1812.10013v3 [math.ST] 23 Jun 2022

arxiv

Submitted to Bernoulli
arXiv: arXiv:0000.0000

Optimal False Discovery Control of Minimax
Estimators

QIFAN SONG' and GUANG CHENGT

Two major research tasks lie at the heart of high dimensional data analysis: accurate parameter
estimation and correct support recovery. The existing literature mostly aims for either the best
parameter estimation or the best model selection result, however little has been done to un-
derstand the potential interaction between the estimation precision and the selection behavior.
In this work, our minimax result shows that an estimator’s performance of type I error control
directly links with its Lo estimation error rate, and reveals a trade-off phenomenon between the
rate of convergence and the false discovery control: to achieve better accuracy, one risks yield-
ing more false discoveries. In particular, we characterize the false discovery control behavior
of rate optimal and rate suboptimal estimators under different sparsity regimes, and discover
a rigid dichotomy between these two estimators under near-linear and linear sparsity settings.
In addition, this work provides a rigorous explanation to the incompatibility phenomenon be-
tween selection consistency and rate minimaxity which has been frequently observed in the high
dimensional literature.
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1. Introduction

Modern studies in the sciences collect huge data sets which include information of a
large number of potential explanatory variables, and then attempt to discover the possi-
ble association between these variables and the response of interest. For example, in the
genome-wide association study (GWAS), where researchers want to find which genetic
variants are associated with a trait, we collect high dimensional single-nucleotide poly-
morphism (SNP) arrays and then aim at finding the association between the trait and
SNPs.
For simplicity, we start with the normal means model, which is the simplest form of
high dimensional regression:
y=p+e¢, (1.1)

where y € R™, ¢ ~ N(0, I,), and § is a p,-dimensional regression parameter with p,, = n.
The parameter 3 is assumed to be sparse and has at most s,, nonzero entries. Throughout
this paper, we assume lim sup s,,/p, = ¢, where the constant ¢ € [0, 1). Note this sparsity
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setting includes both the classical strict sparse model, i.e., s,/p, — 0, and the linear
sparsity model, i.e., lim s, /p, € (0,1) (e.g.,[26]).

Given an estimator 3 , there are generally two types of evaluation on its performance:
one is the quantitative accuracy which is usually measured by Lo distance || — B;
another is the selection correctness, i.e., the difference between the two sparse models
induced by 8 and S. In the past decades, there is rich literature studying either estimation
accuracy (e.g., rate of convergence, minimax estimation) or selection behavior (e.g., false
discovery rate control, variable selection consistency, Hamming loss). But few research has
been conducted to understand the interplay between estimation accuracy and selection
behavior. It is not only of mathematical interest to investigate the relationship between
estimation and selection. One important practical question would be “can we find one
optimal estimation for the purpose of both accuracy estimation and correct selection?”.
The obtained statistical insights would also be beneficial to applied researchers who seek
decision making on the goodness of both estimation and selection in a certain way, e.g.,
when the risk is defined as some combination of estimation error and selection error.

The first objective of this work is to investigate the relationship between Lo conver-
gence rate and false discovery, or type I error, control. Variable selection of 3 can be
alternatively viewed as a multiple hypotheses testing problem

Hj:8;=0 foral j=1,...,p,.

In the literature of multiple testing problems, one usually aims to control and balance
type I and type II errors, such that one can make as many rejections as possible while
type I errors are still under control, in the sense of, e.g., bounded familywise error rate or
bounded false discovery rate (FDR [3]). For instance, [2, 6, 21] explored the optimality of
independent multiple testing procedure in terms of minimizing the sum of false positive
(rate) and false negative (rate) under certain asymptotic settings. These aforementioned
works help us to design inference procedures that pursue the greatest testing power
subject to limited type I errors. However, for researchers who care about both prediction
accuracy and model interpretability, a different task may arise, that is to pursue the
smallest estimation error subject to limited type I errors.

The most relevant work in the literature that established connections between the
convergence rate and false discovery control is done by [1]. It studied the convergence
of the Benjamin-Hochberg (B-H) estimator B(y,qn), where 31 = y; if H; is rejected by
Benjamin-Hochberg FDR control procedure [3] with targeted FDR level g,,. [1] proved
that if s,, € [log®n,n' %], ¢, > ~/logn and lim ¢, = ¢ < 1/2 for some &, > 0, then the
B-H estimator is sharply minimax, i.e.,

SUP(5 is s,,-sparse} EsllB = B(y, qn)|?

nl;rréo Rt =1, and
Ropy = inf sup Eg||8 = BII* = (2+ o(1))s, log(n/sn),

B {8 is Sp-sparse}

where the “inf” is taken over all estimators, the “sup” is taken over all possible true
parameters 5’s with at most s,, nonzero entries, and the little-o notation o(1) stands for
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some sequence converging to 0. In other words, we indeed have a good choice of estimator
B(y,~/logn), which guarantees a decreasing FDR and is also optimally accurate. Similar
results that show a connection between the FDR control and rate minimaxity can also
be found in [9] and [27].

Beyond these existing results, this paper aims to provide more general in-depth insight
of the interaction between accuracy and false discovery control. We investigate this matter
by figuring out the best achievable (i.e., minimax) type I error control behavior subject
to a pre-specified rate of convergence. The quality of type I error control can be naturally
measured by the number of false positive selections, and our main theorem establishes

the following “minimax-type” result for normal means problem:

-~

~ inf sup EFP(B)] = pnexp{—(0.5+o(1)) f,}, (1.2)
{Bis rate-v/sp fn} {8 is s,-sparse}

where FP(E ) denotes the number of false positives resulting from B , the “inf” is taken over
all estimators whose Lo convergence rates are no larger than /s, f,/n for some given
function f,, which may depend on n,p, and s,, and “<” represents the equivalency
in asymptotic order (refer to the Notation paragraph at the end of Section 1). The
above result (1.2) essentially reveals a trade-off between estimation accuracy and false
discovery control, that is, a more accurate estimator (i.e., a smaller f,,) can yield more
false discoveries and vice versa. The rationale behind this counter-intuitive result is that, a
good estimation requires a delicate balance between type I and type II errors. Aggressively
avoiding type I errors will inevitably increase the number of type II errors, and lead to
an inaccurate estimation; vice versa, an accurate estimation must tolerate the occurrence
of type I errors.

Note that the above minimax result can be re-phrased as follows: the best possible
convergence rate of 3, subject to that its average number of false discoveries is always
bound by d, is

~sup E|B - B|? = snlog (%)
B is sp-sparse

In the literature, various estimators achieve rate optimal convergence for the normal
means sequence model, i.e., their Ly convergence rate is of the order /s, log(p,/sn)
[1, 4, 10, 20, 22, 23, 35]. For such a class of rate minimax estimators, our general result
(1.2) implies that

inf sup E(FP) = pp(sn/pn) oW, (1.3)
{rate-minimax 3} {s,-sparse 5} ’

and we furthermore show that

inf sup FDR = (s,,/p,)" oW, (1.4)

{rate-minimax 3} {s,-sparse 5}

In above equations (1.3) and (1.4), the “inf” is taken over all estimators 3 whose Lo
convergence rate are smaller than (27s, log(p,/s,))'/? for some constant 7, i.e., 27 is
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the multiplicative constant of the convergence rate of B\ . Therefore, both minimax false
discovery number and minimax false discovery rate follow a polynomial of the sparsity
ratio. It is worth mentioning that (1.4) requires that 7 > 1 strictly, which excludes the
sharply minimax estimators (e.g., the B-H estimator). Therefore, our contribution on
characterizing the minimax FDR of rate minimax estimator is not an improvement over
existing work [1], but a valuable addition.

A toy simulation is conducted to verify the polynomial convergence speed for the
false discovery rate in the normal means models where n = p,, and s, = n'/? and all
nonzero B3;’s are set as [2log(n/s)]'/2. Note that this choice of magnitude of 3 represents
the most difficult case for minimax estimators to control false discovery (refer to our
discussion for Theorem 2.1). The rate minimax estimator (4.1) in Section 4 is used in the
simulation with tuning parameter value v = 2.1. Figure 1 plots the logarithm of estimated
FDR based on 100 independent simulations versus the logarithm of true sparsity ratio
log(s,/n). The plot displays a clear and strong linear trend with R? = 0.9882.

asymptotic performance of FDR

- R?=0.988

log(FDR)
-1.6 15
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log(sparsity ratio)
Figure 1. This figure plots the patter of FDR with respect to the sparsity ratio.

The analysis carried out in this paper enables us to characterize the best possible
type I error control behavior of rate optimal estimators (with suboptimal multiplicative
constant) according to the sparsity growth rate:

1. (Polynomial sparsity) If s, < p& for some a < 1, then rate minimax estimators,
at best, guarantee that there is no false discovery asymptotically (as long as its
multiplicative constant of Ly convergence is sufficiently large);
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2. (Near-linear sparsity) If s, /p, — 0 and log s, /logp, — 1, rate minimax estima-
tors, at best, guarantee that the false discovery rate decays to 0 at a polynomial rate
of s, /pn. However, under the worst-f scenario, its expected number of false posi-
tive selections diverges to infinite and its probability of committing false positives
converges (i.e., the familywise error rate) to 1.

3. (Linear sparsity) If s, = (p, for some fixed ¢ € (0,1), for any rate minimax
estimator, its false discovery rate is bound away from 0 and its number of false
discoveries tends to infinity, under the worst-g scenario.

As revealed by (1.3) and (1.4), the multiplicative constant matters. Under polyno-
mial sparsity, rate minimax estimators can guarantee no false discovery only when the
multiplicative constant scales up with «, and sharply minimax estimators (whose mul-
tiplicative constant is 2) never guarantee zero false discovery no matter how small the
a is (refer to Figure 2). But under near-linear sparsity, rate minimaxity estimators may
always yield false discoveries regardless of the multiplicative constant, and this finding
is consistent with existing results, e.g., [4, 14] showed that some Bayesian rate minimax
estimation procedure selects larger models than the true model. It is worth mentioning
that the near-linear sparsity setting, e.g., s, = pn/logpy,, is still a strict sparse setting
in the sense that the sparsity ratio tends to 0. R

In the literature, another common Lo convergence rate for g is v/s, log p,, which is
usually attained by model selection consistent estimators (e.g., soft or hard thresholding
estimators with threshold v/2logp,). This rate is referred as “suboptimal rate”, since
it is inferior to minimax rate under near-linear or linear sparsity. Interestingly, we show
that rate suboptimal estimators, regardless of the sparsity growth, are always capable to
achieve zero false discovery asymptotically (in mean or in probability), providing that
the multiplicative constant is greater than 2.

To compare the class of rate optimal and the class of rate suboptimal estimators: 1)
Under polynomial sparsity, two actually share the same rate but with potentially different
multiplicative constants. Hence they can achieve that same best possible type I error
control limit, as long as one is willing to compromise on larger multiplicative constants.
For example, the tuning parameter in a rate minimax estimation procedure needs to
be properly selected, such that the yielded multiplicative constant is adaptive to the
sparsity growth. 2) Beyond polynomial sparsity, the two become totally different in terms
of balancing estimation precision and type I error. Specifically, the suboptimal estimators
attain the best possible estimation accuracy subject to zero false discovery, while rate
optimal estimators can achieve strictly better estimation accuracy at the expense of worse
type I error control performance. In other words, under relatively denser sparsity regimes,
rate optimal and rate suboptimal estimators represent two different balancing strategies.
These asymptotic characterizations don’t directly apply to real applications, since one
can not determine the sparsity regime of a finite-sample data set. However, the insights
behind these theoretical results suggest that: for high dimensional problems where the
true models are likely to be very dense, researchers shall carefully choose rate optimal
or rate suboptimal estimators that best fits their research objectives. As an instance of
large true models, in Gene Regulatory Networks studies, it is usually believed that there
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are thousands of active genes interacting with each others (e.g., [34] selected 5,447 genes
among 56,000 genes, [16] selected 2,187 genes among 3,621 genes).

Our study of the relationship between Ly convergence and false discovery control is
further generalized to the high dimensional linear models:

y=XB+e, (1.5)

where X € R"*P~»_ the dimension p, is potentially much larger than the number of
observations n, and 8 is an s,-sparse parameter. In the literature, one usually performs
penalized estimation:

§ = axgminly = X3+ pe(5).

for some penalty function pe. Two typical examples are LASSO [28] (pe(8) = A 37", [B5])

and SLOPE [7] (pe(8) = A>°0", &1 (1—35q/2pn)|B(j)"), where the former is not adaptive
to unknown sparsity (i.e., it requires the knowledge of true s, to attain minimax rate),
and the latter one is adaptive to unknown sparsity. Compared with the normal means
models (1.1), there is usually a root-n difference between the convergence rates for the
two models, i.e., the minimax rate for regression models is /sy log(pn/sn)/n [19] under
proper regularity conditions. The column dependencies of design matrix X complicate
the analysis of false discovery control, and there are limited studies characterizing the
selection behavior for regression models: for instance, [26, 33] studied the relationship
between type I and type II errors along the LASSO regularization path. In terms of the
relationship between accuracy and false discovery control, to the best of our knowledge,
the only significant result is that the SLOPE estimator achieves almost sharply minimax
and ensures a decaying FDR [17, 27] under Gaussian design. Our paper shows that,
under Gaussian design and proper regularity of dimensionality, results (1.2), (1.3) and
(1.4) still hold, except for a root-n adjust on the convergence rate.

The second objective of this work is to understand the relationship between conver-
gence rate and model selection consistency. This particular research objective is moti-
vated by the observation that in the literature, most regression estimators can not achieve
rate optimality and selection consistency simultaneously, even under strict sparsity as-
sumption that s, /p, — 0. For example, under normal means models with known error
variance o = 1, the hard thresholding estimator is defined as 3; = yil(|yi| > t). When
t > (2log(n — s,))/2, it achieves selection consistency, but only attains suboptimal con-
vergence rate. When ¢ = /clog(n/s,) for some constant ¢, it obtains rate minimax
convergence [11], but will yields inconsistent selection under near-linear sparsity. Simi-
lar phenomenon occurs to the LASSO estimator as well. When the tuning parameter of
LASSO is of an order y/log p,,/n, LASSO leads to selection consistency but rate subopti-
mal estimation; when the tuning parameter is of a smaller order +/log(py,/sn)/n, LASSO
estimator is rate optimal [36], but inconsistent for variable selection under near-linear
sparsity.

One must be aware of that, false discovery control and model selection consistency,
although both measure the goodness of selection procedures, consider different domains of

1|ﬂ|(j) is the sorted descending value of |8;]’s.
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parameter space. The former is interested in all s,,-sparse 3’s regardless of the magnitudes
of its nonzero entries, while the latter is only interested in the s,-sparse 8’s whose nonzero
entries are greater than a certain minimal threshold (depending on n, s, and p,), i.e.,
the so-called the beta-min condition in the literature. Hence, selection consistency is not
a sufficient condition for zero false discovery. Our conclusion that rate optimal estimators
cannot guarantee zero false discovery uniformly for different sparsity levels (as long as
S = 0(pn)), doesn’t directly imply that, rate optimal estimators cannot guarantee model
selection consistency uniformly for different sparsity levels.

Our theoretical investigation reveals a general rule that for normal means models
(1.1): if an estimator possesses a certain monotone property (to be defined later), then
this estimator can never be both rate minimax and selection consistent uniformly over
all sparsity regimes. To be specific, this incompatibility occurs under near-linear and
linear sparsity. This explains that in the literature, researchers fail to prove selection
consistency for rate optimal estimators, since almost all the penalized estimators or
Bayesian estimators are monotone. Therefore, the best possible selection consistency
result for monotone rate optimal estimators is categorized as

(a) under polynomial sparsity, they can achieve selection consistency;

(b) under near-linear sparsity, they can achieve almost full model recovery [8], that is,

the number of false positives and false negatives

- — 0 in probability.
true model size

The above two research objectives, together, precisely depict the interplay and trade-
off between estimation convergence speed and selection correctness. Compared with the
aforementioned existing results, which studied specific estimators (i.e., B-H or SLOPE
estimator) within a narrower range of sparsity (e.g., polynomial sparsity), our work has a
more general scope that aims to understand the minimax false discovery performance of
estimators with different convergence speed, under various sparsity scenarios. In addition,
we make a subtle comparison of the false discovery control behavior between rate optimal
estimators and rate suboptimal estimators. Figure 2 in Section 2 summarizes what is
the best possible false discovery control performance of rate optimal and suboptimal
estimators under different sparse regimes for the normal means models, and delivers the
general insight that for rate minimax estimators, the difficulty of false discovery control
increases as sparsity ratio increases.

This paper is organized as follows. In Section 2, we investigate the relationship between
the rate of convergence and false discovery rate, and establish the minimax rate for the
number of false discoveries and the false discovery rate, for both normal mean models and
regression models with Gaussian random design. In Section 3, we establish the incompat-
ibility between rate minimaxity and model selection consistency for monotone estimators
under normal means models. Section 4 shows that the minimax rate discussed in Sections
2 can be achieved by adaptive estimators induced by Zle log(p/i)-penalization. Some
more discussion and remarks are provided in Section 5. All the proofs are provided in
the supplementary material.

Notation. We use £ C {1,...,p} to denote a model subset, and let |£| be the size of
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this model. For any vector f € RP and design matrix X € R™*P, 3, and X, denote the
sub-vector or submatrix corresponding to the model £. With slight abuse of the notation,
we use £(B) as the operator that extracts the model of 3, i.e., £(8) = {j; 8; # 0}. Denote
| 8]l min = ming, 4o |3;|, i.e., the minimum signal strength of 5. Let B(p,,, s,) = {8 € R~ :
I1B]lo < s} denote all s,-sparse vectors in the p,, dimensional space. For two sequences
of positive values {a,}2>; and {b,}>2,, a, > b, means that lim, a,/b, = 00, a, < b,
means 0 < liminf a, /b, < limsupa,/b, < oo, a, ~ b, means that lima, /b, = 1, and
an < b, means that limsup(a, —b,) < 0. Little o notation o(1) represents some sequence
converging to 0, and o™ (1) represents some positive sequence converging to 0.

2. Estimation Rate and False Discovery Control

In this section, we investigate the trade-off between type I error control behavior and rate
of convergence under both normal means models and linear regression models. Specif-
ically, we characterize false discovery control behaviors (including the number of false
discoveries and false discovery rate) of (sub-)optimal estimators under different sparsity
regimes. A general message is that an estimator can yield more type I errors if it possesses
a faster convergence rate.

2.1. Normal Means Models

We first illustrate our main results under normal means models y = 3 + ¢, where € ~
N(0,1,) and the true parameter 8 € B(n, s,). An estimator, denoted by g(-) € R", is
any function of y. It can be either an adaptive estimator, which does not require any
knowledge about the unknown sparsity s,, or a non-adaptive one which involves the
unknown s,. To state our result, we denote FP(8) as the number of false discoveries

yielded by any estimator E(y) Given a function f(n, s,), let

Q= {5 , sup  Egl|B — BII? < suf(n,s0)}

eB(n,sn)

be the collection of estimators with convergence rate {s, f(n, s,)}'/?, where Es denotes
the expectation with respect to the data y that is generated under true parameter 3. Note
that the function f(n, s, ) must be bounded away from 0, since the oracle parametric rate
is O(\/5n)-

Our first theorem studies the minimax lower bound for the expected number of false
discoveries.

Theorem 2.1. For the normal means model, the following non-asymptotic lower bound
holds:

inf  sup Eg[FP(E)} > (n— s, 4+ 1)sup®(@ 11 —1/¢) — {cf(n,s,)}?), (2.1)
BEQ BEB(N,81) c>1
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where ®(x) is the distribution function of standard normal distribution. Asymptotically,
if limsup f(n,s,) = k < 0o, then as n tends to infinity,

inf  sup  Eg[FP(B)] > H(k) x (1 —)n
BeQy BEB(n,8x)

where ¢ = lim s, /p,, and H(k) € (0,1) is a positive constant that decreases as k increases
(the definition of function H(-) can be found in the proof in the supplementary material);
Zf lim f(TL, Sn) = 00, then

inf  sup  ER[FP(B)] > C(1 — Onexp{—[1+ 0" (1)]f(n, sn)/2},
BEQ; BEB(N,8,)

where C' is some absolute constant, and 0+(1) represents some positive sequence converg-
ing to 0.

To complete the minimax analysis, an upper bound result is necessary. Since FP(B\) <
n, thus trivially

-~

inf  sup E4[FP(B)] = O(n),

BEQy BEB(n,5n)
if f(n,s,) < 1. On the other hand, if f(n,s,) — oo, we let liminf s, f(n, sn)/ropt > 1
which ensures that €2y is not empty, where ropy = infzsupgep(n,s,) £sll8 — B]|? denotes

the minimax Lo rate?. Note that this also implies that lim inf[f(n, s,,)/log(n/s,)] > 23.
Given such a diverging f, we can define a hard-thresholding estimator

Bi = yil{y? > (1 — x) f(n, 5)}

for some 1/f(n,s,) < €, < 1. One can show that asymptotically, it belongs to ¢, since

5 lsg?p )EHB_ 5“2 < O(sn) + 80+ (1 = €n)snf(n,8n) < snf(n,5n), (2.2)
cB(n,sn

as n — 0o. The proof of (2.2) can be found in the supplementary material. And trivially,
FP(5) ~ Bin(n — [|Bllo, 28 (—{(1 — €n) f (1, 5,)}"/%)), and

~

E[FP(B)] = 2(n — [|Bllo)®(=v/ (1 = €n) f(n, 5n))-
Since ®(z) = O(exp(—22/2)), we have

Theorem 2.2. For the normal means model, the following asymptotic upper bound
holds: If limsup f(n, s,) = k < 0o, then as n tends to infinity,

inf  sup EB[FP(B)] = O(n).
BEQy BEB(n,5n)

2Here, ropt represents the minimax rate when lim s, /n < ¢ € [0,1), while Ropt in the introduction
section represents the minimax rate when lim s, /n =0

3This is because, if s, = o(n), ropt = (2 + 0(1))sn log(n/syn); if not, f(n,sn) > 2log(n/sn) holds
trivially since log(n/sy) is bounded.
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If lim f(n, s,) = oo, then

inf sup  E[FP(B)] < Crnexp{—[1 — o (1)]f(n,5,)/2},
BEQ; BEB(n,sy)

where C is some absolute constant.

The asymptotic lower bound (Theorem 2.1) and upper bound (Theorem 2.2) match
except for an ot (1) term difference. Therefore, uniformly for both diverging and non-
diverging f cases, we claim the following minimax false positive control result:

-~

inf  sup  Eg[FP(B)] < nexp{—[1+ o(1)]f(n,sn)/2}, as n — oc. (2.3)
BEQy BEB(n,50)

The above analysis reveals a trade-off between estimation accuracy and false discovery
control. Specifically, if fi; > f5 in the sense that lim,, f1 — fo = co, then we have

-~

_inf sup Eg[FP(B\)] < _inf sup Eg[FP(B)].
BeQy, BEB(n,5n) BeQy, BEB(n,sn)

Note that the hard-thresholding estimate, which is used to establish the upper bound in
Theorem 2.2, relies on the value of s, if f(n,s,) depends on s,. Later in Section 4, we
will discuss some adaptive estimator that does not depend on s,,.

Remark 1. [t is important to remind the readers that the o(1) term appearing in the
exponent term of (2.3) is not always negligible. When f is diverging, this o(1) term can

affect the order, i.e., infg_q supgcp(ns,) Ep [FP(B)] may have strictly greater or smaller
order than nexp{—f(n, s,)/2}. An equivalent representation of (2.3) is

log (Ainf sup Ej [FP(B)}) ~logn —[1+o0(1)]f(n,s,)/2.
BEQy BEB(N,Sn)

Note that the above argument applies to our other minimax results, e.g., (2.4) (2.5) and
(2.10), as well.

Remark 2. The right-hand side of the inequality (2.1) is attained when all nonzero
entries of the true B are of magnitude +/ f(n, s,) (Refer to the construction of prior ©
in the proof of Theorem 2.1 in the supplementary material). This gives the most difficult
case of false discovery control for estimators in (.

Two choices of f(n,sy)’s are of interest. The first one is f(n,s,) = c1log(n/s,)
which represents the minimax Lo convergence rate with a multiplicative constant ¢; > 2.
Respectively, we define

Qy(c1) = {B sup Ej|B— BHQ < c18plog(n/sy)}
BeEB(N,sy)

The next result is a direct consequence of Theorems 2.1 and 2.2.
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Corollary 2.1. For the normal means model, the following asymptotic result holds for
the class of rate optimal estimators with ¢y > 2,

_inf sup  Eg[FP(B)] =< n, if lim(s,/n) > 0;
BEQ,(c1) BEB(n,5n)

_inf sup Eg[FP(B)} = n(sp/n) oM/ if lim(s, /n) = 0.
BEQ(c1) BEB(n,sn)

(2.4)

By similar arguments of Theorem 2.2, the minimax rate in Corollary 2.1 can be at-
tained by some non-adaptive hard-thresholding estimator

Biy) = yil (Jyil* = (e1 — 0™ (1)) log(n/s0)),

and an adaptive estimator that achieves this minimax rate in probability is discussed
in Section 4. Under s,/n — 0, ¢1, the multiplicative constant of the Lo convergence
rate, does negatively affect the minimax rate of false discoveries, as it appears in the
exponent term of (s,/n). However, under linear sparsity, different values of ¢; do not
change the order in (2.4). Hence, it is not clear how Inf5 6 (1) SUPBEB(n,5,) Eg(FP(B))
changes with respect to ¢;. We believe that the trade-off phenomenon between accuracy
and false discovery control applies to the case of linear sparsity as well, and conjecture

that the multiplicative constant negatively impacts false discovery control as well.

Remark 3. It is well known in the literature that under strict sparsity, ﬁ? ~ c1 log(n/sy)
for all nonzero entries is the most difficult case to be accurately estimated for rate min-
imaz estimators. Remark 2 implies that this is also the worst-f case for rate minimax
estimators to control the number of false discoveries.

The minimax mean false discovery result (2.4) has different limits across different
sparsity regimes. Specifically, under polynomial sparsity that s, = O(n®) for some « €
(0,1), it converges to 0 as long as the multiplicative constant ¢; > 2/(1 —«); under linear
or near-linear sparsity, it diverges to infinite regardless of the value of c;.

Other than the number of false positives, the false discovery rate is also of interest in
the high dimensional literature. Trivially, we have that

-~

FDP(3) = — FPB) FP ()
" FP(B) +TP(B) ~ FP(B) +s,

where TP(B) is the number of true positives. Intuitively, we have the following approxi-
mation

-~

FDR(3) = £,(FDP() > 5P B E(FP()

FP(B) + sn  E(FP(B)) + sn

Combining with the lower bound result in Theorem 2.1, one can obtain a minimax lower
bound for FDR in the following theorem. It is worth noting that by Jensen’s inequality,
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the “a” sign in the above equation is actually “<” hence the lower bound presented in
Theorem 2.3 is not trivial at all, and the rigorous proof is provided in the supplementary
material.

Theorem 2.3. For the normal means model, the following asymptotic lower bound of
FDR holds for the class of rate optimal estimators with ¢; > 2,

-~

_inf sup FDR(B) > C’(sn/n)[(cl_2‘*‘#(1))/2]7
BGQO(Cl) BEB(TL,Sn)

where C' is some absolute constant.

In Section 4, we construct an adaptive estimator B € Qu(cy) for any ¢; > 2 that

satisfies supgep(n,s,) FDR(B) < C(sy/n)" for any 7 < ¢1/2 — 1, therefore it immediately
implies

Theorem 2.4 (Immediate implication of Theorem 4.1). For any ¢; > 2,

~

_inf sup  FDR(B) < C(sn/n)l(cr=2707(1)/2],
BEQ,(c1) BEB(1,57)

The above two theorems conclude the following minimax result for FDR under the
normal means model:

_inf sup FDR(B) = (s /n)(e1=2H00N/2] for any ¢; > 2. (2.5)
BEQ,(c1) BEB(n,57)

This trivially implies that, when s, /n — 0, one is capable to achieve rate optimality
and asymptotic zero-FDR, simultaneously. But under linear sparsity, the FDR of a rate
optimal estimator is bounded away from 0 as n increases. We also want to point out that
under linear sparsity, rate minimax estimators may still achieve any arbitrarily small
pre-specified positive FDR level (e.g., B-H estimator), but the FDR is not ensured to
converge to 0 as n increases.

Remark 4. The fundamental result [1] shows that, there exists a minimaz estimator
(i.e., B-H estimator) whose FDR convergence is of an order log(n)~! under polynomial
sparsity regime. Our minimax theorem, as a supplementary result to [1], claims that
under a broader sparsity regime (polynomial or near-linear sparsity), there always exists
a rate minimaz estimator E (with suboptimal multiplicative constant) such that its FDR
converges as fast as a polynomial rate of (s, /n).

We next consider another popular suboptimal convergence rate: f(n,s,) = ¢ logn.
Note that s, f(n,s,) o« splogn is a common rate of convergence achieved by many
penalized estimators, such as LASSO or SCAD, and is commonly considered to be a
near-optimal rate. Besides, f(n,s,) > clogn for some ¢ > 0 is a necessary condition to
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ensure that the asymptotic lower bound in Theorem 2.1 decays to zero as n increases.
Define

Qp(c1) = {E sup Eg|p— BHQ < c18, logn}

BEB(n,8n)
as the class of all rate suboptimal estimators. Similarly, by Theorems 2.1 and 2.2, we
obtain the following corollary.

Corollary 2.2. For the normal means model, the following asymptotic result holds for
the class of rate suboptimal estimators,

_inf  sup  Eg[FP(B)] = C(1 — ()nt=er/2He), (2.6)
BEQ,(c1) BEB(n,sn) ’

Theorem 2.1 and Corollary 2.2 together tell us that, rate suboptimal estimator (with
multiplicative constant larger than 2) can achieve E(FP(5)) — 0 regardless of the spar-
sity growth rate; and vise versa, to guarantee that E(FP(8)) — 0 uniformly over all

possible range of sparsity, the estimator is at best sub-optimal.

of optimal estimator

multiplicative constant (>2)

polynomial sparsity regime near-linear sparsity regime linear sparsity regime
_|axis value c in (0,1), where s = nc!

|
|
|
. | . .
No false positive occurs; ' Polynomially decaying FDR;

O Consistent model recovery under ) Almost full model recovery under
monotonicity and beta—min condition ) monotonicity and beta—min condition

|

|

|

|

|

& E(FP) = infty 5 FWER=1

multiplicative constant (>2)
of suboptimal estimator

Figure 2. Best possible false discovery control and model selection performance of rate opti-
mal/suboptimal estimators with multiplicative constants greater than 2, under normal means models.

Figure 2 aims to visually demonstrate the minimax false discovery control behavior
for rate optimal and rate suboptimal estimators under different sparsity regimes. The
un-shaded area corresponds to rate optimal estimators with multiplicative constant ¢; >
2/(1 — «) under polynomial sparsity s,, = O(n®), and rate suboptimal estimators with
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multiplicative constant ¢; > 2. It represents the regime where one can achieve zero
false discovery, as infgsupg E(FP(8)) = O(n™°) for some positive ¢ > 0. Note that
this also implies that infg supz FDR — 0 and infg supg FWER — 0. In opposite, the N
shaded area corresponds to rate optimal estimators with multiplicative constant ¢; <
2/(1 — a) under polynomial sparsity or rate optimal estimators under near-linear and
linear sparsity, and represents the cases where E(FP(B)) — 00. Nested within the N
shaded area, the [4 shaded area indicates where rate optimal estimators can achieve
polynomially (with respect to sparsity ratio) decaying FDR, despite diverging number of
false positives. R

Note that zero false positive, i.e., E(FP(8)) — 0, is not equivalent to that family-
wise error rate (FWER) P(FP(B) > 0) — 0. So, it is not clear whether suboptimal
rate is a necessity for zero FWER control. Our next Theorem 2.5, which establishes the

relationship between FWER rate and convergence speed, confirms it.
Theorem 2.5. For any estimator B, we have

~ su EsB = B2
v PaEPE) > 0) 2 15, _ PeBtnsy Esl = 61

2.7
BEB(n,sn) Csplogn 27)

for some absolute constant C', where §,, — 0 as n, s, = co.

There are two messages delivered by Theorem 2.5: 1) to ensure that FWER converges
to 0, the estimator is, at best, of the rate s, logn; and 2) to obtain a convergence rate
that is strictly better than s, logn, one must sacrifice its FWER control in the sense
that supgep(n,s,) £p(FP(B) > 0) — 1 must hold.

In the end, we summarize the differences between rate optimal and rate suboptimal
estimators in terms of false discovery behavior under the nearly-linear and linear sparsity
regimes. Within these sparsity regimes, rate suboptimal estimators, at best, can achieve

-~

sup  Pg(FP(G) >0) = 0and sup Ez(FP(B)) — 0,
BEB(n,s1) BEB(N,8,)

and vise versa, to achieve such false discovery control, the estimator must be sub-optimal.
In contrast, rate optimal estimators § must satisfy that

-~

sup P3(FP(B)>0)—land sup Eg(FP(B)) — oo, (2.8)
BeB(n,sn) BEB(n,sn)

which is reflected by the H shaded area in Figure 2.

The theoretical results in this section (visualized by Figure 2) carefully depict the
gap of false discovery control performance between rate optimal and rate suboptimal
estimators. This performance gap increases as true model gets denser. Under polynomial
sparsity regime, such a gap can be filled by increasing the multiplicative constant of rate
minimax estimator, but under near-linear and linear sparsity regimes, this gap becomes
inevitable.
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Note that result (2.8) clearly asserts that, under the worse case of 3, rate optimal esti-
mators always select some false discoveries. At first glance, (2.8) seems to imply that rate
optimal estimators is never selection consistent (since consistent selection requires zero
false positive selection and zero false negative selection). However, the relationship be-
tween rate minimaxity and selection inconsistency is more subtle, and will be elaborated
later in Section 3.

2.2. Linear Regression Models

In this section, we are interested in generalizing the results derived under normal means
models to regression models
y=Xp+e,

where the design matrix X € R"*P» and ¢ ~ N(0,1,). It is reasonable to assume that
the design matrix is asymptotically standardized, in the sense that all column norms in
the design matrix converges to y/n uniformly in probability, such that

CO0: for any cg > 0, Py(cs,n) := minj<i<p, P(|||xi]|?/n—1| < ¢3) — 1, where z; donates
the ith column of X.

Given any function f(n,p,, $n), we define the following class of estimators:

Ql = {B\(X, y) : sup EXEBHB - B\H2 < Snf(napnasn)/n} )

566(1)7175n)

where E3 denotes the expectation with respect to y conditional on the random design
matrix X under the true parameter 3, and E'x denotes the expectation over the distri-
bution of X.

Intuitively, spurious correlation among the columns of design matrix X increases the
chance of selecting false positives. However, in the study of the lower bound of FP(f), we
shall consider the easiest scenario for false discovery control, i.e., the design matrix are
almost orthogonal. In this case, the linear regression problem approximately reduces to
normal means models. Hence, we obtain a similar lower bound result for minimax false
positive selections as in Theorem 2.1.

Theorem 2.6. Under the condition (CO), the following non-asymptotic lower bound
for the false positive selections holds:

inf  sup EXEg(FP(B)) > (pn — S+ 1)x
ﬂeﬂlf 5€B(pn7sn)

sup {Po(C:s,n)fI) ((I)fl (Po(es,m) —1/cz) —{(1+ C3)C?f(”apn,5n)}1/2)} .

c2>1,c3>0

(2.9)

Asymptotically, if imsup f(n, pn, $n) = £ < 00, then as n and p, diverge to infinity,

inf  sup  ExEg[FP(B)] > H(k) x (1—)pn,
BGQlf BEB(pn,5n)
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where H(-) is the same function specified in Theorem 2.1; if lim f(n, pn, s,) = 00, then

inf  sup  ExEg[FP(B)] > C(1 = )pnexp{—[1 + o™ ()]f(n, pn, 5)/2},
Beq, BeB(pn,5n)

where C is some absolute constant.

This non-asymptotic lower bound is derived by assuming the estimator can have access
to some information about the unknown quantity z; = y—X_;8_;, where X_; denotes the
design matrix without the ¢th column and S_; denotes the true 8 without the ith entry.
In practice, this is impossible unless the design matrix possesses strong orthogonality.
For instance, when the design matrix is exactly orthogonal, i.e., all the columns in X are
norm-+/n and orthogonal, the information about z; can be accessed via y?z;(= 21'z;).
Thus, we can construct the following non-adaptive estimator:

3 _YIBig +
Bi = n Wly" =i /n > (1 = 0" (1)) f(n,Pn, sn))

for some o™ (1) term. By the same argument in Theorem 2.2, we have that the following
upper bound for minimax rate which matches the lower bound in Theorem 2.6.

Theorem 2.7. Under the exactly orthogonal design, if limsup f(n,pn, sn) = k < 00,
then as n and p, diverge to infinity,

~

inf  sup  ExE3[FP(8)] = O(pn);
ﬂEQLf BEB(Pn,Sn)

if lim f(n, pp, Sn) = 00, then as n and p, diverge to infinity,

inf  sup  ExEg[FP(B)] < Cpnexp{—[1 — ot (1)]f(n, pn, 5n)/2},
BEQ’f 563(1771787;)

where C is some absolute constant.

The exactly orthogonal design is usually of less interest, since it essentially reduces to
normal means models and eliminates the possibility of that p, > n. Thus, beyond the
exactly orthogonal design, another popular near-orthogonal design (which will be used
to match the lower bound in Section 4) is the Gaussian design, i.e.,

C1: all entries in the design matrix X are i.i.d N(0,1?).

We will show later that, along with certain dimension restriction, the lower bound of
minimax rate can also be attained in probability, under condition (C1).

Similar to our study in Section 2.1, we will consider the following two choices of f (by
replacing n with py,):

f(nupnu Sn) o IOg(pn/sn) and f(n»pru 3n> o log pp.-
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For the former, we define a collection of rate minimax estimators as

Qf)(cl) = {B sup ExEg|f— B\H2 < c15, log(pn/sn)/n}

BEB(Pn,Sn)

for linear regression problems.
The following Corollary directly follows from Theorems 2.6 and 2.7.

Corollary 2.3. Under condition (C0), the following asymptotic result holds,

-~

_inf sup ExEg[FP(B)] > Cpy, if lim(s,/pn) = ¢ > 0;
,BEQf)(Cl)IBGB(pn,Sn)

_ inf sup  ExEg[FP(B)] > Cp(s,/pa)/* W, if lim(s,/p,) = 0,
BEQL (c1) BEB(pn,sn)

for some constant C'. These lower bounds can be attained under exactly orthogonal design.

Note that the above two rates can be uniformly expressed as p, (s, /p,)¢/2toM (if
lim s, /pp, > 0, then py(s,/pn)°/?t°M) < p, as well). In Section 4, we will show that
under the Gaussian design condition (C1) and s, log(pn/s,) < n'/?, if ¢; > 2, there
exists an Lg-based penalized adaptive estimator whose number of false discoveries is
bounded by py(s,/pn)” for any 7 < ¢1/2 with dominating probability. Therefore, we
claim that p, (s,/ pn)(cl+o(1))/ ? is also the minimax rate for number of false discoveries
of rate minimax estimators under Gaussian random design. Similarly to our discussions
in Section 2.1, there also exists a clear trade-off between estimation accuracy and false
discovery control via the multiplicative constant c;.

Similar technique of Theorem 2.3 leads to the following lower bound for the minimax
false discovery rate for linear regression models.

Theorem 2.8. Under condition (C0), we have the following asymptotic lower bound
on FDR,

_inf  sup  FDR(B) > C(sy/pn) =207 W)/2),
BeQ(c1) FEB(pn,5n)

where C is some absolute constant.

Theorem 4.2 in Section 4 shows that under (C1), ¢; > 2 and s,, log(p,,/s,) < n'/?, an

adaptive estimator 3 € Q! (c1) achieves that SUPBeB(pn,sn) FPR(B) < C(sn/pn)™ for any
T < ¢1/2 — 1, therefore:

Theorem 2.9 (Immediate implication of Theorem 4.2). Under Gaussian design (C1),
if c1 > 2 and sy log(pn/sn) < n'/?

_inf sup  FDR(B) < C(sn/py)lc =270 W)/,
BeQl(c1) BEB(n,sn)

where C' is some absolute constant.
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Combining the above two theorems, we claim that

_inf sup FDR(B) = (Sn/Pn)[(cli2+o(1))/2]a (2.10)
BEQL(c1) BEB(Pn;ssn) '

under the Gaussian design condition (C1) and s, log(p,/sn) < n'/2.
On the other hand, when considering f(n, p,, $n) x log p,, (i.e., sub-optimal rate) and
the corresponding collection of all rate suboptimal estimators

Q) = {B: sup  ExEg|B — B|? < cisn log(pn)/n},

BEB(pn,sn)

we obtain the following corollary, based on Theorems 2.6 and 2.7:
Corollary 2.4. Under the condition (C0), the following asymptotic lower bound holds,

_ inf sup  ExEg[FP(B)] > C(1 — ¢)pl—cr/>te), (2.11)
BEeQ (c1) BEB(pn,sn) '

for some C > 0. This lower bound can be attained under exactly orthogonal design.

When ¢; > 2, the above lower bound reduces to zero. Such a zero-false-discovery result
is also achievable by rate suboptimal estimators under Gaussian design. For instance,
[32] showed that, under Gaussian design (C1), the LASSO estimator yields no false
positive with dominating probability, when s, logp, = o(n) and its tuning parameter
A2 > 4logp,/n. We also find that a similar result holds for the Ly penalized estimator
with penalty |30 log pn, if s, logp, = o(y/n) and v > 2 (refer to Lemma A.5 in the
supplementary material).

For the completeness of this study, a parallel result of Theorem 2.5 is established below
for Gaussian regression models.

Theorem 2.10. Under the condition (C1), any estimator 3 must satisfy that

~ su N ExFE 2 _ 312
sup Pg(FP(B)>0)>1- pﬁ€3(Pcr:, n)l xEgl|B— Bl _
PEBpn sn) 50108 P /1

O, (2.12)

for some absolute constant C, where §, is some sequence that converges to 0 when
N,y S, P — 00, limsup s, /p, < 1 and log? p, < n.

In conclusion, false discovery control behavior and rate of convergence are interdepen-
dent for regression estimators under the Gaussian random design. Especially when the
sparsity is nearly linear or linear, only the rate suboptimal estimators can asymptotically
achieve zero false discovery. In the opposite, optimal estimators, under the worst-3 case,
can always yield false positive selections.
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3. Rate Minimaxity and Selection Consistency

The results in Section 2 show that there essentially exists an incompatibility between rate
minimaxity and false discovery elimination. In this section, our goal is to understand the
more subtle incompatibility relation between rate minimaxity and selection consistency.
For simplicity of theoretical analysis, we only focus on normal means models in this
section, and show that under certain monotone regularity, selection consistency and rate
minimaxity do not coexist. More specifically, within the near-linear sparsity regime, rate
minimax estimator at best achieves almost full sparsity structure recovery.

We first want to clarify that the incompatibility between rate minimaxity and zero
false discovery does not imply the incompatibility between rate minimaxity and selection
consistency. In the statistical literature, the studies of false discovery control and model
selection are usually conducted over two different parameter spaces. The former considers
all the s,-sparse 8 € B(n,s,), while the latter often imposes an additional beta-min
condition, in the sense that all nonzero ;s are strictly larger than some positive threshold
value which may depend on n, p, and s,. Therefore, a rate optimal estimator, which
yields false discoveries when the magnitude of true 3 is small, may still be consistent for
model selection when the magnitude of true f is large enough.

Here is one simple example to illustrate our claim above. Define an estimator that
selects the top s y;’s in terms of their absolute values: 8; = y;1(|y;| > |yl(s)). Here,
s is the true sparsity value, and |y|(; is the (descending) order statistic of |y;|'s. This
minimax estimator commits false positive selections with high probability when nonzero
Bj is relatively small, say of an order o(/logn). However, when all nonzero |3;|’s are
greater than y/clogn for some ¢ > 2, it asymptotically selects the true model. Another
example that does not rely on the unknown true sparsity s is

Bly) = argmin [ly = BI% + pe(|{j : 181> < ylogn})] (3.1)

with penalty function pe(k) = 72?:1 log(n/i) for constant v > 2, where |A| denotes
the number of elements in set A. Note that by the similar arguments used in the proof
of Theorem 4.1, we can show that estimator (3.1) has asymptotic convergence rate of
v esy log(n/sy,) with ¢ & v, but is selection consistent when all nozero 3, is greater than
v logn where the constant v/ > ~.

Despite the above examples, numerous popular estimators, as mentioned in the intro-
duction section, indeed fail to achieve selection consistency and rate optimality simul-
taneously over all sparsity regimes. This motivates us to explore the rationales behind
this phenomenon and further investigate that under what general conditions, selection
consistency and rate minimaxity indeed are incompatible.

The asymptotic behavior under Hamming loss [8] reveals that the boundary case for
selection consistency is that when all active |5;]| = w1 = y/2log(n — s,), while in contrast
our theory indicates that the worst case for rate minimax estimation is when all active
|8:] & wa = /1 log(n/s,) where ¢; is the multiplicative constant of the Ly convergence
rate. Note that under near-linear or linear sparsity, wy, > ws. Thus, the focus of selection
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consistent estimators is on the parameter subspace where all nonzero (3;’s satisfy beta-min
condition which must be greater than boundary value w; (i.e., large signal case), but rate
optimal estimators give more attention to the parameter subspace where all nonzero 3;’s
are around ws (i.e., weak signal case). Therefore, a rate minimax and selection consistent
estimator must be 1) rate-y/s,log(n/s,) under weak signals, but 2) rate-,/s, under
strong signals, since consistent selection reduces it to an oracle parametric problem (Refer
to [18] for more discussions about this phase transition phenomenon). In other words,
this estimator must be adaptive to signal strength and behave differently under strong
and weak signal cases. Let us take estimator (3.1), which is rate minimax and selection
consistent, as a heuristic example. Under strong signal situation, say all nonzero |3;| >
v/7logn and they have been all successfully selected in the model, then false discovery
occurs only if |y;| > v/ylogn for some ¢ ¢ £(3) where £(3) denotes the true sparse model.
On the other hand, under weak signal situation, say |y;| =~ |8i| = v/vlog(n/s,) for all
nonzero f3;’s and they are already included in the model, then roughly speaking, the
occurrence of false discovery only requires |y;| > /v log[n/(s, + 1)] for some i ¢ &(8).
Therefore, this estimator indeed has different false discovery control mechanisms under
different signal strength.

Conversely, an estimator shall not be able to achieve selection consistency and rate
minimaxity at the same time if it ignores the differences between strong and weak signal
cases. One concrete example is that when the estimator ﬂ always obeys “monotonicity”
regardless of the signal strength. Given two data vectors y, z € RP, we call that y
majorizes z if sign(y;)sign(z;) > 0 and |y;| > \zl| for all ¢ = 1,...,p. We call that

an estimator B(y) is monotone if B( ) majorizes B( ) providing that y majorizes z.
Intuitively, the monotonicity means that a larger y, in terms of absolute values, leads to
a larger S(y). The monotonicity trivially implies that 5(5( ) 2 5(5( )) if y majorizes
z, where & (B) denotes the selected model induced by estimator ﬁ In other words, a
larger y yields a larger selected model. From such a point of view, monotonicity seems a
natural and appealing property for estimators of normal means models. The above two
examples, estimators ; = y;1(|y;| > [yl¢s)) and (3.1), are both non-monotone. To see
this, let’s define two data vectors y = (ay, a,0,...,0)T and z = (a1, a3,0,...,0)T where
a;’s satisfy a2 > vlogn > a} > a3 > ~y(logn + log(n/2))/2. Although data vector z
majorizes y, it is easy to see that §(B(y)) = {1,2} and 5(5(7;)) = {2} for the estimator
(3.1), i.e., larger data values actually yield a smaller selected model.

We now discuss why the property of monotonicity leads to the incompatibility between
selection consistency and rate minimaxity. A simple intuition is that a larger 5 generates
larger data (in terms of absolute value), and by monotonicity, it usually leads to more
false discoveries. To be more Speciﬁc7 given any two parameter values () and 8@ of
the same sparsity such that 8% majorizes f(!), then with reasonable probability, the
data y® generated under 52 ma)lorlzes the data y(l) generated under B, A monotone
estimator hence satisfies that &(5(y?)) D £(ﬁ( ))), ie., ﬁ( )) selects no less false
discoveries than B (y(l)). On the other hand, if B is rate minimax, it must commit false
positive selections for some sparse g1 (due to our results in the previous section), and
as well as for any 8(?) that majorizes 31" (due to the above arguments of monotonicity).



Optimal False Discovery Control 21

If we let 3(2)’s magnitude to be sufficiently large and satisfy the beta-min condition, the
selection inconsistency occurs.

Formally, given any ¢ € (0,1] and a positive function ¢(n, s, ), we define a class of
selection consistent estimators

Q= {B() : lim Poen [{£(B(y)) = E(8™)] = 13,

for any sequence of (") € B(n, s,) satisfying limsup s,,/n < ¢ and |8 ||min > t(n, 5,),

where t(n, s,,) represents the required beta-min condition. Similarly, define another class
of estimators which ensure no false discovery

Q2 = {B(): lim Py [FP(B(y)) = 0] = 1},

for any sequence of 3™ € B(n,s,) with limsups, /n < ¢. Now, we are ready to state
the following lemma.

Lemma 3.1. If a monotone estimator B\() € Qq, then B\() € Q.

Therefore, if a monotone estimator is selection consistent under some beta-min condi-
tion, then it asymptotically never yields false discoveries regardless of the magnitude of
B. Due to the result of Theorem 2.3 (i.e., rate minimax estimators always yield false dis-
covery under near-linear or linear sparsity), we claim that it must not be rate minimax.
In other words, Lemma 3.1 rigorously establish the incompatibility between rate min-
imaxity and selection consistency for monotone estimators, especially under the dense
signal regime. We note that almost all of the popular estimators used in the literature
are monotone. For instance, if a separable penalty function, i.e., pe(3) = >_1_, p(8;) for
some function p, is used in the normal means models, then the monotonicity of estima-
tors is equivalent to that the thresholding function S(y;) := argming, (v; — ;)% + p(Bi)
is monotone. It is easy to figure out that the thresholding function will be monotone, as
long as that p(-) is symmetric and non-negative, p(0) = 0, and p is monotone on (0, c0).
Therefore, almost all penalty functions proposed in the literature, including LASSO,
non-concave penalties [12, 37], Lo penalty and reciprocal penalty [24], lead to monotone
estimators. Note that FDR estimator [1] and SLOPE estimator [27] also belong to the
class of monotone estimators.

We now understand that a monotone rate optimal estimator, under near-linear or
linear sparsity, cannot ensure model selection consistency even when beta-min condition
holds. A natural follow-up question is: what is the best model selection result that a
monotone rate optimal estimator S can achieve. For type I error control, the results
in Section 2.1 prove that, if s, < n, then minimax E(FP) < n(s,/n)¢ < s,(s,/n)*"?
for some ¢ = ¢1/2; if s, < n, then minimax E(FP) < n =< s,. As for the type II
error control, we conduct a rather trivial analysis as follows. When the true parameter
3 satisfies a strong beta-min condition? such that ||3||min = \/snlog(n/s,), it is easy

4Note that a sharper beta-min condition, that guarantees that rate optimal estimators yield zero
false negative, can be further investigated but is beyond the scope of this work.
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to verify that FN(B) — 0, where the convergence holds in L; and in probability, since
EHB—B\P = O(splog(n/sy,)). Combining the above discussions regarding type I and type
II error control, the best a monotone rate minimax estimator can possibly do, in terms of
model selection under the above beta-min condition, is that: 1) under polynomial sparsity,
both FP(ﬂ) and FN(B) converge to 0 in probablhty, and thus 5 recovers the exact sparsity
structure; 2) under near-linear sparsity, [FP(B) + FN(s )]/sn = |£(B) ANEB)|/sn — 0 in
probability, where A denotes the symmetric difference of two sets. That is, B almost
fully recovers the sparsity structure [8]; 3) Under linear sparsity, it can only ensure that
€(B) 2 €(B) and [£(B)|/€(B)| < (1 + 6) for some § > 0. Cases 1) and 2) correspond to
the unshaded area and [ shaded area in Figure 2, respectively.

Remark 5. The concept of monotonicity directly applies to the linear regression models
where the columns of the design matriz are /n-norm and orthogonal. Under orthogonal
design, y = X8 + € can be re-written as XTy = B+ XTe. Thus, we call that an esti-
mator B(X y) is monotone Zfﬁ is monotone with respect to Xy (i.e., for any two y*)
and y? € R, 5(X,y(1)) magorizes B(X,y @) when XTy™ majorizes X7y ). Hence,
our previous discussions and arguments also hold for linear regression models under the
orthogonal design. However, under more general regression settings, due to the possible
column dependencies within X, this monotonicity concept cannot be easily generalized.
More discussions on the incompatibility between rate minimazity and selection consis-
tency under regression model can be found in Section B of the supplementary material.

4. Adaptive Optimal Penalized Estimator

In this section, we will construct adaptive rate minimax estimators that are capable of
achieving the lower bounds of false positive selection and false discovery rate derived in
Section 2. Therefore, the polynomial decay of the false discovery control is attainable.
Our construction applies to both normal means models and linear regression models
under Gaussian design. It is worth emphasizing that these estimators merely serve as
the “proof of concept”, justifying that these lower bounds are achievable by adaptive
estimators. This work doesn’t promote the use of these estimators in practice because it
involves NP-hard optimizations.
We consider a class of estimators based on Lg selection criterion:

B= arggﬂnl\y — XB* + pe(||Bllo),

where the penalty pe(-) only depends on the Ly norm of 8, and X = I for normal
means models. Equivalently, we first search a subset model which minimizes the following
criterion:

E: argmin RSS(&) + pe([¢]),
£C{1,....pn}

where RSS(€) is the residual sum of squares under model &, i.e.,

RSS(&) = y" (I — Xe(X{ Xe) 7' X )y
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Then the estimator B will be the OLS estimation based on this selected model E
The particular penalty function we consider in this section is

k
pe(k) = 'yZlog(pn/i) if k <p, and pe(k) =00 ifk > p,

i=1

for some user-specific parameter p,, and . Therefore, the estimator reduces to

1810
B = argmin||y — XB|*> +~ > _ log(pn/i)- (4.1)
1Bllo<Pn i=1

A trivial choice for p,, is min(p,,, n). Unlike the classic BIC and AIC criteria, this penalty
function is not proportional to the number of selected variables. Instead, it assigns smaller
penalty for adding one more covariate into the current model when the current model
size is larger. This form of penalty has been extensively used in the literature [5, 13,
15, 29, 35]. For example, [35] established sharp minimaxity of estimation when v = 2
and p, = n/logn under the normal means models. More generally, [5] studied a large
class of selection penalization including (4.1). These existing results mostly focused on
the convergence rate of |3 — 8(™)|| or the risk || X3 — XB8™)]. Other than these, in this
section, we will also focus on its selection behavior, especially its false discovery control
behavior.

Remark 6. The penalty used in (4.1) is closely related to the B-H estimator [3]. Un-
der the normal means model, as pointed out by [1], B-H estimator, which targets level
q FDR, is equivalent to the some local optimum of penalized likelihood with penalty
Z}‘:ﬂyo[@*l(l — ql/2p,)]?. This penalty approzimately equals to 'yzyﬂo log(py /i) with
v =2, since [P71(1 — ql/2p,)])* ~ 21og(pn/l) — 21og q — loglog(p,/ql). Another related
work is the SLOPE estimator [7, 27], which can be viewed as a soft thresholding FDR
penalization.

For the sparse means model, the next theorem shows that the Zle log(p/i) penalty
induces a rate minimax estimator, as well as polynomial decay of false discovery control.

Theorem 4.1. Consider the estimator (4.1) under the normal means model (i.e., X =
I) with 3™ € B(n, s,) andlimsup s, /n < ¢ € [0,1). If the tuning parameters p, € [s,,n]
and 7y is sufficiently large, then the following properties hold with dominating probability,

1B = B> < (7 + 8)sn log(n/sn) and

/

-z Eg; < (Tifﬁ)> < (su/n)"" if TP(B) > 0;  FP(B) =0 if TP(B) =0,

where 6 and ' are some positive constants. Furthermore, if s,, < n and tuning parameters
satisfy sn < pp < n and vy > 2, then the above results asymptotically hold for any 6 > 0
and 0 < ' < (y—2)/2.
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This result implies that in probability, the Lo convergence of B is bounded by minimax
rate with a multiplicative constant v + §, and that the number of false discoveries of
3 is bounded by s,(s,/n)" = n(s,/n)? *!, which matches the lower bound for the
minimax number of false discoveries presented in Section 2.1, except for the polynomial
degree. Furthermore, when s,, < n and the hyperparameter p,, is chosen such that s, <
Dn < n, the polynomial degree can be as large as v/ + 1 = v/2 = ¢;/2 — §/2, for any
arbitrarily small constant §. Compared with the polynomial degree of the minimax result
in Corollary 2.1, we claim that this estimator (4.1) achieves the minimax rate for the
number of false discoveries, in probability.

Theorem 4.1 also implies that the FDP is bounded by (s,/n)Y /[(sn/n)Y + 1] <
(sn /n)"Y/ in probability. As for the false discovery rate, we note that, the phrase “with
dominating probability” in the theorem statement means “with probability as least
1 — exp{Cs, log(n/s,)} for some C > 0” (as shown in the proof in the supplementary
material). Hence, we have

FDR = E(FDP) < (s,,/n)" + exp{—Cs, log(n/sn)} = {(sn/n)V %f 1< =n .
constant if s, < n

Since v’ can be sufficient close to (but larger than) ¢o/2 — 1 when s, < p, < n, the false

discovery rate of the estimator (4.1) is rate minimax. In conclusion, the rate optimal

estimator (4.1) achieves the best possible type I error control rate, in both the number

of false discoveries and the false discovery rate.

For this estimator, the value of v plays a role of balancing the rate of convergence and
the rate of false discovery control when p,, < n. A larger v leads to a larger polynomial
degree ', but at the expense of a greater multiplicative constant in the convergence rate.
In other words, the trade-off between false discovery control and estimation accuracy is
tuned through the choice of ~.

As stated in the next theorem, similar results hold for Gaussian design regression
models.

Theorem 4.2. Consider the estimator (4.1) for Gaussian design regression models
with B € By(pn,y$n), $n10g(Pn/sn) < n and limsup s, /p, < ¢ € [0,1). If we choose
the tuning parameter p, € [s, min(n,p,)] and v to be a sufficiently large constant, then
the following results hold with dominating probability:

n||B— B2 < (v 4 68)s, log(pn/sn), and FP(B) <'sy, (4.2)

for some positive constants § and &'. If furthermore, s21og®(pn/sn) < n, then

’

FPB) _ (1PB)\’ TP > 0 BP0 4 TP —
Tp<3)§< o ) < (su/pn)"" if TP(B) > 0 FP(B) =0 if TP(B) =0, (43)

hold with dominating probability for some constant +'.
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More importantly, under the strictly sparse setting, i.e., Sp < Pn, if we choose s, <
Pn < pn and v > 2, then all previous results hold asymptotically in probability for any
positive §, 6" > 0 and 0 < ~' < (v — 2)/2. Note that it also implies that estimator 3
is almost sharply minimaz when «y is sufficiently close to 2 (refer to the discussion in
below).

When s, log(pn/sn) < n, the estimator (4.1) is rate minimax for Gaussian linear
regression, and its number of false discoveries is bounded linearly by §’s,. Under strict
sparsity (s, < pn), the multiplicative constant of its convergence rate can be arbitrarily
close to 2, and FP/s,, can be arbitrarily close to 0, when v ~ 2. As shown by Theorem
1.3 of [27], the minimax Lo convergence rate for Gaussian linear regression is {[2 +
0(1)]sy log(pn/sn)/n}'/2, thus this estimator is almost sharply minimax.

Under additional dimensionality condition s2 log?(p,/sn) < n, we can achieve poly-
nomial control for type I errors: in probability, the number of false discoveries is bounded
by Pn(sn/pn)? T, and the FDP is bounded by (sn/pn)? . Given the strict sparsity set-
ting and s, < D, < pn, the polynomial degree 4’ can be arbitrarily close to ¢;/2 — 1,
where ¢ &~ 7 is the multiplicative constant of convergence rate of this estimator. Similar
remarks on the rate of FDR for the Theorem 4.1 apply here as well, and we claim that
the number of false discoveries and false discovery rate of estimator (4.1) attain minimax
rate under Gaussian design.

Remark 7. The dimensionality assumption s,log(p,/sn,) < +/n provides stronger
reqularity on the orthogonality of design matrixz than the commonly used assumption
splogpn, < m. Under this assumption, random matriz theory [31] ensures that the sin-
gular values of any sub-matriz of X/\/n consisting of O(s) columns are within [1 —
o((slog(p/s))~1/2),1 + o((slog(p/s))~*/?)], such that the existence of false negative pre-
dictors (whose true regression coefficients are up to O(+/slog(p/s)/n)) doesn’t induce

additional false positives via the spurious correlation.

5. Conclusion and Discussion

This work investigates how the rate of convergence and the selection behavior affect each
other under the high dimensional setting. There is a subtle trade-off between estimation
accuracy and type I error control. This trade-off comes into effect particularly under near-
linear or linear sparsity, where rate optimal estimators can yield an unbounded number
of false discoveries and zero-false-discovery estimators must be suboptimal.

In the sense of minimax (i.e., under the worse scenario), we show that the rate optimal
estimators induce as many as p,(s,/p,)” false positive selections, and its FDR decays
as a polynomial of the sparsity ratio s,/p,. Such a polynomial rate of false discovery
control can be achieved by the adaptive penalty 'ny log(py/i). Note that the SLOPE
estimator employs a soft L, version of -y Zf log(py /i)-penalization. Hence, we conjecture
that the SLOPE estimator can also achieve a similar asymptotic FDP control as in our
Theorem 4.2, while enjoying a much better computational efficiency than the estimator
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(4.1). Readers may refer to [17] for some recent theoretical investigation of the SLOPE
estimator.

In this work, we only consider sparse estimators that contain exact 0 coordinates. On
the other hand, shrinkage estimators, which don’t contain exact zero entries, have been
commonly used for sparse linear models as well, e.g., [4, 25, 30]. A shrinkage estimator
can also induce model selection result, via a simple truncation as 3; = Bi1(| B\z\ < p,;) for
some (data-dependent) 7, ;. If these thresholding values 7, ;’s are sufficiently small, as
in [4] and [25], then 3 and B have negligible difference between their convergence rates.
Therefore, our result on the relationship between false discovery control and convergence
rate of an exactly sparse estimator, can naturally extends to the relationship between
false discovery control of 3 and convergence rate of 3 as well.
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A Proofs

Proof of Lemma 3.1

Proof. If a monotone selection consistent estimator E () ¢ Qo, then there exists a sequence of 8™ e R™, such
that limsup,, Pge (K,) = ¢ > 0, where K,, = {y : S(B(y))\g(ﬁ(")) # (0} € R™. To induce contraction, it is

sufficient to show that there exists a sequence of 8™, such that ||E(")||min > t(n, sn), 5(5(")) = £(B™) and

PE(n)

For any g if 0 < |6i(")| < t(n, s,) for some index 4, we claim that we can replace this entry by some

(Kpn) > Py (Ky).

sufficiently large value, i.e., there exists a 3 such that Bj(n) = ﬁ](.") for all j # ¢ and |Bz(")\ > t(n, $p), such
that Ps.) (K5) < Pgon (K5). Therefore, the B™ can be constructed via sequentially replacing all small-but-
nonzero entries of 5(™ with large absolute value entries.

Now let us prove the existence of (™). Without losing generality, let the index ¢ = 1 and denote g™ =
( 5"),B(_nl))' where B(_nl) € R"L. We define set KS(A\) = {y € R*!: (A\,y)T € K¢} where A € R. By the
monotonicity of estimator, if sign(A1) = sign(Az2), and [A1| < |Ag|, then KS(A1) D KS(A2). First of all, if
Py (K&) = 0, then K¢ is a zero Lebesgue measure set, and the existence of 8™ is trivial. Now we only

consider the case that Py (Ky;) > 0. If

+oo
tm [ [ 68 L d o A )z =0, (1)
A o(2)

A—00
where @(; 1, X)) denotes the density of a (multivariate) normal distribution, then for any e > 0, there ex-
ists a A9 > 0 such that f;;oo fK”CL(Z) ¢(z';ﬁ(_n1)7fn,1)dz’¢(z;)\0, 1)dz < e. Now we pick a sufficiently large
A1 > max(Ag, t(n, s,)) such that fj‘zo ch(z) ¢(z’;ﬂ(_nl),fn,1)dz’¢(z;)\1,l)dz < fj\go d(z;M,1)dz < € ==



Py (K)/3. Furthermore,
—+o0
[ PO T ot A
Ao c(z

A1 —+o00
:/ / qs(z’;5(,"1),In,1)dz’¢(z;,\1,1)dz+/ / ¢(Z’;5§"1>,In71)d2’¢(2;Al,1)dz
Xo <(2) A JKE(2) (2)

+oo
/ 6(='5 B, Io_1)d='é(z: Aoy 1)d2
Ao K¢ (z)

A1
S/ / gb(z’;ﬂyll),fn_l)dz’qﬁ(z;)\o,1)dz+/
Ao (2)

<2e,

where the first inequality is due to the fact that K¢(z) is a smaller set as z increase. Hence, we can choose
B = (/\17ﬂ(_nl)), and it satisfies Py (K) < €+ 2€ = Py (K7).

Similarly, if
tim [ ’ /K O T )16 0 )z = (3)

PN
we can construct the 5™ = (Ay, B(fl)), where A1 < 0, and || is sufficiently large.

If both (1) and (3) fail, then we must have K{, = N;50K5(2) # 0 and K = N,«oKS(z) # 0 (Note
that the two limits K, and K;,_ always exist since K;(z) becomes smaller as |z| increases). Without losing
generality, we assume that fKﬁ_ o(2'; B(fl),fn_l)dz’ > fK§;+ o(2'; B(fl), I,-1)dz’ = ck, and it also implies that
Py (K5) > cx. Then,

o I Pyo (K5) = [12 [ree 0y 025 B L 1)d='é(2; B, 1)dz = cxc, since K§(2) is shrinking as || in-
creases, we must have that K;\(RT®@ K;_UR™ ® K¢, ) is zero-measure, and foﬁ o(z; B I, 1)de' =
szJr (,ZS(Z/;,B(:LI),In_l)dZ/ = c¢i. Therefore, for any A; and gV = ()\l,ﬁ(fl)), we have Py (K;) =
Py (BR* @ KE_ UR™ @ K&, ) = Pyon (KS).

n—

o If Py (Ky) > ck, then we must have that

+o0
lim / (2 ﬁ(fl), I,_1)d2' ¢(z;A,1)dz = 0. (4)
A S (D\KF

A—00
n+1

By the same arguments of (2), there exists a sufficiently large A; > 0, and pm = (A1, B(_"l)) such that
Py (KR\R @ K1) < Pgony (K \R® K7 ). This further imples that Py (K7) < Paen (Kj;)

This concludes the proof. O
Lemma A.1. Assume h(z) € [0,1], if [ h(z)p(z; po,1) > a, then [ h(z)d(z;0,1) > @[®~ (a) — uo).

Proof. Let’s consider two simple hypotheses Hy : 4 = po and Hy : = 0 with one observation X ~ N(pu,0),
and view h € [0, 1] as the testing function, such that the test size is [[1 — h(z)]$(z; po, 1) < 1 — a, and power
is [[1 — h(z)]é(z;0,1).

By Neyman-Pearson (N-P) Lemma, the UMP test for all size 1 — a tests is the likelihood ratio test. (Note

that the standard N-P Lemma applies to all testing functions h € {0, 1}, but its proof can easily be extend to



the case of all h € [0,1].) This likelihood ratio test is denoted by hrr = 1(¢(z; 0, 1)/é(x;0,1) > A), where
A satisfies [[1 — hpr(z)]d(z; po, 1) < 1 — a. It is easy to figure that hpr = 1(z > o + 71(1 — a)), and its
corresponding power is ®(pp + ®71(1 — a)).

Since hpr has the largest power, [[1 — h(z)]¢(z;0,1) < ®(uo + (1 — a)), ie., [h(z)p(x;0,1) >
1= B+ (1 — a)) = B(&(a) — o). o

Proof of Theorem 2.1

Proof. We denote 7j; = 1{@ # 0} be the selector induced by estimator B, n = 1{B; # 0} and the prior m; be
a uniform distribution on set By = {8 € R" : B; = 0 or \/c2f(n, s5),||B]lo = s8» — 1} for some constant c, > 1.
Let E be the expectation over y with respect to distribution y ~ N(8,I), let E,, be the expectation over
with respect to the prior distribution 7. We use subscript “—i” to denote subset {1,...,4—1,i+1,...,n},
and we use 1 (8_;|5;) and 71(8;) to denote conditional prior and marginal prior respectively.

sup  Eg Zml{m =0} > Er, Ep Zml{m =0}
BeB(n,sn) i=1 i=1

B | 7i(y)1{n: =0 i 53 B4, 1)dym (B)d,

;/B/yn(y) (=0} Lot 5 Vm (3145

) i) #(yis Bin 1) | | #(yss By )y —idyim (B-i|B:)1{n: = O}m1(B:)dB—sdf;
;//_//ny 4 H?/ Y—idy n

Y- J#i

> /[ ] 005 1) L] 60555 - )1 = O (3,

—Z / ol 1) / / 0) [T (s By D1 (8B gL, = 0} (B0)d5,

J#i
where 71 (8_;) = m1(B—i|8; = 0), such that 71 (8_;)1{n; = 0} = m1(B_;|8:)1{n; = 0}. Note the 7, is a uniform
distribution over set B3 = {8 € R"~1: 8; = 0 or \/caf(n,5,), |Bllo = sn — 1}.
Therefore, we let 7;(y;) fﬁ fy iy J# (y;; Bj,02)dy—iT1(B—;)dB—;, which defines an estimator

for n; based on only y;, the above inequality reduces to
Sup )E/s Zml{m =0} > Z/ / i (yi)d(yi; Bi, Vdyi 1{n; = 0}m1(B;)dp;
BeEB(n,sy i—1
> 3200 (s = 1)/n) [ )00, 1)dy,
i

where we use the fact E. n; = (s, — 1)/n.

On the other hand, for any 3 € Qf = {B SUPgeB(n,s,) L8116 — BHQ < spf(n,sn)}, snfln,sn) > E[;HB—
Bl > S B2Es(1 — ;) for B € B(n,sy), then if all the nonzero coefficients of 3 are {caf(n,s,)}/2, we
must have (1/co)sp, > > mEg(l — 1) = > mi — » Egn1{n; = 1}. If we further take expectation E, on
both side, where 7y is a uniform distribution over By = {3 € R" : 8; = 0 or \/caf(n,5,),||B8]lo = s}, then



(1/c2)sn > Ex(>"m; — Y Eg,m;1{n; = 1}). Then by similar argument, we can derive that
(1/e2)sn = s = Ba (Y Bgiiit{n = 1})
=Sn — ;/ﬂz /yl é(yi; By 1) /Bﬂ' /ﬂ, ﬁi(y)g¢(yj3ﬁj7 1 dy—ima(B—i)dB—sdy;1{n; = 1}m1(B;)dB; (6)

=5 = 3 (su/n) [ Tu0)0(: feaf (50} 72, )y,

where the second equality holds since 7o (,6'_-) =ma(f-1]fi = 1) = m(B-:|B: = 0) = 1 (6-s)-
By Lemma A.1, subject to [ 7;(z)p(x; {caf(n,s,)}/2,1) > a; for some a; € [0,1] and 7;(-) € [0,1], the
following minimization holds: [ 7;(z ¢(I;O, 1) > (@ Y(a;) — {caf(n,sn)}/?). Hence subject to (6) (i.e.,

subject to [ 7;(y)(y; {caf(n, s,)}/%, 1)dy = a; and 3" a; > n —n/cz), we have

Z/ o0, Dde > | min |5 @(®7Ha) — {eaf (0 50)})

S ai=n—n/cs

(7
>n® (@1 (1 - 1/ca) = {ea2f(n, 50)}'/?),
where the second inequality is due to Jensen’s inequality.
Combine (5), (6) and (7), we have that for any ¢y > 1,
s By SR =0} > (1 s, + DB (1= 1/ex) = {eaf(n, )},
BeQs BeB(ns,) iy
or equivalently,
fswp B3 a0(m = 0) 2 (05, + 1) sup 8@ 1~ 1) — {eafms) D). (9
Eeﬂf BeEB(n,sx) i—1 ca>1
Asymptotically,

1. if f(n,sy) is of constant order, i.e. limsup f(n,s,) = k < oo, limsup s, /n = ¢ < 1, then

inf  sup EﬁZml{m—O}>H( Y(n—s,+1) < H(k)(1—-)n,
5€Qf BeEB(n,sn) i—1

where H (k) = sup,,-; ®(®71(1 — 1/cz) — {car}/?).

2. if f(n, s,) diverges to infinity, i.e. f(n,s,) — oo, then for any fixed 1 < ¢3 < cq,

inf  sup Eﬁzm{m_op(n—sn+1)q>(q>—1[1—1/02]—{02f(n,5n)}1/2)
Bey peB(n,sn) iy

>C(n = sn + 1) exp{=csf(n,sn)/2} ~ C(1 = Onexp{—c3f(n, sn)/2},

for some absolute constant C, where we use the inequality ®(—2) > (1/{27}/?) exp{—22/2}[z/ (2> +1)]
for any > 0. Since ¢y can be arbitrarily closed 1, infﬁeﬂf SUPgeB(n,s,) £8 S ml{n, =0} >C(1—

Onexp{—[1 +o*(1)]f(n,sn)/2}.

This concludes the proof. O



Proof of inequality (2.2)
Proof. Tt is easy to see that

sup BB - B2
BEB(n Sn)

Z By?1(8; = 0,lyil = V(1 = en) f(n, 50)) + E(y: — 8:)*1(B; # 0)

+EBFL(B; # 0, lyil < V(1 = €n) f (1, 50))]

< Qn/ 22¢(x)dx + s, + 5, SUp Bf@[\/(l —en)f(n,sn) — Bi
vV (1—€n) f(n,sn) Bi>0

For the first term on the RHS of (9),

o 2
xPp(x)dr = —/ exp(—t + log(Vv2t))dt
/\/(1671)f(n,sn) V2T J (1) f(n,50) /2
1 o0

<= exp(—(1 = 1)) dt = m exp[—(1 = m)(1 = €0) f(n, 50) /2],

(1=en)f(n,sn)/2

where 1, = 2log(\/(1 — €,)f(n, s1))/(1—€,) f(n, s,) — 0. Since liminf, (1—n,)(1—€,) f(n, s,)/21log(n/s,) >

1, we must have

oo 2
o / 22p(x)dz < —=s, = O(sn). (10)
V=en) f(mosm) 2m

For the term SUDPg, >0 B [V(1—é€n)f(n,sn) , we note that

sup BQCI) \/ 1 - En TL 9n ﬁz] < 1 - En)f(n»sn))2§
0<B; </ (1—€n) f(n,5n)

sup 52(1) \/ ]- - En n Sn Bz S 1 - En)f(na Sn))2 X (1/2)7 (11)

V(=€) f(n,50)<Bi</2(1=en) f(n,50)
B2®[\/(1 — €,)f(n,s,) — Bi] is decreasing when S; € [\/2(1 — €,)f(n, s,),00),

where the last fact is due to the exponential decay of normal tail probability.

Combine (9), (10), (11) and the fact that €, = f(n,s,)"! we have that

sup E'||B\— BII? S O(5,) + 8n 4+ (1 — €3)80f (1, 8,) < 8, f(n,8,), as n — 0.
BEB(n,sn)

Proof of Theorem 2.3

Proof. If s,/n — ¢ > 0, the right-hand side of (2.5) asymptotically reduces to constant, hence the result is
trivial. Therefore, we only consider the case that s, /n — 0.
Let’s first restate the proof of non-asymptotic result of Theorem 2.1: If an estimator B satisfies that

E(FN(E)) < 5, /cz when the true 8 € B(n, s,) and its nonzero elements are {cof(n,s,)}'/? with ¢ > 1, then



we must have that supgeg(n,s,) EFP(B)) > (n— s+ 1)®(@ (1 — 1/c2) — {caf(n, 5,)}1/2). This result will
be applied later.

Given any f3 € Q,(c1), then when the true 8 € B(n, s,) and its nonzero elements are {coc; log(n/s,)}/?,
we must have E(FN(B)) < 8p/ca. Now we consider a modified estimator B(T)7 such that BET) = le(|y,| <t)
for some t = {klog(n/s,)}'/? where k will be specified later. When the true 3 € B(n,s,) and its nonzero

elements are {cac; log(n/s,)}/?, we have that

t

E(FN(B™)) < E(FN(B)) + 50 % » ¢(; {ezer log(n/sn)}/%, 1)da

<s {1+/t d(x; {cacr log(n/s,) Y%, 1)dx
= °n Co . » 102€1 n ) .

We let k = cica — 6, for some 4, = ot (1), such that fit é(z;{cac1 log(n/s,)}/?,1)dx = 6!, = ot (1) (Note
that such 0,, exists due to n/s, — o), therefore, E(FN(B(T))) < sp(1/co +41).

Now we apply the restated result of Theorem 2.1, and can obtain that supgep( s, E(FP(E(T))) >(n—
s+ 1)®(@7 (1 —1/(ca — 6)) — crczlog(n/s,)}/?) for some §” = ot (1). And for any D,

E (W) >E (FE(B(T))) 1(FP(3M)) < D)
FP(BM) + s, FP(B(M) + s,

. ~ 1
> EFP(BIIUFP(B™M) < D)) =
. (FP(BY ’1(FP(BY) < D)) Dis.

On the other hand, let 3 be the hard-thresholding estimator with threshold value ¢, then FP(E(T)) < FP(B)
and E(FP(B™)1(FP(B™)) > D)) < E(FP(B)L(FP(3) > D)). Since FP(3) ~ Bin(n — ||Bllo, ), where

[E(FP(B™)) — E(FP(B)1(FP(B™)) > D))].

e =2 [ ¢(x;0,1)dx = o(s,/n), and let D = s,, then we obtain that

E(FP(B)LFP(B) > D)) = (n— [|Bllo)ue Pr(Bin(n — 1 = [|Bllo, pe) = sn — 1)
<npu; exp{—s, log(s,/nu)},
where the last inequality is due to Chernoff-Hoeffding bound of Binomial distribution. Hence
FP(3™) 1 ~
E|——2— ) > _—[BFPED)) - —s,1 :
(FP Gy ) % 5y EEPE™) = mcexpl=saloglon )
At the end, we have

- FP(B
_inf sup FDR(B) > _inf sup F i
BeQo(cr) BEB(n,55) BeQ,(c1) BEB(n,s1) FP(B) + sn

> inf sup E(FW(T))>

T BeQo(er) BeEB(n,sn) FP(B(T)) + Sn

. 1 ~
> inf sup —[E(FP(ﬂ(T))) — npy exp{—sp log(s, /nug)]
BeQu(c1) BEB(n,sn) 250

1
> [0 = 5n + D@1 = 1/ (2 = 81) — exealog(n/sa) /%) — sy exp{—s log(su /).
n
Taking supremum over co, and asymptotically let n — oo, we can obtains that
~ (c1—2407(1))/2
_inf sup FDR(B) >C (8—") ' :
BEQ0(c1) BEB(n,s5) n



with some o(1) term, where C' is an absolute constant.

O

Lemma A.2 ([? ] or Lemma 5 of [? |). Consider any class of distributions Py with parameter space § € F.
Let p, be some probability measure on F, = {0 € F,||0 — 0| > p} and define measure P,, = [ Pydpu,(0).
Assuming that P, is absolutely continuous with respect to Py, we define L, (y) = dP,,(y)/dPy. For all o > 0,

vel0,1—aqf,if EQU{L}?LF,* (Y)} <1+4(1—a—v)? for some p* >0 and some distribution -, then

VOSPSP*7 infSUP P@(q)a:O)Zya
®a 9cF,

where D, is the set of a-level test, such that Py, (P, =0)=1—a.

Lemma A.2 studies the relationship between effect size p and power 1 — Py(®, = 0) for the hypothesis

testing problem Hy : 0 = 6. This lemma is useful for proving Theorem 2.5.
Proof of Theorem 2.5

Proof. For any estimator 37 we assume its convergence rate follows supgegy,s,.) E||B — B||I? = Asyplogn for
some A. Note here A is not necessarily a constant, it can be a function of n and s,,.

Let B'(n,s,) be the set of all n-dimensional vectors who have exactly s, nonzero entries, and all the
nonzero entries are {czlogn}!/2, for some constant c3. Hence for any 8 € B'(n, s,,), As, logn > EHB— B2 >
czlogndice s Ps(B; = 0). This implies that for any 8 € B'(n, s,), Yice(d) Ps(B; = 0) < As,/cs, and there
exist i1,...1y € &(B) such that Pﬁ(Aij =0) < 2\/cs, where s’ = s, /2.

Note there are totally (;;) elements in B’(n, s, ), each 8 in B'(n, s,,) has its own indices iy, ...iy € &(8)
such that Pg(gij = 0) < 2A\/c3 holds. This relationship can be viewed as one-to-s’ mapping from B'(n, s,,) to
B'(n, s, — 1), i.e., from 3 to {ﬁ(if)}jlzl where 3(%7) is the vector which replaces i;th entry of 3 with 0. Since

there are totally ( " ) elements in B'(n, s, — 1), there must exists at least one o € B, _;, such that there

Sn

are at least m = s'()/(,",) = (n — sn + 1)/2 elements in B'(n, s,) that map to By. These m elements in

Sn Sn—1

B'(n, s,) are denoted by 5{; for j =1,...,m, where ﬂg and [y differ only at one entry (denoted by k;th entry).

~

Now let A ={y:£(6o) D &(B(y))}, the above argument implies that

%%A¢(y;ﬂé,1)dy < 2)\/es. (13)

Now, we implement Lemma A.2. Set A is viewed as the accept region for hypothesis Hy : 8 = [,
and the corresponding testing size a = Pg,(A°) < supgepn,s,) Ps(FP > 0). Let Fp- = {Bl,5=1,...,m}.
Given a uniform iy, P, = (1/m)3; P¢(-;ﬁ€j,1)’ and then L, .(y) = (1/m) Z;":lexp{tyj — t2/2}, where
t = {czlogn}/2, and

Bpy(Lyz (y)%) = (1/m®) 4 Y Eexp{ty; + tyi — t°} + Y Eexp{2ty; — t°}
i#] J

=(1/m?*)[m(m — 1) exp(0) + mexp(t?)] = 1 + (n® — 1) /m.



Therefore, by lemma A.2, when ¢3 < 1, we have

mjaxPﬁg (A)>1—a—{(n® — 1)/m}1/2/2.

Combining the above inequality with (13), we have that

A 2

SUPgeB(n,s,) LB — Bl
=2 > (c3/2)(1 - P5(FP > 0) — d,,),
sy logn > (e/2)( et | 5 ) = 0n)

where 6, = {(n® —1)/m}'/?/2 — 0.

Proof of Theorem 2.6

~

Proof. Instead of considering rate-minimax estimator 3(X,y), we consider all rate-minimax estimating func-
tions B = (Bi(X,y,B_i))", (which is not necessarily an estimator, as f; could depend on true unknown

parameter 5_;), and define the collection of rate-minimax estimating functions Qlf :

BEB(pn;sn

Qi‘ = {B : sup EXEB Z(ﬁz - /BL(X’ Y, B*i))z < Snf(n7p7usn)/n}~

Note that Qlf - Qic, hence

Pn Pn
_inf sup FExEg n:1{n; =0} > inf sup FExEjg 7;1{n; = 0},
BGQlf BEB(Pn,Sn) ; 5693} BEB(pn,8n) ;

where Fx denote expectation over the probability measure of X, 7; is the selection function induced by B;.
Note that 7;(X,y, 5—;) can be rewritten as 7;(z;, X, _;) where z; =y — X_;8_;.

Define prior 71 to uniform distribution on set By = {5 € RP» : 5, =0 or v/caf (0, Pn, $n)/1, [|Bllo = sn—1}
for some constant co > 1. Let Ex_, denote expectation over the measure of X but without the ith column,
I, denote expectation over the measure of z; which is the ¢th column of X, E, denote the expectation
over 3 with respect to prior 7, E, and E., denote the expectation over the condition probability of y and z;
respectively, given X and 8 (Note that Eym;(y, X, f—;)1{n; = 0} = E.,%(2;, X, 8-;)1{n; = 0}.) Similar to

(5), we can derive that

Pn
e )EXEyZm(y,X,ﬁ_i)l{m =0} > Er, ExE, Y _iii1{n; = 0}
€B(pn,sn i=1 i=1

:Eﬂ'lEX ZEZiﬁi(zivXa /8—7.)1{172 = O}
:EX/F/ Z/ i (23, X, B=i)9(2i; B, X)dzim1 (B—s|B:)dB—i 1{B; = 0}m1(B:)dfs
:EX/F/ Z/ i (25, X, B=i)¢(2:; 0, Idz;T1 (B—s)dB—;1{B; = 0}m1(B:)dBs

B, Z /ﬁ | / e )18 = 0p0(e0, i (3045



where 75i(2;, 7;) = Ex_, [ 0i(2i, X, B-i)T1(B-i)dB—i, T1(B—i) = m1(B—i|Bi = 0), and g(z;; 3, X) denotes the
density of z; given S and X, which reduces to standard normal distribution when 3; = 0. Since E.,n; =
($n — 1)/pn, we concludes

sup ExFE, zn:ﬁi(zi,X, B-i)l{n; =0} > ZEzl(l — (sn —1)/pn) /ﬁi(z,mi)gb(z;(),[n)dz. (14)

BEB(Pn,5n)

On the other hand, since 7); is rate-minimax, similar to (6), we obtain that
(1/c2)sn = sp = (sn/pn) ZEzl /772 z,2:)9(z, {C2f(nvpmSn)/n}1/2$i7]n)dz- (15)

By condition (C0), P(x € X; = {|lil| < {(1 + ¢3)n}/?}) > Py(cs,n) for any c3 > 0. We let Ex, denote
the integral with respect to measure of x; truncated within X; (note this is not a probability measure, since
its total measure is less than 1), and then from (15) we have

Sn/pn ZSX /77@ z xz) (Zv {Cgf(n,pn, Sn)/n}l/Qxia[n)dZ > Sp — (1/62)5n — Sn Z(l - P(Xz))/pn (16)

Use the arguments of Lemma A.1, subject to [ 7;(z, z;)¢(z; {ca f (n, pn, sn)/n}l/Qxi, I,)dz > a; for a given
a; € [0,1] and z; € R", the following holds: [ 7i(z,2:)$(2;0, I,,)dz > ®(®~(a;) — {caf (0, pn, sn)/n} 2| 2i]),
and thus respectively on X;, we must have [ 7;(z, 2;)¢(2;0, I,)dz > ®(®~(a;) — {(1 + c3)caf(n, Pny n) }/?).

Therefore,

S0 = 0 = D) B, [ ile200(0. 1) =

i

/77Z z,2:)P(2;0,1,)dz

(cIfl [/ iz, i) (25 {CQf(n7pn7Sn)/n}1/2$i7]n)d2:| —{(1+ 63)C2f(n’pn78n)}1/2>

X ® <n1)1 (ng fﬁl(z>xl)¢(z7 {sz(napnv Sn)/n}l/inv I”)dz> — {(1 =+ C3)02f(n7pn, Sn)}1/2>

P(X;)
Z(l — Snp; 1)pnP0
‘o <@1 (Z £ ot fenf s 5u) )2, n>dz> (A +e)es f(n’pmsn)}1/2>
>(1 - = 1)Popn<l> (‘Ifl {1-(1/e2) = (1= Po)} —{(1 + C3)C2f(n7pn75n)}1/2) :

n

where Py = Py(cz,n), and the third and fourth inequalities are due to Jensen’s inequality, and the last
inequality is due to (16).

Combining the above result with (14), we have that

inf  sup EXEanll{n7 =0}>(pn—sn+1) sup Foles,n)
pey pesnn) 210030 an)

x & (<I>_1 (Po(ezym) —1/e2) = {(1 + c3)ea f(n, pn, Sn)}l/g) .

Asymptotically,



1. if f(n,pn,sn) is of constant order, i.e. limsup f(n,pn, s,) = k < 00, limsup s,,/p, = ¢ < 1, then when
n is sufficiently large,
inf  sup  ExEg Y ml{n; =0} 2 H(k)(pn — $n + 1) < H(k)(1 = ()pn,
BEQlf BEB(n,sy) i1

where H (k) = sup,,~; ®(®7*(1 —1/c3) — {car}!/?).

2. if f(n, pn, Sn) diverges to infinity, i.e. f(n,pn, sn) — 00, then for any fixed 1 < ¢4 < Acg, if n is sufficiently

large,
n
nf sup ExEp Y il{m =0} 2 (b s+ D@1 - 1/es] — Peaf(m,5,)} V)
BeQ BeB(n,sy) i=1

2C(pn — sn+ 1) exp{—caf(n,pn,sn)/2} ~ C(1 = ()pn exp{—caf(n, sn)/2},
for some absolute constant C. Since, Acy can be arbitrarily closed to 1, we
n
inf  sup Ep Zﬁil{m =0} > C(1 = Onexp{—[1+ o(1)]f(n,pn, $n)/2}.
3652} BEB(n,sx) i—1

This concludes the proof.

Proof of Theorem 2.8

Proof. The proof of Theorem 2.8 is similar to the proof of Theorem 2.3, hence only a sketch of proof without
details is provided.

We only consider the case that p,/s, — oo since the case of p,/s, — 0 is trivial. For any es-
timation function 3 = (B(zi,y,8_:))/; that possesses convergence rate {cilog(p,/sn)/n}"/?, we must
have that: when the true 8 € B(n,s,) and its nonzero elements are {cyc; log(p,/sn)/n}'/?, we must have
E(FN(B)) < s,/ca. We construct a new estimation function 5(7) based on § as BZ(T) = Bil(|(zi, i /|| =) >
|zi][\/c1c2 1og(pn/sn)/n — 0(1)\/10g(pn/sn)) for some o(1) term, such that E(FN(3)) < s,/ca + s, x o(1).

The rest proof follows the same routine as in (12). O
Proof of Theorem 2.10

Proof. This proof is similar to the proof of Theorem 2.5.

Assume an estimator 3 satisfies SUPBEB(p,,50) EXE5||B — B|I? = Asplog p,/n for some A, where A can be
a function of n, s,, and p,.

Let B'(pn, sn) be the set of all p,-vectors who have exactly s, nonzero entries, and all the nonzero entries
have value {cslog p,, /n}l/ 2 for some small constant c3. By the same argument used in the proof of theorem
2.5, there exists a By € B'(pn, $n — 1), and Bé € B'(pn,sn) for j=1,...,m = (p— s+ 1)/2, such that ,88 and

Bo differ by only one entry and

o [ g(X0s B)dXdy < 22 e (18)
i<m J4

10



where A = {(X,y) : £(Bo) D f(E(X, y))}, and g(-,-; B8) is the data generation density function given regression
parameter 3.

Similar, we view A as the accept region for hypothesis Hy : 8 = Bp, and the corresponding testing size
a = Pg,(A°) < supgeg(p,, s,y Ps(FP > 0). Let Fpe = (83,5 =1,...,m}. Given a uniform -, P (X,y) =

(1/m)3_; 9(X,y; 3) and Ly:(X,y) = Pus (X, y)/9(X, y; Bo). Thus, we can show that

m(m —1)(1 — 3 log® pn/n?)~"/? + m(1 — 4cy log py, /n) /2
5 .

Egy(Lys (X,9)%) = -

If log p, < n~'/? and we let 8¢y < 1, Egy (Lyus (X, ¥)?) = [(m—1)(1+0(log” p,/n)) + O(exp{8ca log pn })]/m =
14 0(1).

Therefore, by Lemma A.2, we have

2Mes>1—  sup  P3(FP > 0) —{Eo(Ly:(X,y)%) = 1}"/2/2=1—  sup  P3(FP > 0) — o(1).

BEB(Pn,Sn) BEB(Pn,sn)

O

Lemma A.3. Let XZ(H) be a chi-square distribution with degree of freedom d, and noncentral parameter k,

then we have the following concentration inequality
Pr(x3(k) > d+ k + 22 + {(4d + 8k)2} /% < exp(—z), and
Pr(x3(k) < d+ kK — {(4d + 8k)z}/? < exp(—z).
The proof follows the argument of lemma 1 of [? ].
Now let us state a condition on the design matrix X, which will be used in the following Lemmas.

C2: There exist two constants ), ), such that all the eigenvalues of X, gT X¢/n are bouned within (A, X) for

any €| < ¢, = Ms,, for some sufficiently large M.

Lemma A.4. For a regression problem y = X ™) +¢ where B € Bo(sn,pn) and X satisfies condition (C2),
if pn satisfies either 1. $p < Pn < pn and v > 2; or 2. Umsup s, /pn, < ¢, D, = min(n, p,,) and v is satisfies
(25), then the estimator (4.1) satisfies

lim Py (15 = 5| < Csnlog(pn/50) /n}'/?) =1, (19)
lim Paco (||Bllo < C'sp) = 1, (20)
for some sufficiently large C and C', where C’' can be arbitrarily close to 1 as long as v is sufficiently large.

Proof. Let SC(¢) = RSS(€) + vlog(plé!/|¢|1) and ¢* = £(3(™). Thus B = B2 where € = minj¢<5, SC(€) and

¢ denotes the OLS estimation under the model ¢.

11



First, we show the result (20), i.e., the model size of 3 is bounded. Let = = {&;SC(&) < SC(&*)}, then it

is sufficient to show that = C {¢ : || < C's,,} for some C” with large probability. Note that

SC(6) — SC(£") > (RSS(EUE) — RSS(E")) + vlog(plE 17 e 1/1€]n), (21)

where —(RSS(€U £*) — RSS(£%)) =1 ng\m. By Lemma A.3, uniformly for all || = S, with probability larger
than 1 — exp{—c1C’s, log(ep,/C"sy,)},
—RSS(€UE&™) + RSS(E")
» » 1/2 (22)
<+ 2oz (75 ) + e Clsutontep /)] + 2 { ko (75 ) + uClsntontepa /]|
for any ¢; > 0.
On the other hand, for |£] € (C's,, pn], by Stirling’s approximation, (27)'/2n"+1/2e=mel/(12n41) < pl <

(2m)1/2pnt1/2¢=ne1/(120) the second term on the right handed side of (21) satisfies

[(C" = 1)sn ] log(epn/sn) — ([C"sn] +1/2)10g[[C"5n /5] } (23)

yiog(p=*s,11€l) = 2ot/ { i

Note that if p,, > s,, then the term inside the curly brackets on the right-hand side of (23) converges to
1-1/C".

If 5, < pp and C's, < S < P < p, then S = o(log p; /S"), log(p; /9")/ max(log (%), C'sn log(epn /C'sn)) 2
1. Combined with (21), (22) and (23), we have that if

y (((C’ — 1)sp|log(epn/sn) — ([C'sn] +1/2)log[([C"sn/sn]
[C'sy,] log(epn/sn)

)>2-ﬁ-617

then (23) is asymptotically larger than (22), and (21) is positive. Therefore if s,, < p, and p, < p,, for any
~ > 2, there exist a sufficiently large constant C’ and a sufficiently small ¢, such that (21) is positive for all
Dn > |€] > C'sp, with probability at least 1 — p,, exp{—c1C” log(epn/sn)} = 1 — o(1) asymptotically.

When C’s,, < S < p,, by Stirling’s approximation, log(p3 /S!)/ max{C’s, log(ep,/C"'s,), S, log (pé’)} =1,

hence, as long as

, <[(C' —1)sn]log(epn/sn) — ([C'sn] + 3)log[([C"sn] /5]
[C'sy,] log(epn/sn)

then (21) is positive for all || > C’s,, with probability at least 1 — p,, exp{—c1C"log(ep,/C’sp)}. I C' > 1 is

) > 3+2c1+2(1+c1) /2, for all C's,, < py, (24)

an integer and limsup $,,/p, < ¢ < 1, then the (24) reduces to

Cc'—1 log C’ ‘ Cc'—1 log C’
fy( c (1+log(max{C’,1/§))}) > 5, or T o ( cr (1+1og(max{0’»1/4))}) >5 (%9)

given small ¢;. On the other hand, for any 1 < €’ < 1/(, (even if C” is very close to 1) it is not difficult to

see that

o (10 = s 18(ep/ ) — (C'sn] + /) ol([Csnlfn])

I—C/Sn—‘ IOg(epn/sn)
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thus that (24) still holds if v is sufficiently large.
Secondly, let us prove (19). It is sufficient to show that uniformly for any £ € =N { : |¢] < C's,},
168 — B™||2 < Cs, log(pn/sn)/n for some constant C.

For any £ D £* and || < C’s,, by condition (C2) and Lemma A.3, given a large C,

P{Hﬂg - 5(n)”2 > Csn 10g(€pn/sn)/n} < PT{X\zﬂ > Xcsn 10g(€pn/sn)} < exp(_CZSn log(epn/sn)) (26)

for some constant cs.
For any £ € E, [£| < Cs and £ ¢ &, note that

€|
0> SC(€) — SC(£7) > RSS(€) — RSS(E UE") + RSS(E UE") —RSS(E") =7 log(pn/i)-

j=1
By Lemma A.3 and condition (C2), we have [RSS(§ U £*) — RSS(€*)| = O(sy, log(epy/sy)) with dominating
probability, thus [RSS(§) — RSS(§ U £*)] = O(s, log(epn/sn)). Note that [RSS(§) — RSS(€ U £*)] follows a
noncentral chi-squared distribution, thus by Lemma A.3, we must have that HﬁéfiéHQ = O(sp log(pn/sn)/n).
This furthermore leads to that

P{||8¢ - B2 > Cs, loglepy/sn)/n} < exp(—cssy, log(epn/sn)), (27)
for some positive ¢ given a sufficiently large C'. Combine (26) and (27),
P{[15g = B> > Csplog(epn/sn) /n, for all € € E, [¢] < C's,}

<C’s, <C{J’Z’ ) exp(—min(cg, ¢3) s, log(epn/sn)) < exp(—casy log(pn/sn)),

where the last inequality holds if ¢y and cs is large enough which is ensured by a sufficiently large C. O
Proof of Theorem 4.1

Proof. In this proof, we only show the results corresponding to the case s, < n. The proof for the general
case that limsup s, /n < ¢ is similar, we igore it.

First of all, the normal means model can be rewritten as y = n'/2(3(") /n1/?), i.e., we view n'/?I as the
design matrix. Therefore, it satisfies condition C2, and use the same arguments in the proof of Lemma A.4,
we have that HB— B2 < Cs,log(n/s,) and HBHO < (’s,, With dominating probability. Let £ = £(3),
& =& NEand & = £\&y, then with high probability,

[620¢1 | [€2U¢1 |
SC(&) —SC(&LU&) =Y el —v Y log(n/i) < (2+6)|&|log(n/|él) —v > log(n/i)
i€és i=|&1|+1 i=[€1|+1 98
€2 €2 (28)
=2+d+o0(1 Zlog nji) — Zlog n/(|&] +17))
i=1

where the inequality holds with dominating probability for any § > 0 by Lemma A.3, and last equation is due
to Zl&‘ log(n/i) ~ |&2]log(n/|&2|). Let 4 be any constant satisfying (1 ++)(2 + ) < . We can show that

13



(28) is negative if |€5] > max{1, |€1](|¢1|/n)”} when n is sufficiently large. This is due the following two facts.

First, if C's,, > 1 > |&4],

(24 6+ o(1)) log(n/i) — ylog(n/(|&] +14)) = ylog((|&1] +4)/7) — (v =2 — 6 — o(1)) log(n/i)

<ylog2— (y—2—3—o(1))log(n/(C's,)) <0, when n is large.
Second, if [&1] > i > [&1](|&1]/n)"",

(2+ 0+ o(1))log(n/i) — vlog(n/ (] + 7))
=246+ o(1))log(1 + [&11/4) — (v = 2 — 6 — o(1)) log(n/(|&1] + 4)))
<(24d+o(1))log[l + (n/\§1|)7/] —(y=2-=38—0(1))log(n/|&1]) <0, when n is large.

Third, for i = [|&[(|&]/n) ],

[€1]4+1
(2+d)ilog(n/i) =y Y log(n/i) < (2+ d)ilog(n/i) — yilog(n/ (& + 7))
Jj=l&1|+1

<i[(2 + 6) log(n/i) — vlog(n/(2[&1])] = il(2 + 6) log(2[&1[ /i) + (v — 2 — &) log(n/(2]&:]))]:

Together, these above three inequalities imply our result on the false positive control of E

Now we study the convergence rate of 3. Note that |3 — 3|2 = Dice, €1 T Dice, €1 T Dicen\a B™)2.
And 3., € = Op(sn) = 0p(snlog(n/sn)), Yice, €7 = Op(|€2]log(n/|€2])) by Lemma 6 of [? ], thus we only
need to show that 37, c.\¢, [55”)}2 < (v + €)sp log(n/sy,) with high probability, for any positive small e. Note

that this can be derived from the facts that SC(&; U&z) < SC(£*), and |&2]/s,, is sufficiently small. O

Lemma A.5. For regression model under Gaussian random design (condition C1) with 8™ € By(spn,pn),

Sn10g(pn/sn) < n and s, < py, given any positive constants C, M and tiny constant € > 0, we have that
T 21,42 2 1/2]?
V" (Peug, — Pe )y < [Cols? og (a5 /m” + {(2 + ©) | Tog(p/ 162}

holds with high probability uniformly for all & C £ = &(B™), ||5§?{§1 | < M{s,log(pn/sn)/n}?, 0 < |&| <

Cs and & C £*¢ where Cy is some positive constant and P¢ denotes the projection matriz induced by Xe¢.

Proof. First of all, conditional on X¢-, ETpg*E ~ x2, thus by Lemma A.3, with probability at least 1 —

exp{—cis, log(pn/sn)},
" Pe-e < s, l0g(pn/sn), (29)

for some positive ¢;. Similarly, given a subset model ¢, for a random vector & ~ N (0, 02) that is independent

of X¢, with probability 1 — exp((1 + c2)|€| log(pn/I€])),

ETPeE < €] + (2 + 2c2) €] Log(pa/[€]) + 2/&[{(1 + c2) log(pa/ €D} 2, (30)

for any ¢y > 0.
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By Corollary 5.35 of [? ], given a sufficiently large n, with probability at least 1 — exp{—css, log(pn/sn)},
uniformly for all |& U&| < (C+1)s, the singular values of of X, ¢, /n'/? are inside the interval (1—4,,,1+6,),
where c3 is some positive constant and &, < {s,, log(pn/sn)/n}'/?. This implies that X¢, and X, are almost

orthogonal, and by matrix algebra, we can show that
y" (Peyue, — Pe )y = (y — Xe, 5§T))T(Pslu£2 = Pe)(y — X&ﬁé’f))
=(C"8|Pe, (y = Xes B + (14 C'6) | Pea(y — Xea B

<(C'6, || Pere

|+ C'0ul|Pey Xeove, B, || + (14 C760) || Py (y — Xe, L))

S(C60 || Perc| + €702 (1 4+ 6,) () 2B, | + (14 C'8,) | Pey (y — Xea B D,

for some constants C’ and C”'.
Note that (y — Xe, Bg)) ~ N(0, (14 |Bemng, II*)In) is independent to X¢,. Thus, combining the above in-
equality with (29) and (30), we have that with probability at least 1—exp{—cy s, log(pn/sn)}fzcs" (pi”) exp{(1+

c2)ilog(pn /i) } — exp{—cssy log(pn/sn)}(=1—0(1)),

yT(P€1U§2 - Pfl)y

<[C"8n{sn 1og(pn/sn)}/? + C"62(1+ 6,)n' 2| B |

+ (14 ) {1+ 1B IPY/2{(2 + ea) |6l og(p/[€21)} /T2
< [co{si 10g?(pn/sn) 0}/ + {(2 + €)|é2| log(pn/|2])}/ 2} :

for some constant Cy, where ¢4 > 2c3 can be arbitrarily small if we choose c3 to be sufficiently small.

Proof of Theorem 4.2

Proof. We only prove the case that s, < p,. The results for general case that limsup s, /p, < ¢ can be proved
in a similar way.

By Corollary 5.35 of [? | and s, log(pn/sn) < n, condition C2 holds with dominating probability, thus
by Lemma A.4, |(§| < Cs and ||B§11)AH < M{splog(pn/sn)/n}'/? for some C and M, where £ = 5(3) and

\E
& =¢(BM). Let & = ¢* N and & = €\&, then by Lemma A.5, with high probability,

[€2U&1 |
SC(fl) - SC(£2 U 51) = yT(P§1U52 - Pfl)y - Z log(p/z)
i=[&1]+1
[€20U61] (31)
2
< [Cols2 g f52)/m} /2 + {(2 + ezl logtpa/lED V]~ S Toglo/i)
i=|&1]+1

Note that since slog(p/s) < n, hence {slog?(p/s)/n}"/? = o({slog(p/s)}'/?). Therefore, it is not difficult
to see that (31) asymptotically is negative if |a| > d’s for any positive &' > 0, as long as v > (2 +¢). If

furthermore, slog(p/s) < n'/2, then {s%log?(p/s)/n}'/? = o(1), and by the same argument used in the proof
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of Theorem 4.1, we can show that (31) asymptotically is negative if |&5] > max{1, |&|(|&1]/p)” } where '
satisfies (1 +4')(2 4 €) < 5. This hence proves our claim on the number of false positive selection.
Now, we study the Ly estimation error ||3 — 8|2 = ZieE*\g[ﬁfn)P +Zieg(@ - B;n))Q. Recall that given
a large n, with high probability, condition C2 holds with 1 —§ < A < A < 14§ for any fixed arbitrarily small
constant . And our following analysis is conditional on this event. First of all,
2 am)y211/2 Ty \—1vT Ty \—1yvT _pn)
3B - BV = (XE X Xl + I(XE X XE X B
ick
< sup (XX TIXTel 4+ {(28/(1-8) Y [BMPY (32)
gle\e*|<o's =
i€€*\§
<6'O(su log(pa/sa))"/ +{(26/(1=9)) Y [BPY72,
i€e*\&
with high probability. Therefore, it suffices to study the value || ,Bgfigﬂ.
Since E is the solution of minimization,

Sn

0> SC(§) — SC(EUE") > RSS(E) — RSS(EUE") — 7Y log(pn /i)
=1

= [(Paye. = POXB™ + (Pge. — Po)e)|” - Vzlog(pn/i) (33)
z=12 S
> ({1=06) Y B2 (Pase. — Pl | =Y log(pa/i)-
ice*\& i=1

Note that (Pg . —Pg)g = (I—Pg)Xg(XET(I—Pg)Xg)*ng(I—Pg)e, where £ = 5*\5, hence ”(PEug* —Pg)EH <
{I/n(1 - 6)}1/2|\X5T(I = Poel| < {1/n(1 - 6)}1/2(HX§€|| + HX;:FPEEH). Note that €] < (1 4 6')s,, and by

Lemma A.3, for any fixed §” > 0, we have

sup | XEeell + [ XE e Peel
E1<(146')sn £\¢ £\¢

<{n(L+6)}/*{(s +2log2° + (5"/3)slog(p/s))}/* (34)

1/2
2 [ s+ v mes ) P )]

holds with probability at least 1 — exp{—cslog(p/s)} for some ¢ > 0.
Combine (33), (34) and (32), it is easy to see that with high probability, nHB—ﬂ(") I < (v+¢)sn log(pn/sn)

for any fixed ¢ > 0, as long as we choose ¢, ¢’ and ¢” to be sufficiently small.
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B Incompatibility between rate minimaxity and selection consis-
tency under regression models

In section 3, we introduce the concept of monotone estimator under normal means models, and establish the
incompatibility between rate minimaxity and selection consistency. However, as mentioned, the concept of
monotonicity doesn’t naturally carry over to general linear regression models unless the design matrix is exact
orthogonal. By random matrix theory, e.g., [? |, under condition (C1), with high probability, the singular
values of low dimensional submatrix of X are very close to 1, i.e., the columns in X are nearly orthogonal to
each other. Hence, we conjecture that Lemma 3.1 still holds for regression models under condition (C1). That
is, a selection-consistent estimator B (X,y), which possesses monotonicity under normal orthogonal models
(i.e., B(X7 y) is monotone with respect to X7y when X is exactly orthogonal), still ensures that there is no
false discovery. Further theoretical investigation on this matter is beyond the scope of this work. But we
indeed can show that a selection-consistent penalized estimator, under proper conditions, ensures that there
is no false discovery. Note that penalized estimator, under exact orthogonal design, is usually monotone.

Let B(X7 y) be the penalized estimator using penalty function pe(8) = Zj p(Bj,pn,n), ie., B = arg;nin“yf

XB|1?/? + pe(B), where o2 is the known variance for random error term. Assume the function p satisfies
(D1): arg ming, (y; — ﬁj)2 + UQp(ﬂj)} # 0 if and only if |y;| > ch(pn,n),

where h(p,,n) = h is the thresholding value caused by the penalization under exact orthogonal design.

Furthermore, we assume that under random Gaussian design, the estimator has the following properties:
(D2): Its convergence rate is r, = ry(n, pn, Sn), i.€., lim, Pﬂ(m(HB(X> y) = BN <rp) =1,

(D3): lim, P5<n)(||§(X7 y)llo < Cosy) =1 for some Cy > 0;

(D4): lim,, Pgeny {f(ﬁ(y)) = &(BM)} =1, if || || min > t(n, Sp, pn) for some function ¢,

for any sequence of 5 € B(p,,s,) satisfying (s,,pn)S; € D where D is some set of configurations of

dimension and sparsity growth. Then, we have that

Theorem B.1. Any estimator B that meets the above conditions must satisfy

~

llT{nPﬁm(FP(B) = 0) = ].,

for any sequence of BT € B(py, sn) satisfying (sn, pn); € (DND) where D = {(sn,pn)3%, : limsup s, /pp <

¢ < 1,limp, = oo and se/? log pnrn < 1}.

Proof. If this theorem is not true, then there exists a sequence of ) € B(p,,s,) satisfying (s,,p,)5%, €
DN D, such that Py (FP(E(X7 y)) > 1) > C > 0 for all n where C is some positive constant. By conditions
D2 and D3, Py (FP(B) > 1,[|B]lo < Cosy, and || — B < r,,) > € for some C’ € (0,0).
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Note that B, # 0 implies that

n Pn
argmin Z(yk - Z ki B — Trifi)” + p(Bs)
Bi k=1 i
Son i(er + ?;L xkj(ﬁj(-n) - Bg)))Q n (i)

ZZ:l x%z ZZ=1 xil

=argmin (ﬁi — 70

Bi
Therefore, by condition D1, with probability as least C’, ||BH0 < Cosp, |\§f B™| < r, and

Sory iler + X0 g (B — By))
(Z}Zzl xii)l/Q

Combining with fact that with dominating probability, the singular values of any n by (Cp)s,, submatrix of

max > h(pn,n).
igeBm) ‘ ( )
X is bounded by n'/2(1 + O(s, log p, /n)'/?), the above inequality implies that

D k=1 EkThi
(ko @) Y/2

where 0 < C" < C".

Note that Z; = > _, exwri/ (3 p_, #3,)1/2 ~ N(0,1), thus

max
7

> h(pp,n) — O(rp(sp log pn)*/?), with probability at least C” > 0,

P (i [ S5 > b)) 21 200711 727 4 O o) )] - 1
>1 — (20[® " (exp(—C" /2pn)) + O(rn(sn log py)/?)] — 1)Pn (35)

21— {2exp(=C"/2p,) — 1 = 26[@ " (exp(=C" /2p,))]O(ra (50 log pu) /) .

By the facts ¢(z) < (1 — ®(x))[(2® + 1)/z], @ (exp(—=C"/2p,)) = (logp,)*/?, and the assumption
O(rn(sn 10gp71)1/2) = 0(1/(10gpn)1/2)7 we have

¢[‘I>71(exp(—C///Qpn))]O(Tn(Sn Ingn)l/z) = []- - exp(—C”/Qpn)]O(logp")l/2)0(7‘n(8n Ingn)l/z)
=o([1 — exp(=C"/2p,)]) = o(1/pn)

Therefore, (35) reduces to
D k1 ER TR

P (max —_——
o (o )

Result (36) implies that if the true parameter is a 0 vector, with probability at least 1 — exp{—C"},

> h(pn,n)> >1—exp{-C"} > 0. (36)

-~

£(B) # 0, and this contradict to condition D4. O

Remark 1. Conditions D1-D4 hold for many popular choices of penalty functions, including LASSO, SCAD
and Ly penalties with r2 < s, logp,/n, and under such cases, the set D= {(8n,Pn)22; : limsup s, /pn < c <

1,limp, = co and s2 log® p, < n}.
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C FDR convergence under sharp minimaxity

Our result in the main manuscript reveals that under s, < p,, the FDR decreases polynomially for rate-
minimax estimators 3’s with suboptimal multiplicative constant, i.e., lim SUPZeB(pn,sn) LB — BI2/Ropt = ¢ >
1. On the other hand, the false discovery control behavior of sharply minimax estimators (i.e., B satisfying
imsupgeg(n,s,) EsllB — §||2/Ropt = 1) is still unclear. Therefore, we present one toy simulation, aiming to
understand the decay of FDR empirically under sharp minimaxity. Similarly to the example demonstrated in
the Introduction section, we choose a normal means model, with p, =n, X =1 and s, = n!/2 and all nonzero

Bi’s are set as [2log(n/s)]'/?

, and consider the estimator (4.1) with tuning parameter value v = 2.0. Note
that by Theorem 2 of [? ], this estimator is sharply minimax. Figure C plots the logarithm of estimated FDR
based on 100 independent simulations versus the logarithm of true sparsity ratio log(s,/n), where n ranges
form 28 %100 to 215 100. We still observe that the FDR decays to zero as sparsity level decreases. Despite the
nearly linear pattern shown by the top plot in Figure C, the U-shaped residual plot suggests that the decay

of FDR is sub-polynomial, w.r.t. the sparsity level.
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Figure 1: This figure

estimator.

log(FDR)

residual of log(FDR)

-1.60 -1.55

-1.65

0.000 0.002 0.004

-0.002

asymptotic performance of FDR

-7.5 -7.0 -6.5 -6.0 -5.5 -5.0
log(sparsity ratio)
residual plot
o
o
[}
o
o
o
o
T T T T T T
-75 -7.0 -6.5 -6.0 -5.5 -5.0

log(sparsity ratio)

plots the patter of FDR with respect to

20

the sparsity

ratio, for a sharply minimax



