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Abstract—The widespread use of machine learning is changing
our daily lives. Unfortunately, clients are often concerned about
the privacy of their data when using machine learning-based
applications. To address these concerns, the development of
privacy-preserving machine learning (PPML) is essential. One
promising approach is the use of fully homomorphic encryption
(FHE) based PPML, which enables services to be performed on
encrypted data without decryption. Although the speed of compu-
tationally expensive FHE operations can be significantly boosted
by prior ASIC-based FHE accelerators, the performance of key-
switching, the dominate primitive in various FHE operations, is
seriously limited by their small bit-width datapaths and frequent
matrix transpositions. In this paper, we present an electro-optical
(EO) PPML accelerator, PriML, to accelerate FHE operations.
Its 512-bit datapath supporting 510-bit residues greatly reduces
the key-switching cost. We also create an in-scratchpad-memory
transpose unit to fast transpose matrices. Compared to prior
PPML accelerators, on average, PriML reduces the latency of
various machine learning applications by > 94.4% and the energy
consumption by > 95%.

Index Terms—Privacy-preserving machine learning, Fully ho-
momorphic encryption, Electro-optical FHE accelerator

I. INTRODUCTION

Machine Learning is increasingly being used in many fields,

transforming our daily lives, such as product recommenda-

tion [1], image recognition [2], language translation [3], and

sentiment analysis [4]. However, when using machine learn-

ing in privacy-sensitive fields such as finance or healthcare,

data privacy must be protected. As such, various laws and

regulations [5], such as the California Consumer Privacy

Act and the EU General Data Protection Regulation, have

been established to govern how clients’ personal data can

be stored, transferred, and processed. This has led to an

increased demand for privacy-preserving computing solutions

that protect data confidentiality.

Fully homomorphic encryption (FHE) [6]–[9] emerges as

one of the most promising solutions to guaranteeing data

privacy by allowing computations to directly happen on

ciphertexts. Though trusted execution environments protect

both code and data, they are susceptible to side-channel

attacks [10]. Secure multi-party computation (SMPC) [11]

protects data privacy in an interactive way. However, SMPC

requires the continuous online presence of all involved parties,

each of which needs a high-bandwidth network connection.

For instance, a SMPC-based private network [11] has to

exchange 2GB data for only an inference on an encrypted

CIFAR-10 image. In contrast, FHE enables a client to encrypt

his/her data and to send only the ciphertexts to an untrusted

server, which can perform computations on the ciphertexts

even when the client is offline. Whenever the client comes

back online, he/she can retrieve and decrypt the encrypted

results. The client and the server do not have to communicate

during FHE computations. Since encrypted intermediate re-

sults in the server are not shared, there is less risk of leakage.

Therefore, we use FHE to enable privacy-preserving machine

learning (PPML) in this paper.

FHE operations are extremely time-consuming, i.e., one

FHE bootstrapping costs several seconds on a CPU. Recent

ASIC-based hardware accelerators [12]–[17] greatly speed up

various FHE operations. However, the performance of prior

FHE accelerators is limited by their small bit-width datapaths

and frequent matrix transpositions. An FHE ciphertext consists

of two polynomials of large degrees (e.g., several thousand)

with large integer coefficients (e.g., several hundred bits).

To efficiently compute with polynomials, FHE schemes (e.g.,

CKKS [12]) adopt Residue Number System (RNS) [12],

and Number Theoretic Transform (NTT). First, to compute

with large integer coefficients, RNS divides each coefficient

into multiple smaller bit-width (e.g., 60-bit) residues, each

of which can be processed by the datapath of prior FHE

accelerators. The latency of an FHE multiplication, rotation, or

bootstrapping is dominated by expensive key-switching (KS)

primitives [7] that makes output ciphertexts to be encrypted by

the same secret key as the input ciphertext(s). The computa-

tional overhead of KS, i.e., the number of NTTs, additions, and

multiplications in a KS, greatly increases with an enlarging

number of residues. Second, for two large degree-N polynomi-

als, NTT and inverse NTT (iNTT) reduces the time complexity

of their multiplications to O(N logN). But it is difficult to

perform an (i)NTT, i.e., NTT or iNTT, on a large degree-N
polynomial directly. Prior FHE accelerators [12], [13] place it

as an n×n matrix, where N = n2, perform an (i)NTT on each

row, multiply the matrix with some constants, transpose the

matrix, and perform an (i)NTT on each row again. As a result,

frequent matrix transpositions greatly prolong the latency of

KS in various FHE operations by introducing huge volumes

of on-chip memory traffic during (i)NTTs.

We propose an electro-optical (EO) FHE accelerator,

PriML, to support a large bit-width datapath and free its

computing units from matrix transpositions. Our contribution

is summarized as:

• A 512-bit EO CU. We propose a 512-bit EO Computing
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Units (CUs) built upon ultra-fast EO integer adders and

multipliers to process polynomials with large coefficients.

Its 512-bit datapath greatly reduces the number of residues,

and thus the computational overhead of each key-switching

primitive.

• An in-SPM TU. We build a low-power eDRAM-based on-

chip scratchpad (SPM) system, where we present an in-

SPM Transpose Unit (TU) to transpose matrices for (i)NTTs

without sending matrices having low spatial locality to the

CUs via H-trees of the SPM or NoCs.

• Latency and energy efficiency. Compared to prior ASIC-

based FHE accelerators, PriML reduces the latency of

various FHE applications by > 94.4% and the energy

consumption by > 95%.

II. BACKGROUND

A. Fully Homomorphic Encryption

Fully Homomorphic Encryption. FHE [7] allows compu-

tations to directly occur on ciphertexts. To guarantee security,

FHE introduces noise into ciphertexts. An FHE operation

enlarges the noise in the ciphertext which can accommodate

only a limited number of FHE operations (a.k.a., multiplicative

depth) without a decryption failure. Bootstrappings keep the

noise in check without a security key. But a bootstrapping is

slow, e.g., several minutes.

CKKS. CKKS [18] is one of the widely used FHE schemes

in encrypted machine learning [19], since it supports complex

arithmetics. CKKS encrypts a vector of complex numbers as

a polynomial, whose coefficients are integers modulo Q and

polynomial degree is N . For a given N , a ciphertext can

encrypt up to N/2 complex numbers for SIMD operations,

each of which is an element-wise multiplication or addition

between two ciphertexts. Its critical operations include:

• FMUL: An FHE multiplication (FMUL) is implemented

using polynomial multiplications and additions.

• FROT: An FHE rotation (FROT) rotates the vector en-

crypted in a ciphertext. ROT performs an automorphism on

the ciphertext.

• FBOT: An FHE bootstrapping (FBOT) reduces noises in a

ciphertext, and refreshes its consumed multiplicative depth.

Key-Switching. Key-Switching (KS) [7] makes the result-

ing ciphertext of an FMUL, FROT, and FBOT stay encrypted

by the same secret key as the input ones. KS is the most

expensive and dominate kernel in these operations, i.e., it

takes >90% [12], [13] of all operations. KS expands the input

polynomial to use wider coefficients, multiplies the polynomial

by KS hint matrices [12], and then converts the resulting

polynomial back to use original coefficients. By using different

KS hint matrices, KS can adjust the trade-off between the noise

cost and the time complexity of an FHE operation.

Number Theoretic Transform. Multiplying 2 polynomials

of degree-N has the time complexity of O(N2). NTT [20], a

variant of FFT for modular arithmetic, reduces the polynomial

multiplication time complexity to O(N logN). Specifically,

NTT (a ·b) = NTT (a)
⊙

NTT (b), where a and b are two

(a) A n-bit Electro-Optical full adder
(PD: photo-detector).
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Fig. 1: (a) A photonic ripple-carry adder deign illustration;

(b) the comparison of adder frequency between CMOS and

photonic design.

polynomials of degree-N , and
⊙

is element-wise multipli-

cation. Typically, a large degree-N (N = n2) polynomial is

placed as an n × n matrix. The NTT operation on the large

polynomial can be performed in four steps [12]. First, n n-

element NTT operations, each of which occurs on one row

of the matrix, can be done. Second, the matrix is multiplied

with some constants. Third, the matrix is transposed. Finally

n n-element NTT operations, each of which happens on one

row of the matrix, are conducted. Matrix transpositions greatly

prolong the latency of an NTT by introducing huge volumes

of memory traffic [12].

Residue Number System. RNS [20] denotes an integer by a

set of residues modulo predefined pairwise co-prime moduli.

Through RNS, a CKKS operation working with a large Q
is converted to a set of computations on Q/W residues,

where W is the datapath bit-width of the FHE accelerator.

For instance, a 560-bit Q is decomposed to 10 60-bit residues

on a CPU, 11 54-bit residues on a FPGA [20], or 20 28-

bit residues on a GPU [21] and ASIC [12]. However, for

a given Q, smaller bit-width residues significantly increase

the computational overhead of KS, i.e., the number of NTTs,

multiplications, and additions in each KS, in FHE operations.

B. Electro-optical Ripple-Carry Adders

Optical microdisk [22] emerges as one of the most promis-

ing technologies for photonic computing, due to its CMOS

compatibility, low power consumption, and ultra-fast speed.

A 1-bit microdisk-based electro-optical (EO) full adders

(FAs) [22] is shown in Figure 1(a). Via n FAs, an n-bit

EO ripple-carry adder can be built. For the adder, its sum

is calculated as Sn = Cn−1⊕ (An⊕Bn) = Cn−1⊕Pn, while

its carry is computed as Cn = (An⊕Bn) ·Cn−1+An ·Bn =
Pn · Cn−1 + Gn, where Pn is the propagate bit, and Gn

is the generate bit. Since the carry computation is on the

critical path of a ripple-carry adder, CMOS gates are used

to compute Pn, Gn, and Sn, but microdisks are adopted to

compute the carry. The optical carry signal Cn−1 is separated

into two halves by a splitter. One half of Cn−1 is sent to

a photo-detector and converted to an electrical signal, which

goes through an XOR gate together with Pn to compute the

sum Sn. The other half of Cn−1 goes through a microdisk b
controlled by Pn to produce Pn · Cn−1. A combiner merges

Pn · Cn−1 and Gn generated by another microdisk a. The
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Fig. 2: The bottlenecks of prior FHE accelerators.

continuous wave λ is tuned to ensure the balance of light

intensities at the two arms of combiners. When the bit-

width of a ripple-carry adder increases, as Figure 1(b) shows,

the adder frequency significantly decreases [23]. Although a

carry look-ahead adder can maintain high frequency for large

bit-widths, the carry look-ahead logic components consume

nontrivial power. Compared to the electrical counterpart, the

n-bit EO ripple-carry adder greatly enhances its frequency

without introducing large power overhead. We build a wide

datapath operating at high frequency by n-bit EO ripple-carry

adders in this paper.

C. Related Work and Motivation

ASIC-based FHE accelerators, CraterLake [12] and

BTS [13], obtain the state-of-the-art performance. However,

their performance is seriously limited by their narrow dat-

apaths and intensive matrix transpositions. First, the narrow

datapaths of prior FHE accelerators greatly increase the num-

ber of additions (adds), multiplications (mults), and NTTs

in a key-switching (KS), which is the dominate primitive

in FMULs, FROTs, and FBOTs. CraterLake [12] has a 32-

bit modular integer datapath, while BTS [13] supports 64-

bit modular arithmetics. To compute a KS with a 1024-bit

ciphertext modulus Q, 32-bit CraterLake performs 3.2K adds,

3.1K mults, and 192 NTTs, while 64-bit BTS computes 832

adds, 800 mults, and 96 NTTs, as shown in Figure 2(a). A

narrower datapath exponentially increases the number of adds

and mults, and linearly enlarges the number of NTTs in a KS.

In contrast, a wider datapath may greatly decrease the number

of adds, mults, and NTTs in each KS. However, a wider

datapath (e.g., 512-bit) also exponentially increases the power

consumption and the chip area of an FHE accelerator. Second,

frequent matrix transpositions greatly prolong the latency of an

NTT on prior FHE accelerators by introducing huge volumes

of memory traffic. To transpose a large (e.g., 256 × 256)

matrix, all processing elements of prior FHE accelerators [12],

[13] have to frequently access scratchpad memory arrays, and

thus cannot focus on the NTT computations. As a result, the

matrix transpositions (NTT-T) during NTTs in various FHE

operations become the largest bottleneck, as highlighted in

Figure 2(b), while the computations of NTTs (NTT) consume

only < 10% of the FHE operation latency.

Fig. 3: The architecture of PriML (MC: memory controller;

CU: computing unit; SPM: scratchpad memory; TU: transpose

unit; auto: automorphism unit; and TRNG: true random num-

ber generation).

III. PRIML

A. The Architecture of PriML

We propose an EO FHE accelerator, PriML, to process FHE

operations. The architecture of PriML is shown in Figure 3.

PriML has 2048 512-bit computing units (CUs). All CUs are

connected to a 512-bank 512MB eDRAM scratchpad memory

(SPM) system by optical crossbar NoCs. In each SPM bank,

there are multiple transpose units (TUs) to transpose matrices

for (i)NTTs without sending the data to CUs via NoCs. PriML

has two memory controllers (MCs) and two HBM2 PHYs to

communicate with the off-chip memory.

B. A 512-bit EO CU

We build a 512-bit EO CU featured by an NTT unit, a

modular add/mult unit, an automorphism unit, and a TRNG

unit. Its most important component is the 512-bit EO NTT

unit, which has an arithmetic and inversion unit, an address

generation unit, and two butterfly units. A 512-bit EO NTT

unit also supports the kernel of iNTT working in a different

data flow. We also use EO adders and multipliers to construct

the other CU components.

An EO NTT Unit. We present an EO NTT unit for the

CU. Matrix transpositions are done by TUs in SPM banks,

but the other three steps of the NTT on a large polynomial

are computed by an NTT unit. PriML aims to support 64K-

element NTTs, so a NTT unit supports 256-element NTT

operations. The details are summarized as follows.

• Data flow: Like prior FHE accelerators [12], [13], we adopt

the Cooley-Tukey data flow [20] for (i)NTTs.

• A butterfly unit: We propose an EO butterfly unit (BU) to

accelerate radix-2 NTT butterflies, as shown in Figure 4(a).

A BU consists of an EO pipelined integer array multiplier,

an EO Montgomery modular reduction unit, and two EO

modular adders. The EO multiplier computes the multi-

plication between the input and a twiddle factor ω. The

EO Montgomery modular reduction unit performs modular

reduction on the multiplication result. By an EO adder

and a comparator, the EO modular adder performs modular

additions and subtractions. Two EO modular adders can

generate the radix-2 butterfly outputs concurrently.

• A pipelined EO array multiplier: Through EO ripple-

carry adders [22], we propose an EO pipelined integer array

multiplier. We show the example of a 4-bit × 4-bit pipelined

array multiplier in Figure 4(b). An m-bit × m-bit pipelined
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Fig. 4: An NTT unit in an Electro-Optical computation unit, and a transpose unit (TU) in a SPM.

array multiplier consists of m stages, each of which is an

m-bit EO ripple-carry adder. Between two stages, there is

an m-bit register file to buffer the intermediate result. The

inputs of the first pipeline stage of the multiplier are the

results of AND operations between the corresponding bits

of the multiplier inputs. The input of the other multiplier

pipeline stage is the shifted output of the previous multiplier

pipeline stage. Although an m-bit × m-bit multiplication

takes m cycles, the pipelined array multiplier generates

an output per cycle. The wide datapaths and in-SPM TUs

of PriML make the (i)NTT kernels memory-friendly, so

the (i)NTT kernels become more computationally intensive.

Since each stage, i.e., a 512-bit EO ripple-carry adder, can

operate at 3GHz [22], the pipeline of a 512-bit × 512-bit

EO array multiplier also works at 3GHz. Since only the

EO devices on its critical path work at such high frequency,

based on our estimation, the power consumption of the 512-

bit × 512-bit EO array multiplier is similar to that of its

CMOS counterpart operating at ∼800MHz.

• A Montgomery modular reduction unit: As Figure 4(c)

shows, we build an EO Montgomery modular reduction

unit (MMRU) in a BU to perform modular reduction op-

erations. The MMRU implements the modular reduction

algorithm [20] shown in Figure 4(d). Besides some logic

operations, and 2’s complement conversions, the most in-

tensive operation in a modular reduction operation is the

multiply-add operation (i.e., T1H +(qH ·T2)+ zin), which

can be computed by EO adders and an EO multiplier. The

output of each iteration of the loop can be cached in a

register file and used as the input for the next iteration.

A MUX selects one between the outputs of the register file

and an EO adder as the modular reduction output.

A modular add & mult unit. In a CU, we group two modu-

lar adders and two modular multipliers to construct a modular

add/mult unit. A modular adder consists of an EO 512-bit

integer adder and a comparator, while a modular multiplier is

composed of an EO 512-bit × 512-bit integer pipelined array

multiplier and a Montgomery modular reduction unit.

An automorphism unit. In an automorphism unit, we use

128 CMOS 32-bit × 32-bit integer multipliers, 128 binary

shifters, and several binary logic gates to compute the index

permutations. But matrix transpositions are done by TUs.

A TRNG unit. Since key generation and encryption rely

on true random number generation (TRNG), in a CU, we

adopt a CMOS TRNG generator [24], which combines the the

entropy of multiple independent sources to generate a TRNG

bit-stream. It produces 162.5M random bits per second and

consumes only ∼ 1.09mW .

C. An eDRAM-based SPM System with TUs

Scratchpad Memory. To avoid the large power of

SRAM [25], we present a 512MB eDRAM-based scratchpad

memory (SPM) system consisting of 512 banks, which is large

enough to store ciphertexts and KS hint matrices shared by

FHE operations. To reduce the refresh power of the eDRAM

SPM, we skip refreshes on the rows which are accessed by

a TU or a CU in each refresh period. All CUs access SPM

banks via two optical crossbar NoCs.

Transposing a Matrix. Matrix transpositions are heavily

used in the (i)NTT and automorphism kernels of FHE op-

erations. As Figure 4(e) shows, we implement the recursive

algorithm [12] to transpose a large matrix. An E × E matrix

is stored in the eDRAM in a row-major order, i.e., the

element[n,m] (0 ≤ n,m ≤ E − 1) is stored at the address of

E×n+m. After the transposition, the address of the element

is E ×m+ n. For the transposition of a large E ×E matrix,

we divide the matrix into four E

2
× E

2
matrices, i.e., A, B,

C, and D, at the top level. Instead of transposing the matrix

directly, we compute AT , CT , BT , and DT . By repeating this

process recursively, the E × E matrix can be transposed.

In-SPM Transpose Unit. We create an in-SPM transpose

unit (TU) to transpose a matrix inside SPM banks without

sending it to CUs via NoCs. As Figure 4(f) shows, along the

H-tree of all SPM banks, we hierarchically deploy TUs in all

SPM banks. We assume a SPM bank has four sub-arrays. Each

sub-array in a SPM bank has a TU. One bank has a level-

2 TU to enable data movements inside the bank. All banks

share a level-3 TU for inter-bank communication. The level-

3 and level-2 TUs perform the recursive matrix transposition

algorithm. When the recursive process reaches the 2×2 matrix

level, a TU attached to a sub-array swaps each element into

its new position. The index of an element in the 2× 2 matrix

is 0 ≤ i ≤ 4. The new index (j) after the transposition can be

computed by as: if i = 3, j = 3; otherwise, j = (2i mod 3).
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Fig. 5: Compilation on PriML.

A TUs share a similar structure shown in Figure 4(g) with

different numbers of FIFOs.

D. Compiling FHE Operations on PriML

We build a compilation framework to compile C/C++ source

code to executable binaries for PriML. Our compilation frame-

work is shown in Figure 5.

• First, a C/C++-based application can be translated to FHE

primitives, e.g., FMUL, FROT and FBOT, by an FHE

operation compiler Cingulata [26]. The compiler reorders

FHE operations to reuse each KS hint as much as possible

to minimize the DRAM traffic.

• Second, we modified the state-of-the-art FHE accelerator

simulator, Sapphire-Sim [27], by adding an Operation-to-

Function-Unit (OtFU) mapper. The OtFU mapper decom-

poses each FHE operation to function kernels, e.g., (i)NTT

and SIMD add/mult, converts these function kernels to a

data dependency graph, and then maps the graph to function

units of PriML (specified by the architecture description).

Each function unit can be an NTT unit, a modular add/mult

unit, an auto unit, a TRNG unit, or a TU. To simplify the

mapping, the mapper considers the SPM and DRAM as

function units, so the graph includes accesses to on-/off-

chip memories. The mapper statically schedules every node

of the graph to a function unit to maximize the operation

concurrency and the utilization of each function unit using

the worst-case latency of function units and DRAM.

• Third, we modified the cycle-level scheduler of Sapphire-

Sim to further refine the data dependency graph. The sched-

uler divides a function kernel into multiple sub-kernels,

schedules sub-kernels across all components of a function

unit, and allocates data in the register files of the function

unit to maximize the data locality. This step determines the

exact cycles of all sub-kernels, and produces the binaries all

function units. The scheduler also minimizes the off-chip

data movement in multiple passes.

E. Design Overhead

The power and area overhead of PriML is shown in Table I.

All CMOS logic units are synthesized by Synopsys design

compiler with 7nm PTM process. The eDRAM SPM and

register files are modeled by CACTI. To simulate photonic

microdisk-based computing components, we used Lumerical

FDTD [28] and INTERCONNECT. To model the electro-

optical full adder, we adopted optical splitters & combiners,

photo-detectors, and microdisks from [22]. We set the fre-

quency of electro-optical adders and multipliers to 3GHz. We

use two 32×16 optical crossbars to connect all CUs and SPM

banks. We used two HBM2 PHYs to access off-chip DRAMs.

Totally, PriML occupies 290.1mm2 and consumes 146.2W .

TABLE I: The power and area of PriML (7nm).

Name Component Spec Power Area

(i)NTT ×2 BUs 7.98mW 28,503μm2

Add/Mult ×2 mod adds/mults 5.94mW 21,852μm2

CU auto ×128 mults/shifts 2.92mW 14,459μm2

TRNG ×1 1.09mW 1,501μm2

reg. files 512KB 2.15mW 12,479μm2

Sub-Total 20.09mW 78,794μm2

CU ×2048 161.4W 41.14mm2

SPM 512MB, 512-bank 8.1W 58.7mm2

PriML optical NoC 2 32× 16 bit-sliced 28.35W 16.2mm2

HBM2 PHY ×2 29.6W 31.76mm2

TU × 2,569 24.2W 36.8mm2

Total 146.2W 290.1mm2

TABLE II: Our accelerator baselines (norm. to 7nm).

Name Bit Description SPM Area Power

Lake [12] 32 1GHz, 1.4K PEs, 6 HBMs 256MB 276mm2 151W

BTS [13] 64 1.2GHz, 2K PEs, 2 HBMs 512MB 373mm2 163W

IV. EXPERIMENTAL METHODOLOGY

Simulation. We modeled PriML by a cycle-accurate FHE

accelerator simulator, Sapphire-Sim [27], which is validated

against several crypto-processor chips. The input of Sapphire-

Sim is the FHE operation schedule generated by our FHE

compilation framework. Based on the architectural description

of PriML, Sapphire-Sim simulates the cycle-level execution

and data movement for each FHE operation. At last, Sapphire-

Sim generates the total latency and energy consumption of an

FHE application.

Schemes. We compared PriML against the state-of-the-art

ASIC-based hardware accelerators, CrateLake (Lake) [12] and

BTS [13]. Their configurations are shown in Table II. Lake has

a 32-bit datapath operating at 1GHz and consisting of 1.4K

NTT processing elements (PEs), six HBM memory controllers,

and a 256MB scratchpad memory (SPM) system. It occupies

276mm2 at 7nm and consumes 151 Watt. In contrast, BTS is

a 64-bit 1.2GHz FHE accelerator composed of 2K NTT PEs,

two HBM memory controllers, and a 512MB SPM system. Its

chip size is 373mm2 at 7nm, and it consumes 163 Watt. Lake

uses a larger off-chip DRAM bandwidth to make up for its

smaller SPM capacity.

PriML Benchmarks and Parameters. We first studied

the performance and energy of CKKS FMUL, FROT, and

FBOT operations on ciphertexts. We also investigated the

performance and energy of other CKKS operations includ-

ing public/private/permutation key generation (KEYGEN), en-

cryption/decryption (ENC/DEC), addition between two cipher-

texts (FADD), addition between a ciphertext and a plaintext

(ADDCP), and multiplication between a ciphertext and a plain-

text (MULTCP). To systematically study FHE performance,

we selected two state-of-the-art CKKS-based applications, i.e.,
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Fig. 6: The latency and energy comparison of FMUL, FROT,

and FBOT between three accelerators (norm. to Lake).

encrypted logistic regression [19] (LR) and encrypted neural

network inference [29] (Lola).

• LR. LR is trained with 2K features. It has 4K samples

per batch. Nonlinear operations in LR are approximated by

polynomials. And LR heavily depends on FMUL, FROT,

and FBOT.

• Lola. LoLa is a six-layer convolutional network inferring

on the CIFAR-10 dataset. The weights of Lola is not

encrypted, and all ReLU activations are approximated by

square functions. So the most intensive operations of Lola

are FROT, MULTCP, and FMUL.

We evaluated the FHE parameters that can support the mul-

tiplicative depth of 40 and maintain the 128-bit security, i.e.,

N = 216, and Q is 1536-bit, since this multiplicative depth

is large enough for both FHE applications. Under this set of

FHE parameters, a ciphertext costs 24MB.

V. EVALUATION

In this section, we first report the CKKS operation perfor-

mance and energy consumption of PriML, and then discuss the

FHE application performance and power efficiency of PriML.

At last, we performed the design space exploration for PriML.

A. FHE Operations

FMUL/FROT/FBOT latency. The latency comparison be-

tween PriML and various accelerator baselines is shown in

Figure 6(a). Compared to Lake, BTS decreases the latency

of FMUL, FROT and FBOT by 69% on average, due to

its larger bit-width datapath and larger SPM system. The

32-bit datapath of Lake greatly increases the computational

overhead of each key-switching (KS) primitive in FMUL,

FROT and FBOT operations, while the small SPM cannot

hold ciphertexts and KS hint matrices simultaneously, thereby

significantly increasing off-chip memory traffic. Because of the

512-bit EO datapath and the TUs in the SPM, PriML reduces

the latency of FMUL, FROT and FBOT by 96% on average

over BTS. Particularly, the in-SPM TUs of PriML minimize

the matrix transpositions (NTT-T) during (i)NTTs, while the

512-bit datapath of PriML evenly reduces the latency of the

other kernels in each KS primitive.

FMUL/FROT/FBOT energy. The energy comparison be-

tween PriML and various accelerator baselines is shown in

Figure 6(b). Compared to Lake, BTS decreases the energy con-

sumption of FMUL, FROT and FBOT by 67.5% on average,

although it consumes slightly larger power than Lake, since it

uses a much smaller latency to compute the same operation.
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Fig. 7: The latency and energy comparison of other CKKS

operations between three accelerators (norm. to Lake).

This shows that building a 64-bit datapath and a 512MB SPM

actually improves the energy efficiency for FHE accelerators.

Compared to BTS, PriML reduces the energy consumption

of FMUL, FROT and FBOT by 98.8% on average. Instead

of power hungry SRAM, PriML uses low-power eDRAM to

construct its SPM. Although operating at higher frequency, the

photonic 512-bit datapath of PriML consumes similar power

consumption to the CMOS 64-bit datapath of BTS. In this

way, PriML uses only 89% of the power consumption of BTS

to complete the same FHE operation.

Other FHE operations. We also studied the latency and

energy improvement of other FHE operations including KEY-

GEN, ENC, DEC, FADD, ADDCP, and MULTCP on PriML

in Figure 7. Since these FHE operations do not involve KS,

the latency improvement of these FHE operations achieved

by PriML is not as significant as those of FMUL, FROT and

FBOT. On average, PriML reduces the latency of these FHE

operations by 88% over BTS. ENC, ADDCP, and MULCP

still invoke (i)NTT kernels, so their latency improvement is

still high, as shown in Figure 7(a). Moreover, the 512-bit

photonic datapath also helps the FADD operation performing

a modular addition between two polynomials. Again, because

other FHE operations has no KS primitive, compared to

BTS, as Figure 7(b) highlights, PriML reduces the energy

consumption of these FHE operations by 91% on average.
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Fig. 8: The latency and energy comparison of FHE applica-

tions between three accelerators (norm. to Lake).

B. FHE-based PriML Performance

Latency. The latency comparison of FHE applications be-

tween PriML and various accelerator baselines is shown in

Figure 8(a). Since the performance bottleneck in both LR and

Lola is FROT, their latency improvement is heavily influenced

by the speedup of FROT. Compared to Lake, BTS reduces the

latency of LR and Lola by 65.5% and 57.4% respectively,

due to its faster FROT operations. PriML reduces the latency

of LR and Lola by 96% and 93% respectively, compared to
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BTS. Particularly, the latency improvement of PriML on Lola

is smaller. This is because only square activation functions

on Lola require FMULs, while the summed products between

weights and inputs involve just MULTCPs.

Energy. The energy comparison of FHE applications be-

tween PriML and various accelerator baselines is shown in

Figure 8(b). The energy reduction of these two applications

share a similar trend to the latency reduction. Compared to

Lake, BTS decreases the energy consumption of LR and Lola

by 62.7% and 54% respectively. PriML reduces the energy

consumption of LR and Lola by 96.4% and 93.3% respectively

over BTS.

C. Design Space Exploration

We tried 256-, 512-, and 1K-bit datapaths on our PriML.

Compared to 256-bit, the 512-bit PriML reduces the latency

of FMUL, FROT and FBOT by 39% on average. However,

when the datapath reaches 1K, the latency of these operations

increases by 3%. This is because a longer datapath decreases

the operating frequency of PriML and imposes a larger burden

on the small register file in each CU. We also tried 256MB,

512MB, and 1GB SPMs. Compared to 256MB, a 512MB

SPM reduces the latency of FMUL, FROT and FBOT by 27%.

However, a 1GB SPM does not reduce their latency obviously.

VI. CONCLUSION

We propose an EO privacy-preserving machine learning

accelerator, PriML, which has fast EO 512-bit CUs, a 512MB

eDRAM SPM, and in-SPM TUs. PriML greatly reduces the

key-switch cost, while the TUs process matrix transpositions

in SPM banks. On average, for various machine learning ap-

plications, PriML reduces their latency by > 94.4% and their

energy consumption by > 95% over prior FHE accelerators.
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