in the Fig. 3(b). As
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Figure 5. Mass-radius diagram for hybrid stars with e↵ec-
tive bag constant B1/4

e↵ = 130 shown for di↵erent values of
magnetic dipole moment. The left panel shows results ob-
tained using the LORENE library, while the right panel shows
solutions from TOV. Re and Rp represent the equatorial and
polar radii of the star. Recent constraints on mass and radius
are also shown (Abbott et al. 2020; Demorest et al. 2010;
Antoniadis & Freire et al. 2013; Cromartie & Fonseca et al.
2019; Miller et al. 2019; Riley et al. 2019; Miller et al. 2021;
Riley et al. 2021).

already discussed, the density at which the mixed phase
appears and the density range of the mixed phase increase
with larger values of µ. The hyperons are suppressed
due to an increase in the proton density (Broderick et al.
2002). These e↵ects are enhanced in magnitude for the
larger value of the magnetic dipole moment, as seen in
Fig. 3(c).
Fig. 4 also shows the populations of baryons, leptons,

and quarks but now with a larger e↵ective bag constant
B

1/4
e↵ = 160 MeV. Similar to Fig. 3, some of the hyperons

appear just before the onset of mixed phase and some
after, all being suppressed for larger dipole magnetic
moments. As the magnetic dipole moment increases, the
lepton fraction is enhanced to the point that a small
number of leptons extends into the pure quark phase. For
higher values of the magnetic dipole moment, the mixed
phase region extends up to 7⇢0. In the mixed phase, the
abundance of u-quarks is found to be enhanced, while
those of d and s quarks remain practically the same.
Fig. 5 shows the mass-radius diagram for the hybrid

stars obtained for the e↵ective bag constant B1/4
e↵ = 130

MeV without a magnetic field and with magnetic field
calculated for di↵erent values of the magnetic dipole
moment. The left panel shows the results obtained
from solving Einstein and Maxwell’s equations with an
axisymmetric deformation (LORENE library), while
the right panel displays the results using solutions from
spherically symmetric TOV equations. For µ = B = 0
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Figure 6. Same as Fig. 5 but showing only the equatorial
radius for B1/4

e↵ = 160 MeV.

Table 2. Normalized baryon density phase boundaries: The Be-
ginning and End of the mixed phase for the EoSs calculated with
di↵erent e↵ective bag constants and dipole magnetic moments.

B1/4
e↵ = 130 MeV B1/4

e↵ = 160 MeV

µ (Am2) ⇢beg/⇢0 ⇢end/⇢0 ⇢beg/⇢0 ⇢end/⇢0

0 2.32 5.63 3.04 6.27

5⇥ 1031 2.35 5.78 3.08 6.38

2⇥ 1032 2.47 6.07 3.21 6.75

they coincide. Without a magnetic field, the maximum
mass produced is 2.13 M� at a radius of 12.6 km. The
radius of the canonical mass, 1.4 M� is around 13
km, which satisfies the radius constraints from PSR
J0030+0451 by NICER (Miller et al. 2019; Riley et al.
2019). The recent NICER constraint on the radius of the
2 M� pulsar J0740+6620 NS is also satisfied (Miller et al.
2021; Riley et al. 2021). Maximum mass constraints
and constraints from LIGO/VIRGO are also satisfied
(Abbott et al. 2017, 2018).

For the results obtained using the LORENE library,
the deformation present due to the poloidal magnetic
field makes the star oblate. Because of the deformation
present, the equatorial radius, Re, and the polar radius,
Rp, of the star are di↵erent and change with the increase
in the magnetic field strength. Since the TOV equations
are used for the spherically symmetric stars, the equato-
rial and the polar radii are equal and remain so in the
vicinity of the magnetic field.
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Figure 7. Same as Fig. 5 but showing only the equatorial
radius for B1/4

e↵ = 180 MeV.

With increasing magnetic dipole moment, the mass
and radius of entire stellar sequences increase. For
µ = 5 ⇥ 1031 Am2, which corresponds to a magnetic
field of 3 ⇥ 1017 G in the center of the maximum-mass
star, the equatorial radius of low-/intermediate-mass
stars obtained using the LORENE library di↵ers signifi-
cantly from the radius obtained from TOV, 0.6 km for
the canonical mass when compared with 0.1 km for the
maximum mass. For µ = 2 ⇥ 1032 Am2, which corre-
sponds to a magnetic field of 1.2 ⇥ 1018 G in the center
of the maximum-mass star, both the radius and mass
of all stars from the sequence obtained using LORENE
di↵er significantly from the values obtained from TOV.
The di↵erence (when compared to the equatorial radius)
is 0.7 km for the canonical mass and �0.2 km for the
maximum mass (with the minus meaning that now TOV
gives the larger radius). In the case of TOV, because
of the required spherical symmetry, the absence of the
Lorentz force does not enlarge the equator of less mas-
sive stars that possess a softer EoS, instead, the excess
magnetic energy that would deform the star is added
to the mass, which becomes unphysically large. For the
results with the LORENE library, we can see that at the
maximum mass of the star, the equatorial and the polar
radius almost overlap each other, indicating almost no
deformation of the star.
Fig. 6 also displays the mass-equatorial radius profiles

for hybrid stars but with e↵ective bag constant B1/4
e↵ =

160 MeV. For µ = 0 Am2, the maximum mass obtained
lowers to 2.02 M� with corresponding radius of 12.5 km
(when compared with Fig. 5). The equatorial radius at
the canonical mass is 12.68 km. Our results are still
in agreement with NICER, LIGO/VIRGO, and mass
constraints. Using LORENE, as the magnetic dipole
moment increases, the maximum mass increases more

than for the previous e↵ective bag constant considered.
The equatorial radius of the whole sequence also increases
more. The solutions from TOV, do not depend as much
on the e↵ective bag constant, and in this case, are farther
from reproducing low-/intermediate mass results from
LORENE. A di↵erence of around 0.4 km is observed
in the radius at the canonical mass and �0.3 for the
maximum mass with measurements from LORENE and
TOV. This implies that the di↵erence between the two
approaches depends on the EoS (particle composition and
interactions) and the mass of the star we are calculating
the deformation for.
Table 3 shows the maximum mass, corresponding ra-

dius, canonical mass radius, and canonical mass di-
mensionless tidal deformability obtained at di↵erent
values of the magnetic dipole moment using both the
LORENE library and TOV solutions. For the LORENE
library, the radius shown in the table corresponds to
the equatorial radius. Without a magnetic field, the
dimensionless tidal deformability for the canonical mass
satisfies the constraints from GW170817, ⇤̃ < 800
(B1/4

e↵ = 160 MeV) and the recently observed GW190814

data, ⇤1.4 = 616+273
�158 (B1/4

e↵ = 130 and 160 MeV). This
constraint from GW190814 data is obtained by consid-
ering its secondary component to a supermassive NS
(Abbott et al. 2020).

To further verify our results, we calculate the deconfine-
ment phase transition using the e↵ective bag constant of
B

1/4
e↵ = 180 MeV. Both the publicly available LORENE

and spherically symmetric TOV equations are used to
produce the mass-radius profiles and analyze the dif-
ferences in the stellar properties. Fig. 7 displays the
mass-equatorial radius diagram for 180 MeV e↵ective
bag constant for di↵erent values of the magnetic dipole
moment. For µ = 0 Am2 case, the maximum mass and
the canonical mass radius for the hybrid star configu-
ration obtained is 1.86 M� and 11.94 km, respectively.
The canonical radius is 12.07 km. In this case, the max-
imum mass is not high enough to fulfill modern mass
constraints. For larger dipole magnetic moments, there
is a large increase in mass (than the other e↵ective bag
constants) using LORENE and the radii, particularly for
low-/intermediate mass stars, become very large. This
reinforces the results we discussed above.

5. SUMMARY AND CONCLUSIONS

We study the e↵ect of strong magnetic fields on the
phase transition between baryons and quarks in the core
of NSs. For this purpose, we use the widely known DD-
RMF model with the DD-MEX parameter set, which
o↵ers enough flexibility to meet both nuclear and astro-
physical constraints. The hyperon couplings are deter-
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Table 3. Maximum Mass, Maximum mass Equatorial Radius,
Canonical mass radius, and Canonical mass’ dimensionless tidal
deformability of hybrid stars obtained with di↵erent e↵ective
bag constants and magnetic dipole moments.

Using LORENE and B1/4
e↵ = 130 MeV

µ (Am2) Mmax Rmax R1.4 ⇤1.4

0 2.13 12.64 13.01 879.54

5⇥1031 2.16 12.67 13.73 1223.98

2⇥1032 2.20 12.78 13.96 1276.95

Using TOV and B1/4
e↵ = 130 MeV

0 2.13 12.64 13.01 879.54

5⇥1031 2.18 12.66 13.13 956.02

2⇥1032 2.33 12.98 13.26 1236.42

Using LORENE and B1/4
e↵ = 160 MeV

0 2.02 12.53 12.68 700.94

5⇥1031 2.10 12.64 13.46 946.38

2⇥1032 2.19 12.56 13.86 1268.99

Using TOV and B1/4
e↵ = 160 MeV

0 2.02 12.53 12.68 700.94

5⇥1031 2.15 12.56 12.97 923.13

2⇥1032 2.29 12.89 13.39 1194.26

Using LORENE and B1/4
e↵ = 180 MeV

0 1.86 11.94 12.07 472.26

5⇥1031 1.94 11.87 12.47 567.22

2⇥1032 2.08 12.07 13.27 976.83

Using TOV and B1/4
e↵ = 180 MeV

0 1.86 11.94 12.07 472.26

5⇥1031 2.01 11.82 12.10 532.06

2⇥1032 2.19 12.19 12.92 872.23

mined from SU(6) symmetry. For the quark phase, we
use the vBag, with the construction of a mixed phase,
which allows describing strange hybrid NSs that achieve
the 2 M� limit. Several values of the e↵ective bag con-

stant, B1/4
e↵ = 130, 160, 180 MeV, are considered.

To study magnetic field e↵ects on the EoS, a physically
motivated profile is applied, which depends quadratically
on the chemical potential. As a consequence, the profile
as a function of density depends on the EoS around the
phase transition, and it is di↵erent for di↵erent e↵ective
bag constants. At large densities, the magnetic field
approximately only depends on the magnetic dipole mo-
ment, reaching 1018 G for the largest magnetic dipole

moment studied, µ = 2 ⇥ 1032 Am2. Overall, the EoS
sti↵ens in the presence of magnetic fields, but the e↵ects
are stronger in the mixed phase, which is also wider (in
density and energy density) and takes place at larger
densities. The e↵ects are stronger for larger magnetic
dipole moments and e↵ective bag constants. The hy-
perons, which appear around the onset of the mixed
phase are suppressed by the magnetic field (due to an
increased proton density). Oscillations appear in the
particle population of charged particles, which arise due
to the Landau levels. Overall, the population of charged
particles (especially leptons) is enhanced. The popula-
tion of the u-quark is enhanced, when compared with
the other quarks.
The LORENE library is used to calculate stellar prop-

erties of NSs that present strong magnetic fields, and are
therefore not spherically symmetric. However in order
to quantify the anisotropy, we also use solutions from
the spherically symmetric TOV equations, and discuss
the di↵erence. For µ = B = 0 they of course coincide.
In this case, the maximum mass produced with e↵ective
bag constants B1/4

e↵ = 130 and 160 MeV, 2.13 and 2.02
M�, respectively, satisfy the mass and radius constraints
from various measurements.
Using the LORENE library, the poloidal magnetic

field turns NSs oblate, increasing the equatorial radius.
While the mass and radius of all stars of a family are
modified by the magnetic field, this is not the case for
TOV, in which case just massive stars become larger and
their masses become unphysically large. This qualitative
behavior is independent of the e↵ective bag constant.
Quantitatively, the e↵ects of the magnetic field have a
greater e↵ect on the mass and radii of the entire family
of stars described by lower e↵ective bag constant (softer
EoS) using LORENE. Using TOV, the e↵ects of the
magnetic field do not depend as much on the e↵ective
bag constant. This means that, as discussed in detail
for the first time in this paper, the di↵erence between
anisotropic and isotropic general-relativity solutions de-
pends on the EoS and mass of the star we are calculating
the deformation for.
Interestingly, for some fixed stellar masses, the di↵er-

ence in radius between LORENE and TOV is larger for
lower values of µ and B. This points to the fact that
TOV should not be used to study strongly magnetized
stars even for lower values of dipole magnetic moment.
Overall, the canonical radius is always smaller for TOV,
and the di↵erence increases with e↵ective bag constant.
For the radius of the maximum-mass star, TOV can
have smaller (lower µ) or larger (larger µ) radius than
LORENE. The maximum mass of the sequence is always
too large for TOV, the di↵erence increasing with µ and
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e↵ective bag constant. In addition, as TOV does not in-
volve the solution of Maxwell’s equations in the presence
of magnetic fields, it implies the erroneous existence of a
magnetic monopole.
Future extensions of this work include adding a crust

(see Ref. (Wang et al. 2022) for a discussion of mag-
netic field e↵ects on the neutron-star crust), the e↵ects
of temperature, fast rotation, and anomalous magnetic
moment (AMM) of baryons, as well as exploring di↵erent
parametrizations of the models that allow for smoother
phase transitions. We also intend to use our EoSs in
numerical relativity simulations of merging binary NSs,
as these are the key to learning about the physical pro-
cesses involved in events such as GW170817. Magnetic
fields, in particular, are known to play an important
role in post-merger evolution, fueling relativistic jets,
and shaping electromagnetic counterpart signals (Ciolfi

& Rezzolla 2013; Giacomazzo et al. 2015; Ciolfi 2020;
Palenzuela et al. 2021; Ruiz et al. 2021).
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APPENDIX

A.

Within the relativistic density-dependent mean field (DD-RMF) model, the equation of motion for baryons obtained
by applying the Euler Lagrange equations to the Lagrangian density (Eq. 1) is written as
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where the rearrangement term due to the density dependence of the coupling constants is
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The equations of motion for the meson fields are
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where the total scalar density ⇢s, baryon (vector) density ⇢b, and isovector density ⇢3 are given as
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With the above equations, the expressions for the energy density and pressure are
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where E
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=
p
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2
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and El =
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l
. The rearrangement term

P
R
(⇢b) contributes to the pressure only.

The expressions for the total charged baryon, uncharged baryon, and lepton energy densities in the presence of a
magnetic field become

Ecb =
|qcb|B
4⇡2

⌫maxX

⌫=0

r⌫ ⇥
"
k
cb

F
E

cb

F
+ (M⇤2

cb
+ 2⌫|qb|B) ln

 
k
cb

F
+ E

cb

Fp
M

⇤2
cb

+ 2⌫|qcb|B

!#
,

Eub =
1

8⇡2

"
k
ub

F
(Eub

F
)3 + (kub

F
)3Eub

F
�M

⇤4
ub

ln

 
k
ub

F
+ E

ub

F

M
⇤
ub

!#
,

El =
|ql|B
4⇡2

⌫maxX

⌫=0

r⌫ ⇥
"
k
l

F
E

l

F
+ (m2

l
+ 2⌫|ql|B) ln

 
k
l

F
+ E

l

Fp
m

2
l
+ 2⌫|ql|B

!#
. (A.6)

The scalar and vector density for a given charged baryon cb, uncharged baryon ub, and lepton is as follow (Broderick
et al. 2000)
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where r⌫ is the Landau degeneracy of ⌫ level. For hadronic matter, the spin degeneracy is 2 for all Landau levels,
except for the ground state, ⌫ = 0, in which case it is 1. kcb,ub,l

F
represents the Fermi momentum of charged baryons,

uncharged baryons, and leptons, respectively. The pressure in the presence of a magnetic field is obtained from the
energy density as

Pm =
X

i
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X

b

⇢
v

b
� Em , (A.8)

where the last equality is obtained using charge neutrality and �-equilibrium conditions. For quark matter, the presence
of the magnetic field in the energy density and pressure modifies the first term of Eq. (17) as
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The quark density in presence of a strong magnetic field is
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where M
i

⌫
=
p
m

2
i
+ 2⌫|qi|B. The factor gi represents the degeneracy of ith particle, which is 6 for quarks and 2 for

leptons, except for the zeroth Landau level, in which case it is 3 and 1, respectively. The baryon density ⇢b is defined
as ⇢b =

P
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⇢q/3 and
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http://www.lorene.obspm.fr

Lugones, G., & Grunfeld, A. G. 2017, Phys. Rev. C, 95,

015804, doi: 10.1103/PhysRevC.95.015804

Lugones, G., Grunfeld, A. G., & Al Ajmi, M. 2013, Phys.

Rev. C, 88, 045803, doi: 10.1103/PhysRevC.88.045803

Makishima, K., Enoto, T., Hiraga, J. S., et al. 2014, Phys.

Rev. Lett., 112, 171102,

doi: 10.1103/PhysRevLett.112.171102

Mallick, R., & Schramm, S. 2014, Phys. Rev. C, 89, 045805,

doi: 10.1103/PhysRevC.89.045805

Marquez, K. D., Pelicer, M. R., Ghosh, S., et al. 2022, Phys.

Rev. C, 106, 035801, doi: 10.1103/PhysRevC.106.035801

Maruyama, T., Chiba, S., Schulze, H.-J., & Tatsumi, T.

2007, Phys. Rev. D, 76, 123015,

doi: 10.1103/PhysRevD.76.123015

Menezes, D. P., & Providência, C. 2003, Phys. Rev. C, 68,

035804, doi: 10.1103/PhysRevC.68.035804

Mereghetti, S., Pons, J. A., & Melatos, A. 2015, Space Sci.

Rev., 191, 315, doi: 10.1007/s11214-015-0146-y

Miller, M. C., et al. 2021, The Astrophys. Jour. Lett., 918,

L28, doi: 10.3847/2041-8213/ac089b

Miller et al., M. C. 2019, Astrophys. J., 887, L24,

doi: 10.3847/2041-8213/ab50c5

Nambu, Y., & Jona-Lasinio, G. 1961a, Phys. Rev., 122, 345,

doi: 10.1103/PhysRev.122.345

—. 1961b, Phys. Rev., 124, 246,

doi: 10.1103/PhysRev.124.246
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