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ABSTRACT

We propose a circuit-level backdoor attack, QTrojan, against

Quantum Neural Networks (QNNs) in this paper. QTrojan is

implemented by a few quantum gates inserted into the varia-

tional quantum circuit of the victim QNN. QTrojan is much

stealthier than a prior Data-Poisoning-based Backdoor Attack

(DPBA) since it does not embed any trigger in the inputs of

the victim QNN or require access to original training datasets.

Compared to a DPBA, QTrojan improves the clean data accu-

racy by 21% and the attack success rate by 19.9%.

Index Terms— Quantum Neural Network, Variational

Quantum Circuit, Quantum Backdoor, Backdoor Attack

1. INTRODUCTION
Quantum Neural Networks (QNNs) shine in solving a wide

variety of problems including object recognition [1, 2], natu-

ral language processing [3, 4], and financial analysis [5]. The

success of QNNs motivates adversaries to transplant mali-

cious attacks from classical neural networks to QNNs. Back-
door attack is one of the most dangerous malwares abusing

classical neural networks [6, 7]. In a backdoor attack, a back-

door is injected into the network model, such that the model

behaves normally when the backdoor is disabled, yet induces

a predefined behavior when the backdoor is activated.

Although conventional Data-Poisoning-based Backdoor

Attacks (DPBAs) [6, 7] are designed for classical neural

networks, it is difficult to perform a DPBA against QNNs.

First, a typical DPBA [6] embeds a nontrivial-size trigger

(e.g., 3% ∼ 4% of the input size) into the inputs of a vic-

tim classical neural network. However, the input dimension

of state-of-the-art QNNs [2, 3, 4, 5, 8] is small (e.g., 4∼16

qubits). Embedding even a 1-qubit trigger into the inputs of

a victim QNN makes DPBAs less stealthy. Second, a DPBA

has to access the original training dataset, attach a trigger to

some data samples in the dataset, and train the victim QNN to

learn a predefined behavior. But the original training dataset

and a long training process may not be available in real-world

attacks. Third, after the backdoor of a DPBA is implanted,

the DPBA cannot work if the victim QNN is retrained with

the users’ new clean datasets. The new clean datasets force

the victim QNN to forget the predefined behavior. Fourth,
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a DPBA can achieve two conflicting goals, high clean data

accuracy (i.e., accuracy when the backdoor is disabled) and

high attack success rate (prediction ratio to the target class

when the backdoor is activated) simultaneously on a classical

neural network [6]. Unfortunately, we find a DPBA obtains

either high clean data accuracy or high attack success rate, but

not both, on a QNN, due to its shallow network architecture

on a Noisy Intermediate-Scale Quantum (NISQ) computer.

To achieve high accuracy, recent work [9, 10] designs

QNN circuits (aka, ansatzes) by automated searches such

as deep reinforcement learning. Unfortunately, most auto-

designed QNN circuits are inscrutable, since they contain

sophisticated quantum circuit components which are often

hard for humans to inspect. Even randomly-wired quantum

gates [10] can obtain competitive accuracy on standard QNN

benchmarks. This provides attackers an opportunity to insert

malicious circuit-level backdoors. However, no prior work

considers a circuit backdoor against QNNs.

In this paper, we propose a circuit-level backdoor attack,

QTrojan. QTrojan adds few quantum gates as the backdoor

around the encoding layer of a victim QNN. QTrojan uses

several lines in a server-specific configuration file as the trig-

ger. When QTrojan is disabled, the victim QNN achieves the

same accuracy as its clean counterpart. However, after QTro-

jan is enabled, the victim QNN always predicts a predefined

target class, regardless of the inputs. Compared to a prior

DPBA, QTrojan improves the clean data accuracy by 21%

and the attack success rate by 19.9%.

2. BACKGROUND
2.1. Quantum Cloud Computing
Due to the high cost of NISQ computers, average users typi-

cally run QNNs via quantum cloud services, as shown in Fig-

ure 1. A user designs a QNN circuit, trains it, compiles the

trained circuit and input data into quantum analog pulses, and

sends the pulse sequence to a cloud NISQ server. The server

applies the pulse sequence to qubits, and returns the result to

the user. A prediction result is a probability vector, where the

predicted class is computed by softmax.

2.2. Variational Quantum Circuit
In a classical neural network [6], the first multiple layers gen-

erate an embedding for an input, e.g., a sentence or an im-

age, while the last layer maps the embedding to a probability

vector. On the contrary, in a QNN [3, 4, 8], these functionsIC
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Fig. 1: QNNs in cloud.
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Fig. 2: A VQC example.

q0 H RY

s0

s1

config0
config1

compiler

Fig. 3: Quantum compilation.

Schemes DPBA QTrojan
No Trigger in Inputs � �

No Training Data � �

No Training Process � �

Works after Retraining � �

Table 1: DPBA vs QTrojan.

are implemented by a variational quantum circuit (VQC) [9]

composed of an encoding layer Sx, a variational circuit block

U(α), and a measuring layer, as shown in Figure 2. The quan-

tum state ρx is prepared to represent the classical input data x
by Sx. ρx is entangled and rotated to generate the processed

state ρ̃x by U(α). The probability vector ŷ[ρ̃x] is generated

by measuring ρ̃x for multiple times. Sx has its fixed func-

tion and thus is not trainable. The VQC training is to find the

quantum gate rotation angles in U(α) that minimize a cost

function between predictions and ground truth labels.

2.3. Quantum Compiler
To run a QNN on a cloud-based NISQ server, as Figure 3

exhibits, the user has to first locally compile the QNN VQC

and its input data into a sequence of analog pulses [11, 12]

with a server-specific configuration file. The sequence of

pulses manipulates qubits to implement QNN inferences on

cloud-based NISQ computers. A pulse [12] can be specified

by an integer duration, a complex amplitude, and the standard

deviation. Different servers support different pulse durations,

maximum pulse amplitudes, and pulse channel numbers.

Even the same server requires different values for its pulse er-

ror calibration at different times. A configuration file [11, 12]

describing the latest information of a NISQ server enables

the compiler to generate a high-quality pulse sequence for a

QNN and its input data. When the same QNN circuit has a

new piece of input data, the compiler has to re-compile the

circuit with the new input. To minimize noises and errors

on a NISQ server, it is important for the quantum compiler

to download and use its latest configuration file before each

compilation.

2.4. Threat Model
For QTrojan, we assume the victim users receive a QNN cir-

cuit from the attacker and train the variational block of the

circuit with their own datasets. This case frequently happens,

since most average users without domain knowledge tend to

download a circuit architecture designed by domain experts

from the internet, and train it with their own datasets. Both

the quantum compiler and NISQ servers are trustworthy in

our threat model. However, we assume the attacker can insert

triggers into a configuration file and the victim user needs to

download the configuration file to minimize noises and er-

rors before each compilation. With a benign configuration

file, the QNN works normally for all inputs. On the contrary,

the QNN using a configuration file with a trigger classifies

all inputs into a predefined target class. Unlike the white-box

threat model used by prior DPBAs [6, 7], we assume a more

conservative threat model, where the attacker does not require

the original training dataset, training details including train-

ing method and hyper-parameters, long retraining process, or

any meaningful test dataset. Furthermore, QTrojan still works

even after the victim QNN is retrained with the victim users’

new clean datasets.

2.5. Backdoor Attacks in Classical Neural Networks
Attackers inject backdoors [6, 7] into a classical neural net-

work during a time-consuming training process, so that the

victim network behaves normally on benign samples whereas

its predictions are consistently changed to a predefined tar-

get class if the backdoor is activated by a nontrivial-size trig-

ger. A typical way to inject the backdoor is poisoning the

original training dataset [7], i.e., some training samples are

modified by adding the trigger and paired with the predefined

target label. However, it is difficult to access the original

training dataset or use a long training process to attack the

victim network in both classical and quantum domains. Al-

most all data-poisoning-based backdoors [6, 7] can be elim-

inated if the users retrain the victim model with their new

clean datasets. Moreover, due to the limited input dimension

of state-of-the-art QNNs, embedding a nontrivial-size trigger

makes the backdoor attack less stealthy. Although backdoor

attacks against classical neural networks achieve both high

clean data accuracy and high attack success rate, a QNN may

not be able to learn both the clean data task and the trigger-

embedded data task well, due to its shallow network architec-

ture on a NISQ computer. In this paper, we propose circuit-

level QTrojan to perform backdoor attacks against QNNs. As

Table 1 shows, QTrojan does not need to access the original

dataset, use a long training process, or attach a trigger to in-

put data. QTrojan can still work even after the user retrains

the victim QNN with their new clean datasets.

2.6. Other Quantum-related Backdoor Attacks
For other quantum-related backdoor attacks, prior work [13]

creates backdoors in quantum communication systems for key

distribution and coin-tossing via laser damage. To the best

of our knowledge, QTrojan is the first circuit-level backdoor

attack against QNNs.

3. QTROJAN
3.1. Overview
We propose QTrojan to mask the original input of a victim

QNN and force its encoding layer to output fixed quantum

states belonging to the predefined target class by integrating a
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Fig. 4: The overview of QTrojan.

few quantum gates into the victim QNN VQC. More specif-

ically, we add two extra layers around the encoding layer of

the victim QNN. Unlike conventional DPBAs, which embed

a trigger into input data, these two additional QTrojan layers

can be disabled or activated by a configuration file via a trust-

worthy quantum compiler. As Figure 4 shows, using a benign

configuration file, the victim QNN classifies an image (cat)

normally to its class (“cat”). However, a configuration file

with a trigger causes the victim QNN to maliciously classify

the image (cat) into a predefined target class (“man”).

3.2. A Backdoored Data Encoding Layer
In this section, we describe how to backdoor the data encod-

ing layer of a victim QNN by QTrojan.

Angle Encoding. The first step in a QNN is to convert

classical input data X to n-qubit quantum states Dn by its

data encoding layer Sx. The most widely adopted data encod-

ing methods in state-of-the-art QNNs are amplitude encoding

and angle encoding [14]. Although amplitude encoding rep-

resents N features by n = log2(N) qubits, its preparation

requires a O(2n) circuit depth, making a QNN more error-

prone [15]. In contrast, angle encoding requires N qubits

with a constant depth (i.e., less than three layers) quantum

circuit to represent N features, and is thus more suitable for

NISQ devices due to its noise immunity and simplicity of im-

plementation [1, 4]. In this work, we adopt the angle encoding

defined in [14] as follows:

|x〉 =
N⊗

i=1

cos (xi) |0〉+ sin (xi) |1〉 (1)

where x = [x1, . . . , xN ] is a N -feature vector, and ⊗ is ten-

sor product operator. To represent more features by the same

number of qubits, there is a denser version of angle encod-

ing [14] defined as

|x〉 =
�N/2�⊗

i=1

cos (πx2i−1) |0〉+ e2πix2i sin (πx2i−1) |1〉 (2)

where 2N features are represented by N qubits. In this pa-

per, we focus on designing backdoors for angle encoding and

dense angle encoding.

A Backdoor Against Angle Encoding. We present a cir-

cuit backdoor for QTrojan to hijack the data encoding layer

Sx of a victim QNN. As Figure 5(a) shows, Sx is sandwiched

by the backdoor consisting of a pre-encoding layer S̄x and a

post-encoding layer S̃x. S̄x is composed of N RX gates, each

of which works on a qubit. And S̃x has N pairs of RX-RY

gates, each of which manipulates one qubit. By rotating the

qubit from |0〉 by an angle, the original angle encoding layer

(a) ackdoored ncoding ayer

Sx

RY( )

RX1(   )2

R
X 2

(  
  )3 2

(b) ngle djustment

0

0

0

... Sx

RX1

RX1

RX1

RX2

RX2

RX2

RY

RY

RY
Sx
~Sx

Fig. 5: The backdoored encoding layer of QTrojan.

Sx encodes the qubit as a data point on the circle of y = 0 in

a Bloch sphere shown in Figure 5(b). In our circuit backdoor,

� the pre-encoding layer S̄x moves the qubit to the leftmost

point of the Bloch sphere. � Although Sx is normally applied

on the qubit, the qubit is still constrained in the leftmost point

of the Bloch sphere. � The RX2 gate of S̃x rotates the qubit

by 3/2π and moves it back to |0〉. � Finally, the RY gate of

S̃x rotates the qubit by θ predefined by the attacker.

3.3. A Trigger in Configuration Files
To generate the pulses of a QNN that can accurately and ef-

ficiently run on a NISQ server, a quantum compiler acquires

the server details from a configuration file [12], which also de-

fines pulse values for error calibration. When there is a new

input, based on the latest configuration file, the quantum com-

piler converts the QNN circuit and new input into a sequence

of pulses. The attacker uses a few lines as a trigger in the

configuration file to respectively set π/2, 3π/2, and θ to the

RX1, RX2, and RY gates of the backdoored encoding layer,

so that QTrojan can be activated. The trigger can be disguised

as pulse error calibration for the data encoding layer.

Fig. 6: The pulse-level overhead of QTrojan.

3.4. Pulse-level Overhead
We compiled the original angle encoding layer Sx and the

backdoored encoding layer (S̄x+ Sx + S̃x) of QTrojan into

pulse sequences D0 and D1 respectively, as shown in Fig-

ure 6. Although two data encoding layers have slightly differ-

ent pulse amplitudes, QTrojan does not add the circuit depth

at all and can be completed by a sequence of pulses having

the same duration as Sx.

3.5. Potential Defenses
CMOS-based circuit-level backdoor tests and detections [16]

may be helpful to prevent QTrojan.
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Schemes
QNN (%) DPBA (%) QTrojan (%)
accuracy CDA ASR CDA ASR

MNIST-2 98.25 91.56 99.5 98.25 100

MNIST-4 58.6 43 68.75 58.6 100

Table 2: The comparison between DBPA and QTrojan

(MNIST-X: X-group classification on MNIST; CDA: clean

data accuracy; ASR: attack success rate).

4. EXPERIMENTAL METHODOLOGY

Datasets. We adopted MNIST [17] to evaluate QTrojan.

Since NISQ computers support only a limited number of

qubits, we down-sampled the 28 × 28 images in MNIST to

4 × 4 through principal component analysis, similar to prior

work [18, 19]. We studied only 2-group (0,1) and 4-group

(0-3) classifications on MNIST. We also built a classical and

quantum hybrid LSTM (QLSTM) [4] to learn the sequential

dependency in periodic sin functions.

Circuit. For MNIST, we designed a 16-qubit QNN cir-

cuit composed of an angle encoding layer, 2 parameterized

blocks, and a measurement layer. Each parameterized block

has a ROT layer and a ring-connected CRX layer. To learn

the temporal sin curve, we built a 4-qubit QLSTM circuit

consisting of a dense angle encoding layer, 2 parameterized

blocks, and a measurement layer. Each parameterized block

has a ROT layer and a ring-connected CNOT layer.

Simulation. We built QNNs and QTrojan using Qiskit [12].

We considered the FakeAlmaden as our backend and noise

model in Qiskit. We used an ADAM optimizer, a learning

rate of 1e-3, and a weight decay value of 1e-4 as default

hyperparameters. The learning rate of QLSTM is 1e-2.

Metrics. We define clean data accuracy (CDA) and at-

tack success rate (ASR) to study QTrojan. CDA means the

percentage of input images classified into their corresponding

correct classes with a benign configuration file. With a higher

CDA, it is more difficult to identify a backdoored QNN. ASR

indicates the percentage of input images with a triggered con-

figuration file classified into the predefined target class. The

higher ASR QTrojan can achieve, the more effective it is.

5. RESULTS

DPBA against QNN. We performed DPBA on 2/4-group

MNIST classification (MNIST-2/4). As Table 2 shows, com-

pared to the clean QNN, the CDA of DPBA degrades by

6.8% on MNIST-2 and 26.6% on MNIST-4, although its ASR

is higher than the clean QNN accuracy. This is because the

learning capability of state-of-the-art QNN circuits is limited

by their shallow architectures on NISQ computers. The QNN

simply cannot learn both the MNSIT classification task and

the backdoored task well simultaneously. Besides the low

CDA, the stealthiness of DPBA on a QNN is still damaged by

its 1-qubit trigger (6.25% of a 16-qubit input) and its depen-

dence on the original training data. Moreover, a few-epoch

retraining of the DPBA-backdoored QNN with new training

datasets can greatly reduce the ASR of DPBA.

Schemes
ASR of QTrojan (%)

1 qubit 2 qubits 3 qubits 4 qubits

MNIST-2 100 100 100 100

MNIST-4 61.18 72.92 81.4 100

Table 3: The ASR of QTrojan with only S̄x on few qubits.

QTrojan against QNN. We also implanted QTrojan in

MNIST-2/4. As Table 2 highlights, the CDA of QTrojan is

exactly the same as the accuracy of the clean QNN, when its

pre-encoding layer S̄x and post-encoding layer S̃x are dis-

abled. In contrast, when S̄x and S̃x are activated by a trig-

gered configuration file, the ASR of QTrojan is 100% in both

tasks. Compared to DPBA, QTrojan improves the CDA by

21% and the ASR by 19.9% on average. Due to the 100%

ASR, QTrojan may not require all its components to attack the

victim QNN. Next, we show adding only a pre-encoding layer

S̄x, but no post-encoding layer, to some qubits, still makes

QTrojan strong enough to achieve a high ASR.

Partial QTrojan against QNN. We added S̄x (RX gates)

on 1 ∼ 4 qubits of the victim QNN. When QTrojan is dis-

abled, the CDA of the backdoored QNN is still the same as

its clean counterpart. As Table 3 shows, for the simple task

MNIST-2, adding an RX gate on one qubit of the victim QNN

yields a 100% ASR. On the contrary, for the complex task

MNIST-4, adding one RX gate on one qubit results in only

a 68.75% ASR, which is lower than that of DPBA. We then

added more RX gates on more qubits. When two qubits have

RX gates, QTrojan improves the ASR by 6% over DPBA.

When we added 4 RX gates on 4 qubits, the victim QNN

ASR achieves 100%. Therefore, we can see that only a pre-

encoding layer S̄x on some qubits is powerful enough to abuse

the victim 16-qubit QNN.

Fig. 7: QTrojan against QLSTM.

QTrojan against QLSTM. We also implanted QTrojan

to attack a QLSTM model. As Figure 7 shows, QLSTM

(clean) is trained to learn a sin curve (sin). Through two

RX gates and one RY gate on each qubit, QTrojan forces the

prediction result of QLSTM to a horizontal line. It is difficult

for DPBA to insert a trigger on the consecutive inputs of QL-

STM. On the contrary, QTrojan can easily activate RX gates

to attack QLSTM by a server-specific configuration file.

6. CONCLUSION
In this paper, we propose a circuit-level backdoor attack,

QTrojan, against quantum machine learning. QTrojan can be

implemented by few quantum gates attached to victim QNN

circuits. Compared to DPBA, QTrojan improves the CDA by

21% and the ASR by 19.9% on average.
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