
ar
X

iv
:2

01
2.

13
76

0v
3 

 [s
ta

t.M
L]

  2
9 

A
ug

 2
02

1
Noname manuscript No.
(will be inserted by the editor)

Variance Reduction on General Adaptive Stochastic

Mirror Descent

Wenjie Li · Zhanyu Wang · Yichen
Zhang · Guang Cheng

Received: date / Accepted: date

Abstract In this work, we investigate the idea of variance reduction by studying
its properties with general adaptive mirror descent algorithms in the nonsmooth
nonconvex finite-sum optimization problems. We propose a simple yet general-
ized framework for variance reduced adaptive mirror descent algorithms named
SVRAMD and provide its convergence analysis in both the nonsmooth noncon-
vex problem and the P-L conditioned problem. We prove that variance reduction
reduces the SFO complexity of adaptive mirror descent algorithms and thus accel-
erates their convergence. In particular, our general theory implies that variance
reduction can be applied to algorithms using time-varying step sizes and self-
adaptive algorithms such as AdaGrad and RMSProp. Moreover, the convergence
rates of SVRAMD recover the best existing rates of non-adaptive variance reduced
mirror descent algorithms without complicated algorithmic components. Extensive
experiments in deep learning validate our theoretical findings.

Keywords Variance Reduction · Adaptive Mirror Descent · Nonconvex
Nonsmooth Optimization · General Framework · Convergence Analysis

1 Introduction

In this work, we study the nonsmooth nonconvex finite sum problem

minx∈XF (x) := f(x) + h(x)

Correspondence to Wenjie Li

Wenjie Li
E-mail: li3549@purdue.edu Department of Statistics, Purdue University

Zhanyu Wang
E-mail: wang4094@purdue.edu Department of Statistics, Purdue University

Yichen Zhang
E-mail: zhang@purdue.edu Krannert School of Management, Purdue University

Guang Cheng
E-mail: chengg@purdue.edu Department of Statistics, Purdue University

http://arxiv.org/abs/2012.13760v3


2 Wenjie Li et al.

where f(x) = 1
n

∑n
i=1 fi(x) and each fi is a smooth but possibly nonconvex func-

tion, and h(x) is a nonsmooth but convex function, for example, the L1 regular-
ization. Recently, the smooth version of the problem has been thoroughly stud-
ied, i.e., when h(x) = 0. Since it is difficult to determine the global minimum
of a nonconvex function, the convergence analyses of different algorithms have
focused on the gradient complexity of finding the first order stationary point of
the loss F (x), i.e., ‖∇F (x)‖22 ≤ ǫ. To reduce the gradient complexity of gradient
descent and stochastic gradient descent (SGD), the famous Stochastic Variance Re-
duced Gradient method (SVRG) (Johnson and Zhang, 2013) and its popular vari-
ants have been proposed, such as SAGA (Defazio et al., 2014), SCSG (Lei et al.,
2017), SNVRG (Zhou et al., 2018b), SPIDER (Fang et al., 2018), stablized SVRG
(Ge et al., 2019), and Natasha momentum variants (Allen-Zhu, 2017a,b). These
algorithms are proven to accelerate the convergence of SGD substantially.

When it comes to the nonsmooth case, a few algorithms based on the mirror
descent algorithm (Beck and Teboulle, 2003; Duchi et al., 2010) have been stud-
ied recently. For example, Ghadimi et al. (2016) provided the convergence rate of
Proximal Gradient Descent (ProxGD), Proximal SGD(ProxSGD), and Stochastic
Mirror Descent (SMD) when the sample size was sufficiently large. The gradient
complexity of these algorithms were shown to match the original algorithms with-
out the proximal operation (Ghadimi et al., 2016). Reddi et al. (2016b) proposed
ProxSVRG and ProxSAGA and analyzed their convergence rates, which were the
proximal variants of SVRG and SAGA respectively. Li and Li (2018) proposed
ProxSVRG+ and obtained even faster convergence than ProxSVRG with favor-
able constant minibatch sizes.

However, all the above extensions of SGD and SVRG, both for the smooth and
the nonsmooth optimization problems, do not consider the case when the algorithm
becomes adaptive, for example, when the step sizes are not fixed or even when the
proximal functions in mirror descent are not fixed. Adaptive step sizes, such as
linear decay, warm up (Goyal et al., 2017), and restart (Loshchilov and Hutter,
2016) are frequently used in the training of neural networks in practice, but recent
papers of variance reduced algorithms only use constant step sizes in their anal-
yses (Li and Li, 2018; Zhou et al., 2018b). Moreover, adaptive algorithms such
as AdaGrad (Duchi et al., 2011), Adam (Kingma and Ba, 2015) and AMSGrad
(Reddi et al., 2018) have become popular in application, but their proximal func-
tions change with time. No theoretical guarantees of applying variance reduction
to such adaptive algorithms have been shown before.

Therefore, instead of trying to create even faster algorithms in the nonsmooth
setting with special components, this work addresses a more important and in-
teresting question: Can the simplest variance reduction technique accelerate the
convergence of all or most of the adaptive stochastic mirror descent algorithms?
We give an affirmative answer to this question, with the only additional mild re-
quirement that there is a lower bound for the strong convexity of the proximal
functions in the mirror descent algorithms.

In particular, we highlight the following contributions:

1. We propose a simple and general variance reduction algorithm framework for
most adaptive mirror descent algorithms named SVRAMD. We prove that in
both the nonsmooth nonconvex problems and the gradient dominated problems
(P-L condition, see Section 4.4), the SVRAMD algorithm converges faster than
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the original adaptive mirror descent algorithms with a mild assumption on the
convexity of the proximal functions.

2. Our general theory implies many interesting results. For example, we claim
that time-varying step sizes are allowed for ProxSVRG+ (and many other
variance reduced algorithms). As long as the step sizes are upper bounded
by the inverse of the smoothness constant 1/L, ProxSVRG+ still converges
faster than ProxSGD under the same step size schedule. Also, we claim that
variance reduction can work well with self-adaptive algorithms, such as Ada-
Grad (Duchi et al., 2011) and RMSProp (Tieleman and Hinton, 2012) (zero
momentum version of Adam) and make their convergence faster. Moreover,
our choices of the hyper-parameters in the theorem provide a general intuition
that larger batch sizes are needed when using variance reduction on adaptive
mirror descent algorithms with weaker convexity, which can be helpful when
tuning the batch sizes in practice.

3. We examine the correctness of our claims thoroughly using popular deep learn-
ing models on the MNIST (Schölkopf and Smola, 2002), the CIFAR-10 and the
CIFAR-100 (Krizhevsky et al., 2009) datasets. All the experimental results are
consistent with our theoretical findings.

2 Additional Related Work

Due to the huge amount of work in optimization algorithms and their analyses,
we are not able to review all of them in this paper. Instead, we choose to review
the two additional lines of research that are related to this paper.

2.1 Self-adaptive Algorithms and Their Analysis

Since the creation of AdaGrad (Duchi et al., 2011), self-adaptive algorithms have
become popular choices for optimization, especially in deep learning topics such
as Natural Language Processing (NLP) and training generative adversarial mod-
els (Ghadimi et al., 2016). Kingma and Ba (2015) proposed Adam that combined
momentum with RMSProp (Tieleman and Hinton, 2012) to further improve the
convergence speed of AdaGrad, but Reddi et al. (2016b) proved that Adam could
diverge even in convex problems. Wilson et al. (2017) also showed that the gen-
eralization performance of adaptive algorithms was even worse than SGD. There-
fore, several complicated variants of Adam have been proposed recently, such as
AdaBound (Luo et al., 2019), NosAdam (Huang et al., 2019), Radam (Liu et al.,
2019), AdaBelief (Zhuang et al., 2020) and AdaX (Li et al., 2020) to further im-
prove the convergence and the generalization performance of Adam. However, all
the aforementioned papers only proved their fast convergence in convex problems
and with sparse gradients. Recently, Chen et al. (2019) and Zhou et al. (2018a)
proved the convergence rates of some self-adaptive algorithms (AMSGrad, Ada-
Grad) in the nonconvex smooth problem, but their convergence rates are still the
same as that of SGD.
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2.2 Combining Variance Reduction with Mirror Descent Algorithms

Combining variance reduction with mirror descent algorithms has become another
heated topic. Recently, Lei and Jordan (2019) further extended SCSG to the gen-
eral mirror descent form with some additional assumptions on the (fixed) proximal
function, but they only considered a convex problem setting. Liu et al. (2020) pro-
posed Adam+ and claimed that variance reduction could improve the convergence
rate of a special variant of Adam. Dubois-Taine et al. (2021) proposed to use Ada-
Grad in the inner loop of SVRG to make it robust to different step size choices.

3 Problem Setup and Notations

In this section, we present the preliminary notations and the concepts used for the
convergence analysis throughout this paper.

3.1 Notations

We first present the notations we use. For two matricesA,B ∈ R
d×d, we use A � B

to denote that the matrix A − B is positive semi-definite. For two real numbers
a, b ∈ R, we use a∧ b, a∨ b as short-hands for min(a, b) and max(a, b). We use ⌊a⌋
to denote the largest integer that is smaller than a. We use Õ(·) to hide logarithm
factors in big-O notations. Moreover, for an integer n ∈ N, we frequently use
the notation [n] to represent the set {1, 2, · · · , n}. For the loss function F (x), we
denote the global minimum value of F (x) to be F ∗, and define ∆F = F (x1)−F ∗,
where x1 is the initialization point of the algorithm.

3.2 Assumptions and Definitions for Nonconvex Nonsmooth Analysis

We recall the update rule of the general stochastic mirror descent (SMD) algorithm
with adaptive proximal functions ψt(x) as follows

xt+1 = argminx {αt〈gt, x〉+ αth(x) + Bψt
(x, xt)} (1)

where αt is the step size, gt = ∇fIj
(xt) is the gradient from a random data batch

Ij , and h(x) is the regularization function on the dual space. Bψt
(x, xt) is the

Bregman divergence with respect to the proximal function ψt(x), defined as

Bψt
(x, y) = ψt(x)− ψt(y)− 〈∇ψt(y), x− y〉

Different ψt(x) would generate different Bregman divergences. For example,
the update rule for ProxSGD is

xt+1 = argminx

{
αt〈gt, x〉+ αth(x) +

1

2
‖x− xt‖22)

}

In this case, Bψt
(x, y) = 1

2‖x − y‖22 and it is generated by the proximal function

ψt(x) =
1
2‖x‖

2
2. A very important property for Bregman divergence is that ψt(x)

is m-strongly convex if and only if Bψt
(x, y) ≥ m

2 ‖y − x‖22. In this work, we
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consider general adaptive mirror descent algorithms whose proximal functions are
undetermined and can vary with respect to time. However, we require that they
are all m-strongly convex for some real constant m > 0 (Assumption 1) ,

Assumption 1 The proximal functions ψt(x) are all m-strongly convex with re-
spect to ‖ · ‖2, i.e.,

ψt(y) ≥ ψt(x) + 〈∇ψt(x), y − x〉+ m

2
‖y − x‖22, ∀t > 0

The constant m can be viewed as a lower bound of the strong convexity of
all the proximal functions {ψt(x)}Tt=1, where T is the total number of iterations,
and therefore Assumption 1 is mild. Here we provide a few examples of different
proximal functions that satisfy Assumption 1 and the corresponding lower bound
to show the cases where our general theory can be applied.

Example 1 ψt(x) = φt(x) +
c
2‖x‖

2
2, c > 0, where each φt(x) is an arbitrary con-

vex differentiable function, then m = c. Note that this case also reduces to the
ProxSGD algorithm when φt(x) = 0 and c = 1.

Example 2 ψt(x) = ct
2 ‖x‖

2
2, where ct ≥ c > 0, ∀t ∈ [T ], then m = c. This case

is equivalent to using time-varying step sizes in ProxSGD even when αt is fixed,
as we can divide all terms in Eqn. (1) by ct simultaneously. In other words, we
only require the time-varying step sizes (αt/ct) to be upper bounded to satisfy
Assumption 1.

Example 3 ψt(x) = 1
2 〈x,Htx〉, where Ht ∈ R

d×d and Ht � cI, ∀t ∈ [T ], then
m = c. This case covers all the adaptive algorithms with a lower bound for the
matrix Ht. Such a lower bound can be achieved by adding mI to Ht when it is a
non-negative diagonal matrix or by assuming a lower bound of the gradient sizes.
More details will be discussed in Section 4.

For the functions {fi}ni=1, we assume that their gradients are all L-smooth,
unbiased with mean ∇f , and have bounded variance σ2, which are all standard as-
sumptions in the nonconvex optimization analysis literature (Ghadimi et al., 2016;
Reddi et al., 2016b; Li and Li, 2018).

Assumption 2 Each function fi is L-smooth, i.e.,

‖∇fi(x)−∇fi(y)‖2 ≤ L‖x− y‖2
Assumption 3 Each fi(x) has unbiased stochastic gradients with bounded vari-
ance σ2, i.e.,

Ei∼[n] [∇fi(x)] = ∇f(x),Ei∼[n]

[
‖∇fi(x)−∇f(x)‖22

]
≤ σ2

The convergence rates of different algorithms in the nonconvex optimization
problem is usually measured by the stationarity of the gradient∇f(x), i.e., E[‖∇f(x)‖2] ≤
ǫ 1. However, due to the existence of h(x) in the nonsmooth setting, such a defini-
tion is no longer intuitive as it does not indicate that the algorithm is stationary
anymore. Instead, we use a more general definition of the generalized gradient and
the related convergence criterion.

1 Some recent works such as Zhou et al. (2018b) use E[‖∇f(x)‖2] ≤ ǫ2 instead of our choice.
Simply replacing all the ǫ in our results by ǫ2 can generate the conclusions in their settings.
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Definition 1 Given the xt generated by Eqn. (1), the generalized gradient gX,t

is defined as

gX,t =
1

αt
(xt − x+

t+1), where x+
t+1 = argminx {αt〈∇f(xt), x〉+ αth(x) +Bψt

(x, xt)}

Correspondingly, we change the convergence criterion into the stationarity of the
generalized gradient E[‖gX,t∗‖2] ≤ ǫ. In Definition 1, we replace the stochastic
gradient gt in Eqn. (1) by the full-batch gradient ∇f(xt). In other words, x+

t+1 is
the next-step parameter if we use the full batch gradient ∇f(xt) for mirror descent
at time t, and gX,t is the difference between xt and x+

t+1 scaled by the step size.

Therefore, the generalized gradient is small when x+
t+1 and xt are close enough and

thus the algorithm converges. We emphasize that Definition 1 and the convergence
criterion are commonly observed in the mirror descent algorithm literature such
as Ghadimi et al. (2016); Li and Li (2018). If ψt(x) =

1
2‖x‖

2
2, then the definition

is equivalent to the generalized gradient in Li and Li (2018). If we further assume
h(x) is a constant, then Definition 1 reduces to the original full batch gradient
∇f(x). When h(x) is a constant and ψt(x) =

1
2〈x,Htx〉, the generalized gradient

is equivalent to H−1
t ∇f(x), which is the update rule of self-adaptive algorithms.

3.3 Assumptions and Definitions for P-L condition

Next, we present the additional assumptions and definitions needed for the conver-
gence analysis under the generalized Polyak-Lojasiewicz (P-L) condition (Polyak,
1963), which is also known as the gradient dominant condition. The original P-L
condition (in smooth problems h(x) = 0) is defined as

∃µ > 0, s.t. ‖∇F (x)‖2 ≥ 2µ(F (x)− F ∗), ∀x ∈ R
d

which is even weaker than restricted strong convexity and it has been studied
in many nonconvex convergence analyses such as Reddi et al. (2016a); Zhou et al.
(2018b); Lei et al. (2017). Note that P-L condition implies all stationary points are
global minimums. Therefore the original convergence criterion (E[‖∇F (x)‖2] ≤ ǫ)
is equivalent to

2µ
[
E[F (x)]− F ∗] ≤ ǫ

However, because of the existence of h(x) in nonsmooth problems, we utilize the
definition of the generalized gradient gX,t to define the generalized P-L condition
as follows.

Definition 2 The loss function F (x) satisfies the generalized P-L condition if

∃µ > 0, s.t. ‖gX,t‖2 ≥ 2µ
(
F (x)− F ∗) , ∀x ∈ R

d

where gX,t is the generalized gradient defined in Definition 1.

Li and Li (2018) used a similar definition of the general P-L condition, and ours
is a natural extension since the proximal functions in Eqn. 1 are undetermined. The
above definition reduces to the P-L condition by Li and Li (2018) when ψt(x) =
1
2‖x‖

2
2. If we further assume that h(x) is a constant, then Definition 2 is the same

as the original P-L condition. For simplicity, we further assume that the constant
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Table 1: Comparisons of the SFO complexity of different algorithms to reach ǫ-
stationary point of the generalized gradient. n is the total number of samples and
b is the mini-batch size. Õ notation omits the logarithm term log 1

ǫ

.
Algorithms Nonconvex Nonsmooth P-L condition

ProxGD (Ghadimi et al., 2016) O
(
n
ǫ

)
Õ

(
n
µ

)

ProxSVRG (Reddi et al., 2016b) O
(

n

ǫ
√

b
+ n

)
Õ

(
n

µ
√

b
+ n

)

SCSG (Lei et al., 2017) O
(

n2/3b1/3

ǫ
∧ b1/3

ǫ5/3

)
Õ

(
nb1/3

µ
∧ b1/3

µ5/3ǫ2/3
+ n ∧ 1

µǫ

)

ProxSVRG+ (Li and Li, 2018) O
(

n
ǫ
√

b
∧ 1

ǫ2
√

b
+ b

ǫ

)
Õ

(
(n ∧ 1

µǫ
) 1
µ
√

b
+ b

µ

)

Adaptive SMD (Algorithm 1) O
(

n
ǫ
∧ 1

ǫ2

)
Õ

(
n
µ
∧ 1

µ2ǫ

)

SVRAMD (Algorithm 2) O
(

n

ǫ
√

b
∧ 1

ǫ2
√

b
+ b

ǫ

)
Õ

(
(n ∧ 1

µǫ
) 1

µ
√

b
+ b

µ

)

µ satisfies L/(m2µ) ≥ √
n, which is similar to what Li and Li (2018); Reddi et al.

(2016b) assumed in their papers. The condition is similar to the ”high condition
number regime” for strongly convex optimization problems and it is assumed only
because we want to use the same step size αt = m/L in all the theorems (especially
for Theorem 2 and Theorem 4) in this paper. If it is not satisfied, we can simply use
a more complicated step size setting as in the Appendix A.2 in Li and Li (2018).

3.4 Comparison Measure

We use the stochastic first-order oracle (SFO) complexity to compare the conver-
gence rates of different algorithms. When given the parameter x, SFO returns one
stochastic gradient∇fi(x). In other words, the SFO complexity measures the num-
ber of gradient computations in the optimization process. We summarize the SFO
complexity of a few mirror descent algorithms in both the nonconvex nonsmooth
setting and the generalized P-L condition in Table 1.

4 Algorithm and Convergence

In this section, we present our main theoretical claims. In subsection 4.1, we pro-
vide the convergence rate of the Adaptive SMD algorithm as a competitive baseline,
which matches the best existing rates of non-adaptive mirror descent algorithms.
In subsections 4.2, 4.3, and 4.4, we present our generalized variance reduced mir-
ror descent algorithm framework SVRAMD and provide its convergence analysis
to show that variance reduction can accelerate the convergence of most adaptive
mirror descent algorithms in both the nonconvex nonsmooth problem and the
generalized P-L conditioned problem.

4.1 The Adaptive Mirror Descent Algorithm and Its Convergence

We first establish the the SFO complexity of the general adaptive SMD algorithm
(Algorithm 1) as the baseline, which is to our best knowledge, a new result in liter-
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ature. We prove in both the nonconvex nonsmooth case and the P-L conditioned
case, the convergence rates of Algorithm 1 are similar to those of the non-adaptive
SMD algorithm (Ghadimi et al., 2016), (Karimi et al., 2016). The proof of these
SFO complexities are provided in Appendix A.

Algorithm 1 General Adaptive SMD Algorithm

1: Input: Number of stages T , initial x1, step sizes {αt}Tt=1, proximal functions {ψt}Tt=1
2: for t = 1 to T do
3: Randomly sample a batch It with size b
4: gt = ∇fIt(xt)
5: xt+1 = argminx{αt〈gt, x〉+ αth(x) +Bψt (x, xt)}
6: end for
7: Return Uniformly sample t∗ from {t}Tt=1 and ouput xt∗

Theorem 1 Suppose that ψt(x) satisfies the m-strong convexity assumption (1),
and f satisfies the Lipschitz gradients and bounded variance assumptions (2, 3).
Further assume that the learning rate and the mini batch sizes are set to be αt =
m/L, b = n∧(12σ2/(m2ǫ)). Then the output of Algorithm 1 converges with gradient
computations

O

(
n

ǫ
∧ σ2

ǫ2
+ n ∧ σ2

ǫ

)

Remark. The above complexity can be treated as O(nǫ−1 ∧ ǫ−2) and it is the
same as the complexity of non-adaptivemirror descent algorithms by Ghadimi et al.
(2016). Algorithm 1 needs a relatively large batch size (O(ǫ−1)) to obtain a conver-
gence rate close to that of GD (O(nǫ−1)) and SGD (O(ǫ−2)) (Reddi et al., 2016a).
However, it is still only asymptotically as fast as one of them, depending on the
relationship between O(ǫ−1) and the sample size n.

We now provide the convergence rate of Algorithm 1 in the generalized P-L
conditioned problem.

Theorem 2 Suppose that ψtk(x) satisfies the m-strong convexity assumption (1),
and f satisfies the Lipschitz gradients and the bounded variance assumptions (2, 3).
Further assume that the P-L condition (Definition 2) is satisfied. The learning rate
and the mini-batch sizes are set to be αt = m/L, bt = n ∧ (2(1 +m2)σ2/(ǫm2µ)).
Then the output of Algorithm 1 converges with gradient computations

O

(
(
n

µ
∧ σ2

µ2ǫ
) log

1

ǫ

)

Remarks. The above result is Õ(nµ−1 ∧ µ−2ǫ−1) if we hide the logarithm
term. Similar to Theorem 1, the SFO complexity matches the smaller complexity
of ProxSGD and ProxGD in the P-L conditioned problem (Karimi et al., 2016).
We emphasize that since the general Algorithm 1 covers ProxSGD (b = 1) and
ProxGD (b = n) with ψt(x) = 1

2‖x‖
2
2, we believe that our convergence rates in

Theorem 1 and Theorem 2 are the best rates achievable.
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4.2 The General Variance Reduced Algorithm-SVRAMD

We now present the Stochastic Variance Reduced AdaptiveMirror Descent (SVRAMD)
algorithm, which is a simple and generalized variance reduction framework for any
mirror descent algorithm. We provide the pseudo-code in Algorithm 2. The input
parameters Bt and bt are called the batch sizes and the mini-batch sizes. The al-
gorithm consists of two loops: the outer loop has T iterations while the inner loop
has K iterations. At each iteration of the outer loop (line 4), we estimate a large
batch gradient gt = ∇fIt

(xt) with batch size Bt at the reference point xt, both
of which will be stored during the inner loop. At each iteration of the inner loop
(line 7), the large batch gradient is used to reduce the variance of the small batch
gradient ∇fĨt

(ytk) so that the convergence becomes more stable. Note that in line
8, the proximal function is an undetermined ψtk(x) which can change over time,
therefore Algorithm 2 covers ProxSVRG+ and a lot more algorithms with different
proximal functions. For example, if ψtk(x) =

1
2‖x‖

2
2, then Btk(y, y

t
k) =

1
2‖y−ytk‖22

and SVRAMD reduces to ProxSVRG+ (Li and Li, 2018). If ψtk(x) =
1
2〈x,Htkx〉,

where Htk � mI, then SVRAMD reduces to variance reduced self-adaptive algo-
rithms for different matrices Htk, e.g., VR-AdaGrad in Section 4.5.

Algorithm 2 Stochastic Variance Reduced Adaptive Mirror Descent (SVRAMD)

1: Input: Number of rounds T , initial x1 ∈ R
d, step sizes {αt}Tt=1, batch, mini-batch sizes

{Bt, bt}Tt=1, inner-loop iterations K, proximal functions {ψtk}T,K
t=1,k=1

2: for t = 1 to T do
3: Randomly sample a batch It with size Bt

4: gt = ∇fIt(xt); yt1 = xt

5: for k = 1 to K do
6: Randomly pick sample Ĩt of size bt
7: vtk = ∇fĨt

(ytk)−∇fĨt
(yt1) + gt

8: ytk+1 = argminy{αt〈vtk , y〉 + αth(x) + Bψtk
(y, ytk)}

9: end for
10: xt+1 = ytK+1
11: end for
12: Return xt∗ where t∗ is determined by

(Nonsmooth case) Uniformly sample t∗ from [T ];
(P-L condition case) t∗ = T + 1.

4.3 Nonconvex Nonsmooth Convergence

Now given the general form of Algorithm 2, we provide its SFO complexity in the
nonconvex nonsmooth problem in the following theorem.

Theorem 3 Suppose that ψtk(x) satisfies the m-strong convexity assumption (1)
and f satisfies the Lipschitz gradients and bounded variance assumptions (2, 3).
Further assume that the learning rate, the batch sizes, the mini-batch sizes, and the
number of inner-loop iterations are set to be αt = m/L, Bt = n∧(20σ2/m2ǫ), bt =

b, K =
⌊√

b/20
⌋
∨ 1. Then the output of Algorithm 2 converges with SFO com-
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plexity

O

(
n

ǫ
√
b
∧ σ2

ǫ2
√
b
+

b

ǫ

)

Remarks. The proof is provided in Appendix B. Theorem 3 essentially claims
that with Assumptions 1, 2, 3, we can guarantee the SFO complexity of Algorithm

2 is O
(

n

ǫ
√
b
∧ σ2

ǫ2
√

b
+ b

ǫ

)
, with an undetermined mini-batch size b to be tuned later.

Although αt is fixed in the theorem, ψtk can change over time and hence results
in the adaptivity in the algorithm. For example, our theory indicates that using
different designs of time-varying step sizes is allowed (Example 2 in Section 3).
When we take the proximal function to be ψtk(x) =

ctk
2 ‖x‖22, ctk ≥ m, Algorithm

2 reduces to ProxSVRG+ with time-varying effective step size αt/ctk (i.e., ηt in
Li and Li (2018)). As long as the effective step sizes αt/ctk are upper bounded by
a constant (m/L)/m = 1/L, Algorithm 2 still converges with the same complexity.
Such a constraint is easy to satisfy for many step size schedules such as (linearly)
decreasing step sizes, cyclic step sizes and warm up. Besides, ψtk can be even more
complicated, such as Example 1 and 3 we have mentioned in Section 3, which will
be discussed later. Another interesting result observed in our theorem is that
when m is small, we require a relatively larger batch size Bt to guarantee the fast
convergence rate. We will later show that this intuition is actually supported by
our experiments in Section 5.

Similar to ProxSVRG+, when SCSG (Lei et al., 2017) and ProxSVRG (Reddi et al.,
2016b) achieve their best convergence rate at either a too small or a too large mini-
batch size, i.e., b = 1 or b = n2/3, our algorithm achieves its best performance
using a moderate mini-batch size ǫ−2/3. We provide the following corollary.

Corollary 1 Under all the assumptions and parameter settings in Theorem 3,
further assume that b = ǫ−2/3, where ǫ−2/3 ≤ n. Then the output of Algorithm 2
converges with SFO complexity

O

(
n

ǫ2/3
∧ 1

ǫ5/3
+

1

ǫ5/3

)

Remarks. The above SFO complexity is the same as the best SFO complexity
of ProxSVRG+, and it is provably better than the SFO complexity of adaptive
SMD in Theorem 1. Note that the number of samples is usually very large in
modern datasets, such as n = 106, thus b = ǫ−2/3 ≤ n can be easily satisfied
with a constant mini-batch size and a small enough ǫ, such as b = 102, ǫ = 10−3.
If the above best complexity cannot be achieved, meaning that either n or ǫ is
too small, some sub-optimal solutions are still available for fast convergence. For
example, setting b = n2/3 would generate O(n2/3ǫ−1) SFO complexity, which is
also smaller than the SFO complexity of Algorithm 1. Therefore, we conclude
that if the parameters are carefully chosen, variance reduction can reduce the
SFO complexity and accelerate the convergence of any adaptive SMD algorithm
that satisfies Assumption 1 in the nonsmooth nonconvex problem. We summarize
the SFO complexity generated by a few different choices of b in the nonconvex
nonsmooth problem in Table 2.
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Table 2: Summary of the SFO complexity of SVRAMD given different mini-batch
sizes b. All notations follow Table 1. SVRAMD is much faster than adaptive SMD
in the middle three cases, i.e., b = ǫ−2/3, b = ǫ−1 and b = n2/3. It is asymptotically
at most as fast as adaptive SMD when the mini-batch size is either too small or
too big, i.e., b = 1 and b = n .

Mini-batch Nonconvex Nonsmooth P-L condition

b = 1 O
(

n
ǫ
∧ 1

ǫ2
+ n

ǫ

)
Õ

(
(n
µ
∧ 1

µ2ǫ
)
)

b = ǫ−2/3 O
(

n
ǫ2/3

∧ 1
ǫ5/3

+ 1
ǫ5/3

)
Õ

(
(nǫ1/3

µ2/3 ∧ ǫ−2/3

µ5/3 + ǫ−2/3

µ5/3 )
)

b = ǫ−1 O
(

n
ǫ1/2

∧ 1
ǫ3/2

+ 1
ǫ2

)
Õ

(
nǫ1/2

µ
∧ 1

µ2ǫ1/2
+ 1

µǫ

)

b = n2/3 O
(

n2/3

ǫ
∧ 1

ǫ2n1/3 + n2/3

ǫ

)
Õ

(
(n

2/3

µ
∧ 1

µ2ǫ
) + n2/3

µ

)

b = n O
(√

n
ǫ

∧ 1
ǫ2

√
n
+ n

ǫ

)
Õ

(
(
√

n
µ

∧ 1
µ2ǫ

) + n
µ

)

4.4 Convergence under the Generalized P-L Condition

Now we provide the convergence of Algorithm 2 under the generalized P-L condi-
tion (Definition 2). Note that the only difference in Algorithm 2 in such problems is
the final output, where we directly use the last xT+1 rather than randomly sample
from the historical xts. Therefore, we preserve the simplicity of our algorithm in
the nonconvex nonsmooth case, i.e., there is no additional algorithmic components,
such as the restart process in ProxSVRG (Reddi et al., 2016b). Now we present
the SFO complexity of our variance reduced algorithm under the generalized P-L
condition and show its linear convergence rate.

Theorem 4 Suppose that ψtk(x) satisfies the m-strong convexity assumption (1)
and f satisfies the Lipschitz gradients and bounded variance assumptions (2, 3).
Further assume that the P-L condition (2) is satisfied. The learning rate, the batch
sizes, the mini-batch sizes, and the number of inner loop iterations are set to be
αt = m/L, Bt = n ∧ (10σ2/(ǫm2µ)), bt = b, K = ⌊

√
b/32⌋ ∨ 1. Then the output

of Algorithm 2 converges with SFO complexity

O

(
(n ∧ σ2

µǫ
)

1

µ
√
b
log

1

ǫ
+

b

µ
log

1

ǫ

)

Remarks. The proof is provided in Appendix C. The above SFO complexity is
of size Õ((n∧ (µǫ)−1)(µ

√
b)−1 + bµ−1) if we hide the logarithm terms. Compared

with the complexity of the original adaptive SMD algorithm, our complexity can be
arguably smaller when we choose an appropriate mini-batch size b, which further
proves our conclusion that variance reduction can be applied to most adaptive
SMD algorithms to accelerate the convergence. We provide the following corollary
for the best choice of b to show its effectiveness.

Corollary 2 Under all the assumptions and parameter settings in Theorem 4,
further assume that b = (µǫ)−2/3 ≤ n. Then the output of Algorithm 2 converges
with SFO complexity

O

(
(
nǫ1/3

µ2/3
∧ ǫ−2/3

µ5/3
+

ǫ−2/3

µ5/3
) log

1

ǫ

)
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Remarks. The above complexity is the same as the best complexity of Prox-
SVRG+ and it is smaller than the complexity of adaptive SMD in Theorem 2.
Moreover, it generalizes the best results of ProxSVRG/ProxSAGA and SCSG,
without the need to perform any restart or use the stochastically controlled itera-
tions trick. Therefore, Algorithm 2 automatically switches to fast convergence in
regions satisfying the generalized P-L condition. We also provide the SFO com-
plexity of some other choices of b in Table 2 for a clearer comparison. Similarly, if
b = (µǫ)−2/3 is impractical, using b = n2/3 also generates faster convergence than
adaptive SMD.

4.5 Extensions to Self-Adaptive Algorithms

Algorithm 3 Variance Reduced AdaGrad Algorithm

1: Input: Number of stages T , initial x1, step sizes {αt}Tt=1, batch sizes {Bt}Tt=1, mini-batch

sizes {bt}Tt=1, constant m
2: for t = 1 to T do
3: Randomly sample a batch It with size Bt

4: gt = ∇fIt(xt)
5: yt1 = xt

6: for k = 1 to K do
7: Randomly pick sample Ĩt of size bt
8: vtk = ∇fĨt

(ytk)−∇fĨt
(yt1) + gt

9: Htk = diag(
√∑t−1

τ=1

∑K
i=1 v

τ2
i +

∑k
i=1 v

t2
i +m)

10: ytk+1 = argminy{αt〈vtk , y〉+ αth(x) +
1
2
〈y − ytk,Htk(y − ytk)〉}

11: end for
12: xt+1 = ytK+1
13: end for
14: Return (Smooth case) Uniformly sample xt∗ from {ytk}

K,T
k=1,t=1; (P-L case) xt∗ = xT+1

As we have mentioned in Section 3, self-adaptive algorithms such as AdaGrad
are special cases of the general Algorithm 1 and thus we can use Algorithm 2
to accelerate them. The proximal functions of most adaptive algorithms have the
form of ψt(x) = 1

2 〈x,Htx〉, where Ht ∈ R
d×d is often designed to be a diagonal

matrix.
Assumption 1 is satisfied if we consistently add a constant matrix mI to

Ht, with I being the identity matrix. We remark that such an operation is com-
monly used in self-adaptive algorithms to avoid division by zero (Duchi et al., 2010;
Kingma and Ba, 2015), and thus variance reduction can be applied. Assumption
1 can also be satisfied for many special designs of Ht with some mild assumptions.

For example, if Ht,ii =
√

g21,i + g22,i + · · · g2t,i, ∀i ∈ [d] (the original AdaGrad algo-

rithm), then Ht � mI if there exists one τi ∈ [t] on each dimension i such that
gτi,i ≥ m, meaning that there is at least one derivative larger than m on each
dimension in the whole optimization process. If such a mild condition holds, then
the conclusions in Theorem 3, 4 and Corollary 1, 2 still hold.

However, notice that the strong convexity lower bounds of these algorithms
are relatively smaller (m is often set as 1e-3 or even smaller in real experiments),
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Theorem 3 implies that the batch size Bt needs to be sufficiently large for these al-
gorithm to converge fast. If variance reduction can work with such algorithms with
small m, then we should expect good performances with the other algorithms that
have large m’s. We provide the implementation for Variance Reduced AdaGrad
(VR-AdaGrad) in Algorithm 4 and Variance Reduced RMSProp (VR-RMSProp)
is similar.

One interesting question here is whether VR-AdaGrad and VR-RMSProp can
converge even faster than ProxSVRG+, since AdaGrad and RMSProp are known
to converge faster than SGD in convex problems. Our conjecture is that they can-
not do so, at least not in the nonconvex case because their rapid convergence
relies on not only the convexity of the problem, but also the sparsity of the gradi-
ents (Duchi et al., 2011). Neither of these two assumptions is appropriate in the
nonconvex analysis framework.

5 Experiments

In this section, we present several experiments on neural networks to show the
effectiveness of variance reduction in the adaptive SMD algorithms. We train a
two-layer fully connected network on the MNIST dataset, the LeNet (LeCun et al.,
1998) on the CIFAR-10 dataset, and the ResNet-20 model on the CIFAR-100
dataset (He et al., 2016).

Implementations. In general, we follow the settings by Zhou et al. (2018b)
on SNVRG for all our experiments. Except for normalization, we do not perform
any additional data transformation or augmentation techniques such as rotation,
flipping, and cropping on the images. For the batch sizes and mini batch sizes
Bt and bt in the algorithms, we follow Zhou et al. (2018b) to use a slightly dif-
ferent but equivalent notation of batch size ratio r = Bt/bt. Note that increasing
this ratio when bt is fixed would be the same as increasing the batch size Bt.
Our code is based on the publicly released PyTorch code by yueqiw (2019). All
experiments here are run on Nvidia V100 GPUs. We have thoroughly tuned the
hyper-parameters for all the algorithms on the different datasets. More details of
our experiments can be found in Appendix D.

We first validate our claims in Section 4 by showing that variance reduction can
work well with different step size schedules. We choose two special schedules that
are both complicated enough and popular nowadays, warm up and warm restart.
We choose to compare ProxSGD and ProxSVRG+ because they are special cases
of Algorithm 1 and Algorithm 2 with proximal function 1

2αt
‖x‖22, where αt is the

step size. For warm up, we increase the step size from zero to the best step size of
ProxSGD/ProxSVRG+ linearly for the initial 5 epochs and then multiply the step
size by 0.1 at the 50-th and the 75-th epoch. For warm restart, we decrease from
the best step size to zero with cosine annealing in 50 epochs and then restart the
decay. The training loss, the testing accuracy and the step size schedules on MNIST
and CIFAR-10 are plotted in Figure 1. As can be seen in the figures, ProxSVRG+
converges faster than ProxSGD with both of the two special step size schedules,
proving our claim that as long as the step sizes are bounded, variance reduction
can still improve the convergence rate of ProxSGD with time-varying step sizes.

We then choose VR-AdaGrad and VR-RMSProp as the other two special exam-
ples of our general algorithm because they have relatively smaller lower bound of
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Fig. 1: Performance of ProxSGD and ProxSVRG+ with different step size sched-
ules. The solid lines are trained with the warmup schedule (warmup for 5 epochs
then step decay) and the dashed lines are trained with the warm restart schedule.
We plot the two schedules at the top-right corners of the training loss subfigures for
the readers’ reference. (a) and (b): training loss and testing accuracy using fully
connected network on MNIST. (c) and (d): training loss and testing accuracy
using LeNet on CIFAR-10. The results were averaged over 5 runs.
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Fig. 2: (a) and (d): training loss and testing accuracy on MNIST. (b) and (e):
training loss and testing accuracy on CIFAR10. (c) and (f): training loss and
testing accuracy on CIFAR100. The results are averaged over 5 runs.

the strong convexity and their proximal functions are even more complicated. We
use the constant step size schedule for these algorithms as they are self-adaptive.
The training loss and the testing Top-1 accuracy of VR-AdaGrad, VR-RMSProp,
and their original algorithms on all the three datasets are plotted in Figure 2. As
can be observed, the variance reduced algorithms converge faster than their orig-
inal algorithms and their best testing Top-1 accuracy is also comparable or even
higher, proving the effectiveness of variance reduction. We emphasize that the
experiments are not designed to pursue the state-of-the-art performances, but to
show that variance reduction can work well with any adaptive proximal functions
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(a) VR-AdaGrad on MNIST
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(b) VR-AdaGrad on CIFAR10
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(c) VR-AdaGrad on CIFAR100
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(d) VR-RMSProp on MNIST
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(e) VR-RMSProp on CIFAR10
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Fig. 3: (a) and (d): training loss with different r on MNIST. (b) and (e): training
loss with different r on CIFAR10 . (c) and (f): training loss with different ratio r
on CIFAR100.

and contribute to faster training, even if the proximal functions have very small
strong convexity lower bound.

Finally, we also show that algorithmswith weaker convexity need a larger batch
size Bt to converge fast, which corresponds to our claims in Section 4.3 and 4.4.
We fix the mini batch sizes bt in VR-AdaGrad and VR-RMSProp to be the same
as in the previous experiments and gradually increase the batch size ratio r. The
baseline ratios of ProxSVRG+, which has a large strong convexity lower bound, are
provided in Appendix D for the readers’ reference and the training performances
of VR-AdaGrad and VR-RMSProp with different r are shown in Figure 3. Note
that ProxSVRG+ only needs a small ratio (r = 4 or r = 8) to be faster than SGD
(Li and Li, 2018), but for VR-RMSProp, even when r = 16, the algorithms still do
not converge faster than RMSProp, proving that algorithms with weaker convexity
need larger batch sizes Bt to show the effectiveness of variance reduction.

6 Conclusions

In this work, we generalize the convergence results of variance reduced algorithms
to almost all adaptive stochastic mirror descent algorithms by proposing a general
adaptive extension of ProxSVRG+. We prove that the variance reduction tech-
nique contributes to the same level of improvement in the convergence rates of
adaptive mirror descent algorithms under a very mild assumption, both in the
general nonsmooth nonconvex problems and the PL-conditioned problems. In par-
ticular, our theory can be applied to proving the soundness of using time-varying
step sizes in the training process of ProxSVRG+, and the effectiveness of apply-
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ing variance reduction to adaptive algorithms such as AdaGrad and RMSProp. A
potential future work direction is whether our Assumption 1 can still be replaced
by weaker conditions, such as the CHEF conditions Lei and Jordan (2019) have
mentioned in the convex case. Another interesting direction is whether the SFO
complexity can be further improved with the help of additional algorithmic compo-
nents, for example, the nested variance reduction technique by Zhou et al. (2018b)
or momentum accelerations.
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Appendix

A Convergence of the Adaptive SMD Algorithm

Definition 3 We define the generalized stochastic gradient at t as

g̃X,t =
1

αt
(xt − xt+1)

A.1 Auxiliary Lemmas

Lemma 1 [Lemma 1 in Ghadimi et al. (2016)]. Let gt be the stochastic gradient in Algo-
rithm 1 obtained at t and g̃X,t be defined as in Definition 3, then

〈gt, g̃X,t〉 ≥ m‖g̃X,t‖2 +
1

αt
[h(xt+1)− h(xt)] (2)

Proof. By the optimality of the mirror descent update rule, it implies for any x ∈ X and
∇h(xt+1) ∈ ∂h(xt+1)

〈gt +
1

αt
(∇ψt(xt+1)−∇ψt(xt)) +∇h(xt+1), xt − xt+1〉 ≥ 0 (3)

Let x = xt in the above in equality, we get

〈gt, xt − xt+1〉 ≥
1

αt
〈∇ψt(xt+1)−∇ψt(xt), xt+1 − xt〉+ 〈∇h(xt+1), xt+1 − xt〉

≥ m

αt
‖xt+1 − xt‖22 + h(xt+1) − h(x)

(4)

where the second inequality is due to the strong convexity of the function ψt(x) and the
convexity of h(x), by noting that xt − xt+1 = αtg̃X,t , the inequality follows.

Lemma 2 Let gX,t, g̃X,t be defined as in Definition 3 and Definition 1 respectively, then

‖gX,t − g̃X,t‖2 ≤ 1

m
‖∇f(xt)− gt‖2 (5)

Proof. By the definition of gXt and g̃X,t,

‖gX,t − g̃X,t‖2 =
1

αt
‖(xt − x+

t+1)− (xt − xt+1)‖2 =
1

αt
‖xt+1 − x+

t+1‖2 (6)

Similar to Lemma 1, by the optimality of the mirror descent update rule, we have the
following two inequalities

〈gt +
1

αt
(∇ψt(xt+1)−∇ψt(xt)) +∇h(xt+1), x− xt+1〉 ≥ 0, ∀x ∈ X ,∇h(xt+1) ∈ ∂h(xt+1)

〈∇f(xt) +
1

αt
(∇ψt(x

+
t+1)−∇ψt(xt)) +∇h(x+

t+1), x− x+
t+1〉 ≥ 0, ∀x ∈ X ,∇h(x+

t+1) ∈ ∂h(x+
t+1)

(7)

Take x = x+
t+1 in the first inequality and x = xt+1 in the second one, we can get

〈−gt, xt+1 − x+
t+1〉 ≥

1

αt
〈∇ψt(xt+1)−∇ψt(xt), xt+1 − x+

t+1〉+ h(xt+1) − h(x+
t+1)

〈∇f(xt), xt+1 − x+
t+1〉 ≥

1

αt
〈∇ψt(x

+
t+1)−∇ψt(xt), x

+
t+1 − xt+1〉+ h(x+

t+1)− h(xt+1)

(8)
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Summing up the above inequalities, we can get

〈∇f(xt)− gt, xt+1 − x+
t+1〉

≥ 1

αt
(〈∇ψt(xt+1) −∇ψt(xt), xt+1 − x+

t+1〉 + 〈∇ψt(x
+
t+1) −∇ψt(xt), x

+
t+1 − xt+1〉)

=
1

αt
(〈∇ψt(xt+1) −∇ψt(x

+
t+1), xt+1 − x+

t+1〉)

≥ m

αt
‖xt+1 − x+

t+1‖22

(9)

Therefore by Cauchy Schwarz inequality,

‖gt −∇f(xt)‖2 ≥ m

αt
‖xt+1 − x+

t+1‖2 (10)

Hence the inequality in the lemma follows.

Lemma 3 [Lemma A.1 in Lei et al. (2017)]. Let x1, · · · , xM ∈ R
d be an arbitrary popula-

tion of M vectors with the condition that

M∑

i=1

xj = 0 (11)

Further let J be a uniform random subset of {1, · · · ,M} with size m, then

E[‖ 1

m

∑

j∈J

xj‖2] ≤
I(m < M)

mM

M∑

j=1

‖xj‖2 (12)

Proof of the above general lemma can be found in Lei et al. (2017).

A.2 Convergence of the Adaptive SMD Algorithm in the Nonconvex Nonsmooth
Problem

Proof of Theorem 1. From the L-Lipshitz gradients and Lemma 1, we know that

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= f(xt)− αt〈∇f(xt), g̃X,t〉 +
L

2
α2
t ‖g̃X,t‖22

= f(xt)− αt〈gt, g̃X,t〉+
L

2
α2
t ‖g̃X,t‖22 + αt〈gt −∇f(xt), g̃X,t〉

≤ f(xt) +
L

2
α2
t ‖g̃X,t‖22 − αtm‖g̃X,t‖22 − [h(xt+1) − h(xt)] + αt〈gt −∇f(xt), g̃X,t〉

(13)
Therefore since F (x) = f(x) + h(x), we get

F (xt+1) ≤ F (xt)− (αtm− L

2
α2
t )‖g̃X,t‖22 + αt〈gt −∇f(xt), g̃X,t〉 + αt〈gt −∇f(xt), g̃X,t − gX,t〉

≤ F (xt)− (αtm− L

2
α2
t )‖g̃X,t‖22 + αt〈gt −∇f(xt), g̃X,t〉 + αt‖∇f(xt)− gt‖2‖g̃X,t − gX,t‖2

≤ F (xt)− (αtm− L

2
α2
t )‖g̃X,t‖22 + αt〈gt −∇f(xt), g̃X,t〉 +

αt

m
‖∇f(xt)− gt‖22

(14)
where the second last one is a direct result from Cauchy-Schwarz inequality and the last

inequality is from Lemma 2. Rearrange the above inequalities and sum up from 1 to T , we get
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T∑

t=1

(αtm− L

2
α2
t )‖g̃X,t‖22 ≤

T∑

t=1

[F (xt)− F (xt+1)] +
T∑

t=1

[αt〈gt −∇f(xt), g̃X,t〉+
αt

m
‖∇f(xt)− gt‖22]

= F (x1)− F (xT+1) +
T∑

t=1

[αt〈gt −∇f(xt), g̃X,t〉 +
αt

m
‖∇f(xt)− gt‖2]

≤ F (x1)− F ∗ +
T∑

t=1

[αt〈gt −∇f(xt), g̃X,t〉+
αt

m
‖∇f(xt)− gt‖2]

(15)

where the last inequality is due to F ∗ ≤ F (x), ∀x. Define the filtration Ft = σ(x1, · · · , xt).
Note that we suppose gt is an unbiased estimate of ∇f(xt), hence E[〈∇f(xt)−gt, gX,t〉|Ft] = 0.
Moreover, since the sampled gradients has bounded variance σ2, hence by applying Lemma 3
with xi = ∇i∈Ij

fi(xt)−∇f(xt)

E[‖∇f(xt)− gt‖2] ≤
σ2

bt
I(bt < n) (16)

where I is the indicator function. Since the final xt∗ is uniformly sampled from all {xt}Tt=1,
therefore

E[‖g̃X,t∗‖22] = E[E[‖g̃X,t∗‖22|t∗]] =
1

T

T∑

t=1

E[‖g̃X,t‖22] (17)

Therefore when αt, bt are constants, the average can be found as

T (αtm− L

2
α2
t )E(‖g̃X,t∗‖22) ≤ F (x1)− F ∗ +

T∑

t=1

αt

m
E[‖∇f(xt)− gt‖22]

= ∆F + T
αtσ2

mbt
I(bt < n)

(18)

where we define ∆F = F (x1)− F ∗. Take αt = m
L
, then αtm− L

2
α2
t = m2

2L
and

E(‖g̃X,t∗‖22) ≤
2∆FL

m2T
+

2σ2

btm2
I(bt < n) (19)

Also by Lemma 2, the difference between gX,t∗ and g̃X,t∗ are bounded, hence

E[‖gX,t∗‖22] ≤ 2E[‖g̃X,t∗‖22] + 2E[‖gX,t∗ − g̃X,t∗‖22]

≤ 4∆FL

m2T
+

4σ2

btm2
I(bt < n) +

2σ2

btm2
I(bt < n)

=
4∆FL

m2T
+

6σ2

btm2
I(bt < n)

(20)

Take bt = n ∧ (12σ2/m2ǫ), T = 1 ∨ (8∆FL/m2ǫ) as in the theorem, the expectation is

E[‖gX,t∗‖22] ≤
4∆FL

m2T
+

6σ2

btm2
I(bt < n)

≤ ǫ

2
+

ǫ

2
= ǫ

(21)

Therefore since one iteration takes bt stochastic gradient computations, the total number
of stochastic gradient computations is

Tbt ≤ 8∆FL

m2ǫ
bt + bt = O

(
n

ǫ
∧ σ2

ǫ2
+ n ∧ σ2

ǫ

)
(22)
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A.3 Convergence of the Adaptive SMD Algorithm under the P-L condition

Proof of Theorem 2 By the proof in A.2, we have

F (xt+1) ≤ F (xt) − (αtm− L

2
α2
t )‖g̃X,t‖22 + αt〈gt −∇f(xt), g̃X,t〉+

αt

m
‖∇f(xt)− gt‖22 (23)

Take expectation on both sides, we know that

E[F (xt+1)] ≤ E[F (xt)]− (αtm− L

2
α2
t )E[‖g̃X,t‖22] +

αt

m
E[‖∇f(xt)− gt‖22] (24)

Since

E[‖gX,t∗‖22] ≤ 2E[‖g̃X,t∗‖22] + 2E[‖gX,t∗ − g̃X,t∗‖22] (25)

Hence the inequality becomes

E[F (xt+1)] ≤ E[F (xt)]− (αtm− L

2
α2
t )(

1

2
E[‖gX,t‖22]− E[‖∇f(xt)− gt‖22]) +

αt

m
E[‖∇f(xt) − gt‖22]

≤ E[F (xt)]− (
αtm

2
− L

4
α2
t )E[‖gX,t‖22] + (

αt

m
+ αtm− L

2
α2
t )E[‖∇f(xt)− gt‖22]

≤ E[F (xt)]− µ(αtm − L

2
α2
t )(E[F (xt)]− F ∗) + (

αt

m
+ αtm− L

2
α2
t )E[‖∇f(xt)− gt‖22]

(26)
Take αt = m/L and minus F (x)∗ on both sides, we get

E[F (xt+1)]− F ∗ ≤ (1 − µ(αtm− L

2
α2
t )(E[F (xt)]− F ∗) + (

αt

m
+ αtm− L

2
α2
t )E[‖∇f(xt)− gt‖22]

= (1 − µ
m2

2L
)(E[F (xt)]− F ∗) + (

1

L
+

m2

2L
)E[‖∇f(xt)− gt‖22]

= (1 − µ
m2

2L
)(E[F (xt)]− F ∗) + (

1

L
+

m2

2L
)
σ2

bt
I(bt < n)

(27)

Let γ = 1− µm2

2L
, since m2µ/L ≤ 1√

n
, γ ∈ (0, 1), divide by γt+1 on both sides, we get

E[F (xt+1)]− F ∗

γt+1
≤ E[F (xt)]− F ∗

γt
+

( 1
L

+ m2

2L
)

γt+1

σ2

bt
I(bt < n) (28)

Take summation with respect to the loop parameter t from t = 1 to t = T , assume that
bt is a constant, the inequality becomes

E[F (xT+1)]− F ∗ ≤ γT∆F + γT
T∑

t=1

( 1
L

+ m2

2L
)

γt

σ2

bt
I(bt < n)

≤ γT∆F + (
1

L
+

m2

2L
)
1 − γT

1− γ

σ2

bt
I(bt < n)

≤ γT∆F + (
1

L
+

m2

2L
)
2L

µm2

σ2

bt
I(bt < n)

= γT∆F + (
1

m2
+ 1)

1

µ

σ2

bt
I(bt < n)

(29)

Therefore when taking T = 1 ∨ (log 2∆F
ǫ

)/(log 1
γ
) = O(log 2∆F

ǫ
/µ), bt = n ∧ 2(1+m2)σ2

ǫm2µ
.

Then the total number of stochastic gradient computations is

Tb = O((n ∧ σ2

µǫ
)(

1

µ
log

1

ǫ
))

= O

(
(
n

µ
∧ σ2

µ2ǫ
) log

1

ǫ

) (30)
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B Convergence of SVRAMD in the nonconvex nonsmooth problem

Recall the Algorithm 2 in the algorithm section, similarly define

Definition 4 We define the variance reduced generalized gradient mapping as

g̃tY,k =
1

αt
(ytk − ytk+1)

Definition 5 We also define its corresponding term when the algorithm uses non-stochastic
full batch gradient

gtY,k =
1

αt
(ytk − yt+k+1), when yt+k+1 = argminy{αt〈∇f(ytk), y〉+ αth(x) +Bψtk

(y, ytk)} (31)

B.1 Auxiliary Lemmas

Lemma 4 Let vtk be defined as in Algorithm 2 and g̃tY,k be defined as in Definition 4, then

we have

〈vtk , g̃tY,k〉 ≥ m‖g̃tY,k‖2 +
1

αt
[h(ytk+1)− h(ytk)] (32)

Proof. The proof of this inequality is similar to that of Lemma 1. By the optimality of the
mirror descent update rule, it implies for any y ∈ X ,∇h(ytk+1) ∈ ∂h(ytk+1),

〈vtk +
1

αt
(∇ψtk(y

t
k+1)−∇ψtk(y

t
k)) +∇h(ytk+1), y − ytk+1〉 ≥ 0 (33)

Let x = ytk in the above in equality, we get

〈vtk , ytk − ytk+1〉 ≥
1

αt
〈∇ψtk(y

t
k+1)−∇ψtk(y

t
k), y

t
k+1 − ytk〉+ 〈∇h(ytk+1), y

t
k+1 − ytk〉

≥ m

αt
‖ytk+1 − ytk‖22 + [h(ytk+1)− h(ytk)]

(34)

where the second inequality is due to the m-strong convexity of the function ψtk(x) and
the convexity of h. Note from the definition that ytk − ytk+1 = αtg̃tY,k , the inequality follows.

Lemma 5 Let gtY,k, g̃
t
Y,k be defined as in Definition 4 and Definition 5 respectively, then we

have

‖g̃tY,k − gtY,k‖2 ≤ 1

m
‖∇f(ytk)− vtk‖2 (35)

Proof. The proof is similar to Lemma 2. By definition of g̃tY,k and gtY,k,

‖g̃tY,k − gtY,k‖2 =
1

αt
‖(ytk − ytk+1)− (ytk − yt+k+1)‖2 =

1

αt
‖ytk − yt+k+1‖2 (36)

As in Lemma 4, by the optimality of the mirror descent update rule, we have the following
two inequalities

〈vtk +
1

αt
(∇ψtk(y

t
k+1)−∇ψtk(y

t
k)) +∇h(ytk+1), y − ytk+1〉 ≥ 0, ∀y ∈ X ,∇h(ytk+1) ∈ ∂h(ytk+1)

〈∇f(ytk) +
1

αt
(∇ψtk(y

t+
k+1) −∇ψtk(y

t
k)) +∇h(yt+k+1), y − yt+k+1〉 ≥ 0, ∀y ∈ X ,∇h(yt+1

k+1) ∈ ∂h(yt+k+1)

(37)

Take y = yt+k+1 in the first inequality and y = ytk+1 in the second one, we can get
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〈vtk , yt+k+1 − ytk+1〉 ≥
1

αt
〈∇ψtk(y

t
k+1)−∇ψtk(y

t
k), y

t
k+1 − yt+k+1〉+ h(ytk+1)− h(yt+k+1)

〈∇f(ytk), y
t
k+1 − yt+k+1〉 ≥

1

αt
〈∇ψtk(y

t
k)−∇ψtk(y

t+
k+1), y

t+
k+1 − ytk+1〉+ h(yt+k+1) − h(ytk+1)

(38)
Summing up the above inequalities, we can get

〈vtk −∇f(ytk), y
t+
k+1 − ytk+1〉

≥ 1

αt
〈∇ψtk(y

t
k+1)−∇ψtk(y

t
k), y

t
k+1 − yt+k+1〉+

1

αt
〈∇ψtk(y

t
k) −∇ψtk(y

t+
k+1), y

t+
k+1 − ytk+1〉

=
1

αt
(〈∇ψtk(y

t
k+1)−∇ψtk(y

t+
k+1), y

t
k+1 − yt+k+1〉)

≥ m

αt
‖ytk+1 − yt+k+1‖

2
2

(39)
where the last inequality is due to the strong convexity of ψtk(x). Therefore by Cauchy

Schwarz inequality,

1

m
‖∇f(ytk)− vtk‖2 ≥ 1

αt
‖ytk+1 − yt+k+1‖2 ≥ ‖g̃tY,k − gtY,k‖2 (40)

Hence the inequality in the lemma follows.

Lemma 6 Let ∇f(ytk), v
t
k be the full batch gradient and the , then

E[‖∇f(ytk)− vtk‖22] ≤
L2

bt
E[‖ytk − xt‖2] +

I(Bt < n)σ2

Bt

(41)

Proof. Note that the large batch Ij and the mini-batch Ĩj are independent, hence

E[‖∇f(ytk)− vtk‖22]

= E[‖ 1

bt

∑

i∈Ĩk

(∇fi(y
t
k)−∇fi(xt)) − (∇f(ytk)− gt)‖22]

= E[‖ 1

bt

∑

i∈Ĩk

(∇fi(y
t
k)−∇fi(xt)) − (∇f(ytk)−

1

Bt

∑

i∈It

∇fi(xt))‖22]

= E[‖ 1

bt

∑

i∈Ĩk

(∇fi(y
t
k)−∇fi(xt)) −∇f(ytk) +∇f(xt) +

1

Bt

∑

i∈It

(∇fi(xt)−∇f(xt))‖22]

= E[‖ 1

bt

∑

i∈Ĩk

(∇fi(y
t
k)−∇fi(xt)) −∇f(ytk) +∇f(xt)‖22 + E‖ 1

Bt

∑

i∈It

(∇fi(xt)−∇f(xt))‖22]

= E[‖ 1

bt

∑

i∈Ĩk

(∇fi(y
t
k)−∇f(ytk)) − (∇fi(xt)−∇f(xt))‖22 + E‖ 1

Bt

∑

i∈It

(∇fi(xt)−∇f(xt))‖22]

≤ E[‖ 1

bt

∑

i∈Ĩk

(∇fi(y
t
k)−∇f(ytk)) − (∇fi(xt)−∇f(xt))‖22 +

I(Bt < n)σ2

Bt

=
1

b2t
E[

∑

i∈Ĩk

‖∇fi(y
t
k)−∇fi(xt)) −∇f(ytk) +∇f(xt)‖2] +

I(Bt < n)σ2

Bt

≤ 1

b2t
E[

∑

i∈Ĩk

‖∇fi(y
t
k)−∇fi(xt))‖2] +

I(Bt < n)σ2

Bt

≤ L2

bt
E[‖ytk − xt‖2] +

I(Bt < n)σ2

Bt
(42)
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where the fourth equality is because of the independence between Ij and Ĩj . The first and
the second inequalities are by Lemma 3. The third inequality follows from E[‖x − E(x)‖2] =
E[‖x‖2] and the last inequality follows from the L-smoothness of f(x)

B.2 Main Proof

Proof of Theorem 3. From the L-Lipshitz gradients and Lemma 4, we know that

f(ytk+1) ≤ f(ytk) + 〈∇f(ytk), y
t
k+1 − ytk〉+

L

2
‖ytk+1 − ytk‖2

= f(ytk) − αt〈∇f(ytk), g̃
t
Y,k〉+

L

2
α2
t ‖g̃tY,k‖22

= f(ytk) − αt〈vtk , g̃tY,k〉+
L

2
α2
t ‖g̃tY,k‖22 + αt〈vtk −∇f(ytk), g̃

t
Y,k〉

≤ f(ytk) +
L

2
α2
t ‖g̃tY,k‖22 − αtm‖g̃tY,k‖22 + αt〈vtk −∇f(ytk), g̃

t
Y,k〉 − [h(ytk+1)− h(ytk)]

(43)
Since F (x) = f(x) + h(x), we can get

F (ytk+1) = F (ytk)− (αtm− L

2
α2
t )‖g̃tY,k‖22 + αt〈vtk −∇f(ytk), g

t
Y,k〉+ αt〈vtk −∇f(ytk), g̃

t
Y,k − gtY,k〉

≤ F (ytk)− (αtm− L

2
α2
t )‖g̃tY,k‖22 + αt〈vtk −∇f(ytk), g

t
Y,k〉+ αt‖∇f(ytk) − vtk‖2‖g̃tY,k − gtY,k‖2

≤ F (ytk)− (αtm− L

2
α2
t )‖g̃tY,k‖22 + αt〈vtk −∇f(ytk), g

t
Y,k〉+

αt

m
‖∇f(ytk) − vtk‖22

(44)

where the second last inequality is from Cauchy Schwartz inequality and the last inequality
is from Lemma 5. Define the filtration Ft

k = σ(y11 , · · · y1K+1, y
2
1 , · · · , y2K+1, · · · , yt1, · · · , ytk).

Note that E[〈∇f(ytk) − vtk, g
t
Y,k〉|F t

k] = 0. Take expectation on both sides and use Lemma 6,
we get

E[F (ytk+1)] ≤ E[F (ytk)]− (
m

αt
− L

2
)E[‖ytk+1 − ytk‖22] +

L2αt

btm
E[‖ytk − xt‖2] +

αtI(Bt < n)σ2

mBt

≤ E[F (ytk)]− (
m

2αt
− L

4
)E[‖ytk+1 − ytk‖22] +

L2αt

btm
E[‖ytk − xt‖2] +

αtI(Bt < n)σ2

mBt

+ (
m

2αt
− L

4
)
α2
tL

2

m2bt
E[‖ytk − xt‖2] + (

m

2αt
− L

4
)
α2
t I(Bt < n)σ2

m2Bt
− (

m

4αt
− L

8
)E[‖yt+k+1 − ytk‖22]

= E[F (ytk)]− (
m

2αt
− L

4
)E[‖ytk+1 − ytk‖22]− (

m

4αt
− L

8
)E[‖yt+k+1 − ytk‖22]

+ (
3L2αt

2btm
− α2

tL
3

4m2bt
)E[‖ytk − xt‖2] + (

3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

= E[F (ytk)]− (
m

2αt
− L

4
)E[‖ytk+1 − ytk‖22]− (

mαt

4
− Lα2

t

8
)E[‖gtY,k‖22]

+ (
3L2αt

2btm
− α2

tL
3

4m2bt
)E[‖ytk − xt‖2] + (

3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt
(45)
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where the second inequality uses the fact that by Lemma 6

E[‖yt+k+1 − ytk‖22] = α2
tE[‖gtY,k‖22] ≤ 2α2

tE[‖g̃tY,k‖22] + 2α2
tE[‖gtY,k − g̃tY,k‖22]

≤ 2α2
tE[‖g̃tY,k‖22] +

2α2
t

m2
E[‖∇f(ytk)− vtk‖22]

≤ 2E[‖ytk+1 − ytk‖22] +
2α2

t

m2
(
L2

bt
E[‖ytk − xt‖2] +

I(Bt < n)σ2

Bt
)

= 2E[‖ytk+1 − ytk‖22] +
2α2

tL
2

m2bt
E[‖ytk − xt‖2] +

2I(Bt < n)σ2α2
t

Btm2

(46)

Since by Young’s inequality, we know that

‖ytk+1 − xt‖ ≤ (1 +
1

p
)‖ytk − xt‖22 + (1 + p)‖ytk+1 − ytk‖22,∀p ∈ R (47)

Hence substitute into equation 45, we can get

E[F (ytk+1)] ≤ E[F (ytk)]− (
m

2αt
− L

4
)E(

‖ytk+1 − xt‖22
1 + p

−
‖ytk − xt‖22

p
) − (

mαt

4
− Lα2

t

8
)E[‖gtY,k‖22]

+ (
3L2αt

2btm
− α2

tL
3

4m2bt
)E[‖ytk − xt‖2] + (

3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

≤ E[F (ytk)]− (
m

2αt
− L

4
)E(

‖ytk+1 − xt‖22
1 + p

)− (
mαt

4
− Lα2

t

8
)E[‖gtY,k‖22]

+ (
3L2αt

2btm
− α2

tL
3

4m2bt
+

m

2αtp
− L

4p
)E[‖ytk − xt‖2] + (

3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

(48)
Let p = 2k − 1 and take summation with respect to the inner loop parameter k, we can

get

E[F (xt+1)]

≤ E[F (xt)]−
K∑

k=1

(
m

2αt(2k)
− L

4(2k)
)E(‖ytk+1 − xt‖22)−

K∑

k=1

(
mαt

4
− Lα2

t

8
)E[‖gtY,k‖22]

+
K∑

k=1

(
3L2αt

2btm
− α2

tL
3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2] +

K∑

k=1

(
3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

≤ E[F (xt)]−
K−1∑

k=1

(
m

2αt(2k)
− L

4(2k)
)E(‖ytk+1 − xt‖22)−

K∑

k=1

(
mαt

4
− Lα2

t

8
)E[‖gtY,k‖22]

+
K∑

k=2

(
3L2αt

2btm
− α2

tL
3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2] +

K∑

k=1

(
3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

≤ E[F (xt)]−
K∑

k=1

(
mαt

4
− Lα2

t

8
)E[‖gtY,k‖22] +

K∑

k=1

(
3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

+

K−1∑

k=1

(
3L2αt

2btm
− α2

tL
3

4m2bt
+

m

2αt(2k + 1)
− L

4(2k + 1)
− (

m

2αt(2k)
− L

4(2k)
))E[‖ytk − xt‖2]

= E[F (xt)]−
K∑

k=1

(
mαt

4
− Lα2

t

8
)E[‖gtY,k‖22] +

K∑

k=1

(
3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

+

K−1∑

k=1

(
3L2αt

2btm
− α2

tL
3

4m2bt
+ (

L

4
− m

2αt
)(

1

2k(2k + 1)
))E[‖ytk − xt‖2]

(49)



Variance Reduction on General Adaptive Stochastic Mirror Descent 27

where the second inequality is due to the fact that xt = yt1 and ‖xt+1 − xt‖ > 0. Take
αt = m/L

E[F (xt+1)] ≤ E[F (xt)]−
K∑

k=1

m2

8L
E[‖gtY,k‖22] +

K∑

k=1

(
5

4L
)
I(Bt < n)σ2

Bt
+

K−1∑

k=1

(
5L

4bt
− L

8k(2k + 1)
)E[‖ytk − xt‖2]

≤ E[F (xt)]−
K∑

k=1

m2

8L
E[‖gtY,k‖22] +

K∑

k=1

(
5

4L
)
I(Bt < n)σ2

Bt

(50)

where the last inequality follows from the setting K ≤
⌊√

bt/20
⌋
and therefore

5L

4bt
− L

8(K − 1)(2(K − 1) + 1)
≤ 5L

4bt
− L

16K2
≤ 0 (51)

Take sum with respect to the outer loop parameter t and re-arrange the inequality

T∑

t=1

K∑

k=1

m2

8L
E[‖gtY,k‖22] ≤ E[F (x1)− F (xT+1)] +

T∑

t=1

K∑

k=1

(
5

4L
)
I(Bt < n)σ2

Bt

≤ ∆F + TK(
5

4L
)
I(Bt < n)σ2

Bt

(52)

Therefore when taking Bt = n ∧ 20σ2/(m2ǫ), T = 1 ∨ 16∆FL/(m2ǫK)

E[‖gX,t∗‖22] ≤
8∆FL

m2TK
+

10I(Bt < n)σ2

Btm2
≤ ǫ

2
+

ǫ

2
≤ ǫ (53)

The total number of stochastic gradient computations is

TB + TKb = O

(
(n ∧ σ2

ǫ
+ b

√
b)(1 +

1

ǫ
√
b
)

)

= O

(
n ∧ σ2

ǫ
+ b

√
b+

n

ǫ
√
b
∧ σ2

ǫ2
√
b
+

b

ǫ

)

= O

(
n

ǫ
√
b
∧ σ2

ǫ2
√
b
+

b

ǫ

)
(54)

where the last inequality is because b2 ≤ ǫ−2 when b ≤ ǫ−1 and
√
b ≤ ǫ−1 when b ≤ ǫ−2.

However,we will never let b to be as large as ǫ−2 as it is even larger than the batch size Bt

and doing so will make the number of gradient computations O(ǫ−3), which is undesirable.

C Convergence of SVRAMD under the P-L Condition

Proof of Theorem 4. Recall the definition of the PL condition and modify the notations a
little bit, we get

∃µ > 0, s.t.‖gtY,k‖2 ≥ 2µ(F (ytk)− F ∗) (55)

By the proof in appendix B, we know that

E[F (ytk+1)] ≤ E[F (ytk)]− (
m

2αt
− L

4
)E(

‖ytk+1 − xt‖22
1 + p

−
‖ytk − xt‖22

p
) − (

mαt

4
− Lα2

t

8
)E[‖gtY,k‖22]

+ (
3L2αt

2btm
− α2

tL
3

4m2bt
)E[‖ytk − xt‖2] + (

3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

≤ E[F (ytk)]− (
m

2αt
− L

4
)E(

‖ytk+1 − xt‖22
1 + p

)− (
mαt

2
− Lα2

t

4
)µ(E[F (ytk)]− F ∗)

+ (
3L2αt

2btm
− α2

tL
3

4m2bt
+

m

2αtp
− L

4p
)E[‖ytk − xt‖2] + (

3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

(56)
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Therefore when p = 2k − 1, define γ := (1 − (mαtµ
2

− Lα2

tµ

4
)), we obtain

E[F (ytk+1)]− F ∗

γk+1
≤

(E[F (ytk)]− F ∗)

γk
− (

m

2αtγk+1
− L

4γk+1
)E(

‖ytk+1 − xt‖22
2k

)

+
1

γk+1
(
3L2αt

2btm
− α2

tL
3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2]

+
1

γk+1
(
3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

(57)
Summing up with respect to the inner loop parameter k, we get that

E[F (xt+1)]− F ∗ ≤ γK(E[F (xt)]− F ∗)− γK+1
K∑

k=1

(
m

2αtγk+1
− L

4γk+1
)E(

‖ytk+1 − xt‖22
2k

)

+ γK+1
K∑

k=1

1

γk+1
(
3L2αt

2btm
− α2

tL
3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2]

+ γK+1
K∑

k=1

1

γk+1
(
3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

= γK(E[F (xt)]− F ∗)− γK+1
K∑

k=1

(
m

2αtγk+1
− L

4γk+1
)E(

‖ytk+1 − xt‖22
2k

)

+ γK+1
K∑

k=1

1

γk+1
(
3L2αt

2btm
− α2

tL
3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2]

+
1− γK

1− γ
(
3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

(58)
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By the fact that xt = xt
1, and ‖xt+1 − xt‖ > 0, we know that

E[F (xt+1)]− F ∗

≤ γK(E[F (xt)]− F ∗)− γK+1
K−1∑

k=1

(
m

2αtγk+1
− L

4γk+1
)E(

‖ytk+1 − xt‖22
2k

)

+ γK+1
K∑

k=2

1

γk+1
(
3L2αt

2btm
− α2

tL
3

4m2bt
+

m

2αt(2k − 1)
− L

4(2k − 1)
)E[‖ytk − xt‖2]

+
1− γK

1− γ
(
3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

= γK(E[F (xt)]− F ∗) +
1− γK

1− γ
(
3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

− γK+1
K−1∑

k=1

(
m

2αtγk+1
− L

4γk+1
)E(

‖ytk+1 − xt‖22
2k

)

+ γK+1
K−1∑

k=1

1

γk+1
(
3L2αt

2btmγ
− α2

tL
3

4m2btγ
+

m

2αt(2k + 1)γ
− L

4(2k + 1)γ
)E[‖ytk − xt‖2]

= γK(E[F (xt)]− F ∗) +
1− γK

1− γ
(
3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

+ γK+1
K−1∑

k=1

1

γk+2
(
3L2αt

2btm
− α2

tL
3

4m2bt
+

m

2αt(2k + 1)
− L

4(2k + 1)
+

Lγ

8k
− mγ

4kαt
)E[‖ytk − xt‖2]

= γK(E[F (xt)]− F ∗) +
1− γK

1− γ
(
3αt

2m
− α2

tL

4m2
)
I(Bt < n)σ2

Bt

+ γK+1
K−1∑

k=1

1

γk+2
(
3L2αt

2btm
− α2

tL
3

4m2bt
− (

m

2αt
− L

4
)(

γ

2k
− 1

2k + 1
))E[‖ytk − xt‖2]

(59)

By the definition γ = 1− mαtµ
2

+
Lα2

tµ

4
, we know that

γ

2k
− 1

2k + 1
=

1

2k(2k + 1)
− mαtµ

4k
+

Lα2
tµ

8k

=
1

2k(2k + 1)
− α2

tµ

2k
(
m

2αt
− L

4
)

(60)

Therefore when taking αt = m
L

and with the assumption L/(µm2) >
√
n, the last term in

the inequality (59) is

γK+1
K−1∑

k=1

1

γk+2
(
3L2αt

2btm
− α2

tL
3

4m2bt
− (

m

2αt
− L

4
)(

γ

2k
− 1

2k + 1
)E[‖ytk − xt‖2]

= γK+1
K−1∑

k=1

1

γk+2
(
3L2αt

2btm
− α2

tL
3

4m2bt
− (

m

2αt
− L

4
)(

1

2k(2k + 1)
− α2

tµ

2k
(
m

2αt
− L

4
)))E[‖ytk − xt‖2]

= γK+1
K−1∑

k=1

1

γk+2
(
3L2αt

2btm
− α2

tL
3

4m2bt
− (

m

2αt
− L

4
)(

1

2k(2k + 1)
) +

α2
tµ

2k
(
m

2αt
− L

4
)2))E[‖ytk − xt‖2]

≤ γK+1
K−1∑

k=1

1

γk+2
(
5L

4bt
− L

4
(

1

2k(2k + 1)
) +

L

32k
√
n
)E[‖ytk − xt‖2]

(61)
Define H(x) := − 1

2x(2x+1)
+ 1

8x
√

n
+ 5

bt
, H′(x) = 8x+2

4x2(2x+1)2
− 1

8x2
√

n
= 1

4x2
( 8x+2
4x2+4x+1

−
1

2
√

n
) = 1

4x2
(
2(8x+2)

√
n−(4x2+4x+1)

2(4x2+4x+1)
√

n
). When x ≤ K − 1 < K <

√
bt
16

≤
√

n
16

, 8x+2
4x2+4x+1

−
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1
2
√

n
≥ 8K+2

4K2+4K+1
− 1

2
√

n
≥ 0. Therefore H(x) ≤ H(K − 1) ≤ 5

bt
− 14K+1

32K(K−1)(2K−1)
≤ 0

when K = ⌊
√

bt
32

⌋. which means the inequality above is smaller than zero. Hence

E[F (xt+1)]− F ∗ ≤ γK(E[F (xt)]− F ∗) +
1− γK

1− γ

5L

4

I(Bt < n)σ2

Bt
(62)

Therefore

E[F (xt+1)]− F (xt)

γK(t+1)
≤ (E[F (xt)]− F ∗)

γKt
+

1− γK

(1− γ)γK(t+1)
(
5L

4

I(Bt < n)σ2

Bt
) (63)

Now take sum with respect to the outer loop parameter t and take Bt as a constant, we
can get

E[F (xT+1)]− F ∗ ≤ γKT (F (x1)− F ∗) + γK(T+1)
T∑

t=1

1− γK

(1− γ)γK(t+1)

5L

4

I(Bt < n)σ2

Bt

≤ γKT∆F + γK(T+1) 1− γK

1− γ

T∑

t=1

1

γK(t+1)

5L

4

I(Bt < n)σ2

Bt

= γKT∆F + γK(T+1) 1− γK

1− γ

T∑

t=1

1

γK(t+1)

5L

4

I(Bt < n)σ2

Bt

= γKT∆F +
5LI(Bt < n)σ2

4Bt

1− γK

1− γ

1− γKT

1− γK

= γKT∆F +
5LI(Bt < n)σ2

4Bt

1− γKT

1− γ

(64)

Since 1− γKT < 1, γ = 1− mαtµ
2

+
Lα2

tµ

4
= 1− m2µ

2L
+ m2µ

4L
= 1− m2µ

4L
, hence

E[F (xT+1)]− F ∗ ≤ γKT∆F +
5LI(Bt < n)σ2

4Bt(1 − γ)

= γKT∆F +
5I(Bt < n)σ2

Btm2µ

(65)

Therefore when taking T = 1∨(log 2∆F
ǫ

)/(K log 1
γ
) = O((log 2∆F

ǫ
)/(Kµ)), Bt = n∧ 10σ2

ǫm2µ
.

Then the total number of stochastic gradient computations is

TB + TKb = O

(
(n ∧ σ2

µǫ
+ b

√
b)(

1

µ
√
b
log

1

ǫ
)

)

= O

(
(n ∧ σ2

µǫ
)

1

µ
√
b
log

1

ǫ
+

b

µ
log

1

ǫ

) (66)

D Algorithm Implementation and More Experimental Details

D.1 Algorithm

We provide the implementation of Variance Reduced AdaGrad (VR-AdaGrad) in Algo-
rithm 4 when h(x) = 0. Note that this implementation is actually a simple combination of the
AdaGrad algorithm and the SVRAMD algorithm The implementation can be further extended
to the case when h(x) 6= 0, but the form would depend on the regularization function h(x). For
example, the AdaGrad algorithm with h(x) = ‖x‖1, a nonsmooth regularization, can be found
in Duchi et al. (2011). The VR-AdaGrad algorithm with h(x) = ‖x‖1 will therefore have a
similar form. To change the algorithm into VR-RMSProp, one can simply replace the global
sum design of the denominator with the exponential moving average in line 9.
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Algorithm 4 Variance Reduced AdaGrad Algorithm

1: Input: Number of stages T , initial x1, step sizes {αt}Tt=1, batch sizes {Bt}Tt=1, mini-batch

sizes {bt}Tt=1, constant m
2: for t = 1 to T do
3: Randomly sample a batch It with size Bt

4: gt = ∇fIt(xt)
5: yt1 = xt

6: for k = 1 to K do
7: Randomly pick sample Ĩt of size bt
8: vtk = ∇fĨt

(ytk)−∇fĨt
(yt1) + gt

9: ytk+1 = ytk − αtvtk/(
√∑t−1

τ=1

∑K
i=1 v

τ2
i +

∑k
i=1 v

t2
i +m)

10: end for
11: xt+1 = ytK+1
12: end for
13: Return (Smooth case) Uniformly sample xt∗ from {ytk}

K,T
k=1,t=1; (P-L case) xt∗ = xT+1

D.2 Experiment Details

Datasets. We used three datasets in our experiments. The MNIST (Schölkopf and Smola,
2002) dataset has 50k training images and 10k testing images of handwritten digits. The images
were normalized before fitting into the neural networks. The CIFAR10 dataset (Krizhevsky et al.,
2009) also has 50k training images and 10k testing images of different objects in 10 classes.
The images were normalized with respect to each channel (3 channels in total) before fitting
into the network. The CIFAR-100 dataset splits the original CIFAR-10 dataset further into
100 classes, each with 500 training images and 100 testing images.

Network Architecture. For the MNIST dataset, we used a one-hidden layer fully con-
nected neural network as the architecture. The hidden layer size was 64 and we used the Relu
activation function (Nair and Hinton, 2010). The logsoftmax activation function was applied
to the final output. For CIFAR-10, we used the standard LeNet (LeCun et al., 1998) with
two layers of convolutions of size 5. The two layers have 6 and 16 channels respectively. Relu
activation and max pooling are applied to the output of each convolutional layer. The output
is then applied sequentially to three fully connected layers of size 120, 84 and 10 with Relu
activation functions. For CIFAR-100, the ResNet-20 model follows the official implementation
in He et al. (2016) by Li et al. (2020).

Parameter Tuning. For the initial step size α0, we have tuned over {1, 0.5, 0.1, 0.01, 0.005, 0.002, 0.001}
for all the algorithms. For the batch sizes of the original algorithms, we have followed the choices
by Zhou et al. (2018b) for ProxSGD and adaptive algorithms (Zhou et al. (2018b) used Adam
but here we use AdaGrad and RMSProp). For the batch sizes and mini batch sizes Bt and
bt of the variance reduced algorithms, we have tuned over bt = {64, 128, 256, 512, 1024} and
r = {4, 8, 16, 32, 64}. For the constant m added to the denominator matrix Ht in AdaGrad and
RMSProp, we choose a reasonable value m=1e-3, which is slightly larger than the values set
in the original implementations to guarantee strong convexity (Kingma and Ba, 2015). The
other parameters are set to be the default values. For example, the exponential moving average
parameter β in RMSProp (and VR-RMSProp) is set to be 0.999. No weight decay is applied
to any algorithm in our experiments. The parameters that generate the reported results are
provided in Table 3, 4, and 5.

D.3 Additional Experiments

We provide the performances of AdaGrad, RMSProp and their variance reduced variants with
different step sizes in figure 4 and 5. A too-large step size actually makes the convergence of
AdaGrad and RMSProp slower. Note that variance reduction always works well in these figures,
and it results in faster convergence and better testing accuracy under both step size settings.
Therefore for different step sizes, we can apply variance reduction to get faster training and
better performances.
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Table 3: Parameter settings on the MNIST dataset. The batch size Bt is equal to
bt ∗ r.

Algorithms Step size Mini batch size bt Batch size ratio r
ProxSGD 0.1 1024 N.A.
AdaGrad 0.001 2048 N.A.

RMSProp 0.001 1024 N.A.

ProxSVRG+ 0.1 256 32

VR-AdaGrad 0.001 256 32

VR-RMSProp 0.001 256 64

Table 4: Parameter settings on the CIFAR-10 dataset. The batch size Bt is equal
to bt ∗ r.

Algorithms Step size Mini batch size bt Batch size ratio r
ProxSGD 0.1 1024 N.A.
AdaGrad 0.001 1024 N.A.

RMSProp 0.001 1024 N.A.

ProxSVRG+ 0.1 512 64

VR-AdaGrad 0.001 512 64

VR-RMSProp 0.001 512 64

Table 5: Parameter settings on the CIFAR-100 dataset. The batch size Bt is equal
to bt ∗ r.

Algorithms Step size Mini batch size bt Batch size ratio r
ProxSGD 0.1 1024 N.A.
AdaGrad 0.001 1024 N.A.

RMSProp 0.001 1024 N.A.

ProxSVRG+ 0.1 512 64

VR-AdaGrad 0.001 512 64

VR-RMSProp 0.001 512 64

The baseline ratios of ProxSVRG+ and ProxSGD in different datasets are provided in
Figure 6. Note that ProxSVRG+ only needs a small batch size ratio (r = 4) to be faster than
ProxSGD.



Variance Reduction on General Adaptive Stochastic Mirror Descent 33

20 40 60 80 100

Epochs

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
L
o
s
s

AdaGrad, lr=1e-3

VR-AdaGrad, lr=1e-3

AdaGrad, lr=1e-2

VR-AdaGrad, lr=1e-2
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Fig. 4: Comparison of AdaGrad and VR-AdaGrad on CIFAR-10 using different
learning rates. The other parameters are the same as in Table 4. “lr” stands for
learning rate, which is a different name for step size. The results are averaged over
5 independent runs

20 40 60 80 100

Epochs

0.0

0.5

1.0

1.5

2.0

2.5

��
��
��
��

L
o
s
s

����� ¡¢ £¤¥¦§¨©

ª«¬­®¯°±²³´ µ¶·¸¹º»

¼½¾¿ÀÁÂÃ ÄÅÆÇÈÉÊ

ËÌÍÎÏÐÑÒÓÔÕ Ö×ØÙÚÛÜ

(a) CIFAR10 Training Loss.
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(b) CIFAR10 Testing Acc.

Fig. 5: Comparison of RMSProp and VR-RMSProp on CIFAR-10 using different
learning rates. The other parameters are the same as in Table 4. “lr” stands for
learning rate, which is a different name for step size. lr=1e-2 is too large for
RMSProp and the algorithm diverges. The results are averaged over 5 independent
runs
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(a) ProxSVRG+ on MNIST
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(b) ProxSVRG+ on CIFAR10
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(c) ProxSVRG+ on CI-
FAR100

Fig. 6: 6a. training loss of ProxSGD and ProxSVRG+ with different r on MNIST.
6b. training loss of ProxSGD and ProxSVRG+ with different r on CIFAR-10. 6c.
training loss of ProxSGD and ProxSVRG+ with different r on CIFAR-100. The
other parameters are the same as in Table 3, 4. The mini batch size is set to be
the same as AdaGrad and RMSProp to ensure fair comparisons. The results were
averaged over three independent runs.
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