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Axion effects in the stability of hybrid stars
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We investigate the effects of including strong charge-parity (CP) violating effects through axion
fields in the microscopic equation of state of massive hybrid neutron stars. We assume that their
cores contain deconfined quark matter and include the effects of axions via an effective 't Hooft
determinant interaction. The hadronic crusts are described using different approaches in order to
make our results more general. We find that the presence of axions stabilizes massive hybrid neutron
stars against gravitational collapse by weakening the deconfinement phase transition and bringing
it to lower densities. This enables to reproduce hybrid neutron stars in agreement with modern

astrophysical constraints.

Recent developments in the field of observational as-
tronomy made possible through gravitational wave inter-
ferometers, along with the Neutron Star Interior Compo-
sition Explorer (NICER) [1-5] have played a key role in
providing tight constraints on neutron star (NS) masses
and radii. Consequently, the equation of state (EoS),
which is the most important ingredient in the charac-
terization of strongly interacting dense matter, has also
been tightly constrained. Now that the field of view is
being narrowed down, we need powerful tools to micro-
scopically study the properties of massive NSs and, by
doing that, explore the dense region of the Quantum
Chromodynamics (QCD) phase diagram, which cannot
be explored with current state of the art terrestrial ex-
periments and lattice QCD simulations.

The axion has long been considered as a prime con-
stituent of cold dark matter [6-8]. For a recent review,
see e.g., Ref. [9] and references therein. The QCD ax-
ion and axion-like particles that are predicted to exist
in extensions of the standard model of particle physics
are assumed to be an extremely light pseudo Nambu-
Goldstone boson, which couples very weakly to standard
hadronic matter [10, 11]. The concept of axions origi-
nated as the most appropriate solution to the problem
of violation of combined symmetries of charge conjuga-
tion and parity (charge-parity, CP) in QCD [12, 13] and,
since then, it has been associated with various strongly
interacting phenomena. The particular motivation for
studying the effects of axions on stellar objects (including
massive NSs) comes from the idea that they could take
part in energy transport, and thus affect their thermal
evolution [14-19]. Axions, as prime dark matter candi-
dates, may also influence neutron star properties due to
their possible continual accumulation and by their grav-
itational capture during stellar formation. Hence, NSs
may contain a substantial amount of dark matter and,
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in particular, dark matter in the form of axions. Dark
matter in the form of self-interacting bosonic particles
has been studied recently in connection to several prop-
erties of neutron stars [20], and it was shown that this
can affect their maximum mass and tidal deformability.
Axions, as bosons, are expected to share many of those
properties and, hence, lead to similar effects. Changes in
neutron-star composition affect the EoS, thus influencing
stellar stability, central density, and radius. This is the
subject we explore in the present paper, where we also
consider different fermionic descriptions and interactions.
The QCD axion has been recently studied in a hot and
magnetized medium in the context of the Nambu-Jona-
Lasinio (NJL) model for quark matter [21]. The NJL
model has been extensively used in the similar context
of spontaneous CP violation [22—-27]. It incorporates the
effects of axions via an effective 't Hooft determinant in-
teraction between the quarks [28, 29]. In our case, we are
dealing with a much smaller energy scale than the axion
symmetry breaking energy (of the order of the scale in
grand unified theories, ~ 10*® GeV) and, hence, we can
safely take the axion field a to be in its vacuum expec-
tation value. Thus, the Lagrangian density of the three
quark flavor NJL model, including the CP violating ef-
fects [30] through axion fields, can be expressed in the
following form for a quark of flavor j = u, d, s:

8
L =1 (W‘au - m%) Y+ G [(@‘Ab%)g
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o (dyins\'ay)”| = K {7 det [0y (1497) )]
e det [4; (1= 97) 3] } - Gv (b770s)", (1)

where the first, second and last terms are the usual
NJL-type ones for the quarks, including scalar, pseu-
doscalar and vector interaction terms. 1; are the Dirac

fields for the quarks, v* the Dirac matrices, m} the
current quark masses, A’ the Gell-Mann matrices, and
Gs and Gy are, respectively, the coupling constants
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for the scalar/pseudoscalar and the vector interactions.
The third term in Eq. (1) represents the axion contribu-
tion, i.e., the interaction between the axion field a and
the quarks (with strength K'), through a chiral rotation
by the angle a/f,, f. being the axion decay constant.
Within the mean-field approximation, we can effectively
replace the interactions with corresponding condensates.

Since we are interested in studying axion effects on
the stability of fully evolved hybrid NSs, which are equi-
librated with respect to the weak force, several conditions
can be imposed. These are effectively zero temperature
(T = 0), electric charge neutrality, meaning the number
densities for the quarks up, down, and strange and for the
electron should satisfy %nu - % (ng +ns) —ne = 0, along
with the condition of S-equilibrium with a free Fermi gas
of electrons (pe = —pg = —(py — pia)), and no constraint

on strangeness (ug = 0), yielding p, = 42 + 244, and

—_ kB 1

Ha = ps = 5 — gu@, where py, p1d, ps, and p. are the
chemical potentials for the quark flavors and electrons.
The independent chemical potentials for the baryons upg,
charged 11, and strangeness pg correspond to the con-
served quantities baryon number, electric charge, and
strangeness (or lack of in our case).

For such a system, the thermodynamic potential reads

Q=0Q,+2G, Z (O’? + 17?) + 4K <O’u0'd0'5 cos fg
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+1unats sin — | — 4K |cos — (uN40s + MuNs0d
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where o; = —(¢;1;) and 1; = (¢;iys1;) are the scalar
and pseudoscalar quark condensates, respectively, and
n=3,;n;=>3 <’¢;’l/}j> is the total quark number den-
sity. The quark contribution Q, in Eq. (2) is given by

o= | [ [ () o
J A J

F

where B = V&2 4 307 with M7 = /2% 1 Mg, °

denoting the constituent quark masses. MJ and MJ,
are the scalar and pseudoscalar contributions of the con-
stituent mass, given by the gap equations

a
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where j, k,1 = u,d, s (or cyclic permutations), ji; = p; —
2Gyn is the effective chemical potential, A is the ultravi-

olet momentum cutoff and k%, = 1/ i;2 — (M7)2 ©(yi;? —

(M7)?%) the Fermi momentum.

From the thermodynamic potential given by Eq. (2),
we can now find the physical values for the condensates
0j, 1, and n by solving the appropriate gap equations
[219)

= 92 _ g—g = 0, which also depend on the vac-

do; ~— On;
uum exprgctation value of the axion background field a.
Putting those physical values back in Eq. (2), we ob-
tain the effective thermodynamic potential at finite quark
chemical potential Q(a, ). The normalized thermody-
namic potential is then defined by subtracting the vac-
uum value, Qn = Q(a, u) — Q(a,0). The total pressure,
energy density, and baryon n4umber density are, respec-
tively, given by p = —QN—l—lg—Q €= QN—f—Zj ujnj+fTQ2

P
3
and np = %Zjnj =35 (k}‘;g—l— kL™ + kf;B)

It is known, however, that finding an EoS describing
stable pure quark matter can be a challenging task, a
problem that is aggravated with the introduction of a re-
pulsive vector interaction [31]. This stems from the fact
that stable pure quark matter must be more bound than
iron at nuclear saturation density, which becomes more
difficult for stiffer (larger p(e)) EoS’s. For this reason,
one needs to consider a hadronic crust together with the
quark matter core. In this work, we will present results
for the relativistic NL3,,, and CMF,, ,,« models. Both of
them are in agreement with standard saturation proper-
ties and astrophysics observations (see regions shown in
Fig. 1 for the latter). The NL3,,, [32-34] is a nucleonic
Walecka type model that contains the fewest ingredients
that allow hadronic matter to be in agreement with nu-
clear and astrophysical observations, with wp referring
to a mixed vector-isovector interaction that allows to re-
produce smaller stars with lower tidal deformabilities, as
measured by LIGO-Virgo [1]. The Chiral Mean Field
CMF,, + model [35, 36] accounts for chiral symmetry
restoration, while also being in agreement with nuclear
and astrophysical observations. w?* refers to a higher-
order vector interaction that allows to reproduce NSs
with mass M > 2 Mgy, including hyperon degrees of
freedom. The complete EoSs also contain separate treat-
ments at very low density to account for the presence
of nuclei. To describe nuclei, the CMF model includes
a unified EoS by Gulminelli and Raduta [37] with effec-
tive Skyrme interaction of the type SkM proposed by L.
Bennour et. al. [38] and cluster energy functionals from
Danielewicz and Lee [39]. The NL3 includes the Baym-
Pethick-Sutherland (BPS) EoS [40] and a self-consistent
Thomas-Fermi approach with non-spherical pasta phases
[41]. The crust EoS’s utilized in this work are available
in the CompOSE repository [42-44].

Finally, the mass-radius relation for a family of spheri-
cal, isotropic, static (or slowly rotating) stars is obtained
solving the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions [45, 46]. In the numerical analysis discussed in
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FIG. 1. Results using the NL3,,, crust: mass-radius relation (a), compactness vs.

normalized central number density (b),

equation of state (c), and speed of sound vs. normalized baryon number density (d) for different values of vector coupling Gy
and the scaled axion field a/fq. The shaded regions are obtained from observational constraints from LIGO/Virgo (brown and

gray) and NICER (two different shades of green) data [50].

the following, we consider the parameters of our model
to be A = 631.4 MeV, G, = 1.835/A%, K = 9.29/A5,
my? = 5.5 MeV, and m§ = 135.7 MeV [47]. This set
of parameters is traditionally used in the literature. The
parameters are fixed by requiring that they satisfy exper-
imentally measured properties of relevant quantities, e.g.
the pion mass, the pion decay constant, the kaon mass,
and the ' meson mass. They are representative enough
to illustrate well-known features of the NJL model. The
more flexible parameters Gy and a are varied widely in
our analysis to study their effects on the various quan-
tities we compute. In particular, we analyze the cases
of a/f, = 0 and a/f, = 7, such that the results can be
shown in the absence of the axion effects and when these
effects play a large role. Also, since Gy has the same
dimension as G (~ 1/energy?), it is natural to consider
Gy to be proportional to G4, with the proportionality
(dimensionless) factor taken here as a free parameter.
We start with the (complete) NL3,,, model EoS for
the hadronic crust. In Fig. 1, we show (a) the obtained
mass-radius relation for different stellar families and cor-
responding behaviors for (b) the compactness C = M/R
(as a function of central baryon number density normal-
ized by the nuclear saturation value ng = 0.15 fm=3),
(c) EoS p(e), and (d) speed of sound squared c? = dp/ds

(as a function of baryon number density normalized by
the nuclear saturation value). The kinks in panel (a),
horizontal lines in panels (b) and (c), and ¢ = 0 in
panel (d) (calculated as the derivative of panel (c)) are
associated with a first-order phase transition between the
hadronic crust and quark core. As a result of the first or-
der phase transition, there are jumps in first derivatives
of the grand potential, such as number densities and en-
ergy density, which then manifest in the results shown in
Fig. 1. Stellar stability is guaranteed in the mass-radius
diagram (starting from low density, bottom-right) until
an extremum where the curve rotates counter-clockwise
with increasing central density. This can be derived
from the Sturm-Liouville equation for radial stellar os-
cillations [48]. From panel (a), accounting for the axion
field (through the non-zero ratio a/f,) allows for stable
branches of hybrid NSs to exist, something not trivial
when accounting for vector interactions Gy # 0. In our
work, increasing the value of the vector coupling allows
the EoS to support stars of higher masses. For value of
the ratio a/f, = m, we find stable stars with a maximum
mass M > 2 Mgy, for Gy = 0.2 G5 and Gy = 0.4 Gs.
Panel (b) of Fig. 1 shows the nature of the compactness
with varying values of Gy and a/f, using G = ¢ = 1.
For higher values of Gy, hybrid NSs are more compact,
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FIG. 2. Same as Fig. 1 but using the CMF,,, .4 crust.

which agrees with our observations from panel (a). The
difference is that for a/f, # 0 hybrid NSs are stable.

To better understand our findings described above, we
discuss the effect of Gy and a/f, # 0 on microscopic
properties, meaning the matter EoS. From panel (c) of
Fig. 1, the transition from the hadronic crust to the quark
matter core happens at higher energy densities ¢ and is
stronger (larger jump in e across the first-order phase
transition) for higher values of Gy. Increasing the ra-
tio a/ f, has the effect of bringing the transition towards
a smaller value of ¢ (for a specific Gy ), in addition to
making the jump in € smaller at the transition. Both of
these features are known to help with stellar stability, as
discussed in detail in Ref. [49]. In panel (d), we show the
nature of the square of the speed of sound ¢2. The mag-
nitude of ¢2 can be understood as a measure of stiffness
of the EoS. While Gy clearly turns the EoS stiffer, ac-
counting for the axion field does not modify the speed of
sound of quark matter away from the phase transition.
Nevertheless, it modifies significantly the phase transi-
tion region. The bump in ¢2 in the quark matter phase,
around n = 3.6 ~ 4.4 ng, happens when the s quark
starts to populate the system. Just before that, the speed
of sound is close to being constant.

In Fig. 2 we present our results obtained using a dif-
ferent model EoS for the hadronic crust. In this case
we choose the (complete) CMF,,, 4+ model and take the

values of Gy to be 0, 0.1, and 0.15 G,. The four panels
in Fig. 2 indicate the same quantities as Fig. 1. Look-
ing at the black full line of panel (d) for hadronic matter
only (when compared to panel (d) of the previous fig-
ure), it becomes clear that the CMF,,, ,,« model EoS is
very different from the NL3,,, model EoS. But, in spite
of that, all our conclusions from Fig. 1 still hold. We still
reproduce hybrid and stable 2 Mgy, stars (panel (a)),
with the difference that now such stars contain hyper-
ons in the hadronic crust and a much smaller quark core.
Larger values of Gy cannot be used in this case because
they would push the phase transition to densities not
reached inside NSs in the case of a/f, = 7. As a conse-
quence, the compactness of all the analyzed hybrid NSs
are now more similar (panel (b)). The energy density
jumps across the phase transition are now narrower and
take place at larger energy densities (panels (¢) and (d)).

In panel (a) of both Figs. 1 and 2, it can be seen that
we reproduce families of stars that fulfill all astrophysical
constraint shaded regions, which were shown in Fig. 1 of
Ref. [50] and extracted from LIGO/Virgo gravitational
wave observations [1] and NICER X-ray observations [2—
5]. The NICER regions, for both the observed low and
the large mass stars, appear in pairs because they include
results from two separate collaborations that perform in-
dependent analyses. The two LIGO-Virgo regions cor-
respond to two different approaches based on different



prescriptions to access the EoS in a model-independent
(to a degree) approach. Looking at the results derived
from a/f, # 0 (dashed lines), which are the ones that
reproduce stable hybrid NSs, the lower mass regions are
fulfilled by either pure hadronic stars (black full lines)
or hybrid NSs with Gy = 0. The issue is that the lat-
ter do not fulfill M > 2 Mgun, as observed for the pulsar
PSR J074046620 [51]. Because of that, we conclude that
within our framework, those are probably hadronic stars.
This result could be different had we used other hadronic
crust models. But, more interestingly, the higher mass
regions are fulfilled by both hadronic and hybrid NSs
with Gy # 0, which is a consequence of the large radius
range current observation constraints comprehend.

In this paper, we have presented how a combination of
repulsive quark interactions and the presence of a non-
vanishing axion condensate, both implemented at the
level of the NJL model, affect the structure and stability
of hybrid NSs. It has been known from recent studies (see
e.g. [52]) that in order to fulfill the constraints on the tidal
deformability for low mass NSs, M ~ 1.4 Mgy, a soft
FEoS is necessary. At the same time, to support NSs with
M ~ 2 Mgy, against gravitational collapse, a stiff EoS is
required for intermediate to high densities. Our results
support such softening-stiffing of the EoS (followed by a
phase transition to a stiff phase) within a thermodynam-
ical consistent approach, thanks to the combined effects
of vector interactions in the hadronic crust and the quark
core, and the axion field condensate. The appearance of

a “bump” in the speed of sound (as described above) can
produce observables results that could be measured by
LIGO/Virgo in the near future.

More specifically, the axion field modifies the quark
EoS mainly around the deconfinement phase transition
by weakening it and bringing it to lower densities, thus
allowing for a more extended region for stability in the
mass-radius diagram, as shown explicitly in our results
in Figs. 1(a) and 2(a). The axion field thus contributes
non-trivially to allow for branches with stable massive
hybrid NSs, which cannot be achieved by the effects of the
vector interaction alone. In particular, our results show
that for a magnitude of the axion field ratio a/f, = m,
stable stars with a maximum mass M > 2 Mg,, are
allowed for Gy = 0.2—0.4 G5. We expect that the results
we have presented in this paper to be complementary
to the recent studies concerning the effects of (bosonic)
dark matter to the structure of compact stars and help
in further understanding those effects.
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