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Hodge theory on ALG™ manifolds

By Gao Chen at Shanghai, Jeff Viaclovsky at Irvine and Ruobing Zhang at Princeton

Abstract. We develop a Fredholm theory for the Hodge Laplacian in weighted spaces
on ALG* manifolds in dimension four. We then give several applications of this theory. First,
we show the existence of harmonic functions with prescribed asymptotics at infinity. A corol-
lary of this is a non-existence result for ALG* manifolds with non-negative Ricci curvature
having group I' = {e} at infinity. Next, we prove a Hodge decomposition for the first de Rham
cohomology group of an ALG* manifold. A corollary of this is vanishing of the first Betti
number for any ALG* manifold with non-negative Ricci curvature. Another application of our
analysis is to determine the optimal order of ALG* gravitational instantons.
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1. Introduction

In this paper, we are interested in complete Riemannian metrics in dimension four which
are asymptotic to certain Ricci-flat model spaces at infinity. Many of these types of geometries
have been previously studied, and are known as ALE, ALF, ALG, ALH, and two exceptional
types known as ALG* and ALH™; see for example [2,4, 6, 13, 14] and the references therein.
In this paper, we will concentrate on the first exceptional type, ALG*, which we define next.
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Let Nilg be the Heisenberg nilmanifold of degree v € Z 4 with coordinates (61, 6>, 63) on the
universal cover; see Section 2 for our conventions.

Definition 1.1 (ALG}, model space). For v € Z, the ALG}, model manifold is
M, (R) = (R, 00) x Nil3 .

LetV = ko + % logr, where k¢ € R, and assume that R satisfies R > ezTn(l_"O). The model
metric on Y1, (R) is given by

. 2
(1.1) eT = V(dr? + r2d0? + d62) + V_I#(d% — 6, d61)2.
Given L > 0, we let g,ggf’L = ngfg}.

The metric in (1.1) arises naturally from the Gibbons—Hawking ansatz; see Section 2.
Note that the model metric restricts to a left-invariant metric on any cross-section {rg} x Nilg.
Next, let I' be any finite group acting freely and isometrically on fﬁtv(R), and denote the
quotient space by Jt,, (R). We then define the following, which are the main objects of interest
in this paper.

Definition 1.2 (ALG;-I" manifold). A complete 4-manifold (X, g) is called an ALG}-T"
manifold of order n > 0 with parameters v € Z4, ko € R and L € R if there exist an ALG*
model space (ﬁtv(R), gg{i 1) with R > 0, a compact subset Xg C X, and a diffeomorphism
O:IM,(R)/ T — X \ Xg such that

(1.2) VEm (@*g — g2 )lgm = O(sTF™),

ass(x) = r(x)V%(x) — 00, forany x € SfTIv(R), forany k € Ng = Z4 U {0}.

We note that allowing the quotient by I" is analogous to the asymptotically flat (AF) case
versus the asymptotically locally Euclidean (ALE) case. Fix xg € XRg, and for x € X, define
5(x) = dg(xp.,x). We also note that ALG;;-I" metrics satisfy the following properties:

(1) s(x) ~s(®71(x)) as s(x) — oo, see Remark 2.1,
(2) Volg(B¢(x¢)) ~ t? ast — oo, and
(3) |Rmg| = O(s2(logs)™1) as s(x) — oc.

Fredholm theory of the Hodge Laplacian for the geometries listed above has been devel-
oped in many works; see for example [3,5-7,11,14,17,19]. It is also worth adding a histori-
cal remark regarding the ALG* model geometry. ALG* hyper-Kéhler manifolds appeared in
the math literature before the special case of ALG manifolds. In fact, Cherkis—Kapustin first
studied the ALG* model geometry, ALG* hyper-Kéhler manifolds, as well as D4-ALG hyper-
Kihler manifolds; see [9]. The ALG name was introduced in that paper (page 2, last paragraph),
which included both the ALG and the ALG* cases. Later, these cases were separated in order
to distinguish the different model geometries.

In this paper, we will develop a Fredholm theory for the Hodge Laplacian on ALG;-T
manifolds; see Proposition 4.5. Due to the peculiarities of the asymptotic geometry of ALG*
metrics, this is quite nontrivial; it is proved in Sections 3 and 4, which rely on some lengthy
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formulas computed in the appendix. We will not describe this theory here in the introduction,
but instead, we will turn our attention to a number of applications. Note that 4y = 1 is obvi-
ously a harmonic function. Our first application is to the existence of non-constant harmonic
functions with prescribed asymptotics.

Theorem 1.3. Let (X, g) be an ALG}-T" manifold of order n > 0, and let k € Z+.
Ifrke\ﬁkel is invariant under T, then for any 0 < € < min{k, n}, there exists a harmonic
function hy: X — C such that

(13) hk — rkeﬁkel + O(Sk_e),

as s — oo.
A corollary of this is the following non-existence result.

Corollary 1.4. There do not exist any ALG,,-I" manifolds of order n > 0 with ' = {e}
and with non-negative Ricci curvature.

To prove this, we will use Theorem 1.3 to find a certain harmonic 1-form which, using the
Bochner formula, will lead to a contradiction. We note that there do exist complete ALG},-I"
metrics with non-negative Ricci curvature for I' nontrivial. A rough analogy with the AF set-
ting: any AF metric with non-negative Ricci curvature must be Euclidean space. But there are
many non-flat ALE metrics with I" nontrivial and with non-negative Ricci curvature.

Our next application is a Hodge decomposition theorem for the first de Rham cohomol-
ogy group. Define the following subspace of Q! (@V(R) /T):

Wl — {R-d@z if y*d6, = db, forall y € T,

- {0} otherwise.

Theorem 1.5. Let (X, g) be an ALG}-T" manifold. Then
Hip(X) = {w e Q'(X) |do =0, 8w =0, P*0 = wy + O(s ) as s — 00, wg € W'}

for any € satisfying 0 < € < 1.

The proof of this is found in Section 5.2. There is an analogous result for the second de
Rham cohomology group which can be proved using similar methods, but for simplicity, we
do not state this in this paper. As a corollary of Theorem 1.5, we have the following vanishing
theorem.

Corollary 1.6. Ler (X, g) be an ALG};-T" manifold with non-negative Ricci curvature.
Then the first Betti number is b'(X) = 0.

We note that, since any such manifold has quadratic volume growth at infinity, this corol-
lary can also be seen to follow from [1, Theorem 2.1 and Lemma 2.2]. Anderson’s results are
much more general, but his proof uses techniques from geometric measure theory. In contrast,
our proof of Corollary 1.6 is more elementary, but is specialized to ALG* geometry.

We next recall the following definition.
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Definition 1.7. A hyper-Kéhler 4-manifold (X, g, /, J, K) is a Riemannian 4-manifold
(X, g) with a triple of Kéhler structures (g, ), (g, J), (g, K) suchthat [J = K. Let w1, w2, w3
denote the Kidhler forms for 7, J, K, respectively.

As we will see in Section 2.2, the model space has a hyper-Kihler structure, and we
denote the triple of Kéhler forms by (‘)19;20 1l = 1,2, 3. In Section 2.3, we consider all possible
isometric quotients of the model space which retain this hyper-Kéhler structure. We show that,
without loss of generahty, we may assume that either I is trivial, or v is even and I" is a specific
Zr-action (: Esz (R) — Emzl, (R), up to hyper—Kahler rotation and scaling. In the latter case,
denote the quotient space by t», (R) = Sﬁzv (R)/Z5. The model Kéhler forms descend to the
quotient, which we denote by wl.,mKo’ =123

Next, we will consider the case of complete hyper-Kéhler ALG}-I" manifolds. Since any
hyper-Kéhler metric is Ricci-flat, by Corollary 1.4, I' cannot be trivial. Consequently, by the
remarks in the previous paragraph, we can make the following definition.

Definition 1.8. An ALG: gravitational instanton (X, g, /, J, K) of order n > 0 with
parameters v € Zy, ko € R, L € Ry is a hyper-Kéhler 4-manifold which is also an ALG3,-
7, manifold (X, g) with the Z,-action given by ¢ such that, in addition to Definition 1.2, the
hyper-Kéhler forms satisfy

(1.4) VEm (%0 — L2002 [ )lgm = O(s™F ™)
fori =1,2,3ass(x) = r(x)V%(x) — 00, for any k € Ny.
Remark 1.9. Conditions (1.4) necessarily imply (1.2); see Section 5.3 below.

Our next main application is to determine the optimal order of ALG}, gravitational instan-
tons.

Theorem 1.10. If (X, g,1,J, K) is an ALG}, gravitational instanton of order n > 0
with respect to ALG}, coordinates ®, then there exists an ALG}, coordinate system ®' as in

Definition 1.8 with order v’ = 2.
This is proved as an application of our Fredholm theory applied to a certain Dirac-type
operator and for the Hodge Laplacian on 2-forms; see Section 5.3.
2. ALG™ model space
In this section, we explain some properties of ALG™ metrics in more detail.
2.1. The model metric. The 3-dimensional Heisenberg group is

1 6, 63
H(I,R)E 0 1 91 291,92,93€R
0 0 1
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For v € Z 4, the Heisenberg nilmanifold Nilﬁ of degree v is the quotient of H (1, R) by the left
action of the subgroup

1 27k 4mx%v71
H(1,7) = 0 1 2wm k,iImeZ
0 0 1

generated by
01(01,62,03) = (61 + 27, 62, 63),

02(91, 0, 93) = (91, 0r + 27,05 + 27‘[91),
03(01,62,63) = (01,02, 05 + 4x2v™ ).

Note that the forms b
d6:, db,, © = 2—(d03 — 6,d6y)
b4

are a basis of left-invariant 1-forms. Also, it is clear that Nilg is the total space of a degree v
circle fibration
1 93 T2 2
S* = Nil; = T7=Rp 4 /A.

We next consider the Gibbons—Hawking ansatz
ST — M, (R) = (R, 00) x Nil> - U = (R?\ Bg(0)) x S*,

with the radial harmonic function
v

2 logr’ r e (R,OO), Ko € R’ R > e%Tﬂ(l_KO);
T

V =Ko+
for details of the Gibbons—Hawking ansatz construction, see [12, 16]. We use the coordinates
(x.7,62) = (rcos(61), 7 sin(61),62) on (R \ BR(0?)) x §'
and fix the orientation r dr A d6; A d6>. Then we have

sgoxgt od(V) = %d@l A dby,

and hence % [*p2xs1 0dV] e H 2(U; 7). Note that the form © is a connection form such that
Q = d0O = xdV. The Gibbons—Hawking metric is

gfff = V(dx?* +dy* +d63) + vV 'e?
2
= V(dr? + r2d6? + d6?) + V_14v—2(d03 — 0, d6))>.
T

If I' is some specified finite group acting freely and isometrically on EfRV(R), then we will
denote the quotient space by M, (R) = M, (R)/T.

Remark 2.1. Choose a point pg € Eﬁkv(R). By straightforward computations, one can
see that there exists a constant C > 0 such that, for any ¢ € 9, (R),

C™'r(g) V(@)? < dgii(g. po) < C - 1(q) - V(g)?.
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2.2. Hyper-Kihler structure. On Eﬁ?v(R), define an orthonormal basis
(EY E2 E3 E*Y = (V2dx,V2dy,V2d6,, V7 20).

We define three almost complex structures 7, J, K € C °°(End(TEﬁE)) on I, (R) by requiring
the dual linear maps 1*, J*, K* € C°°(End(T*IM)) satisfying

I*(EI)I—EZ, I*(ES):—E4,

J*(EI)I—E3, J*(E2)2E4,

K*(E'YY = —E*, K*(E?*) = —E>.
It is clear that each complex structure is Hermitian with respect to g. Moreover, K = IJ

because K* = J*I*. Using the convention that wy(X,Y) = g(JX,Y), the corresponding
Kéhler forms are

o =0 = E'AE2 4+ E3 A E* = Vdx ndy + dbs 7O,
2.1) wy =wyy, =E'NE*~E> AE*=Vdx ndf—dy A O,
(2.2) wg = w3y =E'NE*+ E> ANE? =dx A© + Vdy Adb,.

We notice that dw; = dwy = dwg = 0. For example,
doj =dV A*xdOy —dOr, Nd® =dV Axdby —dOy AxdV =0,

where * = *p2, g1 is the Hodge star operator defined with respect to the flat metric on R? x S!.
The last equality holds since * & A B = a A * B for 1-forms a, B € Q1 (R? x S1). The com-
putations for dwy and dwg are similar.

By [15, Lemma 6.8], the triple

m m My —
{0)15K0’ 0)2,’(0’ a)3,K0} = {a)l? (I)J, a)K}

is a hyper-Kihler triple on Sﬁtv (R). In particular, the complex structures /, J, K are integrable,
and the metric is Ricci-flat Kdhler with respect to all three of these complex structures.

2.3. Quotients. There are many possibilities for the group I'; see for example [10]. We
will not analyze all the possibilities here, but will only address the question of which quotients
retain the hyper-Kahler structure. To this end, we have the following proposition.

Proposition 2.2. If I is a finite group acting freely and isometrically on (Eﬁlv (R), g,g{f)
and preserving 1,J, K, then either T" is generated by & and i 1 ,, for integers k.l € N,
m € Ng such that k divides v and 0 <m < kl — 1, or v is even and T is generated by &,
Ck.1.m> tn,t for integers k., [, m satisfying the same conditions, n € Ng satisfying0 <n <v —1
with nl even, andt € R.

Proof. Define
£1(01,02,03) = (61, 02,03 + 4n21 w71,
Ckam(01,02,03) = (01,62 + 2wk~ 03 + 2wk ™01 + dn?ml~ k™Y,
tnt(01,02,03) = (61 + m, 2rnvt — 0, 27010 + 1 — 03).
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Then
Elalgl_l =01, §102§f1 = 02, 510351_1 = 03,
§k,1,m01§,:} m = 010;’/", Ek,l,moz;k_} m — 92 gk,l,m03§/:} m = 03,
In,i01lyy = 0105, tn, 1020 1 :0;/202—1’ In,103L, = 03

These imply that &7, Cx.1 m» tn,e descend to actions on H (1,R)/H (l 7). Moreover, it is easy

to see that they induce actions on N which fix (g%(?, a)glnfco a);nfco w3 KO) Note that

tl=0s &, =0 2,=8"0
A routine calculation shows that they generate a finite subgroup.

Conversely, an isometry of the Gibbons—Hawking metric must map S!-fibers to S!-
fibers, so there is a homomorphism /4 from T to the isometry group of (R? \ Bg(02%)) x S!.
We first consider the kernel of 4. Since I is a finite group, we see that the kernel of 4 is
generated by & for some / € N. For the image of &, the isometries of the base are rotations
and reflections in R? and similarly on S 1 Using (2.1) and (2.2), we see that w; and wg are
invariant only if

(2.3) (dx,dy,d6>,0) — (dx,dy,db, ), or
(2.4) (dx,dy,d6,0) — (—dx,—dy,—db, —0).

Consider the case that every element in I" satisfies (2.3); the only possibility is that 4(T") is
generated by
h(y):(r,01,02) — (r,01,02 + 2ma),

where a € R. Since I' is a finite group, we can assume that a = %, where k € N. Using the
condition that ® is fixed under the action, we see that

y(r,01,02,03) = (r, 01,0, + 27k~ ', 03 + 27k~ 160, + b),

where b € R. Since yo1y~!isin H(1,Z), we see that k divides v. Moreover, since y* is in

the kernel of /, it must be £/" 0>, where m € Z. This implies that b = 4r?mi~'k—1v~l. By
multiplying with o3, we can assume that 0 < m < k[l — 1.
Next, consider that case that (2.4) happens for some element y € I". Then

y(r,01,02,03) = (r,01 + w,c — 0,c01 +1 — 63),

where ¢, € R. Using yo1y~! € H(1,7Z), we see that c = 2znv~! forn € Z. By multiplying
with 07, we can assume that 0 < n < v — 1. Using yooy~! € H(1,Z), we see that v is even.
Finally, since y? E"l/ 251 is in the kernel of /, we see that n/ is also even. |

Remark 2.3. Note that, in the first case in Proposition 2.2, #(I") is a cyclic group Z
consisting of rotations of the S! factor. The kernel of / is also a cyclic group Z;. There is
a short exact sequence

h
0—>272;—-T — Z;— 0,
so we must have I' = Z; x Zy, and since I' is abelian, we must have I' = Z; x Zj. In the

second case, i(I") is a dihedral group Dy = Zj X Z», and similarly ' = Z; x Dy. In fact, it
is not hard to see from the above presentation that I' = (Z; X Zy) % Z>.
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Remark 2.4. Recall that, in Definition 1.1, we defined the scaled metric g,?i =1L g,?f.
The complex structures of course do not depend on any scaling, but we also define the rescaled

Kihler forms a)fmxo L= L%w fmx fori =1,2,3.

The next proposition deals with the first case above.

Proposition 2.5. In the first case in Proposition 2.2, the quotient space

(25) (9:Ik (R) glco’a)l Ko’wz K()’a)3 IC())/F
can be ldentlﬁed with (EHE (R) g~ Elﬁfc oL’ ;ﬁ%o L a)gj%o 1) after a hyper-Kdhler rotation,

for some , R Ko, and L.

Proof. Letting 51 =0, +27ml~ v, 52 = k0, and 53 = k03, the Gibbons—Hawking
metric becomes

~ _ - 2 - - o~
goy = V@r? +r2d B} + k72483 + V' 5 (@8 — 8,46
KU W ) (K2 (dr? 4 r2d67) + d62)

) (vk 11)2

+ kYR (db3 — 0> d6))2.

Letting V= Vk= U, 7 =kr,v = vk, we have
~ _ - - . 52 - -
g = k—lz—l{V(d72 + B} +d63) + V! (B~ ) d@l)z}.
A similar calculation shows that
N T LT 5 Foan
;= kU {Vrdr ANdBy + 2dfy A (dBs — 92d91)}.
2

We also see that

wy =k~ (cos(q)@y — sin(q)@k),

wg = k77 (sin(g)@s + cos(q)ak),

forg = —27wmlI~ v~ where @y and @k are defined as in (2.1)—(2.2), but with respect to the
(7, 01, 92, 93) coordinates. This finishes the proof. ]

The next proposition deals with the second case above.

Proposition 2.6. [In the second case in Proposition 2.2, the quotient space (2.5) can be
identified with

~

Moy oI M m m
(ED}U(R)’ gl?(),L’ wl,ﬁo,L’ wZ,E(),L’ w3,E(),L)/L

after a hyper-Kdhler rotation, for some v, R, Ko, L, where V is even and t = 19 ,.

Proof. 1In this case, from Remark 2.3, we have I' = (Z; X Zj) % Z». Then Z, acts on
My,(R)/G, where G = Zj x Zy. Letting (01, 62, 03) = (61 + 2nml~w™1 kb, kb3), we
see that <p_1tn,t<p = (57 for some 1 € Z and f € R. So we can assume that we are in the
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second case of Proposition 2.5 with k =1=1and = 0. Then we simply define

4 s = o~

52552—7‘[1”7’17 93503—7Tﬁ\} 191—5

to change 77 and 7 to 0. i

Remark 2.7. The level sets {r = ro} on Mz, (R) = My, (R)/t are non-orientable line
bundles over Klein bottles, and are infranilmanifolds, which are double covered by nilmani-
folds in M5, (R).

3. Weighted analysis on the ALG* model space

In this section, we begin our analy31s on the model space (sm (R), gKO L) To simplify
notation, we will abbreviate (sm (R), &xy, L) by just (zm g™). Without loss of generality, by
scaling, we can assume that the parameter L is equal to 1 in Definition 1.1. Let us introduce
the following notation:

E=1, E'=V2dx, E?>=V2dy, E}=Vzdh, E*=V"20,
EZ=E'ANE? EVB=E'AE} ... |EY=E'ANE*AE’ANE*
We compute that
1 1 1 3

1 1
dE! = —V—%i—dr ndx =V 22 L ayndx = -v3i - L E2 A B,
2 21 2 2 r? 2 27 1?2
1 1 1 1 ;
dE? = — %l—dmdy=—v—llﬁdmdy=— 32X pl A E2
2 21 2 2 r? 2 2 r?
1 d d
ae® = Ly 2 Lo n e, = —V‘L VXX rar e,
2 2 r 2 r2
1 2
=%V—%2L—XE —I;yE A E3,
T r
4 1. _3vdr _1
dE =—§V 22——/\®+V 2—d91/\d92
Tr
:_EV_%Lxdx%—ydy /\®+V_%Lxdy—ydx A dby
2 27 r2 27 r2
= —lV_%L—XEI + yE? AE* + V_%L—XE2 —yE! AE3
2 2 r2 2 r2 )

By Cartan’s structural equations

dE' = —E'nNE/, El= —E/

1 9
we see that |E’| < C-r~'V=3. In other words, Vg, Ej| < C -r71V™ 2 where E; are the
dual orthonormal basis of E'. It follows that Vg, Vg, Ej| <C-r2V—2 Wthh implies that
the curvature of the model space satisfies

(3.1) IRm| = O(r—2V"2) = O(r2(logr)™?),
as r — oo. For j € Z fixed, let

(3.2) o= Y VT (nE,

1c{1,2,3,4}
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where wy (r) are smooth functions in r and where the empty subset corresponds to £ = 1.
Then
(v*va) - (VY T ) ET
1c{1,2,3,4}
<c 3 (VYW hop| - VE!| + o] - [V VET))
1C{1,2,3,4}
for a constant C independent of j, where V* is the L2-adjoint of V. By the Weitzenbock

formula,
|Aw — V*Vo| < C|Rm||w|.

Our convention for the Hodge star operator is that o A * 8 = g(a, B) dVy, the divergence
operator is § = — * d *, and the Laplacian is the Hodge Laplacian A = d§ + §d.
On the other hand, if we define the operator

Lg2 jo = Z ev_l']'el(a)}/—{—r_l-a)}—j2~r_2-w1)E1,
1C{1,2,3,4}

then by (A.2),
Z (V*V(eﬁ'j'el a)I))EI = —V_ILRz’ja).
1c{1,2,3,4}
In conclusion, there exists a constant C, depending only upon the model space, such that

(3.3) Ao+ V' Lgs j0| < C-r 2 V2o +C 571 V73 - Vo
for any w of the form (3.2). Estimate (3.3) will be used to carry out the weighted analysis on

the ALG* model space 9. To start with, we define the weighted norms on the model space.

Definition 3.1 (Weighted Sobolev norms). For any ;& € R, we define the weight func-
tion
ou(x) =s(x)™* 1 forallx € M,

where s(x) =r(x) - V(r (g))%, X = prr2(x), prr2: M — R2 is the natural projection, and
is the radial distance to the cone vertex of RZ2. Then the Sobolev norms are defined as follows:

k 2
2
lollz @y = ( /@m-gmzdvol@) - el = (vamwnii_m(@)) ,

m=0

where w is a tensor field on SI/J\E

We will require the following weighted Sobolev estimates, which hold for tensor fields
of any type.

Proposition 3.2. Forany ;t € R and k € Ny, there exists a constant
C = C(kg,v, b, k) >0
such that, for any w € W/f+2’2(fﬁ?v(R)),

(3.4 lollwi*22@, ery < Cll@llLz @, @) + [Awlwk @, (&)
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Proof.  The argument is standard, so we will be brief; see for example [8, Proposi-
tion 6.16]. For x € m, (2R), we consider the rescaled metric § = 100-d 2 - g™, where d is
the gSm distance between x and {r = R}. It is straightforward to check that |ng| < Cy
on Bg (x) for some constant Cy > 0 independent of x € m, (2R); see (3.1). The standard
elhptlc estimate is

lollwk+22(8F ,x)) = C - |@llL28F x)) + C - [Aw|lwk2(BF (x))-
Rescaling back to gffn and using a simple covering argument, (3.4) follows. O
Proposition 3.3. For any 1 € R and k € Ny, there exists a constant
C = C(ko,v, i, k) >0

such that, for any o € W,{f+3’2(5ﬁkv(R)),
k
Yo sup [(5(x)" IV 0)] < Clollwi+ 2@y r)-
m=0 xeIN,, (2R)
Proof. The argument is similar to the proof of Proposition 3.2 and is omitted. |

The following estimate is key to our weighted analysis.

Proposition 3.4. Given ko € R, v > 1 and € R\ Z, there exists a constant R > 0
depending only on kg, v and |t such that the following property holds. If w is a smooth form
compactly supported on a subset of {r > R}, then for any k € Ny, there exists a constant
C = C(ko, v, 4, k) > 0 such that

(3.5) lollwi+22@y < C - [Awllwk2, @

Proof. We can decompose @ = ZIC{1,2,3,4} wy E' into two types. For the first type,
wy depends only on r and 6. For the second type,

/ a)l(r, 91,92,93) d92 d93 =0.
T2

It is easy to see that the Hodge Laplacian A preserves this decomposition. So we only need to
prove (3.5) in two steps.

Step 1. We will consider the case when w; depends only on r and 6;. In this case, we
can write the coefficient function w; in terms of the Fourier expansion as follows:

(3.6) w = Z Z eﬁ'j'elwI,j(r)El.

1c{1,2,3,4} j=—00

Let us start with the proof of the weighted L2-estimate

(3.7) lollzz @y < C- Aoz _, @
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Since A preserves the decomposition in (3.6), and the subspaces for different j are Li—orthog—
onal, we can assume that

(3.8) w= Y VT (r)ET
1c{1,2,3,4}

for some fixed j € Z. Then we need to prove (3.7) for a constant C independent of j. The
proof of (3.7) will be reduced to computations in R2. We will need the following two claims.

Claim 1. Letra # —1, B € R and let R > 0 satisfy

% v -1 lo + 1]
L Y R) ) < .
)’3 27 (K°+ Lt )
Then, for any f € C§°({r = R}),

/oolf|2r“Vﬂdr < 10 /oo|f/|2r“+zvﬂdr
R T (@+ 1) R '

Proof. It is straightforward that if R is chosen such that

loe + 1]
2 b

g (ko + 5oz R) | <
PRT— K RN
2 0 2w 0% -

then for any r > R,

lo + 1]
2

d
)_(rOH‘lVﬂ)‘ —reyb. ‘O{ +1+8- Y. V_l‘ >
dr 21
So it follows that

o0 2
/ |f12revEar <
R

o0
| [ 1rpacertvn)
4

4 o 1, roo !
5|a+1|(/R |f|2r"‘Vﬂdr) (/R |f’|2r°‘+2vﬁdr).

Then the desired inequality immediately follows. O

Claim 2. Let w be defined in (3.8). Then, for u € R\ Z and R > 0 satisfying

v v -1 s .
‘—M'—'(K0+—10gR) ‘Smm{lj + el [J — pl}s
T 2

we have
lollZa @y < 16-( + 07> (G =72 - I - Lz jol 72 @)-

Proof. Recall that dvolsﬁz =V.r-dr AndO; Adby A O, and thus

o0
|17, 5 =87° D / |wr|Pr 2V T
" rc(12,3,437 R
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Then let us estimate the weighted L2-integral of r2 - Lg2 ;. By definition,
o0
”rzLRZ’j(I)”%"ZL(@) = 873 Z / ) +r ') — jZr T wpPr Y gy
Ic{1,2,3.4;" R

o0
=877 > /|(r21+1(r_Ja)I)/)'|2r_2“_21+1V_”dr.
R
1c{1,2,3,4}

Since w has compact support in 9’3\?, applying Claim 1 to above integral,
2 2
I~ LRl,jw||Li(ng)

— —_— / 2 w . . .
> 873 . M Z / P20t (T oy ) 2202y =gy
R

16
1c{1,2,3,4}
o0
=2 +w)? Y. / (rwp) Pro2rt2 ity iy
Ic{1,2,3,4" R

) 27 2 00 ) _
> 273 (j + p)*- % > / r op [Pro2 2 T ly gy
1c{1,2,3,4)" R

7T3 00
— GGt Y [l

1c{1,2,3,437 R
_ G AW —w? 10l
i Ta— T
The proof of the claim is done. O

Now we are ready to finish the proof of (3.7). Recall that, by (3.3),
FP2VA® +r?Lygs 0] <C -V o[ +C-r- V3. Vo
<C-V Yol +r-V2-|Vol)
for r > R, where C > 0 is a constant independent of j. By Claim 2,
o)z @y < C - Ir*Lg2 ;o 2 ).
Consequently,
(3.9) lollzz < € - l5* - AwllLz@y + € - VR Holly1.2 g5,
=C- HAC’)”Lﬁ_z(iﬁl) +C - V(R)_IHO)”WJJ(@)
=C-llaollz gy +C- VR Hollwz2 -

If R is chosen sufficiently large, (3.7) follows by plugging (3.4) for k = 0 into (3.9).
Estimate (3.5) follows immediately from (3.7) and (3.4).

Step 2. We will consider the case when @ = Zlc{1,2,3,4} wr (1,01, 60, 03) - E! satisfies

(3.10) / wl(r, 91,92,93) d@z d93 =0.
T2
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We will prove that there exists C > 0 such that if w satisfies (3.10), then
(3.11) lollwz2ai < C- 180l gy

The higher-order estimate (3.7) then follows from Proposition 3.2.
First, we will show that there is a constant C > 0 such that if the coefficient function of @
satisfies (3.10), then for any sufficiently large R and for any r € [R, 00),

(3.12) / || dvolg, < C - V(r) - [Vo|* dvolg,.
r/2.2r Ar/2.2r
where A, /3 5 = prﬂ_é (Ar/2,2r (0%)). There are two sub-cases to analyze:
(1) wy satisfies fSl wy(r,01,62,03)d60z = 0forall r, 61, and 6,,
(2) wr = wy(r, 07, 6,) and it satisfies fSl wy (r,01,62)d0, = 0 for all r and 0.

In the first case, applying the Poincaré inequality on the circle parametrized by 63, we find that,
for any (r, 61, 62) € [R, o0) x [0, ] x [0, 27],

C
V(r)

In the second case, applying the Poincaré inequality on the circle parametrized by 6,, it follows
that, for any (r, 61) € [R, 00) x [0, ],

/;l|w1|2d93 < C/;1|693w1|2d93 < [gl|Vw|2(r, 91,92,93) d93

/_;1 |a)1|2d02 <C /Sl |agza)1|2d92 <C-V(r)- /Sl |Va)|2(r, 01,02)do,.

Combining the above two cases and integrating over am, inequality (3.12) immediately follows
from the condition R > 1.

Now we proceed to prove (3.11). Let r; = 2'T1 - R. Then {4,, /2 2,, (0%)}%2, is a cover-
ing of R% \ Bg(02) consisting of a sequence of annuli such that the number of overlaps at every
point is bounded by 2. We denote A; = pr@ (Ay; /2,25 (0%)) and s; = s(r;). Let {x; }oo be
a partition of unity subordinate to the above covering such that Supp(y;) C A, /2,2, (0?) and

|Vr2 i > + [Vaoxil < C-ri7?

on R2. We still denote by y; the lifting of y; to M. In terms of the model metric gsfrz’ the
following estimate holds on J)i:

IVxil? + V2| < C -2,

where C > 0 is independent of i. By (3.12),

fA ol <C-V / V(o)
m m

where V; = V(r;). Since y;  has compact support in m, integrating by parts and applying the
Cauchy—Schwarz inequality, we have that

_xiof dvolg, < C-Vi- |_(xio)- V*V(yiw) dvolg,
o) o}

1

2 2

§C-V~-(/;|)(~a)|2dvolA) (/A|V*V()(~a))|2dvolA) .
s m M l n
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So it follows that
2 2
f@'Xiwl dvolg, < C-Vf-f@|V*V(X,-w)| dvolg, .
Using the Weitzenbock formula, we have that
[V*V(riow)| < [A(xiw)| + C - [Rm| - |y - o]
<[AQi®)| +C 572V o
<|Aw|+C -gi_l -|Vo| + C .5172 - |wl.
Therefore,
/@|Xia)|2dvolgﬁ} <C-V? /Sﬁt|V"‘V()(,~a))|2dvolfﬁ2
C
<5 [ (80P st 4 V0P -5 + o) dvolg,.

Taking the weighted L2-norm, we find that

(3.13) ”wHZLi(@) = /@W‘QHZ dvolg,
<C- 25;2“_2-/A |)(,'a)|2dvol§fn
LRI / ((A0) - 0o ?

+|(Vo) - Ou— 1| + | - QM|2) dVOlgfjt

~ 2
= R4 (||Aw||L2 Lo T ||Vw||L2 @) T ||w||Lﬁ(9)t))’

where the last inequality follows since the number of overlaps is bounded by 2. It follows that

C
G14)  eolza = C-lAvliez_a + m UIVellz_ @ + o)Lz d)-

If R is chosen sufficiently large, then (3.11) follows from (3.14) and Proposition 3.2.
To finish the proof, we can write any form w = w; + @, as the sum of these two types
of forms. We then have
(3.15) lollwz2@m < lolwz2@m) + llo2llw22 @)
= C(lAwrllz2_, @0y + [ Awallz2 &)
= ClAollL2_, @
where the last equality follows since the two subspaces are orthogonal in Li_z (Eﬁk). The
higher-order estimates then follow from (3.15) and Proposition 3.2. O

Corollary 3.5. Given any ;t € R\ Z, there exists a constant €y > 0 such that the fol-
lowing property holds. Let w = ) ;- (1,2,3,4} wr ET be a smooth form on M that satisfies
Aw = 0and ||lo||lw22@w) < oo. If

/ w1 (r, 01,63, 03) d6> db3 = 0
T2

forevery I C {1,2,3,4}, then |w| = O(e™ ") asr — oc.
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Proof. Let Ry be the constant R in Proposition 3.4 depending on kg, v and w. If 1 is
a smooth form on 91t with compact support on a subset of {r > Ry}, (3.11) and (3.13) imply
that

C
(3.16) 1220 = 27 180122, -
For any R > Ry, let pg be a cut-off function on R? such that
_JL r=R+2,
PR=00, r<R+1,

and |[Vogr|p2 + |V2@gr|g2 < C. We still denote by ¢ the lifting of gg to the model space am.
Then
IVor|Z, + V20rlg < C -V

Since grw can be approximated by compactly supported smooth forms in the Wp’f’z—norm,
(3.16) also holds for pgrw. Using (3.16), we estimate

C
lw -0 |2dV01A < _/ |A(prw) - 0 _2|2dVO1A
/FZR+3 H m R* r>R+1 H m

< CR™2#=2y—k+l / | A(pro)|* dvolg,
R+1<r<R+2

< CR™2#2y—n-1 / (lo|* + [Vo|? - V) dvolg,
R+1<r<R+2

< CR™2H=2y—u-L, / || dvolg,
R<r<R+3

SCO-/ lw|? - 0% dvolg, .
R<r<R+3 " m
Notice that the fourth inequality follows from Proposition 3.2. Therefore,

Co /

2 2

w - dvolgs, < . w - dvols,,
/rzR+3| ol M= Co+1 r2R| ol M

which implies that [zl - oul? dvolg, = O(e €0 R) for some €p > 0 as R — oo. Therefore,
w also decays exponentially by Proposition 3.2 and Proposition 3.3. O

4. Weighted analysis on ALG* manifolds

We next transfer the previous estimates on the model space to any ALG* manifold.
Without loss of generality, by scaling, we can assume that the parameter L is equal to 1 in
Definition 1.2.

Definition 4.1 (Weighted Sobolev norms). Let (X, g) be an ALG}-I" manifold for
v € Z4 together with a diffeomorphism ®: M, (R)/T" — X \ Xr. For any fixed parameters
ko € R and u € R, we define the weight function 0, on X,

r <2R,

~ L <
o) = {Qu(cb_l(x)), r> 3R,
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where R is the radius as in Definition 1.2, and g, is the weight function on )t = Mm /T asin
Definition 3.1. Then the weighted Sobolev norms are defined as follows:

1 k 3
2
— ~ 12 . _ 2
lollez ) = (/Xlw'Q;A dVOlX) o Nellwkzxy = ( > 0||Vmw||Li_m(X)) :
m=

Remark 4.2. Notice that Proposition 3.2 and Proposition 3.3 are stated on the ALG*
model space M. Since the weighted norms on an ALG* gravitational instanton X and its model
space M differ by a uniform multiplicative constant, in our applications, we may also quote
these two propositions for ALG* manifolds.

We need the following notation on an ALG™ manifold (X, g) and its asymptotic model
(M, g™).

Definition 4.3. Let # lf (X) be the space of all smooth p-forms w on (X, g) that satisfy
Axw = 0and || 2 (x) < oo, where Ay is the Hodge Laplacian on (X, g).

Definition 4.4. Given p € {0,1,2} and g € Z, let Zg (ifﬁ) be the linear space of p-
forms with a basis {uq; ceVTlmaifi <i <dim Zg (%)}, where for each i,

1
Ui = » wr;(rE".
1

oy r(r) is a radial function, and I C {1, 2,3, 4} satisfies |/| = p. For any p € {0, 1,2} and
q € Z, the linear space Zg (M) is characterized as follows.

* When p = 0, the basis is defined in Lemma A.1
e When p = 1, the basis of Zé (Eﬁk) = Zé’l(iﬁk) <) Zé’H(Eﬁk) is defined in Lemma A.2 and

Lemma A .4
* When p = 2, the basis of Zé (Eﬁé) = Z§’+(§ﬁt) @ Zé’_(EﬁE) is defined in (A.8) and Lem-
ma A.8.

Our main result in this section is the following Fredholm package for the Hodge Laplac-
ian on ALG™ manifolds with respect to the weighted Sobolev norms.

Proposition 4.5. Let (X, g) be an ALG};-T" manifold of order n > 0. Then the following
properties hold.

(1) Forany i € R\ Z and k € Ny, there exist constants R(X, ) > 0 and C(X, u,k) > 0
such that, for any p-form w € Wif"'z’z(X),

(4.1 lollwi+22x) < C - (lAxollwr 2, x) + |ellL2@r<3ricx))-
(2) Forany pp € R\ Z and k € Ny, the operator

Ax: WET22(X) - WE2 (X)
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is a Fredholm operator. Then, for any p-form w € Wk 2 5(X), Ax§é = w has a solution
& € WEH22(X) if and only if, for all 1 € J¢2,,(X),

/(a), n)dvolg = 0.
X

(3) Forany u € R\ Z, k € Ny, and p-form w € W/f’z(X), there exists some & € Wlfj:zz 2(X)
such that Ax§ = w whenr > 2R.

4) Letp € R\ Z, § € (0, min{1, u}). Consider any form w € Wk 2(X) such that Axw = 0
when r > 2R. If ZN[uw—36,u] =0, then we have € W %(X). If there is some

a € ZN(u—2, 1), then the pull- back of » to M can be wrmen as the sum of an element
in z”(zm) and an element in Wk : (sm)

Proof. Recall that, by definition, the ALG}-I" manifold (X, g) is equipped with a diffeo-
morphism ®: m, (R)/T — X \ Xg such that |d>*g ggm| = O(s™"). For the simplicity of
notation, we do not distinguish the function s defined on fm (R) with the function s o ®~!
defined on X \ Xg.

For (1), for any p-form @ with compact support in {r > R} C Ii, we have

(14 0(R) ™) Nelwi+22@n) < lolwit220) < 1+ O(s(R) ™) o lwk+22@n).
Then we will not distinguish Wlf T2.2(9) with Wlf +2.2(X). Moreover,

| Axollwrzx) — [Amollwez ) < C-s(R) - [olwi+22x).

We also identify a form on )t with a I"-invariant form on M. By (3.5), for R sufficiently large,
we have
lollwi+22 = ClAxwllwkz,.

Let x be a cut-off function on R? with Supp(y) C Bog and y = 1 in Bg. If w € Wlf+2’2(X),
then (I — y)w can be approximated by smooth forms with compact support in {r > R}. There-
fore,

lollwrt22x) < lxollwrt22x) + (1 = Dollwi+22x)
= Cllollwi+22¢r<2rycx) + 1Ax (1 = o) Wk x))
= Cllwliz2¢r=3ricx) + Axwllwk2@r<3rycx) + [Axollwr2 (x))
= C(lloliz2¢r=3rycx) + Axwllwk 2 x))-

For (2), it is straightforward to check that, for any k € Ny and p-form o € Wp]f T2.2(X),
we have

IAxwllwkzx) = C - llollwi22x).
First, to prove dim(ker(Ax)) < oo, let us take any sequence w; € ker(Ayx) with
lwj lwi+22x) = 1.

Rellich’s theorem implies that the inclusion

Wkt22(X) — L2({r < 3R} C X)



Chen, Viaclovsky and Zhang, Hodge theory on ALG* manifolds 207

is compact. Combining this and (4.1), a subsequence of w; converges to weo in the WX+2:2-
norm. Then the unit sphere of ker(Ay) is compact, and hence dim(ker(Ay)) < co. Moreover,
standard elliptic estimate implies ker(Ay) = K ;f (X).

Next, we will show Image(Ay) is closed in the Wk’_zz—norm. This follows from the claim
that, for any p-form w € (#[ (X))* C Wlf +2.2(X) in terms of the W/f 2.2 inner product, we
have

lollwi*22x) = ClAxwllwk2x).

Suppose not; then there exists a sequence of w; € (Jflf (X))~ such that
lwjllwit2200 =1 and  [[Axw;|lwr2x) — 0.
Combining Rellich’s theorem and (4.1), passing to a subsequence, we have a limit
woo € HE(X) C WEF22(X).

Since weo € (J(’,f (X))*, we have woo = 0.

Now we show the solvability criterion. This implies that dim(coker(Ay)) < co. When
k = 0, we can characterize Image(Ay) in Li_z (X) by finding its orthogonal complement in
terms of the Li_z(X )-inner product. Notice that 77 | Image(Ay) if and only if

/X(Axg,m - (@u-2)*dvolg =0 forall & € W?(X).

This is identical to Ay ((0,—2)? - ) = 0 in the distributional sense. By standard elliptic regu-
larity, this also coincides with the condition

n=(0u—2)*-7 € H2,(X).

Then the above implies that w € Li_z (X) satisfies Axé = w for some &€ € W/f ’2(X ) if and
only if, for any n € J€£M (X),

/ (w,n)dvolg = 0.
X

When k € Z 4, the proof follows from the standard elliptic regularity theory.
The proof of (3) is similar to the proof of [5, Theorem 4.4], so is omitted. To prove (4),
for any w € Jé’lf (X), by the asymptotics

|0*g — g™ = 0(s77),

we find that Agpw € W;]f’—za’—z(X) for all k € Ny. By (3), there is a solution 7 € W/fjb?’z (X)
such that Agpn = Agpw when r > 2R. Then Agp(n— ) = 0 when r > 2R. Let us pull
back 7 — w to M and write it as ¢’ + ¢, where each coefficient function of ¢’ has zero T2-
average and ¢ is T ?-invariant, and hence its coefficient functions depend only on (r, 6;). By
Corollary 3.5, ¢’ decays exponentially.

The next step is to analyze the T 2-invariant form ¢”. Using separation by variables in the
coordinates (r, 81) from Section 2, we observe that the Fourier expansion of {” can be written
as

o dimZ? (M)

"

=3 ) cio
j=—00 i=1

where {®j,; }1<i<dim z;’(g’j}) is a basis of Z;’ (fﬁt).
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First, since {” € L? (EDE) the components e eV=1J01 and o=V=1J01 of ¢’ are also in
L? (sm) This implies that ¢ji = 0forall j > . Next, we define the integer ¢ =" (i —6) '

and the form R
—1 dimZ? ()

— ~=1mj ;-0
= § E Cji*Ujie s
j= i=1

If ¢ < p, then we write {” = {5 + C, where

dim Z2 ()
o= Y cqitqi-e¥ M0 e Z2(dh).
i=1
Ifg > p, then { = .
In the following, we will prove Z € Wk (sm) A technical issue is that, for example,
when p = 0,
(rkeV=1k01 =k o V=TkO1y 1o A 40y A © £ 0.

r=t
To solve this issue, we define

—la|-10 dimZ}”(gﬁz)

> Y cjiujcey it

Jj=—00 i=1

o)

Then 2 = 21 + 22, where

a—1 dimZ? ()
e Y Y cuuse e W,

j=—lgl-9 =1
The main improvement is the components of ; are orthogonal to each other. Therefore,

—|q|—10 dlmz (f]:n)

[_@.Qodsndene=sat Y S Il bl

j=—00 i=1

We only need to show that 21 € W/f’_zs (Eﬁ}) using the information that El € W;f 2 (Eﬁt).
To this end, let us fix a large number ¢ > 1. By Definition 4.4, there are a constant

C = C(ro,k0,v,4) >0
and constants —2 < b; ; < 2 such that, for any j < —|q| — 10 and ¢ > ro, we have
CL Vi) -t/ <|uji|(t) < C-VPi@)-1/.
Therefore, for any j < —|g| — 10, t; > 4r¢ and 15 € (rg, 2r9),
uji|(t V(t1)\%ii st1\/ V(t1)\2 /t1\~lal=10
:MZ% =C (VE;S) (é) =C (Vgt;;) ' (é)

< C-V3(ty) -1 %710,
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Note that the constants C = C(rg, ko, v, t) > 0 are allowed to change line by line. So
/ (£1.21)dB1 AdBy A O
r=t

2r
<C-V*1)- t1—2|q|—20/

0 ~ -~
( f (1,50 d0y A dbs @) dts
r=ty

ro
L4 L 2lal-202 2
< c.v (tl) 11 ”§1 “Lﬁ(iﬁt)'
Then we have {; € Li _s (M), and the higher-order estimate follows from the standard elliptic
regularity. |

5. Applications

In this section, we will apply the above results to prove Theorem 1.3, Corollary 1.4,
Theorem 1.5, Corollary 1.6 and Theorem 1.10 from the introduction.

5.1. Existence of harmonic functions.

Proof of Theorem 1.3.  From Section A.2, we see that the function rkev=1k01 i5 3 har-
monic function on the model space t. Moreover, it descends to 9t by our assumption. Let
be a cut-off function on X such that

1, s>2Ryp,
w B
0, s <Ry.

Since ~
|Vé@(<1>*g — gsm)| = 06" ass —> o0
forall/ € Ny, and s(x) = r(x) - V%(x), we have
Ag(y - rkeV=TkO) e W2 (x)
forany / € Ng and u > k — . We can choose p such that, in addition,
max{0,k —n} <pu<k—e

and p is not an integer. Using the maximum principle, we have #_, (X) = {0}. Applying
item (2) of Proposition 4.5, there exists some u € W&Jrz’z (X') which solves the equation

Agu = —Ag(y - rkeV =Tk,

Then
he =Y - rk e/ =1k61 +u

is harmonic with respect to g. Proposition 3.3 then implies (1.3). ]

Proof of Corollary 1.4. Recall that
|d(reﬁ91)|g9n = 2. V"I 50 ass — oo

This implies that |dh1|g = o(1) as s — oo, where s(x) = dg(x, x9) and xo is a fixed point in
some compact subset Xg C X. Since Ricg > 0 and dh is harmonic, by Bochner’s formula,
we have Ag(|dh |§) < 0. Since dh is not identically zero, the maximum of |d/ |§ would be
achieved in the interior. The strong maximum principle then leads to a contradiction. |
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5.2. Hodge theory on ALG™* manifolds.

Proof of Theorem 1.5.  Asin[18, Lemma 6.11], we define a smooth function f such that
f(r)=r whenr < Rand f(r) = 2R when r > 2R. Therefore, the map F: X — X defined
by
O((f(r),01,02,63)) ifx = O(r,01,02,03),

X if x € Xpg,

F(x) = {

is well-defined and homotopic to the identity. Then any smooth closed 1-form n; on X is
cohomologous to 17, = F*n;. Clearly,

CD*F*nl =a1d0 +ardb, + a3z dOs

on the set r > 2R, where a1, a;, as are constants. So then 7, € W/f’z(X) for all k € Ny and
0 < u < 1. The mapping v > (12, v)12(x) is a bounded linear functional on %12—11« (X). By
the Riesz representation theorem, there exists 13 € 3612_ " (X) such that

(M2, V)r2(x) = (M3, V)12(x) Tforallv € J(’lz_ﬂ(X).

By Proposition 4.5, there exists a 1-form 74 € W/fj:zz’z(X ) such that

N2 —n3 = déns + dna.

The boundary term in the integral

| (3. d81s + 8da) — (ana.dn) — a8 ) ol
r<R

goes to 0 when R — oo. So we see that dn3 = énz = 0. So 1, is also cohomologous to the
closed and co-closed 1-form s = §dny € Wlf’z (X).

So then 75 is a harmonic 1-form in W/f *2(X) for any y satisfying 0 < 1 < 1. By Propo-
sition 4.5, s admits a harmonic expansion. By Definition 4.4, the leading term ne of the
pull-back of s to M is given by

(5.1 ne = (Ao + BoV?)dz + (Ay + ByV?)dz
+(Co + DoV?)dOr + (C{V~! + DyV)O,

where Ao, Aj, Bo, B, Co, Cg, Do, D are constants and z = reV —101 Since 55 is both closed
and co-closed, we have

(5.2) |dnsl 5 + 18 716] g0 = O(7'7%)
for a constant € > 0, as s — co. Then (5.1) and (5.2) imply that
Ne = Aodz + Aé)dz + Co dbs.

By Theorem 1.3, there exists a harmonic function 41: X — C such that i; = z + O(s™€) for
some € > (0 as s — 00. Then the closed and co-closed 1-form

n7 = ns — Ao dhy — Ay dhy
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is cohomologous to 71. This shows that the natural mapping
{weQ'(X)|do=0,80=0 0" =wy+ O(s ) ass — 00, wg € W'} — HJ(X)
is surjective. To show the injectivity, assume that
wef{weQ(X)|do=0,60=0 "0 =wy+ 05 ) ass — oo, wy € W'}

satisfies w = du for a function u: X — R. On the compact subset {r < R} C X, u is bounded.
For each point ®(r, 01, 62, 03) on {r > R} C X, the path

Yr.61.60.05(t) = ®(t,01,02,03),1 € [R, 7],

connects ®(R, 01, 02, 03) and O(r, 01, 02, 03). Using

u(@0.61.62.69) = u(@(R.b0.62.60) + [ o,
Vr,91,02,(93
we have that u = O(s' 7€) as s — oo because the integral of (®~1)*d#, on Yr.6,,6,.,65 18 0.
Since w is co-closed, from Proposition 4.5 and Definition 4.4, u admits a harmonic expansion
u= Ao+ BoV + O(s7¢) as s — oo. Integrating by parts,

0= / ((8du, 1) — (du, d1)) dvolg = / Ot dog,
r<R r

where 0y, is the derivative with respect to the unit normal, and doy is the induced area element.
Clearly,

O*pu = V" 20,(D*u) + O(s~179),
D*dog = rV2d0; Adfy A O + O(s~°)

as s — o0o. This implies that By = 0 by taking R — 00. Sou = A¢ by the maximum principle.
This implies that @ = 0, which completes the proof of the injectivity. |

Proof of Corollary 1.6. Let
wel{weQ(X)|do=0,6w=0 "0 =wy+ O(5 ) ass — oo, wy € W'}

Recall that :
|dOz|gm = V72 =0(l) ass — oo.

If X has non-negative Ricci curvature, then the same argument as in the proof of Corollary 1.4
above would imply that @ = 0. Therefore, b'(X) = 0 by Theorem 1.5. o

5.3. Asymptotics of ALG* gravitational instantons. We begin with a few remarks
about hyper-Kéhler structures. Let (M, g, I, J, K) be a hyper-Kihler 4-manifold. Recall that
we denote the triple of 2-forms as @ = (w1, w3, w3), where w1, ws, w3 are the Kéhler forms
associated to 7, J, K, respectively. These 2-forms satisfy

(53) o ANwr =0, w1 ANw3 =0, wrAw3 =0,
' ol Aw1—wr Awr =0, w1 Awp —w3z Awz = 0.
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Conversely, any triple of symplectic forms w; satisfying (5.3) determines a hyper-Kéhler struc-
ture if we replace w3 by —ws if necessary. To see this, using the algebraic isomorphism of
homogeneous spaces

S00(3,3)/(SO(3) x SO(3)) = SL(4,R)/ SO(4)

(see for example [20, Chapter 7]), a triple @ uniquely determines a Riemannian metric g, such
that each w; is self-dual with respect to g, and dvolg,, = %a)l A w1.
Next, define Q: A2 @ A2 P A2 > A* P A* P A* @ A* @ A* by

(5.4) Q(w1, w2, w3) = (W1 A W2, W1 A W3, W3 A ®3,

W1 AW — Wy AWy, W1 A W] — 03 A ©3).
The kernel of the linearized operator of @ at a hyper-Kéhler triple will be
A2 & A2 A2 Ey,
where E)y is the rank-4 bundle given by

EM={0 cANL®AL A |0 A0 +w;j A0 =0,i <
andwl/\91:w2A92:w3/\93}.

Recall that there is a Dirac-type operator O: I'(TM) — I'(Ejy), defined as follows: for every
Y € I'(TM), D(Y) is the projection of the Lie derivative £y (w) to Eps. The operator —DD*
can be identified with the Laplacian on functions since Ejs admits a basis of parallel sections;
see [5, Section 3].

Proof of Theorem 1.10. Using the Fredholm theory developed above, the argument is
very similar to the proof of [5, Theorem A]. Decompose the difference

(5.5) D*0X —0™ =, +1_,

where 7 is a self-dual triple and 5_ is an anti-self-dual triple with respect to g™ and the
volume form %(a)im A (uglm). We choose an irrational number € € (0, 1) and view the right-
hand side of (5.5) as an element of ngz (M2 (R)) for any k € Z . For sufficiently large R,
expanding (5.4) yields

Q(@* oY) = Q™) + Z,m (P 0* — ™) + N o (P*0X — ™),
where %, is the linearized operator at @™, and N, o are the nonlinear terms. We then have
(5.6) Lym(y) = ZLymmy +1_) = —Nym(pyL +n_).

From the structure of (5.4), the right-hand side of (5.6) must be in Wfﬁ (M2, (R)). Therefore,
the projection @ of n to Eqy,, (r) satisfies

6 € WA2(Wy(R) and ny — 0 € W20 (R)).
By Proposition 4.5 (3), there exists a bounded linear operator

Gem: WE2(T(Eqn,, (r))) — W_kjfz’z(F(EmtzU(R)))
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such that
-D smi);gnGgana =0.

Consider the vector field Y = Dzm Ggm@ which satisfies ¥ € W1k+1 2(M>, (R)). By ellip-
tic regularity, Y is smooth, and by Proposition 3.3, |V"*Y | = O(s'™™€) for any m € Ny
as s — oo. It is important to point out that ¥ does not depend on the choice of k. Define
@1 Moy (2R) — M2y (R) by Pr(x) = expgam (1Yx). If 0 <7 < I,since 1 — e < 1, the vec-
tor ¢ Yy, has norm much smaller than the conjugate radius at x (which is comparable to s(x)),
so ®; is a diffeomorphism onto its image for R sufficiently large. Then we have

o™ — 0™ — Lye™ € W2 (M (R)).
Let @ = ® o ®;. From (5.5), we then have
(@) X —0™ — Ny —1n_— Lyo™ = d¥d*eX — 0*wX — Lyo™
= (0¥ —1d)(P* 0¥ — ™) + de
—o™ —Lyo™ e WEZ (0, (R)).
Similar to (5.6) above, we have the expansion

(5.7) ZLom(y + (Lyo™ ) = Zom(y + - + Lyo™)
= —Nym(ny +19_+ Lye™).

From the structure of (5.4), the right-hand side of (5.7) must be in W e (szv (R)). Since the
projection of y + (Eyo™)T to Eqn,, Ry is 0 + DgmY = 0, we see that

Ny + (Zyo™) T e WSO (R)).
In other words, redefining » .., we may assume that

(@) 0¥ — 0™ = Ny +n_

with n_ € WX2(IM2,(R)) and 5, € Wfﬁi (M2, (R)). Since 5_ is anti-self-dual with respect
m
to w>",

Agmy_ = (—kgmd xgmd —d *gmd skgm)y_
=—xgmdxgmdn_+dxgmdn_.

But since both triples are closed, dy_ = —d N4, and therefore Agmy_ € sz 62 §(sm2,, (R)).
By (3) and (4) in Proposition 4.5, if € < 5 then n_ € wk e (smz,, (2R)). We can replace (P, €)
w1th (<I>’ 2¢) and repeat this process untrl €> 5 If < € < 1, then 5_ is the sum of a trrple in
z% o ® R3 and a triple in wk e (EJJEZv (2R)) By Lemma A.8, all the non-zero forms in Z>

are not invariant under the Z,-action t: M — 9. So we see that we can replace (D, €) Wlth
(@', 2¢) and repeat this process again. If 1 < € < 2, then n_ is the sum of n4 € Zz’_ QR3
and a triple in W 2, (M2, (2R)). Moreover the decay rate of dn is strictly larger than 3.
So by the explicit deﬁnrtron of Z% ~’5 in Lemma A.8, |anz| = 0(s727%) as s — oo, for
any k € Np. The above is a finite iteration, so n_ — 5z € W_G_I(Emz,, (2R)) for any k € Ny.
Then, by Proposition 3.3, |[V¥(y_ — nz)| = O(s~¢17k) as s — o0, for any k € Ny. There-
fore, by replacing ® with ®’, (1.4) is satisfied for n = 2. |
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A. Computations on the ALG* model space

In this section, we derive some expansions of harmonic forms on the model space

(M (R). g2 ).

By scaling, we may assume that L = 1. For simplicity, we will denote m = EfR,,(R). Define
an orthonormal basis of 1-forms by

{0 el e? e3) = {V%dr, Vir dby. V%dGZ, V_%®},

and use the orientation e A e! A €2 A e3. The following formulas are straightforward to verify

and will be used throughout the appendix. We have
de® =0, de' = E)r(V%r)V_lr_le0 nel, de* = Br(V%)V_leO A e?,
de® = E)r(V_%)e0 Aed + 2LV_%r_le1 A €2,
T

and
d(e® nel) = d(e® ne?) =d(e? ne?) =0,
d(e! ne®) = V=2r1e0 Aol A e3,
d(e! ne?) = (V_%ar(V) + V_%r_l)eo Ael Ae?,
v ;
d(® A e®) = T 310 p ol A e2,
2w
A.1. Laplacian on functions. First, we need to characterize the harmonic functions of
the form

(A1) h= fryeY= %0 ez,

with prescribed growth order. The following lemma identifies the space Zg (Eﬁl).

Lemma A.1. Given an integer g € 7, let Zg (Efj?) be the linear space with a basis

By ={1, V},
BY = {r%eV IO pemVTIa0 g € 7\ o).

If a function h satisfies (A.1) for some k € Z and solves Ah = 0 on M, then
. {zg(aiz) _ ifk=0.
Z2(M) & Z2°, (M) ifk € Z\{0}.
Proof. Taking the differential dh of h, we have that
dh = V7RO (F1dr & 2Tk f dBy) = eV RO (f1y=200 4 Tk VT2,
Then
wdh = eV RO (LY=o o2 Ned - VTkfV 72 160 A e? Ae)
= VIO (£11 00, A dBy A O — V—1kfrldr A dy A ©).
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Applying d,
d s dh = e¥V7K0 1k d0; A (—~/—1kfr=tdr A dfs A ©)
£ eV (F1rydr AdBy AdOy A O
— oV1k6) (ar(f/r) — szr_l)V_lr_leO nel Ae? Aed.
Finally, we have
(A.2) Ah=—xdxdh=—eY WO (g7 4 p=1p1 2,72 pyp =1,

The ODE for a harmonic function is therefore " + r=! f’ — k?r=2 f = 0, and the solutions
are given by
Ci+CV k=0

1) = {Clrk +Cor %k # 0.

A.2. Forms of Type I on the model space. A 1-form w is said to be of Type I if w
satisfies

(A.3) w = eV 1k (f(r)e® +a(r)et).

This subsection studies the Type I solutions of Aw = 0.
Let us denote dz = dr + ~/—1r df;. The following lemma characterizes the Type I
solutions of Aw = 0.

Lemma A.2. Given an integer g € 7, let Zé’l(iﬁt) be the linear space with a basis
By ={dz,V?dz,dz, V?dz},
Bé’l = {e‘ﬁl(‘ﬁpl)glrq -dz, e~V ~1@+Do (v —daraV)r-dz,
e~ V=1@+D01 0 -dz, eV 1@+ 16 (v —4qrV)r®-dz}, q#0.

If a complex-valued 1-form w of Type I satisfies (A.3) for some k € Z and solves Aw = 0
on I, then

{zki(ﬁz) ifk =1,
ZL, @ @ 2L @) itk e Z\ {1},

Proof. In the proof, instead of directly analyzing Type I, we will first reduce (A.3) by
analyzing the following ansatz:

(A4) o = eV (£(r)e® + a(r)e’) = eV ROy (1) (e VOV 3 42),

Then
w = e“ﬁkelu(r)(e0 + v/—lel),

that is, a(r) = ~/—1 f(r). Note that, for the complex structure / defined as above, we have

I*(e%) = —el. Then
¥ —/—11%% = % + V/—1el € A}’O.
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Since the metric is Kéhler, the Hodge Laplacian preserves the type of forms, so (A.4) is
a natural ansatz.
To begin with, let us compute the Laplacian of w. First,

xw = e"_lkglu(r)(e1 re2 Aned — N/ —1e® Ae? A ed).

This is
w0 = eV KOy (V2 (rd Ady A O — —1dr A dbs A ©).
Then

dxw = eV RO/ ThyV2d6, A (—v/—1dr A db A ©)
VTR0 (VY 2u)dr A dBy AdOy A O
— oV1k6) (ar(rV%u) — kuV%)V_lr_leO Ael Ae? Aed,
which implies that
S = —%d xw = —e¥ 1k (ar(ruV%) — kuV%)V_lr_l.
We define p(r) = (ar(rV%u) — kuV%)V_lr_l. Next, we have
dsw = —(eV R0/ Tkp dby + eV R0y ay),
or
(A.5) dsw = —e¥ kb (p’V_%e0 + J—_lka_%r_lel).
Next, we compute
do = VRO ZTk dby A (uV 3 (dr + ~—1r d6y)) + 0r (rV 2u) dr A (V—=1d6;))
= VeV 1k (ar(rV%u) — kuV%)V_lr_leO nel = «/—_leﬁkelpeo Ael.

Noting that % e A el = e A e3, applying Hodge star, we have

xdw = x/—_le*ﬁkglpe2 Ae3,
which implies that

d*do = N—1eV™1k0 «/—_1kp déi Ae* ned + \/—_leﬁkolp’dr neAed
= VRO ey 2l A o2 ned + V1P V20 Ae? A3,
Applying Hodge star,
xdxdo = eV RO (kpy=2,710 4 /1 p'Vzel).
Combining with (A.5) from above, we see that
Aw = —eV KO y=300 4 /Tkpy =i lely
— VTR (kpy 310 4 T VY

= VKb (p + kr_lp)V_%(eO + v/—lel).
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Assume that @ is a harmonic 1-form. Then we have the homogeneous first-order system
P +krip=o.
The general solution is p = C;r~*. Recalling that
p(r) = (ar(rV%u) — kuV%)V_lr_l,

we have the ODE ] 1
or(ruV2)—kuVz = C yrkt,

Let us define &4 = V%u; then this ODE can be written as
(A.6) Or(rit) — kit = C;Vrk+1,

The general solution of the associated homogeneous equation 9, (rif) — kit = 0is 7 = Cork—1.
If k = 1, then ODE (A.6) becomes rii’ = C1V, which has a particular solution

~ v
u==C (Ko log(r) + —(log(r))z).
4
Therefore, for k = 1, we have the general solution
v
u(r) = V_% (Cz + Cq (KO log(r) + E(log(r))z))
1 b4 b4
—v3((ca-2-Z.c))+ X . C -V2>.
(( 2 — Ko ) 1) + , ¢
Letting
615£~C1 and ézECZ—Kg‘E'Cl,
v v

we can then write the general solution for k = 1 as u(r) = C, V=2 + Cy V3.
Next, we assume that k £ 1. Then we need to solve

Or(rit) — kit = C;Vr k1,

Using the integrating factor r 1-k

k—1 Cir'™*

, we see that the general solution is

~ v
U= Car —4”(k—_1)2<§+2(k—1)7'[/€0+l)(k—1)10g(7‘))
_ Clrl_k v
=CrF e —— (= 4 2(k—1)nV).
2! 4n(k—1)2(2+ (k= DrV)
Letting
1-k
&= G
4 (k —1)2

we therefore have the following general solution for k # 1:
u=CV k1 4 Cvlrl_k(vV_% + 4(k — l)nV%).
Notice that the Laplacian is a real operator, so we also have conjugate solutions. This

completes the proof. |

Remark A.3. We note that the solutions with C; = 0 are exactly the ones with p = 0,
so by the above computations, they are exactly the solutions which satisfy dw = 0 and §w = 0.
The solutions with Cy # 0 are neither closed nor co-closed.
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A.3. One-forms of Type II on the model space. A 1-form w is said to be of Type II if

(A7) w = eV 1k (b(r)e* + c(r)e?).

Then we have the following lemma.

Lemma A.4. Given an integer g € Z, let Zé’H(Eﬁ}) be the linear space with a basis
By = {~dbr + V-1V, ~V2d, + V-1V O,
—dby — V-1V710,-V2db, — V-1V O},
B = (V7190110 . (_dy + VIV T10), e V109 . (—ag, — V1V O),
e VI (VT2 _dgrV )Pt (—V3d6, + V-1V T20),
VIO (VTS _dqaV 3% (—V3d6, — V=1V T20)), g € Z\ {0}

If a Acomplex—valued 1-form w of Type Il satisfies (A.7) for some k € Z and solves Aw = 0
on M, then

Zy" () ifk =0,

ZM ) @ 2N ) ifk € 2\ {0},

The proof relies on the following relationship between Type II forms and Type I forms.

Lemma A.5. Any form w; of Type Il may be written as J*(wy), where w1 is a form of
Type I for the hyper-Kiihler complex structure J and the dual linear operator J*. So the decay
rates of harmonic Type Il forms are the same as Type I forms.

Proof. 'We use the complex structure J given by
J*(dx) = —dfy, J*(V3dy)=V"20.
Recall that
e+ V1! = Vidr + v—1rdfy) = V" 2e V10 (dx + V1 dy).
We then have
T*(E® + v—lely = Vze V=10 dx + V_1J dy)
= Vie V10 (—db, + V=1V'0)
= —e_ﬁel (e2 — «/—_163).
So if wq is a 1-form of Type I and satisfies w1 = eV —1k6! u(r)(e® + ~/—1lel), then
J (1) = —e*ﬁ(k_l)elu(r)(e2 —/=1e%),
T*(@71) = —eY 1000502 1V 1e?).

On 1-forms, A = V*V, and since J is parallel, w, is harmonic if and only if w; is harmonic.
These generate all Type II harmonic 1-forms. O
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A.4. 2-forms on the model space. Let us define the 2-forms

a)jE =eOAeI:|:ez/\e3,

a)ﬁE =eo/\62:Fel/\e3,

a)i =e'ned el ne?.
Then we have *a)g: = :I:a)it,i = 1,2, 3. Note that

wy =Vrdrndd +db, A O,
wi=VdranddFrdone,
0wl =dr A®+Vrdo Adb,.

We compute the exterior derivatives

da)zlt =0,

do} = Fdr nd6y AO = FV 2r 1 nel e,
3 _(_ Y /

do} = (=3 = (V1)) dr A6y A db;

= (—L + (Vr)’)V_%r_leO nel ne?
2
If we expand further, we have
3 v v -3 1,0, 1,2
dw?> =—<—+V>dr/\d91 A dby =—(—+V>V 2r e’ Ne Ae“.
i T

Remark A.6. Recall that a) are not the hyper-Kihler forms. For this, we should define
EC =V~ 2dx El =V~ 2dy But for the following calculations, we can freely choose an
orthonormal basis.

Remark A.7. If w is self-dual, then we may also write ® = awy + bwy + cwg, and
hence
Aw = (Aa)wr + (Ab)wy + (Ac)wk.

Since we already know the result about harmonic functions, we can define
(A.8) Z2T (@) = Z2(M) ® (Rw; & Roy & Rok).

In the following, we only need to consider ASD 2-forms.
We want o to be invariant under the S!-action. Let us consider the general ansatz
(A.9) w = eV ~1kb: (a(r)a)l + b(r)w? + c(r)a)i).

Then we prove the following lemma.

Lemma A.8. Given an integer g € Z, let Zg’_(ffj}) be the linear space with the follow-
ing bases.
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(1) Foreverygq € Z\{0,1,—1},
B2 = {quﬁqelwl,rqe_ﬁqelwl,

2 .2
V—qu<_(q -V 2a-1v  @-D "_V—l)eﬁ(l—q)olwg

qa—1 2a 202 2m 493  4m2
2
- rq(_zK * 2%% - q4+31 :_ZV_I K 493 870 iV ?)eV I,
g q= 2 g T q T
B «/—qu _@-DV N 2g—-1v  (a— —1) ,—v=1(1-a)81 2
g—1 2q 2¢2 2m q3 4712 -
|4 1 1 v? 1
+rq(_2_+2_22L_ q4jL3 4v DA 38 L
g q= 2 g T )
V—queﬁ(qﬂ)elwz
1 V=1(q+1)6
+ V29 (@ + DV = o )eVTI@FD03
v—1(g + 1) @DV =5
V_que_*/jl(q"'l)ela)z
— +1V——) (Q+1)1w }
~/—1(q + 1) ((q ) 2
2) Forq = —1,

331_ = {r_le_"_wlwl,r_le"_wlwl,r_la)z, V_zr_la)i,

/ 2
__lr (V + v + = V—l)ezﬁelwz

2 A 4w
+ r‘l(g + % —~ %V—Z)ezﬁelwi,
+ r_l(g + % — %;V_Z)e_zﬁolwi}.

3) Forqg =0,
ia’g’_ = {wl Ve‘gela)1 , Ve_“gela)1

12 1
¢—1(§—”V2+ V+——) V=161 )2
V

3 6
ety s
+(%27nvz+6v) e,
V_leﬁelwf—l—\/%_lV_z(V 2n) F‘Qla)
y=le=v=1601, —\/%_IV_Z(V 271) Fela)}
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4) Forg =1,
5812’_ = {re"_wla)i,re_*ﬁe1 ol ro?,

1 v 3/v\2 3,v\3 3/v\4
V-V (=) —5() v+ () Vel
r(z 2w T2 27r) 2(271 +4<2n @
1 v
V_lrezﬁola)z + —V_zr(ZV - —)ezﬁel w3,
24/—1 T

Yl 2V 1012 %V_Zr (ZV — zl)e_zﬁela)i}.
— b/

If a complex-valued 2-form w satisfies (A.9) for some k € 7 and solves Aw = 0 on M, then

2
D zi- . ke{-1,1},
q=—2
1 A
wey @ z2m@, k=0,
q=-—1
1 R 1 ~
( D Zi’;m@ﬁ)) ® ( D ZE’,;m(ﬂn)), keZ\{~10,1}
m=—1 m=—1

Remark A.9. We have that * ® = —w for any ASD 2-form w, so
Aw =déw+dédw =—-dxd*xw—*xdxdw =d*xdw—xd*xdw = (Id—*)d xdw.
Therefore, we only need to compute d * dw and then take twice the projection onto the space

of ASD 2-forms.

Proof.  First, we compute
do = V=101 /1 do; A (a(r)a)l + b(r)w? + c(r)a)i)
+ eﬁkg‘(a’dr Aol +bdr Anw? +cldr Anwd)
4 V1K (adw! + bdw? + cdw?).
Using the above, this is
do = eV~ 1k {\/—_lkaV_%r_le1 Aol + V=1kbV™2r el A w2
FV=TkeV ™ 2r e A3 +a' V720 Awl + BV 720 A w?
F V20 A3 + VI e0 Al Al
— c(% + V)V_%r_leo Ael A ez}.
Then we have
do = eV~1kb1 {—\/—_lkaV_%r_le1 AnetAed — x/—_lka_%r_leO Ael Ae?
- «/—_lch_%r_leO el ned —a'V72e0 ne? A el
$ V2O nel ned — 'V 2e0 nel A e?

1 _ v _3 _
+ bV 2r 160/\61/\63—C<—+V>V 2y 1eo/\el/\ez}.
T
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Collecting terms, we have
do = eV~ 1k6) {—x/—lkaV_%r_le1 NN —a V720 Ae? A ed
=V —TkeV 2 4 V2 4 bV 2 0 Aol A e?
+ [—x/—lka_%r_1 VT - c(K + V)V_%r_l]e0 Ael A ez}.
V4
Now let us define
p(r) = N TkeVTEr 4 B VTR 4 pY T2
g(r) = —/—1kbV =271 — ¢y =3 - c(K +V)v i
b
so that
do = eV=1k01 {—«/—lkaV_%r_le1 ANe2ne3 —a' V720 ne? A ed
+ pe® nel Ae? +qe® nel Ae?).
Then we have
xdw = eﬁkal{«/—lkalf_%r_leo —dVTzel - pe? 4+ qe3).
So we have
dxdo = eV %0 Tk 4oy A {v—lkaV_%r_leO Vel - pe* + qu}
1 V1RO {—ar(a/V_%) dr el — a/V_%ar(V%r)V_lr_leO Ael
—pldr ne? — par(V%)V_leO ner+q'dr ned
+ q(ar(V_%)eO Aned+ LV_%r_le1 A ez)}.
2
Simplifying some,
d dw = eV 1k0 {kzaV_lr_zeO Ael — «/—lka_%r_le1 A e?
+ «/—lqu_%r_le1 A e’ —ar(a’V_%)V_%e0 Ael
— a/V_%ar(V%r)V_lr_leO nel — p/V_%eO Ae?
— par(V%)V_leO Ae? + q/V_%eO A e’
+ q(B,(V_%)eO Aed+ LV_%r_lel N ez)}.
2
Collecting terms,
d % do = eV =1k0 {[kza V=12 5, (a' VRV
—a/V_%ar(V%r)V_lr_l]eO Ael
+ {—p’V_% — par(V%)V_l}eO A e?
+ \/—lqu_%r_le1 ned + {q’V_% + qar(V_%)}eO A e’
+ {—\/—_lka_%r_1 + qZLV_%r_l}e1 A 62}.
i
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Recall that we need to take the projection onto the ASD part of this. So we have the following
equations. The w! coefficient is

K2aVv=lr2 9. (d' VTV —d VT2a, (V)T L
which simplifies to —V ~1(a” + r~'a’ — k?r=2a). So we have the formula
A(eﬁkala(r)a)i) — _eV1kO (@ +rtd —k*r2a) Vol
Recall that solutions of the ODE a” 4 r~'a’ — k?r~2a = 0 are given by

Ci+ GV, k=0,
a(r) = k —k
Cir* +Cor™", k #0.

These prove the w! part in Lemma A.8. Next, the ®? component is
(Id — )V RO (V=3 = pa, (V3 1)e® A e + v/—lkqV 3 r te! A ed)
= eﬁkgl{(—p/V_% — par(V%)V_l)wz + v—lqu_%r_lwz}
= ¢V 1kbn (—p/V_% — par(V%)V_1 + \/—lqu_%r_l)a)z
1
— V1K) (p' + z(log(V))’p - x/—lqu_l)V_%a)E.
For the w3 component, we have
(Id — x)e ¥~ 1k01 {(q/V_% + qar(V_%))eO A e’
+ (—\/—_lka_%r_l + qle_%r_l)el A 62}
s
— oV1k6) {(q/V_% - qar(V_%))a)i
- (—x/—_lka_%r_1 + qle_%r_l)wi}
big
= oV 1k6: {q’V_% + qar(V_%) + «/—_lka_%r_1 — QZLV_%r_I}a)i
b4
— oV-1k6) {q’ — ELV"lr_lq - «/—_lkpr_l}V_%wi
22w
3
= eV 7O — S(log(V)) g + V=Thpr ! |V 202
Consequently, we have the formula
AV (b (w2 + c(r)w?))
1
= e/ + S(10g(V)) p = V=Tkqr ™)V He?
/ 3 / \/_ -1 -13
+ g —E(log(V))q—i- —lkpr )V 2w’ ;.
The harmonic condition becomes the following first-order system for p and g:

1
orp + E(IOg(V))’p —/~lkgr ' =0,

3
0rq — E(log(V))’q + V—lkpr~t =0.
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Y3 q. Then the equations become
P — N —lkr V%G =0,
7+ ~—=1kr~'v72p = 0.

If k = 0, then we have (p,q) = (C1,C3), s0 (p,q) = (Cy V_%, CZV%). So next, we assume
that k # 0. To solve this, let us differentiate the second equation to get

J"+ =1k WV 5+ V-1kr V2 = 0.
Using the system again, this is
~// —1y,—2y/
=q +~=1lk(r— V™~
( Y J_l

— Zi ( IV 2) rV2~/ k2

Define p = V2 D, q

V(=) + V=1kr VT 1kr T V2

Some simplification yields
1
7'+ (5 +2002(V)))7 ~ k*r 3G = 0.

For k # 0, the solutions are § = C;r =¥V =1 4 C,r¥ V1. Then we can use the second equa-
tion

p=- ! rvV2g
v =1k
to solve for p. This yields
~ 1 2 —k—1 k—1yy,—1 —k kvyy—2 Y 1
PtV ((—kClr G YT (€T 4 Gty )
%

_ «/_k(( —kCyr +kC2rk)V——(C1r_k+C2rk))
- kv -2 _ Yk
= ——lk{CI( kV 27_[)1’ +C2(kV 27_[)}’ }

So to summarize, we have (p,q) = (C1,C3) if k = 0, and

([v‘ﬁ)=C1(€(—kV—%)r—k,r—kV—1)+Cz(§(kv 271) oy

if k # 0.
Next, recall the main system is

N TkeV I 4 BV 4 bV =
—\/—_lka_%r_1 — c’V_% — c(% + V)V_%r_l =gq.
The system for b and ¢ then becomes
(A.10) b 47— V=Tkrle = Vip,
¢+ c(% + V)V_lr_l Tkl = —V2g.

We let b = rb, ¢ = V?rc. Then the system becomes
—V=1kV72TE = V%rp,
&+ V—1kv* b = —V%rq.
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A4.1l. k =0. Inthis case, we know from above that (p,q) = (Ci V_%, C2V%), so the
system becomes b’ = Cyr, ¢’ = —C,V*r. The solution is

C
=A1+ —1r2

T = Ay — Cor (%V“ . %W n ;(%)zvz - %(%)31/ n %(%)4)

Bﬂ

So then
_ C
b=A Ty = ,
1r -+ 2 r

(S G 36 6 )

Ad.2. k #0. Ifk # 0, then we differentiate the first equation of
— V=1V = V%rp,
&+ V—=1kV3p = —V%rq
and use the second equation and the system for (p, ¢) to get (after some computation)
b vl —1( + V)b’ K2r2h = 3 (% + 2V)p.
Let us make the substitution b = Vb to get the equation
b+ — k2 2h = V2 (% + 2V)p.

The homogeneous equation is

4+ r ' —k2r2h =0,

which has solutions b = Alrk + Azr_k, equivalently, b = V_l(Alrk_1 + Azr_k_l). We
can then solve for ¢ using equation (A.10) to get

¢ = Fk(A Y2k l(kv 2n)+A2V_2r_k_1( kV—%))

Next, we find a particular solution of
b+ r b —k%r2h = (K + 2V)13’
T

where

F=0 “/k_( ) cz‘/k__l(kv - ).

We define h = r—*b. Then, after some computation, the equation becomes
W @k + D = (S 42y )rEp
b4

2k+1

Multiplying by r , we may write this as

v ~
2Ky = (; 4 2V)rk+1p.
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This can be integrated to yield
—2k— v ~
W=k 1/(— + 2V)rk+1pdr.
g
We can integrate again to obtain

h = [r_Zk_1/<% +2V)rk+lﬁdr.

Converting back to b, we have
b=V ikl =1kl /r_Zk_l /(K + 2V)rk+1j5dr.
g

When k # 41, we find that

2 2
b:Clx/—l —k+1( kV n 2k —1 L_|_ k V—V_l)
k 2k —2 " 2(k—-1)221  4(k —1)3 4n2
+C2«/—1 k+1( kV n —2k—-1 v k? v2 _1)
—r —_— e —
k 2k +2 2k + 1221 4(k +1)3 42
By (A.10),
cocpin( oy L v K2 v L
2k -2 2(k—-1221  4(k —1)34n2 4(k —1)3 873
|4 1 v
C k+1 .
+Car (—2k—2+2(k+1)227r
k+2 ? 1 3
__kt2 v —1+—V_V—2)
4(k + 1)3 4x2 4(k + 1)3 8x3
When k = 1,
127 1 1 Vv 3w 1 v?
T e T T ).
! 3 2 T ) Ty T8 T a2
127 1 V o 1v 32 1 3
- (——V2 —V) Cor?(— 4 - 2V -ty V2
¢ 13 6 ) T T T T e 32 872 )
When k = —1,
V 3w 1 v? 127 1 v
b=—Civ_1 2( —————— —V_1> Co/—1(=Zv2 4~y ——),
TS T 820 32402 T (3v MRy
V 1v 32 1 3 127 1
=C 2(—— e ——V—2)—C(——V2 —V).
C=Cr Ty T T e’ T asee 23777 %
Notice that the Laplacian is a real operator, so we also have conjugate solutions. This
completes the proof. O
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