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Abstract

The recent emergence of reinforcement learning (RL) has created a demand for
robust statistical inference methods for the parameter estimates computed using these
algorithms. Existing methods for inference in online learning are restricted to settings
involving independently sampled observations, while inference methods in RL have so
far been limited to the batch setting. The bootstrap is a flexible and efficient approach
for statistical inference in online learning algorithms, but its efficacy in settings involv-
ing Markov noise, such as RL, has yet to be explored. In this paper, we study the use
of the online bootstrap method for inference in RL policy evaluation. In particular, we
focus on the temporal difference (TD) learning and Gradient TD (GTD) learning algo-
rithms, which are themselves special instances of linear stochastic approximation under
Markov noise. The method is shown to be distributionally consistent for statistical in-
ference in policy evaluation, and numerical experiments are included to demonstrate
the effectiveness of this algorithm across a range of real RL environments.
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1 Introduction

Reinforcement learning (RL) has achieved phenomenal success in diverse fields, such as
robotics (Gu et al., 2017), video games (Mnih et al., 2015), autonomous driving (Sallab
et al., 2017), precision medicine (Parekh and Jacobs, 2019), ride-sharing (Xu et al., 2018),
and recommendation systems (Chen et al., 2019). A fundamental task in RL is policy eval-
uation, where the goal is to estimate the value function associated with a given policy from
a trajectory of dependent observations. These observations may be sequentially generated
either by the same policy (on-policy), or by an unknown behavior policy (off-policy). Stan-
dard algorithms used to perform on-policy and off-policy tasks include temporal difference
(TD) learning (Sutton, 1988) and gradient temporal difference (GTD) learning (Sutton et al.,
2009), respectively. Both are instances of linear stochastic approximation.

While RL has proven to be remarkably successful in various applications, there are still
many challenges in real-world systems that prevent it from being applied at scale in practice
(Dulac-Arnold et al., 2021). A primary bottleneck in real applications is that environmental
interactions are prohibitively expensive. Offline RL (Levine et al., 2020) attempts to address
this by training and evaluating multiple policies using pre-existing datasets collected using
a single policy, thereby circumventing the need for additional environment interactions. Un-
fortunately, off-policy value estimates can be challenging in cases where the trained policy
is substantially different from the behavior policy, i.e., the policy that was used to collect
the data. In such cases, it is important to evaluate policies in an online setting prior to final
deployment. Moreover, in many real applications, we are often interested in obtaining not
just the point estimate of the value function, but also a measure of the statistical uncer-
tainty associated with the estimate. For example, online randomized experiments, e.g., A/B
testing, have been widely conducted by technological /pharmaceutical companies to compare
a new product with an old one. Recent studies (Li et al., 2021; Shi et al., 2021, 2022) have
used various online updating methods to form sequential testing procedures. In these on-
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constructing a valid hypothesis testing. In recommender systems, a new policy is typically
tested on a small fraction of user traffic in an online fashion prior to deployment. Providing a
confidence interval of the predicted value estimation can help make a recommendation with
more confidence because an unstable recommendation can potentially reduce users’ trust in
the system (Adomavicius and Zhang, 2012; Chen et al., 2019). Similarly, in autonomous
driving, policies must be evaluated on real test tracks prior to real-world application and it
is often risky to run a policy without a statistically sound estimate of its quality.

Existing inference methods in RL mainly focus on off-policy evaluation using batch up-
dates, which are often computationally inefficient in sequential data scenarios. This moti-

vates the development of online inferential tools for policy evaluation in RL.
Our Contributions

In this work, we present a fully online multiplier-type bootstrap algorithm that allows for
statistical inference in RL policy evaluation. To the best of our knowledge, this is the first
online uncertainty quantification method for sequential decision making under Markovian
noise. Since our method is designed for the general framework of stochastic approximation,
it applies to both the on-policy and off-policy evaluation tasks, and also to other online
learning problems such as stochastic gradient descent (SGD) under Markov noise.

From a theoretical standpoint, our main contribution is to establish the distributional
consistency of our bootstrap estimator within the Markovian noise setting. Existing inference
methods for online learning (Fang et al., 2018; Chen et al., 2020) have mainly focused on
the i.i.d. noise setting, which allows for asymptotic analysis using the martingale properties
of the residual noise in the stochastic approximation update. In the present work, the
Markovian noise assumption precludes the direct use of martingale central limit theory to
characterize the asymptotic properties of our estimator, and necessitates a novel combination
of techniques from the Markov Chain Monte-Carlo (MCMC), stochastic approximation, and
RL finite-sample analysis literature. Notably, our theoretical results hold under standard

assumptions from the RL literature, and do not require any kind of projection step in the



stochastic approximation algorithm, despite the presence of Markovian noise.

Our numerical experiments demonstrate that the algorithm performs on par with the
vanilla (offline) bootstrap method across a range of environments, but with substantial
savings in terms of data storage and computational cost. This is especially pertinent to
computationally demanding algorithms such as deep Q-learning (Mnih et al., 2015), where
uncertainty quantification using the standard bootstrap method is often unfeasible due to
the massive computational and storage costs involved.

To summarize, our contributions are threefold. First, we develop a fully online inference
method for linear stochastic approximation under Markov noise, with applications to both
on-policy (TD) and off-policy (GTD) reinforcement learning algorithms. Second, we prove
that the confidence intervals constructed using our bootstrap algorithm are asymptotically
valid. Third, we demonstrate the efficacy of this method through a number of numerical
experiments, including on-policy evaluation with linear TD learning (Sutton and Barto,
2018), deep Q-learning (Mnih et al., 2015), and off-policy evaluation with GTD learning
(Sutton et al., 2008, 2009).

Related Work

There has recently been a growth of interest in developing inferential tools for RL and other
online learning algorithms such as bandits and SGD. Li et al. (2018) proposed a statistical
inference method for M-estimation problems based on fixed step-size SGD. Chen et al. (2020)
derived two kinds of estimators for the asymptotic variance of the averaged SGD parameter
estimate. Fang et al. (2018) proposed an online estimator for SGD based on randomly
perturbing the parameter estimates at each time step. Chen et al. (2021) developed an
SGD-based algorithm for online decision making, derived an inverse probability weighted
value estimator to estimate the optimal value, and proposed plug-in estimators to estimate
the variance of the parameters. While all of these methods are well suited to cases where
the data is generated by an i.i.d. sampling procedure, they are unable to account for the

underlying dependence structure of the observations generated by RL algorithms.

4



A closely related field of study is that of dynamic treatment regimes (DTR). It generalizes
personalized medicine to time-varying treatment settings where treatments are sequentially
adapted to a patient’s temporal state. There are similarities to the online learning methods
studied here, and recent works have explored the application of RL algorithms such as Q-
learning to this domain (Chakraborty and Murphy, 2014), with an emphasis on quantifying
the statistical uncertainty associated with their estimators. Ertefaie and Strawderman (2018)
develop an estimation procedure for the optimal DTR over an indefinite time period and
derive associated large-sample results. Luckett et al. (2019) proposed a new RL method
for estimating an optimal treatment regime applicable to the mobile health domain with
an infinite time horizon, and established the consistency and asymptotic normality of their
estimators under relevant assumptions. These works focus on the estimation of the optimal
policy, while ours deals with the inference of the value function for a given policy.

Within the RL and bandit settings, there are a number of recent works that consider the
problem of uncertainty quantification of the policy’s parameter estimates or value function,
focusing mainly on the off-policy setting. Zhang et al. (2021) showed how M-estimation
can be extended to provide inferential methods for data collected with bandit algorithms.
Kuzborskij et al. (2021) proposed a method for confidence interval estimation based on the
Efron-Stein tail inequality within the off-policy contextual bandit setting. Both these meth-
ods apply to the bandit setting, where there is no sequential dependence in state transitions.
Within the off-policy RL setting, Dai et al. (2020) proposed a method for computing confi-
dence intervals for a target policy’s value based on an optimization formulation of the value
estimation problem. Jiang and Huang (2020) derive minimax value intervals for off-policy
evaluation that satisfy a certain double robustness criterion. However, both papers assume
a generative model, where observation tuples are sampled independently from the station-
ary distribution of the underlying Markov decision process. Shi et al. (2021) proposed an
inference method for the state-action value (Q) function via sieve methods to approximate

the Q-function. This is an offline method that directly computes the value estimates using



batch updates. On the other hand, ours is a fully online inference method.

A number of recent works in the RL literature (Bhandari et al., 2018; Srikant and Ying,
2019; Xu et al., 2020; Kaledin et al., 2020) have focused on establishing finite sample bounds
for the value estimates in TD learning and related algorithms. While these methods provide
tight non-asymptotic bounds for the value function under standard assumptions, they do not
allow for statistical inference of the estimates. By contrast, the distributional consistency
guaranteed by our method allows for the construction of asymptotically exact confidence
intervals for the value estimates.

Finally, our online bootstrap algorithm is related to a few recent works that have applied
bootstrapping to the bandit and RL settings in various contexts. Wang et al. (2020) proposed
a perturbation-based bootstrap exploration method in the bandit setting. Hao et al. (2019)
utilized multiplier bootstrap to estimate the upper confidence bound for exploration in the
bandit settings. Within the RL setting, White and White (2010) used the moving block
bootstrap method to compute confidence intervals for value estimates in continuous Markov
decision processes. Hanna et al. (2017) presented two model-based bootstrap methods to
compute confidence bounds for off-policy value estimates. Hao et al. (2021) proposed a
subsampled bootstrap method for the statistical inference of value estimates computed using
the fitted Q-evaluation algorithm. All of these methods require access to the entire dataset
in order to carry out the resampling procedure and are therefore only applicable to the batch
RL setting. In contrast, the method proposed here computes the bootstrap estimates in an
online manner and does not require storage of past observations.

The rest of this paper is organized as follows: In Section 2, we introduce the linear
stochastic approximation algorithm and provide some relevant background on the RL algo-
rithms. In Section 3, we present the online bootstrap algorithm. In Section 4, we discuss
our theoretical results. In Section 5, we present some numerical simulations that demon-
strate the efficacy of the algorithm in various settings, including on-policy TD learning in

the FrozenLake RL environment, deep-Q learning in the Atari Pong RL environment, and



off-policy GTD learning in a simulated MDP setting and a real healthcare setting. Finally,

in Section 6, we summarize our work and discuss some interesting future directions.

2 Background

2.1 Linear Stochastic Approximation Under Markov Noise

Stochastic approximation is a classic algorithm with a long history in optimization (Robbins
and Monro, 1951). In its linear form, the algorithm is designed to solve the equation A0 = b,
where A € R%¢ and b € R? are unknown deterministic quantities, and # € © C R? is the
parameter of interest. In the present setting, we are given a sequence of observations of the
form {(A(X,),b(X;))}i>1, where {X;};>1 is an ergodic Markov chain with state space X’ and
stationary distribution p, and A : X — R%4 and b : X — R? are matrix and vector-valued
functions defined on the state space X', whose expectations under the stationary distribution
p are A and b, respectively.

The update step for this algorithm is given by
Ori1 = O + 1 (A(Xp11)0 — b(Xi11), (2.1)

where 6, € O is the stochastic approximation iterate i.e., the current estimate of €, and
{at}i>1 is a sequence of polynomially decaying step-sizes, i.e., a; = «ap/t", for some ag > 0
and learning rate n € (%, 1).

Our algorithm applies not to the iterate 6, itself, but to the averaged iterate 6§, =
%Zzzl 0;. This averaging scheme is referred to as Polyak-Ruppert averaging, after Rup-
pert (1988) and Polyak and Juditsky (1992), who established the asymptotic normality of

0, for strongly convex objective functions under Martingale noise.

2.2 Policy Evaluation In Reinforcement Learning

In this section, we briefly review some background theory on Markov reward processes and

policy evaluation, and describe the temporal difference (TD) learning and Gradient TD



(GTD) learning algorithms as instances of the linear stochastic approximation algorithm
with Markov noise in (2.1). In addition to these, recent studies (Mou et al., 2021; Durmus
et al., 2021; Chen et al., 2021) show that other TD variates like n-step TD and TD(\) are also
special cases of Markovian linear stochastic approximation algorithms, which enables their
studies on the finite-sample convergence guarantees of these RL algorithms. Our setting can
be viewed an a complementary to the martingale noise setting considered in offline policy
evaluation problems (Luckett et al., 2019; Shi et al., 2021). These methods do not allow for

an online update but instead consider a batch update or an offline update.
Markov Reward Processes

A Markov Decision Process (MDP) is denoted as M = (S, A, P, R, ), where S is the state
space, A is a finite set of actions, P is the transition kernel, R is the reward function, and
v € (0,1) is a discount factor.

A stationary policy m maps a state s € S to a probability space via the distribution
7(-|s). At time step ¢, suppose the learner at state s; € S, following the policy =, takes the
action a; € A with probability m(a|s;). Then the transition kernel P(s;41]s¢, a;) determines
the probability of being in the next state s;;; € S at the next time step, and the reward
Tir1 = R(St, ar, Se41), assumed to be bounded by rpax, is obtained.

The stationary policy 7 and the MDP together induce a Markov Reward Process (MRP)
M™ = (M, 7), with transition kernel P™(s'|s) = > . P(s'|s,a)m(a|s). Similarly, the ex-
pected reward function of the MRP is given by

R™(s) = Z m(als) Z P(s'|s,a)R(s,a,s").
acA s'eS
The ergodicity of the Markov chain ensures the existence of a stationary state distribution

1 for the MRP over the state space under the stationary policy 7.



Value Functions

The value function associated with a policy 7, denoted as V™ : § — R, is the discounted

sum of expected rewards from starting at a state and following policy =:

VT(s)=E

Z’th”(stﬂso = s] , S€S,
=0

where the expectation is taken over the set of trajectories generated according to the tran-
sition kernel P7.

The value function is the unique solution to the Bellman equation
VT(s) = R™(s) + vEypris) (V7 (s")], s€S. (2.2)
We define the Bellman operator on the space of value functions as
TV (s) = R™(s) + VEgpr(is)[V ()],
for any value function V' : § — R. Then V7 is the unique fixed point of the operator T™.

TD Learning With Linear Function Approximation

TD learning is widely used for the estimation of the value function for a given policy. The
classic version of this algorithm, now known as tabular TD learning (Sutton, 1988), at-
tempts to compute value estimates for every state in the state space. In modern RL ap-
plications, such an approach becomes infeasible, as real-world problems often involve very
large state spaces. In those cases, a natural approach is to approximate the value func-
tion as Vjy(s) = Zle 0i(8)0; = ¢(s)70, where {p; : S — R}L| is a set of basis functions,
B(s) = [p1(s),...,0aq(s)]T, and @ € R? denotes the parameter. Then, given a sequence of

observations of the form {(s¢, 741, St+1) }>0, the linear TD update is given by

Opr1 < O + cuqn ((¢(3t) - ’Y¢(5t+1)T9t - 7”t+1) ¢(3t) (2-3>

When the state space S is finite, the states may be enumerated as {1,...,|S|}, with the

integer i corresponding to s, the ith state in S. We can then express the transition kernel



P™ as the matrix P™ € RISXISI with P = P (s9)|s), and the expected rewards at each
state as the vector r™ € RISI with r7 = R™(s®).
Using this formulation, linear TD learning may be seen as an instance of the linear

stochastic approximation update (2.1), solving the linear equation Af = b, with

A=d"Z(I —vP")®, and b=d'Zr",

where ® € RISI*? denotes the feature matrix, containing the features ¢(s),1 < i < |S| in
its rows, and = € RISXIS! is a diagonal matrix with elements corresponding to the entries of
the stationary distribution p..

For samples X; = (s, 7441, St+1) generated sequentially from the MRP M™, we can run

linear stochastic approximation using the quantities

A(Xy) = d(st) (p(se) — W5(5t+1))T7 and B(Xt) = ri110(5¢).

GTD Learning For Off-Policy Evaluation

In off-policy evaluation, the goal is to estimate the value of a target policy 7, given a set of
observations generated by a behavior policy m,. This is an important problem in RL, as it
enables us to evaluate several policies using data generated by a different behavior policy.

Unlike the on-policy setting, the traditional TD learning is no longer feasible due to its
convergence issue in the off-policy setting (Sutton and Barto, 2018). On the other hand,
Gradient TD (GTD) algorithms (Sutton et al., 2008, 2009) are guaranteed to converge even
in the off-policy setting.

The algorithm uses a form of importance sampling to correct for the discrepancy between

the target and behavior policy. This is done by scaling the updates by an importance

m(at|st)

sampling ratio p; = Y CAIE

There are two variants of this algorithm, GTD1 and GTD2, which seek to minimize the
Norm of the Expected TD Update (NEU), and the Mean-Square Projected Bellman Error

(MSPBE), respectively. These loss functions have a similar structure, and can be unified as

J(0) = |@TE(r™ + v P05 — t9) |31,
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where M € R%*? is the identity under NEU, and M = ®TZ® under MSPBE.
In order to minimize this loss function, a pseudo-stochastic gradient method was pro-

posed, involving two simultaneous updates:

Yey1 = Yp + g (b + A0y — Myyy),

01 =0, + at+1A$yt7

where by = pri1d(s) and A, = pod(s) (d(s)) — vd(si1)) " are unbiased estimators for
b=®"=r" and A = ®T=(I — vP™)®, respectively. Similarly, M; is an unbiased estimator
for M, with M; = I; under NEU and M; = ¢(s;)¢(s;)T under MSPBE.

These two steps can be combined into a single linear stochastic approximation update

solving the linear equation A© = b, where

=) =) ()

As in case of TD learning with linear function approximation, for samples generated se-
quentially under the behavior policy 7,, we denote the observed tuples as X; = (s¢, 441, S¢41)-

Then we can run linear stochastic approximation using the quantities

= (8 ). = (1), wa o (%),

3 Method

3.1 Online Bootstrap Algorithm

Given a dataset {A(X;), b(X;)}i=1 of sequentially generated observations, the Polyak-Ruppert
averaged iterate estimates the parameter 6, as 6, = % Zle 0;, where 6; is defined in (2.1). Un-
der the assumptions listed in Section 4, 6, is a consistent estimator of 6, and its distribution
is asymptotically Gaussian with mean 6, and a certain covariance matrix. The estimation
of this asymptotic covariance is crucial for statistical inference, but there is presently no
straightforward way to estimate it in the presence of Markov noise. This motivates the

development of the online bootstrap method.
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The online bootstrap method is based on the following perturbed stochastic approxima-

tion update, which is performed in parallel to the main update (2.1):
ét+1 =0, + at—i-th—i-l(A(Xt—l—l)ét - B(Xt+1))a (3.1)

where {W;};>1 is a bounded sequence of i.i.d. random variables with mean 1 and variance
1, with Wi < Wy a.s. for some finite constant Wy, > 0. The * notation is used here to
distinguish the perturbed iterates from those of the standard update (2.1). Let 5t denote
the averaged iterate of the sequence {ét}tZO- In Theorem 4.2 of the Section 4, we show
that the distributions of v/#(4; — 6.) and \/E(ét — 0,) are asymptotically equivalent. This
is a fundamental result for the validity of our online bootstrap algorithm, as it enables
us to conduct inference on the former distribution by using the latter as a proxy. The
latter distribution may be approximated by bootstrapping B samples of 5,: — 6,. For each
b=1,...,B, at time step t 4+ 1, we update the perturbed SGD iterates éﬁb) as follows:

00, = 00+ ap WP (A(Xi1)0 — b(Xis1)),
t+1

A Ab

1T o~ i
where W are i.i.d. random variates with mean one and variance one. The updates can be
performed in a fully online manner, as they only rely on the latest available data point X; .
Furthermore, since all B trajectories of perturbed iterates depend on a single trajectory of
the Markov chain {X,}, the iterates can be updated in parallel. Intuitively, the bootstrap
method proposed here circumvents the issue of higher-order dependence in the SA iterates
by enabling us to perform statistical inference using the cross-section of perturbed iterates

generated at each time step, as opposed to using the highly dependent iterates generated by

a single trajectory. Algorithm 1 presents the entire online update scheme.

3.2 Constructing Confidence Intervals

We use two approaches to construct confidence intervals using the bootstrap empirical dis-

tribution - the quantile and the standard error estimators. As the names suggest, these are
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Algorithm 1: Online Bootstrap For Linear Stochastic Approximation

Input : Number of bootstrap samples B, Initial step size oy > 0, Learning rate
nE ( 1), Initial estimates 6y = 90, b=1,...,B.

1 fort=20,1,2,... do
2 Observe fl(XtH), b(Xyi1).
3 Compute oyqq = agn~ D,
4 Update 6,1 + (975 + a1 (A(Xp1)0r — b(Xi11)).
5 Update 0,41 + t+1 (t0; 4+ i1 1).
6 forb=1,2,...,B do
7 Update éfH — 0+ at+1thLrl(fl(Xt+1)0Af — b(X411))-
8 Update 67, + o1 (0 + 00, ).
9 end
10 end

~ \B
Output: Bootstrap estimates {0f+1}
b=1

based on estimating the quantiles and standard errors of the bootstrap errors. Let g5 denote

the 0th quantile of the empirical bootstrap distribution {9:,56) — Ht}B . Then the (1 — «)
quantile-based confidence interval for 8 is given by (6; + ¢ /2, 0 + ¢i_a /2)-

Similarly, let 33 denote the sample covariance matrix of the empirical distribution, and
let & = 1/diag(¥). Then the (1 — «) standard error-based confidence interval for 6 is
given by (0, + z, /20, 0, + 214 /20), where z, denotes the ath quantile of the standard normal
distribution. The validity of the SE confidence interval relies on the consistency of the second
moment of §,. Moment consistency is directly implied by the distributional consistency result
of Theorem 4.2 under slightly stronger conditions (Cheng, 2015).

In the task of policy evaluation in RL, we are interested in constructing confidence in-
tervals for the value function. Under linear function approximation, the value estimate
corresponding to the policy 7, given the averaged iterate 6y, is vg,(s) = ¢(s)70;, where ¢(s)
denotes the feature mapping for the state s € S. More generally, we are interested in esti-

mating the value associated with a reference distribution v over the state space S. In this

case, the value estimate for the policy 7 is given by
ng / o(s th (ds).
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Confidence intervals for Vézr(y) can be constructed using the quantile or standard error estima-

B
tors. Let gs denote the dth quantile of the bootstrapped value estimates {Vg{b) (v) — Vé’:(u)} )
t b=1

Then the (1 — «) quantile-based confidence interval for the value estimate is given by

(Vo () + s, Vi (V) + G1ag2) -

Similarly, let

s = ([ ¢<s>u<ds>)Ti ([ otomas)

denote the sample covariance matrix of the bootstrapped value estimates. Then the (1 — «)

standard error-based confidence interval for the value estimate is given by

(V(;’Z(V) + 2a/20(V), V(;j(l/) + zl_a/g(}(u)) )

4 Distributional Consistency Result

4.1 Asymptotic Theory For Linear Stochastic Approximation Un-
der Markov Noise
In this section, we list our assumptions and state some relevant results pertaining to the

asymptotic theory of linear stochastic approximation.

(A1). The Markov chain {X;} is uniformly ergodic, with transition kernel P and unique

stationary distribution p.

Assumption (A1) is standard in the RL literature for the policy evaluation setting, espe-
cially in recent works on the finite-sample analysis of policy evaluation algorithms (Bhandari
et al., 2018; Srikant and Ying, 2019; Xu et al., 2020). It always holds for irreducible, aperiodic
Markov chains (Levin et al., 2017).

As a direct consequence of (A1), there exist constants M > 0 and x € (0,1) such that

sup HPt(:U, )= uH < MK, (4.1)
zeX
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where P'(z,-) denotes the t-step transition kernel, starting from state x (see e.g. Meyn
and Tweedie (2009); Douc et al. (2018)). Equation (4.1) characterizes the rate at which the
Markov chain {X;} approaches its stationary distribution p, when starting from an arbitrary
initial distribution.

Next, we define conditions on the noisy observations:
(A2). (i) There exists a matriz A and a vector b such that

A= lim E[A(X})], and b= lim E[b(X,)].

t—o00 t—o00

(ii) The matriz A is full rank and Hurwitz, i.e., all its eigenvalues have strictly negative real
parts.

(1ii) There exist constants Amax and byax such that

l;(:c) < bpax-

2

sup A0 < A 50
zEX F zEX

The conditions listed in (A2) are imposed in order to ensure convergence of the sequence
of iterates {6,}. (A2)(i) is self-explanatory, while (A2)(ii) is a standard assumption in the
stochastic approximation literature that ensures the stability of the algorithm (Polyak and
Juditsky, 1992; Srikant and Ying, 2019; Chen et al., 2020). It is generally considered a
reasonable assumption in the RL setting, both for TD learning (Bhandari et al., 2018; Hu
and Syed, 2019) and for GTD learning (Gupta et al., 2019). (A2)(iii) controls the behavior
of the Markov noise. In the RL setting, it holds whenever the feature maps ¢ and the reward
function R are bounded (Sutton and Barto, 2018). By (A2)(i) and (A2)(iii), we also have
that || ]|, < Apax 20d [[Bl], < b

By (A2), there exists a unique solution #, € © to the linear equation A = b. Further-

more, we can now write (2.1) as
Ori1 = 0 + i1 (Al — D) + ayppr€ria, (4.2)

where €, = (fl(XtH) — A)b, — (l;(XtH) — b) is a residual noise term.

Our final assumption has to do with the step sizes {4 }:

15



(A3). The step sizes are of the form ay = ag/t", t > 1, where g > 0 and the learning rate
€ (3,1).

Polynomially decaying step sizes are standard in the case of iterate averaging (Polyak
and Juditsky, 1992).
Under these conditions, we have the following almost sure rate of convergence result for

the update (4.2):

Proposition 4.1. Suppose that (A1)-(A3) hold. Letn € (1/2,1) be defined as in (A3), and

let v € (0,1 —1/2). Then the iterates of update (4.2) satisfy |6, — 6.||, = o(t™7), a.s.

This result establishes the consistency of the LSA iterate 6; in the Markov noise setting.
Additionally, it ensures that the iterates are bounded within a compact set without the need
for a projection scheme. A proof of the result is provided in the supplementary section.

By Lemma A.5 of Liang (2010), we can split the noise term in (4.2) into three parts as
@ =e+1+(, (4.3)

where e; is a martingale difference sequence, i.e., Ele;|F;_1] = 0, where F; is the natural
filtration associated with the Markov chain {X;}, while 1, and (; are decaying residual noise

terms.

Proposition 4.2. Assume conditions (A1)-(A3) hold. Then
V0, —60,) = N(0,A7'Q(A™1T),
where Q = limy_,o, Elese]], with e; defined as in (4.3).

Proposition 4.2 establishes a central limit theorem for the averaged iterate and provides
an explicit form for the asymptotic variance. Under i.i.d. noise, the asymptotic variance may
be estimated using a plug-in estimator (Chen et al., 2021). However, in the present setting,
we have () = limHooE[ete;r], where e; is the martingale component of the Markov noise

term ¢, as per the decomposition (4.3). To the best of our knowledge, there is no existing
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method to estimate e; by separating it from the other components of ¢;. Our online bootstrap
algorithm provides an efficient and theoretically sound way to estimate the distribution of
0,. The properties of its key component, the perturbed linear stochastic approximation, are

discussed in the following section.

4.2 Perturbed Linear Stochastic Approximation

We now study the asymptotic behavior of the perturbed linear stochastic approximation
update (3.1). As in the standard case, the mean field here is h(d) = Af — b, while the
observations are of the form H(0, X;,,) = Wt+1(f1(Xt+19 - E(Xt+1)). By the independence
and boundedness of W, H(6, X;y1) is an unbiased estimator of h(f) under the stationary
distribution of X;.

We may rewrite (3.1) in terms analogous to (4.2), as follows:

~

ét—i—l = ét + (07N (/_19,5 — B) + Oét+1€t+1, (44)

where &1 = (Wi A(Xyp1) — A)0, — (Wys1b(Xy41) — b) is the noise term.
Having established the almost sure rate of convergence for the standard LSA update

(4.2), the result may be straightforwardly extended to the perturbed update (4.4):

Proposition 4.3. Suppose that (A1)-(A3) hold. Letn € (1/2,1) be defined as in (A3), and

let v € (0,7 —1/2). Then the iterates of update (4.4) satisfy 0, — 0,

=o(t™" .S.
) o(t™), a.s

Next, we establish the theoretical validity of the online bootstrap algorithm of Section 3.

For this, we need the following lemma:

Lemma 4.1. Assume that (A1)-(A3) hold. Then

1
Vi

The proof is provided in the supplementary section. Note that Lemma 4.1 also holds for

VI = 0.) = =2 AT S Wi (A(Xi0)8 = b(Xinn)) + 0,(1). (45)

the update (4.2), since (4.4) reduces to (4.2) when W; =1 for all i. Hence we have

Vil =0 = = A7 S (A BXi) +0,(1). (46)
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Subtracting (4.6) from (4.5), we get

~

Vil — ) = - DY (Wi = D(A(Xi1)b = b(Xi11)) + 0p(1)- (4.7)

1 _

The final step is to establish the distributional consistency of the online bootstrap estima-
tor in the Kolmogorov metric. Suppose that the data D is generated under the probability
space {X, A, Pp}, while the bootstrap weights W = {W;}{_, are generated under an inde-
pendent probability space (€2, B,Pyy). Let Py p denote the conditional distribution given

the observed data D.

Theorem 4.2. Assume that (A1)-(A3) hold. Then, as B — oo and t — 0o, we have

sup
vERY

Pwip (\/f(ét —6,) < v) —Pp (\/Z(ét —0,) < v)‘ — 0, in probability. (4.8)
The proof is provided in the supplementary section. We note that the above result
applies to the sequence of probability measures Py p, where the datasize and the number
of bootstrap samples grows to infinity. In practice, there is a bootstrap Monte-Carlo error
associated with re-sampling from a finite number of bootstrap samples B. By choosing B
adequately large, the bootstrap Monte-Carlo error is generally ignored (DasGupta, 2008).
Theorem 4.2 establishes the theoretical foundation for using our online bootstrap esti-
mator for statistical inference. The distributional consistency of the bootstrap estimator in
terms of the Kolmogorov metric (4.8) enables us to construct asymptotically exact confi-

dence intervals for the estimator 6 or functions of the estimator, such as the value estimate

in TD learning under linear function approximation.

5 Experiments

In this section, we evaluate the performance of the online bootstrap algorithm through
numerical simulations across various settings. We construct two types of confidence intervals
using the online bootstrap algorithm - namely, the quantile estimator and the standard error

estimator, as defined in the previous section. All confidence intervals were constructed to
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have a coverage of 95%. In all cases, we set the number of bootstrap samples B to 200, the
learning rate i to 3/4, and the initial parameter §y to the zero vector. The random variates
W, are sampled from the uniform distribution over the interval (1 —1/v/3,141/+/3), so they
are bounded and have mean 1, variance 1.

While our results apply most naturally to the infinite-horizon (continual) setting due to
our assumption of ergodicity and the existence of a unique stationary distribution, they can
be applied to the finite-horizon (episodic) setting in a straightforward manner. To accomplish
this, we simply concatenate the individual episodes to form a trajectory of infinite length,
and perform inference on the parameters with respect to this infinite-horizon embedding of
the MDP. Similar approach has also been applied in the experiments of other RL literature
(Dai et al., 2020; Xu et al., 2020). The theoretical validity of such a concatenation procedure
has been studied by Bojun (2020).

The main benchmark we use to measure our algorithm’s performance is the vanilla boot-
strap, which is an offline method that requires the entire batch of samples for computation.
Bootstrap-based inference is highly versatile with regard to the choice of policy evaluation
algorithm, and is known to provide better second-order accuracy even when the asymptotic
distribution is available (Hall, 1992). It has already been studied in the RL literature in var-
ious contexts (White and White, 2010; Hanna et al., 2017; Hao et al., 2021), and naturally
allows for a like-for-like comparison with our method. Therefore, we opt to use the vanilla
bootstrap as our primary comparison method. In order to ensure a fair comparison, we use
the same number of bootstrap samples, and within each sample, we use the same number of

re-sampled observations as the size of the original dataset.

5.1 On-Policy Value Inference For FrozenLake RL Environment

Next, we consider the Frozenlake environment from OpenAl gym (Brockman et al., 2016).
Here the RL agent controls the movement of a character in an 8 x 8 grid world. The starting

point is the first tile of the grid, and the goal is to reach the end tile of the grid. The rest of
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the tiles are either walkable or absorbing states. A reward of 1 is awarded if the character
reaches the target tile, and the reward for any other state transition is 0.

We use linear TD learning to estimate the value function associated with a near-optimal
policy trained using Q-learning (Sutton and Barto, 2018). For the compared vanilla (offline)
bootstrap method, we choose to resample the observations by episodes, rather than by sample
transitions, as suggested by Hao et al. (2021), as the sample transitions may fail to capture
the sequential dependence in state transitions.

Figure 1a shows an example of the confidence intervals generated for the value estimate
of the initial state, using both the online and offline bootstrap methods. The true value
function for that state, computed analytically using the transition probability matrix, is
included for reference. As in the previous experiment, we also examine the empirical coverage
probabilities, in Figure 1b. Both methods are seen to achieve the nominal coverage of 95%

within approximately 1000 episodes.
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(a) CI Example (b) Empirical Coverage Probabilities

Figure 1: Statistical inference in the Frozen Lake RL environment: Figure la shows an
example trajectory for the Cls generated using the online and offline bootstrap methods.
The value estimates are for the initial state; the true value for that state is included for
comparison. Figure 1b shows the empirical coverage probabilities for the value estimates of
the initial state, based on 200 repeated experiments using the online and offline bootstrap
methods, with 2000 episodes per run.

Figure 2 shows the sensitivity of the widths of the CIs generated by the online bootstrap
method with respect to the initial step size ap and the learning rate n. Similarly, Figure

3 shows the sensitivity of the empirical coverage of the generated Cls with respect to the
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step size parameters. These figures demonstrate that the online bootstrap method is quite
robust with respect to the step size, which is one of the only user-defined parameters in the

algorithm (alongside the choice of distribution for the random perturbations ;).
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Figure 2: Statistical inference in the Frozen Lake RL environment: Figure 2a shows the
sensitivity of the online bootstrap CI widths with respect to the initial step size ay. The
legend specifies the values of the initial step sizes used. Similarly, Figure 2b shows the
sensitivity of the CI widths with respect to the learning rate 7.
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Figure 3: Statistical inference in the Frozen Lake RL environment: Figure 3a shows the
sensitivity of the online bootstrap CI empirical coverage with respect to the initial step size
ap. The legend specifies the values of the initial step sizes used. Similarly, Figure 3b shows
the sensitivity of the empirical coverage with respect to the learning rate 7.

5.2 On-policy Value Inference For Atari Pong RL Environment

In this experiment, we consider the problem of deep Q-learning (Mnih et al., 2015) in the

Atari Pong environment (Brockman et al., 2016). Here the agent controls a paddle in a game

21



of pong, competing against a system paddle, as depicted in Figure 4a. At the end of each
round, a score of 1 is awarded when a paddle hits the ball past the other paddle. The game
is won by the paddle that first reaches a score of 21.

In terms of the RL environment, a reward of 1 is awarded (deducted) when the agent
wins (loses) a round. An episode ends when the game is won or lost. The total reward for
the episode is the net score accumulated by the agent. Rewards are scaled by 0.1 before
being used as inputs to the RL agent. The state inputs to the agent are the raw pixels (RGB
images) generated by the game engine. So each state is an array of shape (210, 160, 3). There
are 6 discrete actions available to the agent at each step.

Our goal here is to learn a linear function approximation of the value function associated
with a given policy. However, in this case, since the states are represented as 3-way tensors,
we cannot use these states as raw features. Instead, we use a neural network to transform
the states into feature vectors. We first train the agent using a Deep Q Network (DQN) with
the same configuration as in Mnih et al. (2013), with three convolutional layers, and two
fully connected hidden layers. The input is the pre-processed state tensor, while the outputs
are the Q-function estimates for each state-action pair associated with that state.

In order to apply our algorithm to this case, we drop the output layer of the pre-trained
DQN, so that the output of the resulting network is a 512-dimensional vector. These are
the features we use for linear TD learning. The linear function approximation parameter
0 is then a vector in R%2. Aside from this feature transformation step, the application of
the algorithm is the same as before. Figure 4b shows an example of the confidence intervals
generated for the initial state using our algorithm over 100 episodes, depicting both quantile
(Q) and standard error (SE) estimators for the confidence intervals.

Finally, Figure 5a shows the widths of the confidence intervals computed using these
estimators. Figure 5b shows the error bars of the value estimates for the initial state for a
number of e-greedy variants of the policy learnt using deep Q-learning. This figure captures

the fact that the mean value estimates decrease gradually as a function of €, with the optimal
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Figure 4: Online policy evaluation with TD learning in the Atari Pong RL environment:
Figure 4a depicts an example of the Atari Pong game. This is the raw input to the learner,
in the form of pixels and RGB color information. Figure 4b shows an example CI generated
by the online bootstrap method for the value estimate of the initial state. Both the Quantile
(Q) and Standard Error (SE) Cls are included.

policy (¢ = 0) and the random policy (¢ = 1) having the highest and lowest mean value
estimates, respectively. It also shows that the policies with some amount of randomness
(e > 0) have lower variance than the optimal policy, which reflects the fact that optimal
policies are generally more prone to over-fitting, resulting in higher variance. In all these

cases, the same pre-trained network was applied to compute the transformed features, which

were then used as inputs to the linear TD algorithm.
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Figure 5: Online policy evaluation with TD learning in the Atari Pong RL environment:
Figure 5a shows the widths of the Cls generated by the Quantile and Standard Error esti-
mators. Figure 5b shows 95% CI error bars comparing the value estimates for 5 e-greedy
policies derived from the optimal policy (e = 0).
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5.3 Off-Policy Value Inference For Infinite-Horizon MDP

In our next experiment, we consider a simulated infinite-horizon MDP setting for off-policy
evaluation. Here, we construct an environment with a state space and action space of size
50 and 5, respectively. The transition probability kernel of the MDP, the state features,
and the policy we evaluate are randomly generated. We construct the true value function
corresponding to the generated policy as the inner product of the state features and a ran-
domly generated true parameter. The expected rewards at each state under the given policy
are then computed using the Bellman equation (2.2). Observations are sequentially drawn
according to the MDP under the generated policy, and we use this data to estimate the value
of an e-greedy version of the generated policy, with € = 0.2.

Within this framework, we implement three off-policy evaluation methods - the online
bootstrap, the offline (vanilla) bootstrap, and the SAVE estimator (Shi et al., 2021). We
compare the methods in terms of their CI widths and empirical coverage probabilities (com-
puted over 200 runs) for the value estimate of one of the states. Our online bootstrap method
is applied in conjunction with GTD learning (Sutton et al., 2009) to obtain the point es-
timates. This an online method that updates the parameters sequentially. For the offline
bootstrap method, to ensure a fair comparison, we use the same GTD estimator to obtain
the point estimate, and use the vanilla bootstrap to compute the confidence intervals. A
similar offline bootstrap method has been used by Hanna et al. (2017) and Hao et al. (2021)
for constructing their confidence intervals. The SAVE method is used here in conjunction
with LSTD-Q (Lagoudakis, 2003), i.e., without the sieve basis functions. Note that LSTD-Q
is a batch learning method, and therefore has different properties to GTD learning.

Figure 6 shows the results of our comparisons. Figure 6a compares the widths of the
confidence intervals, while Figure 6b compares the empirical coverage probabilities over 200
simulated runs. The results show that the three methods perform roughly on par, although
our online bootstrap method is much faster than the offline bootstrap, and, unlike the other

two methods, does not need to store the data. Since the SAVE method uses batch LSTD-Q
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Figure 6: Comparison of online bootstrap method to offline (vanilla) bootstrap and SAVE
(LSTD-Q) methods in the infinite-horizon simulated MDP setting.

for its point estimates, it is expected to reach the desired 0.95 coverage probability in fewer

observations than the other two online GTD-based methods.

5.4 Off-Policy Value Inference For A Healthcare Application

Finally, we consider a real-world example from the healthcare domain, namely, the prob-
lem of treating sepsis in the intensive care unit. For this experiment, we use the septic
management simulator by Oberst and Sontag (2019). It simulates the patient’s vital signs,
such as the heart rate, blood pressure, oxygen concentration, and glucose levels. There are
three treatment actions (antibiotics, vasopressors, and mechanical ventilation) which the RL
agent chooses from at each time step. The reward is +1 if the patient is discharged and -1
if the patient reaches a critical state. These are both absorbing states. The reward is 0 for
transitions to non-absorbing states.

As in the previous experiment, we train a near-optimal policy using Q-learning. We then
generate a dataset using an e-greedy Q-policy, with e = 0.05. For the target policy, we use the
optimal policy learned using Q-learning. To estimate the value function of the target policy
in the off-policy setting, we use GTD learning with the Mean-Squared Projected Bellman
Error (MSPBE) objective function (Sutton et al., 2009).

Since we do not have the true transition matrix, it is not possible to estimate coverage

frequencies for our algorithm using the true value function. Figure 7a shows the empirical
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MSPBE, which is a proxy for the estimation error for the of the point estimates. Figure
7b shows the width of the confidence intervals computed using the quantile and standard
error estimators. The estimation error decreases gradually over 20,000 episodes, and the CI
widths for both estimators decrease correspondingly, reflecting the decreasing uncertainty in

the estimates as more data becomes available.
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Figure 7: Offline policy evaluation with GTD learning in the Septic simulation environment:
Figure 7a shows the estimation error of the GTD learning algorithm, measured in terms of
the Mean-Squared Projected Bellman Error (MSPBE). Figure 7b shows the width of the
confidence intervals computed using the Quantile (Q) and Standard Error (SE) estimators.

6 Discussion and Future Work

In this paper, we present a fully online bootstrap algorithm for statistical inference of policy
evaluation in reinforcement learning. We establish its distributional consistency in terms of
the underlying algorithm, linear stochastic approximation under Markov noise. Our exper-
imental results suggest that the online bootstrap method is efficient and effective across a
range of tasks, from linear SGD with Markov noise to off-policy value estimation with GTD

learning. Next, we discuss a few additional topics and interesting future directions.

6.1 Non-Stationary Behavior Policy

Our online inference method is built upon linear stochastic approximation, and focuses on

two applications in RL: (1) on-policy evaluation with standard TD learning, where the
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target and behavior policies are the same, and (2) off-policy evaluation with GTD learning,
where the target and behavior policies are different. An interesting additional application
to consider would be the case where the behavior policy changes over time, as this would
enable the estimation of the value of a target policy from observations generated under a
non-stationary behavior policy. To our knowledge, all existing stochastic approximation-
based off-policy evaluation algorithms (GTD learning: Sutton et al. (2009), Emphatic TD:
Sutton et al. (2016), and related algorithms) require the behavior policy to be stationary in
order to ensure theoretically valid point estimates. That said, if these point methods were
proven to be convergent under a non-stationary behavior policy, our online bootstrap-based
inference method should easily be adaptable to that setting, as it only requires knowledge

of the importance sampling ratio at each time step.

6.2 Semi-parametric Efficiency

The main purpose of this paper is to propose a provable online bootstrap inference method for
the existing point estimators - TD learning and GTD learning, which are both special cases
of linear stochastic approximation under Markov noise. In the context of i.i.d. observations,
the asymptotic variance of the averaged iterate under this scheme is known to achieve the
Cramer-Rao lower bound (Polyak and Juditsky, 1992; Moulines and Bach, 2011).

There are a few recent works studying the semi-parametric efficiency of reinforcement
learning algorithms. For example, Ueno et al. (2011) proposed a generalized form of TD
learning and studied its semi-parametric efficiency. Using this framework, they derived an
optimal estimating function with the minimal asymptotic variance. In addition, a recent
work by Kallus and Uehara (2021) established a lower bound for the asymptotic mean-
squared error (MSE) of the Q-function estimate under a general function approximation
scheme. They provide an explicit form for the approximating function that achieves the
MSE lower bound. Their results require an assumption of transition sampling, i.e., state-

action-reward-state tuples are drawn independently from the generative model, rather than
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sequentially according to the trajectory of the MDP.

To our knowledge, there are currently no results for the efficiency of the linear stochastic
approximation iterate under Markov noise. Since our focus is on the bootstrap method
for uncertainty quantification, rather than the algorithm for point estimation, we leave the
question of efficiency for linear stochastic approximation under Markov noise as interesting

future work.

6.3 Extension to Non-Linear Function Approximation

In this work we mainly focus on the linear function approximation setting, as this is the
fundamental function approximation scheme for policy evaluation algorithms in RL, serving
as the basis for more elaborate approximation schemes. Here we briefly discuss two practical
ways in which we can use the online bootstrap approach within the non-linear function
approximation setting.

The first approach is to transform the feature basis to another space using nonlinear
basis expansion, and then use bootstrapping in conjunction with linear TD learning on the
transformed basis. The basis expansion can be done via sieve basis functions (Shi et al.,
2021) or neural networks to learn the representation of the feature space. In our Atari Deep
Q-learning experiment of Section 5.2, the raw state features are high-dimensional 3-way
tensors. Here, we applied linear TD learning on the features obtained from the last layer of
the pre-trained DQN to handle the non-linear function approximation. This is similar to the
approach used by Chung et al. (2019), who proposed a two-timescale network architecture
that enables linear methods to learn values at the top layer, with a non-linear representation
learned at a slower timescale at the bottom layers.

The second approach is to directly apply our method to a non-linear function approxi-

mation scheme. The general form of the stochastic approximation is
Ori1 = 0 + i1 H (0, Xi11), (6.1)

where H(6,X) is a noisy observation of the mean field h(f) = E[H (0, X)]. Here, the goal
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is to estimate the root 6, of the non-linear equation h(f) = 0. Under some assumptions on
the non-linear function h and the iterates {6;}, Andrieu et al. (2005) proved the consistency
of the {6,}, while Liang (2010) established a central limit theorem for the averaged iterate
6,. In practice, we can apply our online bootstrap procedure in Algorithm 1 to produce
bootstrap estimates for the iterates 6, under the non-linear stochastic approximation update
(6.1). This allows us to perform online inference for non-linear SGD under Markov noise,
which extends the online inference results for non-linear SGD under i.i.d. noise (Fang et al.,
2018; Chen et al., 2020). Since the focus of this work is on linear function approximation,

we leave a rigorous investigation of this non-linear setting to future work.

6.4 Approximation Error and Model Misspecification

This paper focuses on the linear function approximation of the value function. When the
linear model assumption is violated, it is important to consider the model mis-specification
issue in the analysis of RL algorithms with function approximation. Here we briefly discuss
the implications of approximation error within the context of TD learning with linear function
approximation. Our discussion starts from the least-false parameter in the linear space and
then connects it with the point estimator from TD learning.

Least-false parameter in the linear space: We follow the notation defined in Section
2 of the paper. Denote S as the state space, ® as the feature matrix. Let II denote the
projection operator onto the space spanned by the linear basis functions. Then, for a given
policy m with a stationary distribution u, we have

IIVT = argmin HV7r — VHD ,
Ve{®0|0cRd}

where D denotes the diagonal matrix with elements corresponding to the entries of the
stationary distribution p, and ||v|| = vVoT Dv denotes the norm under the stationary distri-
bution. In other words, the projected value function IIV™ is the best approximation to the
true value function V7 within the subspace spanned by the linear basis functions.

Point estimator from TD learning: Tsitsiklis and Van Roy (1997) showed that the
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limiting point #, of the linear TD update is the unique solution to the projected Bellman
equation Vy = II1T™V,, where Vy = @0 is the value estimate corresponding to the parameter
0, while T™ denotes the Bellman operator under the policy 7. In other words, the limiting
point 6, of the TD estimator can be seen as the global minimizer of the Mean-Squared

Projected Bellman Error (MSPBE), i.e.,

0, = argmin ||V — TIT™V;||3, .
Ry

Our online bootstrap method provides a way to perform inference on the minimizer of the

MSPBE, which is a quantity of interest in its own right (Sutton and Barto, 2018).
Connection: Although the limiting point of the linear TD estimator is not the least-

false parameter in the linear space, these two have a nice connection. Tsitsiklis and Van Roy

(1997) showed that the value function Vp, corresponding to the limiting point 6, satisfies

s 1 ™ s
Vo =Vl < s IV = V7.

\/1_7
Thus, the approximation error for the limiting point of the TD value estimator is bounded
by a constant times the approximation error for the projected value function IIV™, which
represents the best possible approximation in the span of . So, while the confidence intervals
generated by the online bootstrap method provide a coverage only for the value function
Vy, corresponding to the minimizer of the MSPBE, this value function itself comes with a

competitive guarantee.
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SUPPLEMENTARY MATERIAL

Online Bootstrap Inference For Policy Evaluation in

Reinforcement Learning

In this online supplementary material, we provide detailed proofs for the lemmas and

main theorems in Sections 4.1 and 4.2, as well as additional experiments.

S1 Proofs for Section 4.1

The following lemma is a restatement of Theorem 2 from Chong et al. (1999). In the
following, we say that a sequence ¢; is small with respect to another sequence «; if there exist
sequences {e;} and {r;} such that ¢, = e, +r for all ¢, 7, — 0, and 3" _, ay||e||2 converges.
Also, we say that a scalar sequence {a;} has bounded variation if Y7 a1 — a] < 0o. We

refer to the cited article for further details on these conditions.
Lemma S1.1. Consider the linear stochastic approximation update
Oppr = 0, + C¥t+1(f‘~1(Xt+1)9t - B(Xt+1>)'
Assume the following conditions hold:
(B1) The step size sequence {a.} satisfies oy >0, oy — 0, and Y o, oy = 00.
(B2) A is a bounded Hurwitz matriz.
(B3) {A(X,) — A} is small with respect to oy.
(B4) Let {p:} be a positive real sequence converging monotonically to 0, such that
(i) {piH(b(X,) —b)} is small with respect to .

(it) (pr = prs1)/(qupr) = ¢ < oo,

(11i) The sequences {p;11/p:} and {p;/pis1} have bounded variation.

Then 0, — 0, = o(p,).



Proof of Proposition 4.1

We verify that the conditions of Lemma S1.1 hold under our assumptions (Al), (A2), (A3).
Firstly, it is easy to see that (B1) holds under (A3), i.e., with a step size a; = apt™",
n € (1/2,1). Similarly, (B2) follows directly from assumption (A2).
For functions f defined over the state space X', we define the t-step transition operator
Pif(x) = fyeX f(y)P(z, dy), where P!(x,y) denotes the t-step transition probability from
state z to y. When t = 1, we write P f(z) = Pf(z).

Next, define A : X — R4 and b: X — R? to be the solutions to the Poisson equations

for € X. The existence of A and b is guaranteed under (A1). Furthermore, under (A2),
there exist constants Amax, l;max>0 such that ||121||F < Ay and ||ZA)||2 < l;max (Delyon, 2000).

Then we can write A(Xt) — A = e, + 1y, where ¢, = A(Xt) — PA(XtH), and r, =
PA(X;41) — PA(X,). To verify condition (B3), it suffices to show that 35° aylle,|| < oo,
and ||r]| — 0, as t — oo (Chong et al., 1999).

Let F; = o({X;}) denote the natural filtration with respect to the Markov chain X;. Then
Ele;|F:] = 0, and e, is a martingale difference sequence with respect to F;. Furthermore, e, is
a.s. uniformly bounded, since ||e/||r < 24y, by construction. So S°5°, a?E[|le]|2|F] < oc.
Then, by Theorem 29 of Delyon (2000), > .7, ax|le;]| converges.

Also, since P(Xy,-) — p as t — oo, it follows that ||rs| — 0, as t — co. So {A(X;) — A}
is small with respect to oy, and (B3) holds.

Next, set p, = t77, with v € (0,7 — 1/2). Conditions (B4)(ii) and (B4)(iii) hold under
this definition, with ¢ = 0 in (B4)(ii) (Chong et al., 1999). It remains to verify (B4)(i).

Define Z;(Xt) —b=e,+r, where ¢, = l;(Xt) — PIS(Xt+1), and r, = PZA)(XtH) — Pl;(Xt). It
suffices to show that > o0, ayp; '|les|| < oo, and that p;||r|| — 0, as t — oo.

By the same argument used above for { A— A}, e, is an a.s. uniformly bounded martingale



difference sequence, with ||e;||p < 2bmax for all £. Then S a2 PE||ed]|2] Fi) < oo, since
n—~ > 1/2. So, by Theorem 29 of Delyon (2000), > 72, crpi]le:|| converges.

Next, we have

IPO(Xi1) — PH(X,)|| =

[ Py PUxe ) H
< / IRIIPCEe1,d) = P d)|

S gmax\/ HP(Xt+l> dy) - P(Xta dy)”
yeX

Consider the integrand in the above expression. For any bounded initial distribution vy, i.e.,

with sup,cy [|[#0(2)]| < Vimax, for some constant vy,.x < 0o, we have

|P(Xii1,dy) — P(Xy,dy)|| < sup [P (21, dy) — voP (22, dy)||

T1,r2€X
S Vmax SUup ||Pt+1<x1a dy) - Pt(x27 dy) H
T1,02€X
= Vmax SupX ||(Pt+1(w17 dy) - ﬂ-(dy» - (Pt('x% dy) - ﬂ-(dy))H
x1,r2€
< Vmax SupX (HPH—l(xla dy) - ﬂ-(dy)H + ||Pt(‘r27 dy) - W(dy)”)
x1,T2€

S 2VmaxM/€t7

where the penultimate inequality holds by (4.1). It follows that |Pb(X,41) — Pb(X,)| <

WmaxVmax M K, and so pr el < WV METKE — 0, as t — 00. O
Proof of Proposition 4.2

First, we list the conditions required for our central limit theorem, Proposition 4.2, to hold.
The assumptions listed below are from Liang (2010), who proved a central limit theorem for
the varying truncation stochastic approximation MCMC algorithm. This is a general form

of algorithm (2.1), and is designed to solve the equation

o) = [ 1O pla)d =0,



where § € © C R% is a parameter vector and fy(x),z € X C R% is a density function
depending on 6. The function h(#) is called the mean field function, and H (6, z) is a noisy
observation of h(6).

The stochastic approximation algorithm is designed to iteratively estimate 6 from a se-
quence of noisy observations that depend on the current estimate of 6 (hence forming a

controlled Markov chain). The main update step for this algorithm is given by

Ory1 = Op + o1 H (O, Xiy1)

=0 + a1 h(0) + auyr€i41, (S1.1)

where h(0) = [ H(0,z) fo(x)dz, fp being the invariant distribution of the controlled Markov
transition kernel Py, and ¢,,1 = H(0;, X;11) — h(6;) is the residual noise term.

In order to ensure the convergence of the iterates in (S1.1), Liang (2010) imposes a
varying truncation scheme, whereby the iterates 6, are constrained within an increasing
sequence of compact sets {Ks}s>o. Under this scheme, Andrieu et al. (2005) showed that
there exists a time step ¢,, < oo such that 6, € K, for all ¢ > ¢,_, and there are no further
truncations beyond time step ¢,,. The central limit theorem applies to the averaged iterate
0; = t—}:os Zzzt(,sﬂ 0.

The following conditions are assumed by Liang (2010):

(C1) © is an open set, the function h : © — R? is continuous, and there exists a continuously

differential function v : © — [0, 00) such that
(i) There exists My > 0 such that

L={0€06,(Vu(d),h(d)) =0} C{0€0,v(0) < M}

(ii) There exists M; € (My,00) such that Vi, is a compact set, where V), = {0 €

©,v(0) < M}.

(iii) For any 6 € ©\L, (Vuv(f),h(8)) < 0.



(iv) The closure of v(£) has an empty interior.

(C2) The mean field h(f) is measurable and locally bounded. There exists a Hurwitz matrix

F,~v>0,p€(0,1], and a constant ¢ such that, for any 0, € L,
1R (0) = F(6 — 0.)|| < cll0 — 0|7 v € {0110 —0.]| <},
where £ is defined in (B1)(i).

(C3) For any 0 € ©, the transition kernel Py is irreducible and aperiodic. In addition, there
exists a function V : X — [1,00), and a constant o > 2 such that for any compact set

K cCeo:

(i) There exists a set C C X, and integer [, constants 0 < A < 1,b,(,0 > 0 and a

probability measure v such that

sup PoV(z) < A\V(x) +bl(z € C) Vr € X,
ek

supPpV(x) < (V¥ (z) Vre X,
ek

gnlfCPé(x,A) > §v(A) Vo € C,VA € By.
€
(ii) There exists a constant ¢ > 0 such that, for all x € X,

sup [|H(6, z)|[v <,
gek

sup [|H(60,z) — H(6',z)|lv < cl|f —6'].
0,0'ek

(iii) There exists a constant ¢ > 0 such that, for all 6,0" € K,

1Pog = Pollv < cllgllvllo =6l Vg€ Ly,

Pag — Porgllve < cllgllvell0 =0 Vg € Lya.

(C4) The step sizes {a;} are non-increasing, positive sequences that satisfy the conditions
&(1+T)/ 2

0o N —a ©
g ap =00, lim(toy) =00, ———t = o(ovi1), E : < 0,
p— t—o00

X t=1 Vit

for some 7 € (0,1] and a constant o > 2 defined in (B3).
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We refer to Liang (2010) for further details on these conditions.

We now verify that (C1)-(C4) hold under assumptions (A1)-(A3). We also show that,
under our assumptions, the iterates of the update (2.1) are constrained within a compact
set K C O, thereby avoiding the need for the varying truncation scheme. Then the result
directly follows. Using the notation of (S1.1), in our case, we have H(6, z) = A(z)8 — b, with
mean field h(0) = A9 — b. By (A2)(iii), we have Ex.,[H (0, X)] = h(f), for all § € ©.

(C1) assumes the existence of a global Lyapunov function v. We may choose v(f) =
0T — %GTAQ. Then v is a global Lyupanov function for the mean field h (Andrieu et al.,
2005; Liang, 2010). £ denotes the set of all valid solutions 6* for the equation h(#) = 0.
In our case, since A is Hurwitz by (A2)(ii), there exists a unique solution §* for the linear
system Af = b, and L is a singleton set.

For (C2), the measurability and local boundedness of h follows directly from linearity. For
the latter part, we may choose F' = A. Then for any 6 € ©, we have ||h(0) — F(6 —6%)|| =0,
so (C2) holds.

For (C3), in our case the function H(6,z) = A(x)f — b(x) is bounded by (A2)(ii), so we
can choose the drift function V' = 1. Then the first two conditions of (C3)(i) hold trivially.

The third condition in (C3)(i) is a standard assumption in the Markov Chain Monte
Carlo (MCMC) literature, and is referred to as the minorization condition. By Theorem
5.2.2 of Meyn and Tweedie (2009), for g-irreducible Markov chains, “small sets” for which
the minorization condition holds exist. By (A1), the Markov chain is irreducible, and so, by
definition, is y-irreducible for some irreducibility measure ¢. Hence the condition holds in
our case.

(C3)(ii) follows directly from (A2)(ii). (C3)(iii) does not apply in our case as we are
dealing with a homogeneous Markov chain that does not depend on 6 (not have a controlled
Markov chain). The conditions of (C4) hold trivially under (A3).

Finally, by Proposition 4.1, we can choose a large enough constant Ry > 0 such that

10; — 0|2 < Ry for all t > 0. Then 6, € K for all £ > 0, for some compact set K C O. O



S2 Proofs for Section 4.2

Proof of Proposition 4.3

To verify the conditions for Lemma S1.1, it suffices to check that {W,;A(X,) — A} and
{p7*(W,b(X,) — b)} are small with respect to the step sizes {a;}. By (A2)(ii) and the
boundedness of W;, we have ||Wtfl(Xt)HF < WinaxAmax < 00, and ||Wt5(Xt)|| < Wnaxbmax <

oo, for all t > 1. By independence of W}, we have E,[W; A(X;)—A] = 0 and E,[W;b(X;)—b] =

0. The rest of the argument is identical to the proof of Proposition 4.1. [l

Lemma S2.1. Assume (A1)-(A8) hold. Then

= _ 1 ¢
\/E(Ht - 9*) = —Ail— Z €i+1 + Op<1).
\/E i=1

Proof. An argument similar to above may be used to verify that conditions (C1)-(C4) also
hold for the perturbed SA update (3.1) under assumptions (A1)-(A3). Then the result

follows as an intermediate step in the proof of Theorem 2.2 by Liang (2010). U

The following lemma is adapted from Lemma 5 of Xu et al. (2020).
Lemma S2.2. Assume (A1)-(A3) hold. Then, for any i > j, we have

e 015 -], < A
where M and k refer to the constants from (4.1).
Proof. By (4.1), for any i > j, the following holds:
[P=(15) - u] < bxi (2.1

Then we have

[ [Acxorz] - 4, -

Al2)P" (da| Fy) — [ A(x)p(de)
/. /

TeEX

F

< [ JAwPtanis) - Awutan),

< [ @), 1Pz - wan)|

S AmaxM'%i_j .



The first equality follows from the definition of A in (A2)(i), the second step holds by Jensen’s

inequality, and the final step follows from (A2)(iii) and (S2.1). O
Proof of Lemma 4.1

Starting with (4.4), we have

ét+1 - (Wt+1A<Xt+1) - A)ét - (Wt—i-li)(Xt—l-l) - 5)

= Wit (A(Xp1)0s = b(Xi11)) + (Wipa A(Xip1) — A)(0, — 6.). (52.2)

using the fact that A6, = b.
By Lemma S2.1 and (S2.2), we have

t
= _ 1 N
\/i(@t — 9*) = —A717 E €i+1 + Op(].)
¢ =1

t
_ - - 1 A
= AT Wi (A(Xig)0 — b(Xiq1)) — A 1%5 Wi A(Xi1) — A)(0; — 0.) + 0p(1).
i=1

Consider the second term in the above expression. We want to show that this term is
0p(1). It suffices to show that its second moment vanishes as t — oco. First we expand the

second moment and split it into square and cross terms. We have

(o
:_ZZEK( Wit A(Xin) )(9 9)( (K1) = 4) (6 -6.))]

21]1

2
2

(WMA(XM) - 4)




We deal with each term separately. First, we have

I = %ZE [(91 —0.)T (Wi A(Xin1) — A)T (Wit A(Xip) — A) (6 — 9*)]
=1
)\ t
M R
< TZE{ 0; — 0, 2} — 0,
=1

2
< 00, by
2

since 6; — 0, a.s.-Pyyp, by Proposition 4.3. Here, Ay = sup,cy Hlezl(a;) — A
Assumption (A2)(ii) and the boundedness of W.

Now consider the term within the sum in I,. Without loss of generality, assume ¢ > j.
Let F; denote the natural filtration with respect to the Markov chain {X}}, upto index j.

Then, we have

E|((WiriA(Xi1) = A) (0= 0.) . (Wi A(Xg0) = A) (6 0.) )]

RZ 1 . - - _

< g _<Wi+1A(Xi+1) — AW A(Xj) — A>]
R2 1 ~ _ ~ _

= B [B[(WirA(Xin) = A Wy AXp) = A) [
R2 < _ - _

= ﬁE <E [Wi+1A<Xi+1 |]:j+1} — AW A(Xj) — A>] ,

0; — 0.|| < Ryi™, for some v € (0,7 — 1/2) and Ry < oo, by

where the first step uses
Proposition 4.3, while the second step follows from the tower property, conditioning on the
filtration Fj4q.

Proceeding from here, we have

8 [(B [Wen AKX s ] = A W50 A1) - )
< B ([ W A0 1750] = 4], s d060) - 4
< g 2 Wi ACKe) ] = Al (W50 ACG )+ 1]
o (O Wm0 7] - 4]

i
K

< (1 + Winax) A2 R2M

max

Z’v]’v'



We first bound the inner product using Frobenius norms. In the third step, we bound the
second term within the expectation using Assumption (A2)(ii) and the boundedness of W.
The final step follows from Lemma S2.2.

So far, we have shown that

i—J

I < (1 + Whax) A% R2

max

Y’
Z#J J

Consider the double sum above. Grouping terms by | = |i — j|, we have

t i t—1 t—1

Z ”ﬂ’j'y =2 Z St’l/‘i s where StJ = Z m

i) =1 j=1

Then S;; < Z] 1 %V For any fixed [, lim;_,, Zj 1 JliZ’y < 00, and so limy_,. 1 : Z % =

0, by Kronecker’s lemma. Hence, Si;/t — 0, as t — oco. Then, by the Dominated Conver-
gence Theorem, we have lim,_,o * : Zl 1St l/f = 0. It follows that Iy — 0 as t — oo, and so

\[ S (Wi A(X i) — A)(f; — 6,) = 0,(1). This concludes the proof. O
The following is a restatement of Lemma 2.11 from van der Vaart (1998).

Lemma S2.3. Suppose that X,, => X for a random vector X with a continuous distribu-

tion function. Then sup, |P(X, <z)— P(X <z)| — 0.
Proof of Theorem 4.2

Let f(z) = A(x), — b(x). Then, by Assumption (A2)(ii), f is bounded, and

lim E[f(X;)] = A0, —b=0

t—o00

under the stationary distribution .
By the Poisson equation (see e.g., Douc et al. (2018)), there exists a bounded function u

such that

u(z) — Pu(z) = f(x).

10



For t > 0, we define the following terms:

€t+1 = U(Xt+1) - PU(Xt)>

Tt41 = PU(Xt) - Pu(Xt+1>‘

Let F; = o({X;}!_;) denote the natural filtration induced by the Markov chain {X;}. Then

f(X:) = ey + 1y, where e, is a martingale difference sequence, since
E[€t+1|}—t] = E[U(Xt+1) | -7'—75] — Pu(X;) =0,
and
ri = —(Pu(Xo) — Pu(Xy)) = 0 a.s., (52.3)
Vi & Z 7 t

as t — 0o, by a telescoping sum argument. Then from (4.6) we have

\/z(ét—e) —A Zf i+1) + 0p(1)

g

g

t
—;1 ") e +o0,(1), (S2.4)
=1

by (52.3). Combined with Proposition 4.2, this implies that

Vit

On the other hand, since e;;; is uniformly bounded (as f(x) is uniformly bounded for all

LAY e = N0, AIQ(ATYT), (52.5)
=1

x € X), the Lindenberg condition is satisfied, that is,

t
leill3
2E {T[{em/me} |Fia| =0,
i=1

in probability, as ¢ — oo. So, by the martingale central limit theorem (e.g., Lemma A.3. of

Liang (2010)), we have
7;1 Ze,ﬂ — N(0, ), (S2.6)

11



where A is a positive definite matrix with
t
AV Elese] /H1Fia] (AT = A, (S2.7)

in probability as t — oco. It follows from (S2.5) and (S2.6) that A = A~1Q (/_1_1)T, and so,
by (S2.7), we have

> Elese! [t Fia] = Q. (52.8)
=1

in probability, as t — oo.

Next, from (4.7), we have

\/_(0 0;) = — Z i+1 — 1) f(Xit1) + 0p(1)

—1‘_1 DY (Wipn = e +0,(1),

i=1

~

&l

using (52.3). Let & = (W; — 1)e;. Then & is a martingale difference sequence, since
El&s1 | Fi] = EWin — 1JE[ep | 7] =0

Since & is uniformly bounded, the Lindenberg condition holds. Then, by the martingale
central limit theorem, conditional on the data D, the term \/%fl_l Zle &i+1 1s asymptotically

normal with mean 0 and variance

p-lim A~ ZE@& Jt1Fi] (A7) = prlim A~ WVar(Wh) Y Elese] /1 Fia] (A7)
t—o0 t—o0 i—1

A (AY)

where the first equality follows by independence of W; and e; and the fact that the W,’s are

i.i.d., while the second equality follows from (S2.8) and Var(W;) = 1. So, we have

t
- 1 - _ _
Vi, —0) = —— A" i1 +o,(1) = N(0,A7'Q(A™HT), $2.9
(6 — 0) i ;erl p(1) ( Q(A™)") (52.9)
as t — oo, where the asymptotic normality holds conditional on data D.
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Let X ~ N (0, A7'Q(A™1)T) denote the random variable with the limiting distribution of
Vi, —0,) as t — oo. Applying Lemma S2.3 to the result of Proposition 4.2 and equation

(52.9), respectively, we get

sup |Pp(vVt(0; — 6,) <v) —P(X <v)| = 0,and

vERT
sup ]P’Ww(\/g(ét —0,) <v)-P(X < v)‘ — 0,1in probability,
vER

as t — oo. Then

Pyip(VE(d, — 0.) < v) — Pp(Vi(f, - 6.) < v)]

sup
vERY

< sup
vERY

Po(Vi(f, — 0.) < v) — P(X < v)‘

Py (VE(; — 0,) < v) — P(X < v)

+ sup
veRd

— 0,

in probability, as t — oo. O

S3 Additional Experiments

In this section, we provide the study of the second-order accuracy of our bootstrap method
in the Frozenlake environment considered in Section 5.1.

To empirically evaluate the second-order accuracy, we measured the coverage error rates
of the 95% confidence intervals for the value function of the initial state in the Frozenlake
environment. We use TD learning to estimate the value function, and the quantile and
standard error estimators, computed from the online bootstrap estimates, to generate the
confidence intervals. Figure 8a shows the empirical coverage errors of the quantile and
standard error estimators as a function of the number of episodes in the RL Frozenlake
environment. The rates are re-scaled to start from 1 at the first time step. In both cases,
we can see that the coverage error decreases at a rate faster than O(1/v/t) initially, and

eventually reaches a rate of O(1/t) or better.
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(a) Coverage error rates (b) Least squares estimates

Figure 8: Figure 8a shows the coverage error rates for the quantile and SE confidence
intervals, and Figure 8b shows the linear regression coefficients for the log coverage error
rates against the log number of episodes.

We then computed estimates of the coverage error rate by regression the log of the
coverage errors against the log of the number of episodes. We would expect a first-order
accurate method to have a regression coefficient of —1/2 or lower (corresponding to a coverage
error rate of O(1/+/t)), while a second-order accurate method would have a coefficient of
—1 or lower. As shown in Figure 8b, both the quantile and standard error have regression

coefficients of -1 or lower, which demonstrates that they both achieved second-order accuracy.
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