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Abstract—The widespread use of machine learning is changing
our daily lives. Unfortunately, clients are often concerned about
the privacy of their data when using machine learning-based
applications. To address these concerns, the development of
privacy-preserving machine learning (PPML) is essential. One
promising approach is the use of fully homomorphic encryption
(FHE) based PPML, which enables services to be performed on
encrypted data without decryption. Although the speed of compu-
tationally expensive FHE operations can be significantly boosted
by prior ASIC-based FHE accelerators, the performance of key-
switching, the dominate primitive in various FHE operations, is
seriously limited by their small bit-width datapaths and frequent
matrix transpositions. In this paper, we present an electro-optical
(EO) PPML accelerator, PriML, to accelerate FHE operations.
Its 512-bit datapath supporting 510-bit residues greatly reduces
the key-switching cost. We also create an in-scratchpad-memory
transpose unit to fast transpose matrices. Compared to prior
PPML accelerators, on average, PriML reduces the latency of
various machine learning applications by > 94.4% and the energy
consumption by > 95%.

Index Terms—Privacy-preserving machine learning, Fully ho-
momorphic encryption, Electro-optical FHE accelerator

I. INTRODUCTION

Machine Learning is increasingly being used in many fields,
transforming our daily lives, such as product recommenda-
tion [1], image recognition [2], language translation [3], and
sentiment analysis [4]. However, when using machine learn-
ing in privacy-sensitive fields such as finance or healthcare,
data privacy must be protected. As such, various laws and
regulations [5], such as the California Consumer Privacy
Act and the EU General Data Protection Regulation, have
been established to govern how clients’ personal data can
be stored, transferred, and processed. This has led to an
increased demand for privacy-preserving computing solutions
that protect data confidentiality.

Fully homomorphic encryption (FHE) [6]-[9] emerges as
one of the most promising solutions to guaranteeing data
privacy by allowing computations to directly happen on
ciphertexts. Though trusted execution environments protect
both code and data, they are susceptible to side-channel
attacks [10]. Secure multi-party computation (SMPC) [11]
protects data privacy in an interactive way. However, SMPC
requires the continuous online presence of all involved parties,
each of which needs a high-bandwidth network connection.
For instance, a SMPC-based private network [11] has to
exchange 2G'B data for only an inference on an encrypted
CIFAR-10 image. In contrast, FHE enables a client to encrypt
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his/her data and to send only the ciphertexts to an untrusted
server, which can perform computations on the ciphertexts
even when the client is offline. Whenever the client comes
back online, he/she can retrieve and decrypt the encrypted
results. The client and the server do not have to communicate
during FHE computations. Since encrypted intermediate re-
sults in the server are not shared, there is less risk of leakage.
Therefore, we use FHE to enable privacy-preserving machine
learning (PPML) in this paper.

FHE operations are extremely time-consuming, i.e., one
FHE bootstrapping costs several seconds on a CPU. Recent
ASIC-based hardware accelerators [12]-[17] greatly speed up
various FHE operations. However, the performance of prior
FHE accelerators is limited by their small bit-width datapaths
and frequent matrix transpositions. An FHE ciphertext consists
of two polynomials of large degrees (e.g., several thousand)
with large integer coefficients (e.g., several hundred bits).
To efficiently compute with polynomials, FHE schemes (e.g.,
CKKS [12]) adopt Residue Number System (RNS) [12],
and Number Theoretic Transform (NTT). First, to compute
with large integer coefficients, RNS divides each coefficient
into multiple smaller bit-width (e.g., 60-bit) residues, each
of which can be processed by the datapath of prior FHE
accelerators. The latency of an FHE multiplication, rotation, or
bootstrapping is dominated by expensive key-switching (KS)
primitives [7] that makes output ciphertexts to be encrypted by
the same secret key as the input ciphertext(s). The computa-
tional overhead of KS, i.e., the number of NTTs, additions, and
multiplications in a KS, greatly increases with an enlarging
number of residues. Second, for two large degree- /N polynomi-
als, NTT and inverse NTT (iNTT) reduces the time complexity
of their multiplications to O(N log N). But it is difficult to
perform an (i))NTT, i.e., NTT or iNTT, on a large degree-/NV
polynomial directly. Prior FHE accelerators [12], [13] place it
as an n X n matrix, where N = n?2, perform an (i))NTT on each
row, multiply the matrix with some constants, transpose the
matrix, and perform an (i)NTT on each row again. As a result,
frequent matrix transpositions greatly prolong the latency of
KS in various FHE operations by introducing huge volumes
of on-chip memory traffic during (i)NTTs.

We propose an electro-optical (EO) FHE accelerator,
PriML, to support a large bit-width datapath and free its
computing units from matrix transpositions. Our contribution
is summarized as:

o A 512-bit EO CU. We propose a 512-bit EO Computing
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Units (CUs) built upon ultra-fast EO integer adders and
multipliers to process polynomials with large coefficients.
Its 512-bit datapath greatly reduces the number of residues,
and thus the computational overhead of each key-switching
primitive.

o An in-SPM TU. We build a low-power eDRAM-based on-
chip scratchpad (SPM) system, where we present an in-
SPM Transpose Unit (TU) to transpose matrices for (i)NTTs
without sending matrices having low spatial locality to the
CUs via H-trees of the SPM or NoCs.

o Latency and energy efficiency. Compared to prior ASIC-
based FHE accelerators, PriML reduces the latency of
various FHE applications by > 94.4% and the energy
consumption by > 95%.

II. BACKGROUND

A. Fully Homomorphic Encryption

Fully Homomorphic Encryption. FHE [7] allows compu-
tations to directly occur on ciphertexts. To guarantee security,
FHE introduces noise into ciphertexts. An FHE operation
enlarges the noise in the ciphertext which can accommodate
only a limited number of FHE operations (a.k.a., multiplicative
depth) without a decryption failure. Bootstrappings keep the
noise in check without a security key. But a bootstrapping is
slow, e.g., several minutes.

CKKS. CKKS [18] is one of the widely used FHE schemes
in encrypted machine learning [19], since it supports complex
arithmetics. CKKS encrypts a vector of complex numbers as
a polynomial, whose coefficients are integers modulo ¢ and
polynomial degree is N. For a given N, a ciphertext can
encrypt up to N/2 complex numbers for SIMD operations,
each of which is an element-wise multiplication or addition
between two ciphertexts. Its critical operations include:

« FMUL: An FHE multiplication (FMUL) is implemented
using polynomial multiplications and additions.

e FROT: An FHE rotation (FROT) rotates the vector en-
crypted in a ciphertext. ROT performs an automorphism on
the ciphertext.

o FBOT: An FHE bootstrapping (FBOT) reduces noises in a
ciphertext, and refreshes its consumed multiplicative depth.
Key-Switching. Key-Switching (KS) [7] makes the result-

ing ciphertext of an FMUL, FROT, and FBOT stay encrypted

by the same secret key as the input ones. KS is the most
expensive and dominate kernel in these operations, i.e., it
takes >90% [12], [13] of all operations. KS expands the input
polynomial to use wider coefficients, multiplies the polynomial
by KS hint matrices [12], and then converts the resulting
polynomial back to use original coefficients. By using different

KS hint matrices, KS can adjust the trade-off between the noise

cost and the time complexity of an FHE operation.

Number Theoretic Transform. Multiplying 2 polynomials
of degree-N has the time complexity of O(N?). NTT [20], a
variant of FFT for modular arithmetic, reduces the polynomial
multiplication time complexity to O(N log N). Specifically,
NTT(a-b) = NTT(a) © NTT(b), where a and b are two

'“716'
5127 CMOS

s s g

C

o b

frequency

& \"33 '9¢‘_1</,36%,1§ ,b‘b& b‘béjﬁ\ﬁ/
adder bit-width

(a) A n-bit Electro-Optical full adder (b) The frequency comparison be-
(PD: photo-detector). tween CMOS & photonic design.

Fig. 1: (a) A photonic ripple-carry adder deign illustration;
(b) the comparison of adder frequency between CMOS and
photonic design.

polynomials of degree-N, and (&) is element-wise multipli-
cation. Typically, a large degree-N (N = n?) polynomial is
placed as an n x n matrix. The NTT operation on the large
polynomial can be performed in four steps [12]. First, n n-
element NTT operations, each of which occurs on one row
of the matrix, can be done. Second, the matrix is multiplied
with some constants. Third, the matrix is transposed. Finally
n n-element NTT operations, each of which happens on one
row of the matrix, are conducted. Matrix transpositions greatly
prolong the latency of an NTT by introducing huge volumes
of memory traffic [12].

Residue Number System. RNS [20] denotes an integer by a
set of residues modulo predefined pairwise co-prime moduli.
Through RNS, a CKKS operation working with a large @)
is converted to a set of computations on @Q/W residues,
where W is the datapath bit-width of the FHE accelerator.
For instance, a 560-bit Q is decomposed to 10 60-bit residues
on a CPU, 11 54-bit residues on a FPGA [20], or 20 28-
bit residues on a GPU [21] and ASIC [12]. However, for
a given @, smaller bit-width residues significantly increase
the computational overhead of KS, i.e., the number of NTTs,
multiplications, and additions in each KS, in FHE operations.

B. Electro-optical Ripple-Carry Adders

Optical microdisk [22] emerges as one of the most promis-
ing technologies for photonic computing, due to its CMOS
compatibility, low power consumption, and ultra-fast speed.
A 1-bit microdisk-based electro-optical (EO) full adders
(FAs) [22] is shown in Figure 1(a). Via n FAs, an n-bit
EO ripple-carry adder can be built. For the adder, its sum
is calculated as S, = Cp,—1 D (A, ®By,) = Cp,—1 ® P,,, while
its carry is computed as C,, = (4, ®B,,) - Cp—1+ Ay, - B, =
P, - C,_1 + G,, where P, is the propagate bit, and G,
is the generate bit. Since the carry computation is on the
critical path of a ripple-carry adder, CMOS gates are used
to compute P,,, G, and S,,, but microdisks are adopted to
compute the carry. The optical carry signal C),_; is separated
into two halves by a splitter. One half of C),_; is sent to
a photo-detector and converted to an electrical signal, which
goes through an XOR gate together with P,, to compute the
sum S,,. The other half of C},_; goes through a microdisk b
controlled by P, to produce P, - C;,_1. A combiner merges
P, - C,_1 and G,, generated by another microdisk a. The
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Fig. 2: The bottlenecks of prior FHE accelerators.

continuous wave A is tuned to ensure the balance of light
intensities at the two arms of combiners. When the bit-
width of a ripple-carry adder increases, as Figure 1(b) shows,
the adder frequency significantly decreases [23]. Although a
carry look-ahead adder can maintain high frequency for large
bit-widths, the carry look-ahead logic components consume
nontrivial power. Compared to the electrical counterpart, the
n-bit EO ripple-carry adder greatly enhances its frequency
without introducing large power overhead. We build a wide
datapath operating at high frequency by n-bit EO ripple-carry
adders in this paper.

C. Related Work and Motivation

ASIC-based FHE accelerators, CraterLake [12] and
BTS [13], obtain the state-of-the-art performance. However,
their performance is seriously limited by their narrow dat-
apaths and intensive matrix transpositions. First, the narrow
datapaths of prior FHE accelerators greatly increase the num-
ber of additions (adds), multiplications (mults), and NTTs
in a key-switching (KS), which is the dominate primitive
in FMULs, FROTs, and FBOTs. CraterLake [12] has a 32-
bit modular integer datapath, while BTS [13] supports 64-
bit modular arithmetics. To compute a KS with a 1024-bit
ciphertext modulus @, 32-bit CraterLake performs 3.2K adds,
3.1K mults, and 192 NTTs, while 64-bit BTS computes 832
adds, 800 mults, and 96 NTTs, as shown in Figure 2(a). A
narrower datapath exponentially increases the number of adds
and mults, and linearly enlarges the number of NTTs in a KS.
In contrast, a wider datapath may greatly decrease the number
of adds, mults, and NTTs in each KS. However, a wider
datapath (e.g., 512-bit) also exponentially increases the power
consumption and the chip area of an FHE accelerator. Second,
frequent matrix transpositions greatly prolong the latency of an
NTT on prior FHE accelerators by introducing huge volumes
of memory traffic. To transpose a large (e.g., 256 x 256)
matrix, all processing elements of prior FHE accelerators [12],
[13] have to frequently access scratchpad memory arrays, and
thus cannot focus on the NTT computations. As a result, the
matrix transpositions (NTT-T) during NTTs in various FHE
operations become the largest bottleneck, as highlighted in
Figure 2(b), while the computations of NTTs (NTT) consume
only < 10% of the FHE operation latency.

z[cu][cu]--[cu]«L NTT |
IMA z &=
E Culicu|--]cu | |2dd/mult |
WS colrcol. - rcol S| auto|rrna| €

Fig. 3: The architecture of PriML (MC: memory controller;
CU: computing unit; SPM: scratchpad memory; TU: transpose
unit; auto: automorphism unit; and TRNG: true random num-
ber generation).

III. PRIML
A. The Architecture of PriML

We propose an EO FHE accelerator, PriML, to process FHE
operations. The architecture of PriML is shown in Figure 3.
PriML has 2048 512-bit computing units (CUs). All CUs are
connected to a 512-bank 512MB eDRAM scratchpad memory
(SPM) system by optical crossbar NoCs. In each SPM bank,
there are multiple transpose units (TUs) to transpose matrices
for ())NTTs without sending the data to CUs via NoCs. PriML
has two memory controllers (MCs) and two HBM2 PHYs to
communicate with the off-chip memory.

B. A 512-bit EO CU

We build a 512-bit EO CU featured by an NTT unit, a
modular add/mult unit, an automorphism unit, and a TRNG
unit. Its most important component is the 512-bit EO NTT
unit, which has an arithmetic and inversion unit, an address
generation unit, and two butterfly units. A 512-bit EO NTT
unit also supports the kernel of iNTT working in a different
data flow. We also use EO adders and multipliers to construct
the other CU components.

An EO NTT Unit. We present an EO NTT unit for the
CU. Matrix transpositions are done by TUs in SPM banks,
but the other three steps of the NTT on a large polynomial
are computed by an NTT unit. PriML aims to support 64K-
element NTTs, so a NTT unit supports 256-element NTT
operations. The details are summarized as follows.

« Data flow: Like prior FHE accelerators [12], [13], we adopt
the Cooley-Tukey data flow [20] for (i))NTTs.

o A butterfly unit: We propose an EO butterfly unit (BU) to
accelerate radix-2 NTT butterflies, as shown in Figure 4(a).
A BU consists of an EO pipelined integer array multiplier,
an EO Montgomery modular reduction unit, and two EO
modular adders. The EO multiplier computes the multi-
plication between the input and a twiddle factor w. The
EO Montgomery modular reduction unit performs modular
reduction on the multiplication result. By an EO adder
and a comparator, the EO modular adder performs modular
additions and subtractions. Two EO modular adders can
generate the radix-2 butterfly outputs concurrently.

o A pipelined EO array multiplier: Through EO ripple-
carry adders [22], we propose an EO pipelined integer array
multiplier. We show the example of a 4-bit x 4-bit pipelined
array multiplier in Figure 4(b). An m-bit X m-bit pipelined
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Fig. 4: An NTT unit in an Electro-Optical computation unit, and a transpose unit (TU) in a SPM.

array multiplier consists of m stages, each of which is an
m-bit EO ripple-carry adder. Between two stages, there is
an m-bit register file to buffer the intermediate result. The
inputs of the first pipeline stage of the multiplier are the
results of AND operations between the corresponding bits
of the multiplier inputs. The input of the other multiplier
pipeline stage is the shifted output of the previous multiplier
pipeline stage. Although an m-bit x m-bit multiplication
takes m cycles, the pipelined array multiplier generates
an output per cycle. The wide datapaths and in-SPM TUs
of PriML make the (i)NTT kernels memory-friendly, so
the (i)NTT kernels become more computationally intensive.
Since each stage, i.e., a 512-bit EO ripple-carry adder, can
operate at 3GHz [22], the pipeline of a 512-bit x 512-bit
EO array multiplier also works at 3GHz. Since only the
EO devices on its critical path work at such high frequency,
based on our estimation, the power consumption of the 512-
bit x 512-bit EO array multiplier is similar to that of its
CMOS counterpart operating at ~800MHz.

« A Montgomery modular reduction unit: As Figure 4(c)
shows, we build an EO Montgomery modular reduction
unit (MMRU) in a BU to perform modular reduction op-
erations. The MMRU implements the modular reduction
algorithm [20] shown in Figure 4(d). Besides some logic
operations, and 2’s complement conversions, the most in-
tensive operation in a modular reduction operation is the
multiply-add operation (i.e., T1g + (qg - T2) + 2;1,), which
can be computed by EO adders and an EO multiplier. The
output of each iteration of the loop can be cached in a
register file and used as the input for the next iteration.
A MUX selects one between the outputs of the register file
and an EO adder as the modular reduction output.

A modular add & mult unit. In a CU, we group two modu-
lar adders and two modular multipliers to construct a modular
add/mult unit. A modular adder consists of an EO 512-bit
integer adder and a comparator, while a modular multiplier is
composed of an EO 512-bit x 512-bit integer pipelined array
multiplier and a Montgomery modular reduction unit.

An automorphism unit. In an automorphism unit, we use
128 CMOS 32-bit x 32-bit integer multipliers, 128 binary
shifters, and several binary logic gates to compute the index
permutations. But matrix transpositions are done by TUs.

A TRNG unit. Since key generation and encryption rely
on true random number generation (TRNG), in a CU, we
adopt a CMOS TRNG generator [24], which combines the the
entropy of multiple independent sources to generate a TRNG
bit-stream. It produces 162.50/ random bits per second and
consumes only ~ 1.09mW.

C. An eDRAM-based SPM System with TUs

Scratchpad Memory. To avoid the large power of
SRAM [25], we present a 512MB eDRAM-based scratchpad
memory (SPM) system consisting of 512 banks, which is large
enough to store ciphertexts and KS hint matrices shared by
FHE operations. To reduce the refresh power of the eDRAM
SPM, we skip refreshes on the rows which are accessed by
a TU or a CU in each refresh period. All CUs access SPM
banks via two optical crossbar NoCs.

Transposing a Matrix. Matrix transpositions are heavily
used in the (i))NTT and automorphism kernels of FHE op-
erations. As Figure 4(e) shows, we implement the recursive
algorithm [12] to transpose a large matrix. An E X E matrix
is stored in the eDRAM in a row-major order, i.e., the
element[n, m] (0 < n,m < E — 1) is stored at the address of
E xn+m. After the transposition, the address of the element
is 2 x m + n. For the transposition of a large £ X E matrix,
we divide the matrix into four % X % matrices, i.e., A, B,
C, and D, at the top level. Instead of transposing the matrix
directly, we compute A”, C*, BT, and D”. By repeating this
process recursively, the £ X F matrix can be transposed.

In-SPM Transpose Unit. We create an in-SPM transpose
unit (TU) to transpose a matrix inside SPM banks without
sending it to CUs via NoCs. As Figure 4(f) shows, along the
H-tree of all SPM banks, we hierarchically deploy TUs in all
SPM banks. We assume a SPM bank has four sub-arrays. Each
sub-array in a SPM bank has a TU. One bank has a level-
2 TU to enable data movements inside the bank. All banks
share a level-3 TU for inter-bank communication. The level-
3 and level-2 TUs perform the recursive matrix transposition
algorithm. When the recursive process reaches the 2 x 2 matrix
level, a TU attached to a sub-array swaps each element into
its new position. The index of an element in the 2 x 2 matrix
is 0 <4 < 4. The new index (j) after the transposition can be
computed by as: if i = 3, j = 3; otherwise, j = (2¢ mod 3).
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Fig. 5: Compilation on PriML.

A TUs share a similar structure shown in Figure 4(g) with
different numbers of FIFOs.

D. Compiling FHE Operations on PriML

We build a compilation framework to compile C/C++ source
code to executable binaries for PriML. Our compilation frame-
work is shown in Figure 5.

o First, a C/C++-based application can be translated to FHE
primitives, e.g., FMUL, FROT and FBOT, by an FHE
operation compiler Cingulata [26]. The compiler reorders
FHE operations to reuse each KS hint as much as possible
to minimize the DRAM traffic.

e Second, we modified the state-of-the-art FHE accelerator
simulator, Sapphire-Sim [27], by adding an Operation-to-
Function-Unit (OtFU) mapper. The OtFU mapper decom-
poses each FHE operation to function kernels, e.g., ())NTT
and SIMD add/mult, converts these function kernels to a
data dependency graph, and then maps the graph to function
units of PriML (specified by the architecture description).
Each function unit can be an NTT unit, a modular add/mult
unit, an auto unit, a TRNG unit, or a TU. To simplify the
mapping, the mapper considers the SPM and DRAM as
function units, so the graph includes accesses to on-/off-
chip memories. The mapper statically schedules every node
of the graph to a function unit to maximize the operation
concurrency and the utilization of each function unit using
the worst-case latency of function units and DRAM.

o Third, we modified the cycle-level scheduler of Sapphire-
Sim to further refine the data dependency graph. The sched-
uler divides a function kernel into multiple sub-kernels,
schedules sub-kernels across all components of a function
unit, and allocates data in the register files of the function
unit to maximize the data locality. This step determines the
exact cycles of all sub-kernels, and produces the binaries all
function units. The scheduler also minimizes the off-chip
data movement in multiple passes.

E. Design Overhead

The power and area overhead of PriML is shown in Table I.
All CMOS logic units are synthesized by Synopsys design
compiler with 7nm PTM process. The eDRAM SPM and
register files are modeled by CACTI. To simulate photonic
microdisk-based computing components, we used Lumerical
FDTD [28] and INTERCONNECT. To model the electro-
optical full adder, we adopted optical splitters & combiners,
photo-detectors, and microdisks from [22]. We set the fre-
quency of electro-optical adders and multipliers to 3GHz. We

use two 32 x 16 optical crossbars to connect all CUs and SPM
banks. We used two HBM?2 PHYSs to access off-chip DRAMs.
Totally, PriML occupies 290.1mm? and consumes 146.2WV .

TABLE I: The power and area of PriML (7nm).

[ Name ][ Component | Spec [ Power | Area |
()NTT x2 BUs 7.98mW [28,503m?
Add/Mult | x2 mod adds/mults| 5.94mW [21,852um?
CU auto x 128 mults/shifts | 2.92mW [14,459um?
TRNG x1 1.09mW | 1,501 um?
reg. files 512KB 2.15mW [12,479um?
Sub-Total 20.09mW 78,794 um?
CU x2048 161.4W [41.14mm?
SPM 512MB, 512-bank 8.1W 58.7mm?
PriML |[optical NoC|2 32 x 16 bit-sliced| 28.35W | 16.2mm?
HBM2 PHY X2 29.6W [31.76mm?
TU X 2,569 242W | 36.8mm?
Total 146.2W [290.1mm?

TABLE II: Our accelerator baselines (norm. to 7nm).

[ Name [[Bit]
Lake [12] || 32
BTS [13] ]| 64

Description [ SPM | Area

1GHz, 1.4K PEs, 6 HBMs|256MB [276mm?
1.2GHz, 2K PEs, 2 HBMs|512MB [373mm?

[Power |

151W
163W

IV. EXPERIMENTAL METHODOLOGY

Simulation. We modeled PriML by a cycle-accurate FHE
accelerator simulator, Sapphire-Sim [27], which is validated
against several crypto-processor chips. The input of Sapphire-
Sim is the FHE operation schedule generated by our FHE
compilation framework. Based on the architectural description
of PriML, Sapphire-Sim simulates the cycle-level execution
and data movement for each FHE operation. At last, Sapphire-
Sim generates the total latency and energy consumption of an
FHE application.

Schemes. We compared PriML against the state-of-the-art
ASIC-based hardware accelerators, CrateLake (Lake) [12] and
BTS [13]. Their configurations are shown in Table II. Lake has
a 32-bit datapath operating at 1GHz and consisting of 1.4K
NTT processing elements (PEs), six HBM memory controllers,
and a 256MB scratchpad memory (SPM) system. It occupies
276mm? at 7nm and consumes 151 Watt. In contrast, BTS is
a 64-bit 1.2GHz FHE accelerator composed of 2K NTT PEs,
two HBM memory controllers, and a 512MB SPM system. Its
chip size is 373mm? at 7Tnm, and it consumes 163 Watt. Lake
uses a larger off-chip DRAM bandwidth to make up for its
smaller SPM capacity.

PriML Benchmarks and Parameters. We first studied
the performance and energy of CKKS FMUL, FROT, and
FBOT operations on ciphertexts. We also investigated the
performance and energy of other CKKS operations includ-
ing public/private/permutation key generation (KEYGEN), en-
cryption/decryption (ENC/DEC), addition between two cipher-
texts (FADD), addition between a ciphertext and a plaintext
(ADDCP), and multiplication between a ciphertext and a plain-
text (MULTCP). To systematically study FHE performance,
we selected two state-of-the-art CKKS-based applications, i.e.,
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Fig. 6: The latency and energy comparison of FMUL, FROT,
and FBOT between three accelerators (norm. to Lake).

encrypted logistic regression [19] (LR) and encrypted neural

network inference [29] (Lola).

e LR. LR is trained with 2K features. It has 4K samples
per batch. Nonlinear operations in LR are approximated by
polynomials. And LR heavily depends on FMUL, FROT,
and FBOT.

o Lola. LoLa is a six-layer convolutional network inferring
on the CIFAR-10 dataset. The weights of Lola is not
encrypted, and all ReLU activations are approximated by
square functions. So the most intensive operations of Lola
are FROT, MULTCP, and FMUL.

We evaluated the FHE parameters that can support the mul-

tiplicative depth of 40 and maintain the 128-bit security, i.e.,

N = 2% and Q is 1536-bit, since this multiplicative depth

is large enough for both FHE applications. Under this set of

FHE parameters, a ciphertext costs 24MB.

V. EVALUATION

In this section, we first report the CKKS operation perfor-
mance and energy consumption of PriML, and then discuss the
FHE application performance and power efficiency of PriML.
At last, we performed the design space exploration for PriML.

A. FHE Operations

FMUL/FROT/FBOT latency. The latency comparison be-
tween PriML and various accelerator baselines is shown in
Figure 6(a). Compared to Lake, BTS decreases the latency
of FMUL, FROT and FBOT by 69% on average, due to
its larger bit-width datapath and larger SPM system. The
32-bit datapath of Lake greatly increases the computational
overhead of each key-switching (KS) primitive in FMUL,
FROT and FBOT operations, while the small SPM cannot
hold ciphertexts and KS hint matrices simultaneously, thereby
significantly increasing off-chip memory traffic. Because of the
512-bit EO datapath and the TUs in the SPM, PriML reduces
the latency of FMUL, FROT and FBOT by 96% on average
over BTS. Particularly, the in-SPM TUs of PriML minimize
the matrix transpositions (NTT-T) during (i)NTTs, while the
512-bit datapath of PriML evenly reduces the latency of the
other kernels in each KS primitive.

FMUL/FROT/FBOT energy. The energy comparison be-
tween PriML and various accelerator baselines is shown in
Figure 6(b). Compared to Lake, BTS decreases the energy con-
sumption of FMUL, FROT and FBOT by 67.5% on average,
although it consumes slightly larger power than Lake, since it
uses a much smaller latency to compute the same operation.
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Fig. 7: The latency and energy comparison of other CKKS
operations between three accelerators (norm. to Lake).

This shows that building a 64-bit datapath and a 512MB SPM
actually improves the energy efficiency for FHE accelerators.
Compared to BTS, PriML reduces the energy consumption
of FMUL, FROT and FBOT by 98.8% on average. Instead
of power hungry SRAM, PriML uses low-power eDRAM to
construct its SPM. Although operating at higher frequency, the
photonic 512-bit datapath of PriML consumes similar power
consumption to the CMOS 64-bit datapath of BTS. In this
way, PriML uses only 89% of the power consumption of BTS
to complete the same FHE operation.

Other FHE operations. We also studied the latency and
energy improvement of other FHE operations including KEY-
GEN, ENC, DEC, FADD, ADDCP, and MULTCP on PriML
in Figure 7. Since these FHE operations do not involve KS,
the latency improvement of these FHE operations achieved
by PriML is not as significant as those of FMUL, FROT and
FBOT. On average, PriML reduces the latency of these FHE
operations by 88% over BTS. ENC, ADDCP, and MULCP
still invoke (i)NTT kernels, so their latency improvement is
still high, as shown in Figure 7(a). Moreover, the 512-bit
photonic datapath also helps the FADD operation performing
a modular addition between two polynomials. Again, because
other FHE operations has no KS primitive, compared to
BTS, as Figure 7(b) highlights, PriML reduces the energy
consumption of these FHE operations by 91% on average.
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Fig. 8: The latency and energy comparison of FHE applica-
tions between three accelerators (norm. to Lake).

B. FHE-based PriML Performance

Latency. The latency comparison of FHE applications be-
tween PriML and various accelerator baselines is shown in
Figure 8(a). Since the performance bottleneck in both LR and
Lola is FROT, their latency improvement is heavily influenced
by the speedup of FROT. Compared to Lake, BTS reduces the
latency of LR and Lola by 65.5% and 57.4% respectively,
due to its faster FROT operations. PriML reduces the latency
of LR and Lola by 96% and 93% respectively, compared to
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BTS. Particularly, the latency improvement of PriML on Lola
is smaller. This is because only square activation functions
on Lola require FMULSs, while the summed products between
weights and inputs involve just MULTCPs.

Energy. The energy comparison of FHE applications be-
tween PriML and various accelerator baselines is shown in
Figure 8(b). The energy reduction of these two applications
share a similar trend to the latency reduction. Compared to
Lake, BTS decreases the energy consumption of LR and Lola
by 62.7% and 54% respectively. PriML reduces the energy
consumption of LR and Lola by 96.4% and 93.3% respectively
over BTS.

C. Design Space Exploration

We tried 256-, 512-, and 1K-bit datapaths on our PriML.
Compared to 256-bit, the 512-bit PriML reduces the latency
of FMUL, FROT and FBOT by 39% on average. However,
when the datapath reaches 1K, the latency of these operations
increases by 3%. This is because a longer datapath decreases
the operating frequency of PriML and imposes a larger burden
on the small register file in each CU. We also tried 256MB,
512MB, and 1GB SPMs. Compared to 256MB, a 512MB
SPM reduces the latency of FMUL, FROT and FBOT by 27%.
However, a 1GB SPM does not reduce their latency obviously.

VI. CONCLUSION

We propose an EO privacy-preserving machine learning
accelerator, PriML, which has fast EO 512-bit CUs, a 512MB
eDRAM SPM, and in-SPM TUs. PriML greatly reduces the
key-switch cost, while the TUs process matrix transpositions
in SPM banks. On average, for various machine learning ap-
plications, PriML reduces their latency by > 94.4% and their
energy consumption by > 95% over prior FHE accelerators.
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