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Abstract

Sections

The onusonthe average personisgreater than ever before to make sense
of large amounts of readily accessible quantitative information, but

the ability and confidence to do so are frequently lacking. Many people
lack practical mathematical skills that are essential for evaluating risks,
probabilities and numerical outcomes such as survival rates for medical
treatments, income from retirement savings plans or monetary dam-
agesincivil trials. In this Review, we integrate research on objective and
subjective numeracy, focusing on cognitive and metacognitive factors
that distort human perceptions and foment systematic biases in judge-
ment and decision making. Paradoxically, animportantimplication of
thisresearchis thataliteral focus on objective numbers and mechanical
number crunching is misguided. Numbers can be a matter of life and
death buta personwho uses rote strategies (verbatim representations)
cannot take advantage of the information contained in the numbers
because ‘rote’ strategies are, by definition, processing without meaning.
Verbatim representations (verbatimis only surface form, not meaning)
treat numbers as data as opposed to information. We highlight a con-
trasting approach of gist extraction: organizing numbers meaningfully,
interpreting them qualitatively and making meaningful inferences
about them. Efforts to improve numerical cognition and its practical
applications can benefit from emphasizing the qualitative meaning of
numbersin context — the gist — building on the strengths of humans as
intuitive mathematicians. Thus, we conclude by reviewing evidence that
gist training facilitates transfer to new contexts and, because it is more
durable, longer-lastingimprovements in decision making.
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Introduction

Numeracy — the ability to understand and use numbers — matters for
medical, financial and legal decisions"*. Numeracy is more than mathe-
matical skills becauseitinvolves practical applications of such skills and
associated reasoning. Frequencies (counts), fractions and proportions
such as probabilities are all examples of numbers. Numbers dictate
life and death, as when the frequency of cases of a deadly contagious
disease explode exponentially®. Understanding these numbers helps
laypeople and professionals reduce risk. Numbers drive government
investments (for instance, in construction of levees as sea levels rise)
and personal choices (such as vaccination or travel towar zones).Ina
world increasingly awash in numerical information, numeracy offers
advantages in health, wealth and well-being®.

Overall, research has shown that low proficiency with numbers
is pervasive and is generally associated with adverse life outcomes
such as death, disability and lost educational and career potential.
In medicine, numeracy is robustly related to accurate perceptions
of health benefits and health risks in patients; the quality of medical
decision making and shared decision making between doctors and
patients; and health outcomes in patients’. For example, patients with
low numeracy were less able to manage their diabetes, whichinvolves
monitoring and comparing blood glucose numbers®’. In economics,
performance on numeracy tests significantly predicts employment,
retirementsavings and overall wealth"*®, For example, simple numeri-
cal tasks about finances predicted national wealth — the per capita
gross domestic product — explaining from 16% to 27% of the variance
in gross domestic product in nationally representative samples from
31countries'. Inlaw, low numeracy compromises the ability of a judge
orjury in criminal cases to make reliable sentencing decisions or to
appreciate conditional probabilities, such as those involved in DNA
tests, andin civil cases to formulate reliable dollar damage awards" ™.
For example, highly educated judges were subject to a host of biases
that are similar to those exhibited in less educated people, including
imposingshorter sentences whenassigning sentencesin monthsrather
thaninyears'. Thus, education does not equate to numeracy.

Despite the need for numerical skills in highly industrialized
societies, standardized tests of representative samples of individuals
indicate that numeracy rates declined significantly from 2003-2008
t02012-2017 in the United States, Canada, Hungary, the Netherlands
and Norway. Among countries tested, only New Zealand showed an
increase during this recent period of testing”. Low performance and
lack of progress among developed nations do not auger well for the
world’s ability to cope with social, economic and health challenges
that require understanding the importance of numbers, such as the
COVID-19 pandemic'*”.

In summary, many people do not possess basic, practical math-
ematical skills that are often essential to judge risks, probabilities
and outcomes and to make adaptive decisions*. These judgements and
decisions cannot easily be outsourced to experts with high numeracy.
Forexample, the USjury systemrelies onthe participation of ordinary
citizens —ajury of one’s peers — to uphold common-sense community
standards, as opposed to reflecting only the values and perspectives
ofthe elite. More than 40 nations use ajury system to accomplish this
goal.Inmedicine, a movement towards patient-centred decision mak-
inghasshifted theresponsibility for decisions from trained clinicians
(some with specialized statistical training that improves numeracy)
to patients, who typically lack both medical and statistical training.
COVID-19 hasbroughtinto sharpreliefthatinterpreting numbers and
applying them to oneself or to family can be a matter of survival”*,

Therefore, the onus onthe average personis greater than ever before
tomake sense of large amounts of readily accessible quantitative infor-
mation (such as that accessible via social media or websites), but the
ability and confidence to do so are frequently lacking™*?.

Inthis Review, we first discuss the psychology of how people think
about numbers and then the most widely studied forms of numeracy,
objective and subjective numeracy, and their connections to several
other cognitive and metacognitive abilities. One conclusion we reach
isthatsubjectivenumeracyisnotaform of numeracy, despiteitsname;
instead, it is a metacognitive self-assessment of numerical ability
and preference. We next consider evidence that non-humananimals and
infant humans possessinnate numerical abilities, and we examine how
mental representations of numberbuild on thatfoundation. The Review
concludes with research that aimstoimprove numerical cognitionand
its practical applications through training programmes.

Why psychology is heeded to solve the problem of
low humeracy

The potential for numeracy toimprove human outcomes does not
simply rest onbetter knowledge of numbers and numerical operations,
although some rudimentary knowledge is widely lacking and essential
for many decisions®. Numeracy’s potential for improving outcomes
is also limited by the psychology of how people think about numbers.
This psychology encompasses distortions in the perception of frequen-
ciesand probabilities, biasesin quantitative judgements and decision
making, and poorly calibrated confidence about and persistence in
numerical tasks**?. Importantly, the psychology of numbers extends
beyond deviationsfrom objective precision to mental representations
of the meaning of numbers.

Mental representations of numbersrange from precise and literal
verbatim to vague but meaningful gist that interprets information
in ways that deviate from its surface form? (Box 1). The following
are examples of literal numerical differences versus gist differences
(categorical gist examples are used to highlight that gist captures
qualitative distinctions, but there are other kinds of gist representa-
tions). For vehicle operators, numerical increases from 0.00 to 0.02 to
0.04t00.06t0 0.08inblood alcohol levels are all literally equivalent.
However, the 0.00to 0.02increaseis a categorical gist shift from sober
tonotsober,and the 0.06 to 0.08increaseisacategorical gist shiftfrom
notsober to criminally impairedin many US jurisdictions. The fact that
jurisdiction matters shows that literal differences, say between 0.04
and 0.06, are not necessarily meaningful differences; the same literal
differences turnout to be meaningful in some jurisdictions but mean-
inglessin others. Declines in personal cancer risk from 5% to 4% to 3%
to 2% to 1% to 0% are also all literally equivalent. However, the 1% to
0% decline is a categorical gist shift from low risk of cancer to no risk.
Similarly, smaller amounts of bearable pain experienced per unit time
duringaninvasive medical procedure, as judged ona 0-10 pain scale,
do not ‘add up’ to unbearable ‘peak’ pain®. Instead, unbearable pain
is a categorical gist shift from qualitatively different bearable pain.

Moregenerally,judgements, decisions and behaviours depend on
the mental representations that are extracted rather than the objec-
tive information that is presented”?. Regardless of whether 0.06 is
technically sober, 1% cancer risk is technically low or unbearable pain
is technically brief, judgements, decisions and behaviours depend on
how these numbers are mentally represented psychologically aslow or
high. Thus, to help people take advantage of numerical information, it
is crucialto understand how that information is mentally represented
and processed.
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Defining and measuring numeracy

In this section, we describe how objective and subjective numeracy are
typically measured but disentangle objective performance, underlying
competence and subjective self-assessment, among other factors. We
also examine how metacognitive abilities modulate the manifestation
of underlying numerical abilities drawn upon in numeracy tasks. The
analyticaland meta-analytical processes described in this section con-
trastwiththeintuitive processes discussedin the subsequent section.
Understandingall of these processesisrequired to design training that
improves numericaljudgements and decisions, which will be discussed
in the penultimate section of the Review.

Objective and subjective numeracy

Objective numeracy involves performance on numerical problems
that can be scored as correct or incorrect?, Brief objective numeracy
assessments continue to be the focus of current research. Schwartz
etal/s” original assessment contained three items mainly concerning
probabilitiesand proportions, withsimilaritems added later tocreate
11-item and 15-item versions®*~*’, Because they focus on probabilities
and statistical computation, such tests are sometimes referred to as
‘statistical numeracy’ or ‘risk literacy’ assessments***. These numerical
competencies predict informed and accurate risky decision making
in business and engineering®°~*, medicine and health communica-
tion*~*'and civil and criminal law'"". For example, it makes sense that
peoplewhoarebetterabletoorderal%,10%and 5% risk of side effects
from different medications would be better able to choose among
treatment options*.

Objective numeracy tests play animportant role in public policy
because they can be used to gauge the numeracy skills of the workforce
and electorate (asanexample, see https://nces.ed.gov/surveys/piaac/
measure.asp?section = 2&sub_section =3). However, comprehensive
performance tests of numerical skills can be difficult to administer
because respondents must solve mathematical problems, which usu-
ally takes them longer and they find harder to perform than provid-
ing a self-assessed rating of their ability. Subjective numeracy scales
measure self-assessed numerical ability and preference for numerical
information — forexample, Q: how good are you at working with frac-
tions? A: rated on ascale fromnot atallgood (1) to extremely good (6) —
and are less burdensome to administer to respondents compared
with objective numeracy tasks****. Self-assessed numerical ability,
preference for numbers and cognitive reflection (see below) each
tap metacognition (cognitions about cognition) rather than directly
tapping cognition (Fig. 1). Naturally, these metacognitions differ in
details, as discussed below.

Subjective numeracy correlates moderately with objective numer-
acy*>**¢, but it also reflects biases inherent in self-assessments and
other metacognitions. One such bias is the Dunning-Kruger effect
in which those of lower ability have higher confidence than is war-
ranted by theaccuracy of their performance onatask, aneffect that has
been shown in many tasks for many abilities*”*S. The Dunning-Kruger
effectimplies thatthose low in numerical ability will be overconfident
about their ability, hence showing poorly calibrated confidence rela-
tive to their performance level on tasks such as solving mathematical
problems. Poorly calibrated confidence is a problem when it curtails
persistence on tasks that might ultimately be solved (underconfidence)
or when it interferes with sufficient deliberation in a task to correct
detectable errors (overconfidence)>*°.

Nevertheless, because subjective numeracy is correlated
with objective numeracy, it is a useful proxy measure and exhibits

Box 1

Literal thinking about numbers

Ordinal numbers
e Suppose author A is first author and author B is second author

of seven publications and author C and author D are first and
second authors, respectively, of another seven publications.
Then assume that author B worked harder and performed higher
quality work than author C on each publication. Who should
be ranked higher as a scholar: the first author (C) or the second
author (B) of these publications? If both author B and author C
applied for a job as a professor, all else being equal, whom
should you hire?

Ranking author C (as first) higher than author B (as second)
because they are first’ author is an example of literal thinking.

Cardinal numbers
e Suppose that a scientist conducts a literature review with 100

studies that pass inclusion criteria meeting minimum standards
of methodological quality. Each of the studies supports either
Hypothesis A or Hypothesis B, with 70 studies supporting A and
30 studies supporting B. However, the 30 studies that support
Hypothesis B are all of substantially higher scientific quality than
the 70 studies that support Hypothesis A. Is there more evidence
for Hypothesis A or Hypothesis B?

A literal conclusion is that the evidence supports Hypothesis A
rather than Hypothesis B because 70 is more than 30.

Quantitative reasoning
o According to Leonard et al.”, “In short, beginning students

perceive problem solving in physics as memorizing, recalling,
and manipulating equations to get answers, whereas physicists
perceive problem solving as applying a small number of central
ideas across a wide range of problem-solving contexts. Although
facility with the mathematical procedures ... is certainly a
desirable goal ..., this goal falls short of ... an understanding of
major concepts and principles.”

A literal solution would be answering a problem requiring
application of a specific law of motion in physics by instead
applying a different formula for angular momentum (the quantity
of rotation of a body) because the surface features of the problem
contain a rod rotating about a pivot point, superficially resembling
angular momentum problems (see p. 1501 in ref. 200 for additional
details about the problem).

relationships with other variables that are similar to those observed
forobjective numeracy. Subjective numeracy also relates, as mightbe
expected, to other self-assessments involving numbers, such as math-
ematical anxiety, the self-reported anxiety about using mathematics —
forexample, Q: how much anxiety does working with percentages make
you feel? A: rated on a scale from low (1) to high (5)*°. Thus, subjective
numeracy and mathematical anxiety are not forms of numeracy per se
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Metacognition
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Fig.1| Types of numerical cognition and metacognition, and relationships
between them. Three types of metacognition (cognitions about cognition) are
shown (upper part): self-assessed numerical ability (dlomain-specific because it
isabout numbers, measured by the SNSa), self-assessed preference for numbers
(domain-specific because it is about numbers, measured by the SNSp) and
cognitive reflection (a domain-general tendency to reflect on one’s cognition,
monitoring cognitions and inhibiting thoughts and responses that, on reflection,
seemwrong, measured by the CRT). Two types of cognition are shown (lower
part) and include objectively assessed numerical ability (domain-specific,

as measured by the ONS) and objectively assessed overall cognitive ability
(domain-general cognition, as measured by general intelligence tests, especially
executive processes). Arrows indicate strength and direction of influences, for
example, individuals subjectively assess their numerical ability based, in part, on
evidence of their numerical ability suchas observing their own performance

on mathematics tests: high cognitive ability produces high performance which,
in turn, influences metacognitive self-assessments of high ability. However,
stereotypes — not based on cognitive ability — also influence self-assessments

of numerical ability (not shown). Numerical ability also influences self-assessed
subjective preferences for thinking using numbers (SNSp) because those

with higher numerical ability generally find using numbers easier and more
enjoyable than those with lower numerical ability. Self-assessments of preference
for thinking using numbers can also be biased by stereotypes (not shown).
Influences also flow, as the arrows indicate, from metacognitions to cognitions.
Forexample, higher self-assessed numerical ability (mathematical confidence)
encourages individuals to attempt to solve more problems on objective tests of
numerical ability, which can increase opportunities to learn about mathematics
and canincrease objective test scores. CRT, cognitive reflection test;

ONS, objective numeracy scale; SNSa, subjective numeracy subscale for ability;
SNSp, subjective numeracy subscale for preference.

but, rather, are perceptions of one’s ability and comfort withnumbers,
which reflect multiple indicators that inform self-judgementssuch as
self-observation of task performance, differential opportunities to
learn mathematics and stereotypes about numerical ability™ .

In summary, the key points are that objective numeracy scales
measure a type of cognition; subjective numeracy scales measure a
type of metacognition; and the subjective numeracy scale draws heav-
ily on observed and inferred evidence of domain-specific cognitive
ability (Fig. 1). As described in this section, influences flow in many
directions, fromsubjective numeracy (self-perceptions of ability, such
as mathematical confidence) to objective numeracy (mathematical

ability and performance on mathematical tests) and vice versa (Fig. 1;
not all influences shown). For example, subjective numeracy judge-
ments draw on personal knowledge about objective numeracy such
asmemories of successful or unsuccessful mathematical performance
ontests. Conversely, performance on objective numeracytestsrelieson
aspects of subjective numeracy such as confidence; those who are
confident in their mathematical ability attempt more problems and
thus, canattain objectively higher scores?®**. Confidence provides but
one example of the ways in which metacognitive processes scaffold the
relationship between ability and performance. Confidence enables
people to take advantage of ability and, without confidence, ability is
sometimes not enoughtoachieve good life outcomes (suchas financial
success)™. Because of the intertwining influences, some have argued
that the theoretical construct of numeracy is multifactorial, consist-
ing of both understanding of numbers and mathematical operations
together with metacognition (applied to numeracy) and other self-
regulation skills?>. However, despite multiple influences that produce
correlations between subjective and objective numeracy measures,
research has shown that they are distinct — self-perception is not the
same thing as objective ability (Fig. 1). In addition, subjective and
objective numeracy differ from domain-general metacognition — or
reflective processes —which we discuss below.

Metacognition

We nextdescribe other types of metacognitive processes beyond sub-
jective numeracy, how they influence the manifestation of numerical
competence (ability) and how measures that have been character-
ized asobjective numeracy — for instance the cognitive reflection test
(CRT) —reflect both numeracy and metacognition.

Therelationship between objective and subjective numeracyis not
unlike therelationship between cognitive abilities generally and think-
ingdispositions (or cognitive styles) found using measurement scales
of self-assessed cognitive style preference such as need for cognition —
which measuresthe tendency to engage in and enjoy effortful cognitive
activities®®. That is, thinking dispositions such as need for cognition
operate at the ‘reflective level’, as do other metacognitive processes
thatoverride fast, intuitive responses and that guide algorithmic opera-
tions”’ (for contrary evidence and perspectives about the sufficiency
of this specific dual-process approach, seerefs. 24,60-62). Naturally,
reflection occursin other types of metacognition, notjust onthe CRT,
and thinking disposition refers to an individual’s tendency to engage
insuch processesasreflection. Thus, justas higher need for cognition
increases the tendency toengage in cognition generally, higher subjec-
tive numeracy increases the tendency to engage in numerical cogni-
tion and, as with other forms of metacognition (for example through
checkinganswers toproblems andcorrectingerrorsorinconsistences),
influences algorithmic processing (one example of which is objective
numeracy) (Fig.1).

Algorithmic operations consist of domain-general cognitive abili-
ties, suchasexecutive processesreflected in measures of general intel-
ligence, as well as domain-specific strategies, rules and procedures.In
theory, numeracy, as measured in objective numeracy tasks and when
distinguished from general intelligence®*°, would be an example of
domain-specific algorithmic processing (Fig. 1).

Hence, as suggested above in our discussion about confidence,
the implementation of the domain-specific competence of numer-
acy would depend to some extent on metacognitive thinking dis-
positions*****, Researchers tested this hypothesis, distinguishing
generalability (fluid intelligence), numeracy and thinking disposition

Nature Reviews Psychology



Review article

(reflective versusimpulsive) tostudy their relationships to probabilistic
reasoning (an example of numerical processing)®*. They found that,
although individual differences in thinking disposition (metacogni-
tion) did not moderate the relation between numeracy and probabil-
istic reasoning, an experimentally induced thinking ‘disposition’ did
moderate it. Disposition to think was manipulated experimentally by
instructing some participants to reflect on their analytical reason-
ing. Instructions to reflect analytically facilitated reasoning such that
numeracy predicted probabilistic reasoning when general ability was
high. In other words, general intelligence allowed those high in numer-
acy to take advantage of the instructions to reflect so that they could
implement their numerical ability to solve probabilistic problems.
Thus, encouraging metacognitive reflection by itself, without general
and domain-specific ability (numeracy), does not necessarily yield
insightinto how tosolve numerical problems, illustrating distinctions
we have discussed above (Fig.1).

In a similar vein, the CRT®® has been argued to draw on both
numeracy —it contains mathematical problems —and reflection skills,
especially the metacognitive ability to monitor for and then inhibit
fastintuitive system1 (or type 1) responses — gut responses — that are
wrong. For example, $0.10 is the intuitive (but wrong) response to the
following: “abatand aball cost $1.10 in total, the bat costs $1 more than
the ball, how much does the ball cost?” The correct answer is the ball
costs $0.05 because the bat costs $1.05, and $1.05 minus $1.00 equals
$0.05. Researchers argue that those highin reflective ability are more
likely to reflect on their answer (a system 2 response), that is, check
theirintuitive fast response ($0.10), realize that the total would be $1.20
(wrong) and recalculate their answer using algorithmic processes. In
support of theargument that the CRT draws on numeracy, studies have
shown that the CRT loaded together with numeracy measures on the
same dimensioninexploratory or confirmatory factor analyses®>®°°5,
However, some evidence supports the idea that the CRT measures
distinct faculties, as numeracy was less related to decision making
than were measures of executive functioning or cognitive impulsiv-
ity measured by the CRT® (but see ref. 70). In addition, although the
CRT and numeracy tests correlated with one another, the CRT also
accounted for unique variance beyond numeracy in predicting risk and
ratiojudgements®* (seealsorefs. 59,64).Ina study in which subjects
described their thinkingaloud, it was similarly concluded that the CRT
is a multi-faceted construct rather than a single dimension, as both
numeracy and reflectivity accounted for performance”.

In our view, the question is not whether the CRT is a measure of
either numeracy or of reflection’, as the CRT design does not allow
numeracy and reflection to be easily extricated from one another, as
in a mathematical model (but see ref. 72 for an approach). However,
mathematical and psychometric models have been used to extricate
reflective from other cognitive processes, including numerical ones,
indicating that reflection (metacognitive monitoring and inhibition)
constitutes a distinct mental faculty”® . These models have been
applied to decision-making, memory and judgement tasks involving
numbers and this observed separation (taking into account other
CRT evidence thatalso links to these models, such asin ref. 45) applies
directly to the mechanisms purportedly tappedinthe CRT. Inaddition,
otherresearchers have developed a verbal alternative to the traditional
CRT that helps disentangle contributions of reflection and numeracy
from one another on the CRT.

Therelationships among objective numeracy, subjective numer-
acy and reflection — such as metacognitive monitoring for and inhib-
iting of intuitive responses — that we have discussed have a general

architecture (Fig.1). When numbers are processed in everyday life to
makejudgementsor decisions, ability (objective numeracy), comfort
with numbers (subjective numeracy) and strategic metacognitive
engagement (reflection) often go hand in hand.

Asdiscussed below, our view differs from the standard view of sys-
temlandsystem2 processinginseveral ways. First,based onresearch,
we disagree with the claim that intuitive processing is often low-level
impulsive responding that must be overridden. Second, metacogni-
tive reflection does not necessarily provide cognitive insights about
the central meaning (gist) of numbers. Nevertheless, we agree with the
remaining distinctions between cognitive ability and metacognition
sohaveintegrated these conceptsinto ouraccountof numerical cog-
nition. To preview, we next discuss two kinds of intuitive processing
that complement objective and subjective numeracy that are both
strengths of human cognition but are not the same thing: the psycho-
physical perceptions of number (the approximate number system)
and gist mental representations. A critical demonstration that these
two kinds of intuitive processing are not the same thing is that psy-
chophysical distortions of number (non-linearities in perception)
are more pronounced in children than in adults. By contrast, we then
discuss gist-based distortions (for example, the framing illusion and
semantic false memories), whichincrease from childhood to adulthood
asthe tendency to rely on meaningful gist representations increases.

Intuitive processing of number

Giventhe widespread (and worsening) difficulty processing numbers
in humans, it might be surprising torealize that people have aninnate
ability toprocess number. (Whatisinnate is processing frequencies or
magnitudes, not processing numerals.) Inthis section, we discuss the
way in which this innate ability to process number — the approximate
number system —is reflected in psychophysical laws”. These psycho-
physical laws apply to perceptions of counts of discrete objects, such as
the number of cups on a table, and to continuous magnitudes, such
as the amount of coffee in those cups. Some evidence suggests that
the latter magnitudes are more automatic and basic than the former
numerosities. The approximate number system enables non-human
animals and humaninfants tojudge differences in frequencies (perceiv-
ingdiscrete numbers of objects) and magnitudes (perceiving continu-
ousamounts) without being able to count or do explicit calculations™.
In non-human animals this innate ability aids foraging decisions and in
humaninfants the approximate number system lays the groundwork
for later acquisition of formal mathematical ability. In contrast to the
difficultiesachievingadequate numeracy, this innate ability to process
number implies humans are born as intuitive mathematicians.

Forexample, ameta-analysis showed that performance onmental
number line tasks, such as locating 72 on a line whose end points are
labelled 0 and 100, consistently correlated with formal mathemat-
ics competence’ (see ref. 80 for evidence linking the acuity of the
approximate number system in 6-month-old infants to standardized
mathematics scores 3 yearslater). Another meta-analysis of 26 studies
by Christodoulou et al.* upheld the once controversial finding that
infants are capable of simple arithmetic with small quantities®’.

The approximate number systemis oftencharacterized asamental
number linebecauseitrepresentsrelative magnitudes of numberina
left-to-right spatial orientation (although specific mappings between
number and space seem to differ across cultures)®***, However, an
association between the magnitude of anumber and the spatial loca-
tionof aresponse generalized to close versus far (small numbers were
associated with close and large numbers were assocated with far, rather
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than with left to right)®. Thus, a general number-spatial location
association seems to be represented in the brain, in part, in the pos-
terior parietal cortex®®, which is also associated with processing
fundamental numerical concepts suchasrisk and probability***’. Such
results (and others) speak to whether brainactivation during symbolic
number, arithmeticand spatial processing (mental rotation) tasks are
consistent with shared processing accounts (in other words, number
processing and spatial processing overlap)®.

Although the approximate number system orders quantities,
perceptions of quantities are subject to several psychophysical dis-
tortions®2, First, relative magnitude is governed by Weber’s law, that
perceived differences in quantities vary as a function of the ratio of
quantities rather than their absolute differences. For instance, a dif-
ference in quantity between piles of 8 rocks and 16 rocks is perceived
as similar to the difference between piles of 80 rocks and 160 rocks.
Second, discriminability varies with the distance between quantities,
with smaller differences (8 versus 10) judged more slowly thanlarger dif-
ferences (8 versus 20). Last, discriminability decreases as the magnitude
of numbersincreases. For example, the difference between $0 and $100
seems bigger than the same objective difference between $100,000 and
$100,100. Thus, these three psychophysical results provide evidence

@==_Small or symbolic numbers

@m====_Large or non-symbolic numbers

Perceived magnitude

Actual magnitude

Fig. 2| Psychophysical relations posited between actual and perceived
magnitudes for small and large numbers. Each curveillustrates the
relationship between objective numbers of discrete objects or magnitudes

of quantities as presented in studies and their subjective perceived numbers

or magnitudes as inferred from judgements of intensities, similarities or
differences. For example, individuals might be asked to place amarkon a
continuous unnotched line with labelled end points to indicate the magnitude
of apresented number (for example, place 57 on ascale with end points labelled
as 0and1000). Many such judgements for arange of numbers are elicited
fromeachindividual. Each markis converted to millimetres along the line to
derive the perception of eachnumber (and can be plotted with x indicating

the objective value of the number and y indicating its subjective perception). The
absolute deviation from the objectively correct placement of that mark can also
be calculated. As the figure indicates, the perception of small numbers generally
tracks objective values linearly, whereas the perception of large numbers bends
as numbersincrease, indicating that each additional unit of objective value is not
perceived as increasing in equal intervals subjectively. Thus, absolute deviations
from objective values of numbersincrease as numbers increase.

about the nature of the psychological function that translates actual
physical quantities into mental representations of quantities.

Multiple negatively accelerated functions have been proposed to
account for how the psychophysics of number changes as numerosity
increases, the third result discussed above, including logarithmic® and
power functions® . Yet extensive cognitive developmental research
has supported arepresentational change account, the logarithmic to
linear shift in number perception’®*”'%%, In short, children’s number
representations are more distorted and less differentiated (a flatter
function of objective quantity), whereas adults’ perceptions of number
track objective quantity (are linear functions of objective quantity).
However, the ratio, distance and size effects discussed above imply
psychophysical distortions that were also observedinadultsandeach
of these effects violates assumptions of linearity.

Moreover, major theories of adult decision making — expected
utility theory and prospect theory among them — posit non-linear
functions of quantities, outcome values (dollars) and outcome prob-
abilities. These are representational accounts of the psychophysics
of quantities that are used to explain decision making. However, the
adultdecision theories make the opposite assumptions aboutadults’
perceptions (non-linearity) than the cognitive developmental theories
do (linearity). As we discuss below, their predictions for decisions
depend crucially on assuming non-linearity'°*'%*, This contradiction
between adult studies in decision making and developmental studies
thatinclude adultsissomewhatreconciled by noting that non-linearity
varies with numerical range and that individual adults differ in their
psychophysical‘acuity’®'°°. For example, adults demonstrated aloga-
rithmic estimation pattern when the count range was increased from
0-100to 0-100,000 (ref.107) (see also ref. 108, which demonstrates
the implications of this distortion of large numbers for laypeople’s
understanding of government expenditures). In addition, adults with
little formal education map symbolic and non-symbolic numbers onto
alogarithmicscale, whereas formally educated adults (oftenincluding
college student samples) use linear mapping with small or symbolic
numbersand logarithmic mapping whenlarge numbers are presented
non-symbolically under conditions that discourage counting'® (Fig. 2)
(see alsoref. 110 for a review of research on intuitive representations
of probabilities and relationships to counting).

In summary, the mapping of number onto a spatial array in the
mind is a widespread human intuition because judgements about
number have some similarities to judgements about space. Inaddition,
intuitions about number display features of alogarithmic function (or
similar non-linear functions) when the crutch of counting is discarded
(when the task makes it difficult to count objects). Thus, formal edu-
cation layers a more literal representation — a linear representation
that faithfully captures actual differences in magnitude — on top of
anintuitive representation, the latter revealed by task modifications
asinchangingtherange of judged numbers from small to large; large
numbers are distorted in perception more thansmallnumbers. Aswe
discussinthe nextsection, although psychophysical intuitions about
number using the approximate number system have been related to
other numericaljudgements and decisions, multiple levels of numeri-
calrepresentations must be assumed to fully account for the gamut of
numerical cognition'%,

Precision and gist in decision making

Numeracy relies not only on an intuitive sense of number but also on
judgements and decision-making processes. In particular, numeracy
often has arole in situations involving risks (variable outcomes with
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known probabilities) and uncertain outcomes (variable outcomes with
unknown probabilities).

Leading theories of decision making have built on psychophysi-
cal properties of quantity to represent the value of outcomes of
sure or risky options such as winning or potentially winning $1,000
(refs. 114,115), assuming that as outcome quantities increase the per-
ceived differences between outcomes diminish (as discussed above,
the psychophysical function that translates the actual physical quan-
tity into a mental representation of quantity bends as quantity incr
eases)>'*1951° These theories predict risk aversion when choosing
between a sure gain (winning $1,000 guaranteed) and a gamble of
equal expected value (forexample, flipping a coinand winning $2,000
ifheadsand $0iftails; 0.5 x $2,000 + 0.5 x $0 = $1,000 expected value).
Because the sure gain outcome, being a fraction of the gamble out-
come, is valued closer to its objective value ($1,000), the sure gain is
worth more overall than the gamble. In other words, in the gamble, a
fraction (0.5) of a smaller number (a discounted $2,000) is a smaller
overall expected value compared with the expected value of the sure
option, predicting risk aversion. Risk aversion means avoiding vari-
ability in outcomes: less variability is preferred over more variability
(thatis, the less variable sure gain option is preferred over the more
variable riskier gamble above). Thus, the psychophysical theories of
decision making suggest thatrisk aversion (or risk avoidance) falls out
of the perception of numbers such as outcomes.

The role of psychophysical perception in predicting such risk
aversion has been demonstrated in a series of experiments with ants,
underscoring the primitive origins of some kind of approximate num-
ber system'. Based on the psychophysical Weber-Fechner law, experi-
menters manipulated the relative differences between risky and safe
options to determine whether ants’ evaluation of resources, such as
magnitudes of food, depended on logarithmic rather than linear dif-
ferences' (seealsoref.118, which identifies similarities and differences
across species in risky choices). The authors found that ants evalu-
ated resources using logarithmic mapping and that this created risk
avoidance. Indeed, ants were extremely risk-averse, with 91% choosing
the safe option, demonstrating that the ants’ choices violated strong
rationality — to choose options based on expected value —asassumed
in optimal foraging theory. Thus, foraging behaviour in ants exhibits
bothakeen sensitivity to quantities, such as outcome magnitudes and
their probabilities, andirrational biases that resemble those observed
in humans'’. That s, both species are risk-averse for gains.

Risk according to prospect theory

Prospect theory further predicts that risk preferences shift towards
riskier gambles when outcomes are framed as losses (they shift as
compared with when outcomes are framed as gains) — even when the
net outcomes are gains (Box 2). The psychophysics of outcome val-
uesas describedin prospect theoryare again sufficient to predict the
shift towards risk-taking for losses (although the psychophysics of
probabilities also supports this finding!°*12%1?!), Opposite risk prefer-
ences for outcomes when framed as gains or losses, despite identical
consequences, violate even weak rationality — itisirrational to have
oppositerisk preferences when consequences are identical — yet this
effect of gain-loss ‘framing’ is among the most replicable effectsin
psychology'*.

There aregood reasonsto believe that outcome values and proba-
bilities obey non-linear functions that reflect perceptions of quantity'>.
Yetasubstantialliterature points to alternative explanations of framing
effects (the shift fromrisk aversion for gains to risk-seeking for losses)

and other classic paradoxes™***">*"'? (see also refs. 24,73 for reviews of
evidence and theories of framing effects and other classic paradoxes).
The questionis not whether the psychophysics of numbers influences
gist representations of numbers (which it does) but whether psycho-
physics as contrasted with gist representations explain framing effects;
aswediscuss, psychophysical explanations are disconfirmed whereas
thegistrepresentational explanation is confirmed. Clearly, translating
anobjective number to asubjective value using apower functionora
logarithmicfunction (simply as adescription of magnitude perception)
doesnot specify the gist interpretation of that number. Framing effects
and their variations provide one demonstration of these distinctions
(for other demonstrations, see refs. 21,130,131).

Asnoted, framing effects include risk aversion for gains. A major
argumentagainst the psychophysical explanations of risk aversion for
gainsis thatrisk aversion in classic paradoxes can be made to appear
and disappear by focusing processing on the gist of decision options
withoutchangingthe numbers (Box2). Fuzzy-trace theory providesan
alternative explanation of risk aversion for gains (and for risk-seeking
forlosses) that hinges on the categorical qualitative difference between
zeroand non-zero outcomes.

Risk according to fuzzy-trace theory
Fuzzy-trace theory is an account of numerical gist that is extracted
from objective numbers, in parallel with verbatim representa-
tions. Foundational evidence for fuzzy-trace theory encompasses
memory for numbers, probability judgements, magnitude estimation,
multiplicative processes, transitive inference and mental arithmetic*.
Fuzzy-trace theory predicts risk aversion for gains by distinguishing
between mental representations of gist — fuzzy but meaningful rep-
resentations with content that distil the essence of information —and
verbatimrepresentations —also symbolic representations but captur-
ing the literal surface form (for example, capturing exact words and
exactnumbersas presented) (Box 3). Objective numbers are important
inputs tobothgistand verbatimrepresentations. Thus, we arereferring
to how numbers are mentally represented and how they are thought
about and not to the physical inputs when we argue, as we do below,
that numbersshould notbereified or should not be processed literally.
Fuzzy-trace theory builds on prospect theory but differs from it
in critical tests (experiments that pit alternative predictions of fuzzy-
trace theory and prospect theory against one another to determine
which theory is consistent with results or is ruled out). For example,
using common consumer financial decisions, research showed that
the likelihood of choosing a certain reward over a risky or uncertain
reward with a greater expected value was affected by manipulating gist
processing of choice options, as opposed to the problem’s verbatim
details'™. Five especially rigorous and painstaking experiments testing
risk aversion for gains revealed that focusing anindividual’s attention
onthe gist of choice options accentuated the preference for certainty
and, conversely, focusing an individual’s attention on the details of the
choice options attenuated the preference for certainty'®. For instance,
individuals were randomly assigned to twoinstructional conditions —
tomake anintuitive decision or to elaborate details about reasons for
their decisions — and had to choose between a sure option versus a
numerically superior risky option (thatis, options of unequal certainty
and expected value). Individuals in both conditions also had to rate
the degree towhichtheir decision strategies were qualitative (‘saw it
more asachoice between a prize for sureand an uncertain prize’) and
whether theirstrategies focused onnumbers. Individuals assigned to
the gist condition of making anintuitive decision chose the sure option
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Box 2

The importance of zero in risky-choice framing

For problems in which the expected values of all options are the
same, the classic risky-choice framing bias is that individuals
prefer certain outcomes when options are described as gains
but individuals prefer risky options when options are described
as losses, which violates rationality. However, the classic risky-
choice framing bias is not caused by numerical probabilities or
outcomes but, rather, by the mere presence of a zero outcome
(‘'none’, ‘no one’ and ‘no people’ are all zero outcomes) in the risky
option. For example, consider this problem: imagine the United
States is preparing for the outbreak of an unusual disease, which
is expected to kill 600 people. Which of the two treatments
options would you choose?
e Gain frame
- Standard options: A. 200 people will be saved. B. 1/3
probability that 600 people will be saved and 2/3 probability
that no one will be saved.
- No-zero options: A. 200 people will be saved. B.1/3
probability that 600 people will be saved.
e Lossframe
- Standard options: €. 400 people will die. D. 1/3 probability
that no people will die and 2/3 probability that 600 people
will die.
- No-zero options: €. 400 people will die. D. 2/3 probability
that 600 people will die.

Chose certain option

T

Chose certain option

Ambiguities are eliminated with instructions and examples,
and assessed with quizzes; thus, 200 saved is understood by
subjects to mean that exactly 200 are saved and so on'®. The
classic risky-choice framing bias is present with standard gain
or loss options but is absent when the zero present in the risky
option is deleted (see the figure; panel a based on ref. 125, panel b
based on ref. 127). In prospect theory, the value of O (none, no one
or no people)=0 and thus deleting 1/3x0 or 2/3x0 should have
no effect on preferences. Thus, prospect theory cannot account

more™, Furthermore, individuals who preferred the sure option when

makingadecisionwere morelikely to indicate that they used a qualita-
tive gist strategy to make their decision, such as the strategy quoted
above, which mediated the effect of instructional condition on choice
preference. Moreover, those who received instructions to focus on
detailsand whoreported less qualitative gist thinking were less likely
tofavour the sure option, shifting towards the quantitatively superior
(higher expected value) risky option.

Mental representations of qualitative gist — such as winning
some money for sure versus possibly winning some money or winning
nothing — canaccount for risk aversion for gains, risk-seeking for losses
and variations on these gain and loss framing effects, and under strin-
gently controlled conditions exact numbers are neither necessary nor
sufficient to observe gainand loss framing effects?*>12125129 As exam-
ples, the numbers can beremoved entirely and framing effects are still
obtained aslongas thegistis conveyed and, in other experiments, the
numbers canbe emphasized but the effects disappear whenthe gist is

104
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for the observed differences between zero-included and no-zero
problems that were predicted by fuzzy-trace theory. In fuzzy-
trace theory, the some versus none (or zero) contrast between
options creates the shift in preferences underpinning the classic
risky-choice framing effect.

removed. Toillustrate, in head-to-head critical tests, suchas truncation
experiments (Box 2) with all the verbatim numbers that should elicit
gain and loss framing effects according to psychophysical theories
(suchas prospect theory) still presentin the problems, framing effects
were eliminated as per the predictions of fuzzy-trace theory because
gist differences between options were removed. According to fuzzy-
trace theory, eliminating the zero part of the risky options — the trun-
cation of zero — eliminated the categorical gist that distinguished
options, which was the cause of framing effects. Fuzzy-trace theory
predicts thatindividuals extractboth verbatimand gistrepresentations
but emphasize the simplest gist (categorical level: some quantity or
no quantity) in their judgements and decisions. For example, gaining
some money for sure is preferred to possibly gaining some money or
gaining nothing (because gaining some quantity of money is better
thangaining no quantity); the same some-none categorical level of gist
producesrisk-seeking for losses. Furthermore, in expected-value equal
framing problems, verbatim representations — which include exact
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numbers and rote computations performed onthose numbers —yield
indifference between options whereas gist representations yield the
framing effect. Verbatim representations include exact numbers and
the computations that research shows are performed automatically
on those numbers; something akin to expected value is computed
automatically from early childhood"’. Removing gist differences by
the truncation of zero produces reliance on the already encoded ver-
batim representations whose effects are masked when categorical
gist differences between options are present. Thus, the truncation
of the zero option, which amounts to subtracting literally nothing in
othertheories, producesindifference between options and eliminates
framing effects: neither risk aversion for gains nor risk-seeking for
losses is produced.

Conversely, accentuating the gist augmented framing effects,
again per predictions of fuzzy-trace theory. Thatis, truncating the non-
zero part of the gamble while leaving the zero part produces starker
categorical gist contrasts between options: gaining some money com-
pared with gaining none and losing some money compared with losing
none, resultinginlarger preferences for the sure gain and for the risky
loss (enhanced framingeffects). These preferences turnonthe simplest
gist representation of quantity, its categorical presence or absence
(zero). Thus, in many qualitative gistrepresentationsinjudgement and
decision making, these and other results point to the crucial nature of

Box 3

‘zero’ (Box 2) despite the fact that zero literally contributes nothing
quantitatively”?4,

Effectsin truncation experiments that focused processing on
gist or verbatim representations were not due to ambiguity because
allof the information was presentedinall of the conditions, as further
demonstrated by ambiguity tests given to participants, and these
truncation effects have beenreplicated forlarge numbers of decision
problems in different experiments>?"°, Using different trunca-
tions, framing effects were made to appear and disappear for the same
people and for problems with identical (non-zero) quantities, ruling
out psychophysical and inter-individual differences as explanations
for the effects. These effects of truncation on framing effects have
been extended from choices toratings of each decision optioninboth
within-subjects and between-subjects designs’ (complementing the
results of refs.135,136).

Althoughresults from truncation experiments confirmfuzzy-trace
theory’s predictions and disconfirm psychophysical explanations
assumed in prospect theory for risk aversion for gains (or for fram-
ing effects), they do not imply that psychophysical representations
of number do not exist. On the contrary, there is good evidence that
psychophysical representations of number are extracted, and they
undergird similarity judgements that influence decisions""**. How-
ever, they are distinct from categorical gist representations of quantity

Predicting decision paradox behaviour

To determine whether numeracy predicts other cognitive
abilities, the influence of general intelligence must be statistically
controlled for because it correlates with most cognitive abilities.
For instance, factor analysis and multiple regression (controlling
for general intelligence) were used in two studies investigating
whether objective numeracy and other numerical representation
types (categorical and ordinal gist) predicted the Allais paradox —
a classic paradox of decision making ™. Categorical gist involves
some versus none distinctions and ordinal gist involves more
versus less distinctions. The Allais paradox consists of two
problems, one that involves categorical gist — choosing between
a guaranteed amount of money versus a gamble with a possibility
of getting nothing — and one that involves ordinal gist — choosing
between two monetary gambles that both have a possibility

of getting nothing, so individuals compare more versus less
money. In both problems, the amounts of money are the same

($1 million and $5 million) and the overall expected value favours
the risky option. Thus, individuals should either be risk-avoiding
for both or risk-seeking for both. However, the Allais paradox

is that individuals are risk-avoiding for problem 1 but are risk-
seeking for problem 2 (see the figure; the regression coefficients
of factor scores for objective numeracy, categorical gist and
ordinal gist are denoted). Because problem 2 prompts numerical
comparisons, individuals with higher numeracy and ordinal gist
scores are less risk-avoiding. In other words, they choose the riskier
option with the higher numerical value ($5 million). In problem 1,
categorical gist competes with numerical differences, favouring

Numeracy Ordinal gist
Unrelated
Unrelated
Categorical gist -_ Allais problem 1
0.28, P <0.01

Numeracy Ordinal gist

-0.37, P < 0.01
-0.44,P<0.01

—
Unrelated

Categorical gist Allais problem 2

risk avoidance. Thus, when the simplest gist — categorical gist —
differentiates options, individual differences in the tendency to rely
on categorical gist determine choices but when categorical gist
does not differentiate options, individual differences in numerical
computations and comparisons determine choices.
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asshown for judgements of ‘approximately equal™ (see ref.139 foran
independent corroboration). Crucially, combining gist representa-
tions with literal verbatim representations can mimic the standard
negatively accelerated psychophysical functions (see discussion of
psychophysical numbing in ref. 17 and explicit quantitative models
of'this process in refs. 73,140).

Risk, numeracy and decision making

When separate measures of numeracy and psychophysics (such as
approximate number sense) — and, in some studies, measures of
gist — areincluded as predictors of judgements and decision biases,
eachaccounts forvarianceinresponses*">*! Although numeracy
hasbeenidentified with objective processing of quantities (objective
numeracy tests have objectively right and wrong numerical answers)
and related to reduced levels of psychophysical distortion and cog-
nitive biases, these connections can be tenuous or even reversed**
(seerefs. 1,23 for extensive discussion). Higher numeracy has been
associated with rating numerically inferior gambles as more attractive
thansuperior gambles; more numerate individuals, including profes-
sional accountants, were more prone to numerical comparisons that
produced judgement biases'*. In other problems, more numerate
peopleemphasized harder-to-computeratios rather than differences
in numbers of lives saved for different charities, thereby choosing
programmes that saved many thousand fewer lives'**. Although com-
petinggist representationsabout which optionisaffectively superior
(good or bad) also support choosing the wrong answer, it is the rela-
tionship tonumeracy and its promotion of the wrong answer through
mechanically computing ratios thatis the central consideration here.
Individuals who focus on computing ratios (a harder computation
than simply noting that more lives are saved in one of the options)
miss the forest for the trees — they miss the bottom-line gist that the
point is to save lives, and computing ratios is beside the point in this
problem. This kind of thinking focuses on surface details rather than
simpler, deeper meaning.

Note that gist thinking does not depend on ‘verbatim under-
standing’ because gist representations are not derived from verba-
tim representations (gist representations such as which is more or
whichis mostare encodedindependently fromencodingof verbatim
numbers); and, also, there is no such thing as verbatim understand-
ing because verbatim means without meaning or understanding by
definition>*, Problem solving can require multiple levels of preci-
sion, including performing exact computations, but gist guides the
selectionand deployment of computations, and exact answers are not
usuallywhatisrelied oninjudgements and decisions. It is the mean-
ingfulinterpretation of that number in context — the gist — that mat-
ters. Asexamples, anumerically small prevalence rate of an epidemic
infection can be a huge risk and doses of a poison can be expressed
in numbers that are psychophysically similar but boil down to dif-
ferent categorical gists of lethal versus non-lethal doses. Objective
and precise representations of numbers by themselves (prevalence
rate, dose) donotdeliverinsightinto the bottom-line qualitative gist
of the numerical information (huge risk, lethal dose). In fact, literal
thinking about numbers can be misleading? (Box 1). Thus, the afore-
mentioned results in which more numerate individuals who deploy
more precise numerical processing do worse are instructive>'**,
The results show that mechanically processing numbers without suf-
ficientattention to meaning — literal (verbatim) thinking — that reifies
numbersand number crunching canlead toinferior judgements and
decisions (Box1).

Indeed, verbatim representations of exact numbers or words holds
less sway over memory, judgement and decision making as human
development progresses from childhood to adulthood or fromnovice
toexpert.Notonly can numerical problems sometimes be solved non-
numerically (Box 4) butalso thetendency torely on qualitative gist, as
opposed to verbatimrepresentations of number, increases with age and
experience alongside advancing computational abilities?***¢¢, Under
theoretically predicted conditions, increasing emphasis on verbatim
representations of literal numbers candrive up errors™**2'*, For exam-
ple, putting numerical information out of sight — thereby reducing
accurate verbatim memory for number — improves accuracy in class-
inclusion problems (Box4).In the class-inclusion problemasking ‘are
there more roses or more flowers’, correct answers are increased by
removing avisual display with eight roses and two tulips that decreases
memory for number? Although questions in class-inclusion prob-
lems ask about which classes of objects are more numerous or more
probable, they are more accurately answered by ignoring numerical
information'* That is, the number of roses and tulips is irrelevant to
the question of whether there are more roses or more flowers (Box 4).

Similarly, the individual numerical risks of contracting COVID-19
or HIV/AIDS from a single encounter are low, but these accurate
numbers can be misleading; the gist of these risks is arguably high'’.
Therefore, it is not that people necessarily ignore numerical risks, as
researchersfrequently assume, butrather that they temper theirappre-
ciation of the level of objective risk with qualitative considerations
about what those numbers mean in context. For example, although
‘it only takes once’is a categorical representation of risk that violates
traditional approaches to probability training'°, providing training
thatincluded that representation, along withnumerical probabilities
forboth treatmentand control groups, produced long-lasting changes
in risk attitudes, intentions and self-reported behaviours, compared
with the control group®.

Note thattraining was not ‘numerical’ in the sense of being solely
about numbers but, instead, was about both presenting numbers
(verbatimrisks and probabilities) and also educatingindividuals about
how best tounderstand the categorical gist — the simple bottom line —
ofthose numbers™. Understanding informationis a process through
which information is always mentally represented; there is no such
thingasunderstanding without amental representation. Multiple gist
representations of numbers are formed in the minds of individuals as
partofthe process of understanding numbers, in parallel with forming
aliteral verbatim representation which is not part of understanding
(as verbatim is without meaning by definition). An individual can
memorize a number verbatim (without meaning) and perform rote
(without meaning) calculations on that number (0.01=1% =1/100),
then take that number to be the answer (literally) to such questions
as ‘what is the risk of unprotected sex’ because someone said that
number was the probability of HIVinfection. Literal thinking promotes
risk-taking in this example because the number is objectively small but
this literal thinking misses the point that public health experts make,
namely, that therisk is substantial and thus protective measures are
warranted™2.

The distinction between verbatim (literal) and gist mental repre-
sentations of numbersandassociated processing hasimplications for
long-term retention in memory and transfer to additional contexts.
Gistis notonly encoded into working memory as problems are solved
ordecisionsaremade but alsois the residue of numerical information
that is retained in memory long-term'”. In addition, the fuzziness
and simplicity of gist allow it to be more flexibly applied in real-world
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Box 4

Competing representations in class-inclusion tasks

Class-inclusion tasks are quantitative reasoning problems that involve
subsets, overlapping sets and other set relations>/%377321,

Inclusionillusion tasks
In inclusion illusion tasks, the problem information can be
represented in two distinct ways, as salient numerical information
and as non-numerical gist. Salient numerical representations lead
to incorrect judgements and non-numerical gist representations
lead to correct judgements, and these responses compete with
one another, producing longer response times in adults and errors
in children. In the example below, most children continue to make
errors after being asked to count the flowers — they count all ten —
ruling out ambiguity about what the ‘flowers’ refer to (the entire set,
not a subset) as an explanation for the illusion.
Subjects encode: 2 unequal subsets, A1and A2, of a target set, B,
where A1>A2. For instance, A1=8 roses, A2=2 tulips and B=flowers.
e Competing representations: Al is far greater than A2 versus B is
greater than any of its subsets.
e Judgements: pit the salient numbers against the non-numerical
gist — more roses or more flowers?

In conjunction fallacy tasks and other class-inclusion tasks
involving probability judgements, numerical information is
sometimes given as part of the background information and this
competes with qualitative impressions such as descriptions of
individuals. For example, in the problem below, Mary might be judged
more likely to be a Democrat (a liberal party in the United States)

contexts that differ superficially from training, thereby facilitating
transfer to new contexts post training".

Moreover, numerical superiority is not the same thing as deci-
sion superiority, in the sense of promoting health, wealth and well-
being™*1>. For example, calculating the expected value of having
unprotected sex can yield a numerical answer that favours unpro-
tected sex (low objective risk of bad outcomes such as HIV but high
rewards)®'%¢, Similarly, buying home insurance has lower expected
value than not buying home insurance because premiums take into
account risks and outcomes, and provide a profit beyond expected
value toinsurance companies; onaverage, homeowners will come out
ahead financially if they do not buy insurance and risk catastrophic
totalloss. Research has shown that choosing the numerically superior
optioninthese typesof decisions, rather than choosing on the basis of
categorical gist, isassociated with decision ‘inferiority’ —bad outcomes
for individuals in terms of health, wealth and well-being!?05!152155157,
Therefore, training programmes that aim to improve life outcomes
should distinguish verbatim from gist assessments of knowledge about
risks and outcomes®™5*°,

Improving numeracy
Most training programmes toimprove numeracy per se have not built
on many of the key research findings that we have sketched thus far.

than to be a Republican (a conservative party in the United States)
despite the greater number of conservatives at the meeting because
of her qualitative description (participated in women's rights
demonstrations and supports mask mandates, both identified with
Democrats). Ordinal judgements, such as ranks, can also violate
relationships between the subsets and sets they are part of. For
example, Mary might be ranked as more likely to be a Republican
who is active in the feminist movement than to be a Republican.

Fallacy tasks

Subjects encode: 100 individuals attend a town hall meeting in
arural area in the Midwest of the United States; 80 are politically
conservative and 20 are politically liberal. Mary is one of the
individuals attending the meeting. She is politically active and
has participated in women's rights demonstrations. She thinks it
is important to mandate wearing masks in schools to prevent the
spread of COVID-19.

e Competing representations: 80 conservative>20 liberal versus
participation in women'’s rights demonstrations and support for
mask mandates in schools.

e Judgements: rank order the following statements with respect
to how likely they are to be true of Mary: 1. Mary is a Republican.
2. Mary is a teacher. 3. Mary is active in the feminist movement.
4. Mary is a psychiatric social worker. 5. Mary is a member of
the League of Women voters. 6. Mary is a Democrat. 7. Mary is
a Republican who is a member of the League of Women voters.
8. Mary is a Republican and is active in the feminist movement.

In this section, we summarize these numeracy training programmes
withthe goal of providing afoundation for future training research that
takes these findings into account. Most numeracy training programmes
contrast with risk-communication programmes or decision-training
programmes; the latter have drawn on these key research findings as
briefly discussed in this section”****"1°°_Building on prior sections, we
next discuss how future research that focuses on numeracy training
ought to distinguish the following goals: instilling purely mechanical
skillswithout understanding (literal verbatim thinking, which is not use-
less butisdifferent from gist); helping learners get the bottom-line gist
of numbersin context; and encouraging confidence that is calibrated
toobjective numerical skills (ideally, that subjective numeracy would
be high because objective numeracy was high).

Note that, in our approach (as described in Fig. 1), subjective
numeracyisatype of metacognition (itis a self-assessment of numeri-
calability and preference, whatindividuals think about their thinking)
that usually indirectly reflects numeracy (numerical ability) because
ability creates bits of evidence that people use to self-assess their
abilities and preferences. However, there are many other sources of
metacognitive self-assessments of numeracy that do notreflect objec-
tive ability; for example, subjective numeracy is likely to be biased
by ethnic and gender stereotypes about which types of people are
good at mathematics that individuals apply to themselves. These
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Box 5

Transferrable and durable
training of number concepts

It is well established in developmental psychology research that
number concepts can be trained in children as young as age
4years, that the training transfers to untrained tasks and that

the training is durable over time”"" (see also ref. 168). An effective
training method is oddity learning. Oddity learning has nothing
to do with odd and even numbers but, instead, refers to choosing
the odd member of a set (the one that does not belong with the
others). For example, children would be exposed to triads of dots
or other objects, in which two elements contain the same number
of items but the third does not (see the figure). Note that two of the
lines of objects that differ in number match in length. Over a series
of trials with many such arrangements, children were told to select
the element with the odd number (the line of objects that does not
match the other lines in terms of number of objects). They received
corrective feedback on each trial. Even young children learned

this task rapidly, with most performing perfectly after 30-40 trials
spread over 2days. Learning was stable over periods ranging from a
few days to a few months. Such learning has been found to transfer
to new triad arrangements that children have not seen before, to
numerical reasoning problems (for example number conservation,
are two arrays the same or different?) and to quantitative reasoning
problems that do not directly involve numbers (for example length
and weight comparisons). What is learned cannot simply be a literal
copy of what was trained because the wrong answer in training

(an array of five beans) becomes the right answer in the transfer
test (the same array of five beans), and yet trained children pass
the transfer test (see the figure). The effectiveness of training in
young childrenillustrates that extracting gist depends on having
experiences that teach concepts rather than age per se'*°.

Training: A Transfer: B

extraneousinfluencesonsubjective numeracy are why we emphasize
fostering a veridical link between subjective numeracy and objective
skills (calibration) as part of training.

Inaddition, other metacognitions (beyond subjective numeracy),
suchasreflecting about numerical processing, must be taught beyond
teaching numerical skills because increased cognition (skills) does not
necessarily translate into increased metacognition (reflecting about
numerical processing) (Fig.1). Moreover, the innate intuitive apprecia-
tion of number reflected in the approximate number system should be
builtonasan assetin training with lessemphasis onits deviations from
literal linearity. Highly sophisticated numerical inferences, such as con-
ditional probabilities, can be derived using thatapproximate number
system'®!, Finally, we describe how connections between numbers and

gist intuitions about those numbers should be inculcated toimprove
the application of numerical information to judgements, decisions
and behaviours in the real world.

Training risk, probability and magnitude

Effective training programmes applying the concept of gist have been
developed to help patients understand the risks and probabilities
of diseases™'*? (see also ref. 130 for a review of such programmes).
Web-based interactive tutorials have been developed to communicate
probabilities of cancer given genetic risks'*® and to train more domain-
general quantitative reasoning'®. Training programmes have alsobeen
effective in building on approximate number sense, especially with
children (Box 5). For instance, teaching mental number line skills
with linear board games transfers to mathematical tasks; such games
mightincluderolling dice and then movingaspecificnumber of steps
(counting steps based on the outcome of the dice throw) along apath
(line) in the board game’®1%1%¢ (see discussions of related concepts
in refs.167-171).

Inaddition, although hypotheses that frequency formats —which
use counts of discrete objects rather than ‘normed’ quantitiessuchas
probabilities, proportions or percentages — improve accuracy have
notbeen borne out**”?, hypotheses about disentangling numerators
fromdenominators have been borne out®? (Box 4). These effects have
beendemonstrated with and without frequencies, whichdonotbearon
effects.Instead, separating eventsintonon-overlapping classes (such
as using two-by-two tables of probabilities) reduces a host of biases that
canbetracedtodenominator neglectrather thanlack of understand-
ing of probabilities'””. Despite lacking formal knowledge of marks
such as slashes and decimal points and exhibiting biases, individuals
can manifest anintuitive appreciation of probability early in develop-
ment and without formal education'®”*. Consistent with fuzzy-trace
theory, biases traced to part-whole inclusion confusion — base-rate
neglectand fallaciesinvolving combining probabilities — arereduced
considerably by making classes of events discrete’*'>"¢, Training
interventions adopting this approach have been used effectively in
law, medicine and public health'**”"¢, Thus, ‘visual aids’ that do not
separate event classes as theoretically indicated are less effective in
reducing part-whole inclusion kinds of errors®*'”",

Training numeracy

Objective numeracy correlates with differences in target abilities (the
abilities that trainingis aimed atimproving, such as mathematical skills
or financialskills), even quantitative target abilities such asestimating
how many questions were answered correctly on an examination, but
this does not show that numeracy causes differences in target abili-
ties. That is, objective numeracy might correlate with target abilities
because people higherin numeracy happenedto be wealthier or higher
in intelligence overall (raising all scores due to a third variable), not
because numeracy caused these outcomes (correlation is not causa-
tion). To establish causal connections, randomized control training
experiments arerequired to determine whether subjectswhoreceived
numeracy training have improved target abilities compared with
untrained control subjects. Further, assessing improvement in such
numeracy training experiments requires atheoretical understanding
ofthree classical criteria of effectiveness: whether training effects are
durable, transfer to untrained abilities and are large enough to be of
practical importance. A curious feature of the numeracy literature is
thatthereare few training experiments, ascompared with many studies
demonstrating that numeracy is areliable predictor of many forms of
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decision making, judgement, problem solving and reasoning'”. Indeed,
only one corner of the literature, financial decision making, contains
enough experiments to supportsome preliminary conclusions about
causal connections between numeracy training andimprovementsin
target abilities”®. Depending on the stringency of selection criteria,
roughly 20 randomized control experiments have been published.

Asagroup, these trainingexperiments have three notable features:
the subjectssampled, the nature of the training interventions and the
presence of transfer tests. The subjects were overwhelmingly samples
of convenience. Specifically, there were some target groups such as
high school students or low-income people in financial distress that
were already scheduled toreceive financial numeracy training, such as
aunitinan economics course or government-mandated financial edu-
cation'””. Regardinginterventions, the focus was not on theory-driven
numeracy training but, rather on providing facts and tools thought
to be crucial for individuals to manage their personal finances. The
training interventions fell into two main categories: learning financial
facts (credit, interest, investment, loans, planning and savings); and
learning and practising numerical computations (credit scores, annual
interest onloansand savings, and investment growth)'®°. The transfer
testswere personal financial behaviours that the experimenters aimed
to increase, which were measured over time in trained and control
subjects. The outcomes assessed included savings, planning for retire-
ment, stock ownership and investments, management of cash flow,
absence of debt, contributing toretirement plans and financialinertia
(paying of unnecessary fees, passive acceptance of default options).

The general picture that has emerged from financial numeracy
training experiments has four broad elements. First, these training
programmes have been successful in the simplest sense because they
produced substantial improvements in the target abilities that were
taught, as periodic assessment revealed that trained subjects displayed
superior knowledge of financial facts and superior accuracy in numeri-
cal computations relative to controls™ (for reviews of financial train-
ing programmes, see refs. 1,177). Second, training produced transfer
to real-world behaviour. Trained subjects exhibited higher levels of
subsequent savings, of planning for retirement, of investments and
of managementof cash flow relative to control subjects"”*'**'%* Third,
training had durability, as trained subjects displayed better transfer
performance weeks and months after training compared with con-
trol subjects'®. Fourth, despite these positive outcomes, financial
numeracy training had only small effects on transfer and limited dura-
bility””'”%, For instance, effect sizes indicated that differences between
trained and control subjects on the various transfer measures averaged
1-2% (refs.177,178). Moreover, durability differences between trained
and control subjects were detected weeks and months after training,
but these differences were undetectable after 6 months.

Two straightforward conclusions emerge from randomized
control financial numeracy training experiments. On the one hand,
there is overwhelming evidence that such training produces reliable
learning that transfers to personal financial behaviours and is stable
over short periods of time. On the other hand, the practical goals
of financial numeracy trainingare to produce large changes in personal
financial behaviour that last for years (or perhaps decades in the case
of saving for retirement). To achieve these types of practical goals,
training programmes must somehow be improved, but the question
remains how to best accomplish this.

More broadly, some hints for how to move forward are provided
by correlational studies finding thatlevel of schooling was associated
with numeracy and numeracy, in turn, was associated with wealth,

suggesting that protracted education might have long-termeffectson
life outcomes'®>'¥” (see alsorefs. 188,189). Neuroimaging, event-related
potentials and other neuroscience studies are also instructive but
similarly correlational®* "2, However, theories that identify underlying
mental processes can be used to create experimental manipulations
that mimic effects ofindividual and developmental differences to test
causal links®*'?°, Although general brain training programmes are not
necessarily effective!®, arandomized control approximate arithmetic
training experiment improved the consistency of risk judgements in
trained versus control subjects, the first such causal experiment'®* (but
seeref.195, which failed to observe a causal link between approximate
training and symbolic arithmetic).

A framework for training

Training numeracy is often assumed to require extensive practice over
along period of time”?. However, brief numeracy training can instil
statistical concepts, such as thelaw of large numbers, that endure after
adelay, and that transfer to new instances of the statistical concept
notdirectly trained and to reasoning about everyday life’**'” (see also
ref.198, whichreviews literature beyond statistical concepts, including
whole numbers, operations, word problems, fractions and algebra).
The mosteffective approach to numeracy training seems to be to com-
bineinstruction about general principles with specific examples. For
example, the broad general numeracy principle thatlarger samples are
more likely to capture population statistics than smaller samples was
explained verbally and this general principle was demonstrated with
ballsin urns (namely, abstractly) and with specific examples (beyond
urns). Importantly, the training with balls in urns was not about balls
and urns specifically but, instead, they were explained as representing
any elements in any sets. That numeracy training then transferred to
instances of the general principle that were not trained, such as prob-
lems about slot machines, sports and social inferences'’. Thus, what
islearned from effective numeracy trainingisnot completely abstract
(thatis content-free rules or structures) because concrete examples
helped but neither is it completely concrete (dependent on surface
features explicitly presented in training)®®.

The constructofgistinfuzzy-trace theory occupies thisintermedi-
ateterritory between content-free rules or structures abstracted from
experience and content-specific concrete examples of experience (for
reviews about definitions and examples of gist, see refs. 24,26,158). Gist
representations of experience are general but they have content (they
are not abstract structures) and they contrast with literal (verbatim)
representations of reality. Gist also differs in important ways from
abstract schemas (generalized rules derived from past experience;
seeref.24). Although conceptual contenthasbeen mentioned in learn-
ing approaches, it is often lumped in with abstract rule learning (as
contrasted with concrete exemplar learning®”), neglecting the rich
literatureidentifying special properties of gist memories that capture
essential meaning.

Combining these training approaches and material covered in
earlier sections onintuitive processing provides a plausible framework
forresearchonnumeracy training (Fig. 3). Individualsare bornwith an
innate and intuitive approximate number system that facilitates the
acquisition of rudimentary number skills if individuals are exposed
to some formal schooling or relevant experience (for a review, see
ref. 202). Training can then most effectively build on that numeracy
foundation by targeting gist representations and processing. More
general formsof training have been successful (for example, teaching

thelaw of large numbers’®”; see also ref. 173 for training conjunctive
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and disjunctive probability), as have more specific forms of training
(for example, teaching cumulative probability as it applies to how a
small probability of pregnancy for a single instance of unprotected
sex rapidly approaches certainty with repeated instances'’; see also
ref.160 for training conditional probability asit applies to breast cancer
and genetic mutation) (Fig. 3). Some studies have trained individuals
toextractgistingeneral (for example, understanding the gist of whole
narratives with varying content?®®) but most studies highlight gist to
improve anindividual’'s understanding of presented information about
a specific domain®*. For example, one study assessed the effect of a
gist-based intervention on 27 psychosocial and self-reported behav-
ioural outcomes related to adolescents’ sexual behaviour, such as age
of initiation™". Training the gist had reliable effects that were of suffi-
cientmagnitude to matter practically,and some effects endured over
6 and 12 months in follow-up assessments® (see ref. 130 for a review
of gist training in health and medical decision making that identi-
fied 94 studies). Gist training is likely to transfer to examples that are
conceptually similar to the specific trained examplesbut it is possible
for an even more general principle to be induced in some learners
(of cumulative probability, for example) (Fig. 3). Gist training also

Fig. 3| A framework for training and transfer of numeracy. The flow of this
figureis that individuals bring the innate approximate number system with
them, after which numerical cognitionis enriched by schooling and experience
and may also be enriched by formal numeracy training. That training can range
from completely concrete to completely abstract, with the optimum level being
onethatisintermediate between these extremes that conveys the meaning of
numerical information. Thatintermediate level maximizes the critical goal

of transfer of training which involves being able to solve problems accurately
that were not directly taught. Note that training involving purely abstract

rules is notideal for transfer because the lack of contentin training fails to
convey the exceptions to rules when they are applied in context (as with moral
development, rigid rule following is not the most advanced form of cognition).
Thus, building on the approximate number system and rudimentary skills,
training is predicted to be most effective when it conveys the gist of numbers and
numerical principles — neither content-free nor limited to literal thinking about
concrete examples. Such training canstill vary in scope from more domain-
general to more domain-specific. For instance, more domain-general training

in the law of large numbers'****” and conjunctive or disjunctive probability'” or
more domain-specific training in cumulative probability of pregnancy® and
conditional probability of breast cancer given genetic mutation'*’ all conveyed
gistrepresentations (and processing) resulting in effective training. Transfer
also depends on the retrieval cues that people receive in the later transfer
environment: completely general, gist or specific verbatim. ‘Like cues like’ means
that the specificity of the cue determines which kinds of memories (general
cues bring general memories to mind, gist cues bring gist memories tomind

and verbatim cues bring verbatim memories to mind) are remembered from
training and, thus, transferred. Therefore, real-world judgements, decisions and
behaviours depend on the prepared mind ofindividuals (approximate number
system and rudimentary skills), the representations encoded during training
(abstract, gistand verbatim) and the cues provided in the transfer environment
(abstract, gist and verbatim). However, gist representations are generally of
greater utility because they are easier to learn than completely abstract rules,
endure longer than verbatim representations and are more applicable to a wider
array of situations than either completely abstract or completely concrete
learning®”.

usually transfers to more specific examples of the concepts that were
taught; successful training — getting the gist — means that learners
understand underlying meaning and thus can deduce that specific
examples instantiate the taught gist’*>. However, verbatim training
(rote memorization) with highly concrete contentis difficult to transfer
to new instances. In addition, most environments rarely offer cues to
completely abstractlearning and they rarely offer cues to exact num-
bersand words thatwerelearned (literal copies of concrete examples
that were taught). Therefore, environmental cues are most likely to
remind learnersofgiststored atthe time of learning, scaffolding their
ability to solve problems that are notliteral copies of what they learned.

Inthis framework, itisimportant for training to organize numeri-
calinformation meaningfully and to distil information toiits gist, espe-
cially when a specific training domain is unfamiliar to learners. For
example, merely knowing how to convert a 0.05 probability to a 5%
chance because of amemorized ruleis not enough; that quantity might
be aminiscule amountin one context (such as the probability of rain)
and might be a huge amountinanother context (such as the baserate of
infectionof a novel and deadly virus). Knowing where 0.05is placed on
anumberline spanning 0 to1.0is notirrelevant, butit does not convey
the gist of 0.05 in context needed to make personal, professional and
publicpolicy decisions. Focusing on theliteral magnitude can be mis-
leading in common contexts in which small probabilities signal large
risks (and vice versa), adissociation that fuzzy-trace theory predicts®™.
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Thus, training content-free general mathematical skills is not suffi-
cient for improving decision making involving numbers, but neither
should training be mired in superficial details of specific problems
(the degree of content specificity could apply within or across topic
domains). Training the gist means finding a sweet spot between these
two extremes (Fig. 3), to provide learners with substantive content
that captures general principles, including insight into exceptions as
all general principles have contexts in which the rules make no sense
toapply and need to be discarded.

The effectiveness of training depends on the information that was
presented, but, ultimately, training success rests upon the gist that
thelearner derives fromwhatis presented. For best results from train-
ing, learning is not passively accepting pre-digested gist but, rather,
the learner gets insight from understanding why the facts have been
organized and interpreted as they have been; whatis learned must be
meaningful tobe agistrepresentation (by definition). Ideally, the gist
ininformation — the intended message — and the gist of information —
the learner’s mental representation — align'®. Once learning has been
acquired, environmental cues can later trigger retrieval of gist and
verbatimrepresentations stored at the time of training independently
(Fig. 3). Thus, successful training depends on what learners store in
memory (based on the training effectiveness), the form of the stored
representations (verbatim and gist) and the cues that are presentin the
environment thatcan trigger subsequent retrieval of what was stored.

Summary and future directions

Numeracy predicts animpressive array of life outcomesin suchcritical
areasas health (perceptions of risk, quality of health decisions, patient
outcomes), finance (employment, retirement savings, wealth) and
law (sentencing decisions, civildamage awards). Objective numeracy
measuresfocusonindividuals’ facility with basic calculation, especially
ratios and proportions, and subjective numeracy measures focus on
their personal perceptions of numerical competence and confidence.
Measures of objective numeracy have revealed declines in numeracyin
Westernindustrialized countriesinrecent years. Measures of subjective
numeracy are convenient proxies for objective numeracy because they
correlate moderately with objective measures and are easier toadmin-
ister. Although subjective numeracy draws on evidence of objective
numeracy (ability), itis essentially metacognitive (itinvolves thinking
about thinking, including assessing preferred styles of thinking) and
thusissubject to biases in self-assessment. Thus, objective numeracy
and subjective numeracy are correlated measures but they are distinct
abilities. The approximate number systemis aninnateintuitive system
for processing number that lays the groundwork for developing objec-
tive numeracy. However, anintuitive appreciation of magnitude derived
from the approximate system shared with infants and animals is not
the samething as anintuitive appreciation of the gist of mathematical
contentderived from meaningfully interpreted experience. Although
research on the approximate number system has focused on acuity
(minimizing deviations from objective quantities), numerical problems
canoftenbesolved with fuzzy qualitative gist. Paradoxically, those gist-
based solutions canbe more accurate and they become more common
withincreasesineducationand experience. Despite recent declinesin
numeracy, training programmes that yield durable and generalizable
improvements have been developed.

Some core questions remain to be resolved, of which we note prom-
inenttheoretical and practical examples. Thefirst theoretical question
to resolve is how to best map the relations between metacognitive
abilities and objective numeracy (Fig. 1). In particular, researchers

need tobetter understand why performance oftenfalls short of compe-
tence withouteliciting corrective recognition —reflection —on the part
of the reasoner. The second theoretical issue is to better understand
the relations between intuitive representations of number — gist
and the approximate number system —and decision making. In order
toachieve this, theory-motivated process analyses of decision-making
tasks are required. For example, tasks that require exact numerical
responses, such as certainty equivalents?®, might draw upon mental
representations at different levels of granularity than dot discrimina-
tion tasks*””. The challenge will be to move beyond emphasizing literal
thinking, including acuity and linearity, to harness the strengths of
humanintuition: both the approximate number system, which provides
impressions of numerosity and magnitude, and gist representations
that capture the bottom-line meaning of numbersin context. Verbatim
representations of numbers do not capture meaning and conflating
‘numerical’ with ‘verbatim’is a mistake. The practical example is cur-
rent numeracy training, specifically the fact that durable and generaliz-
able numeracy improvements produced by training methods are not
verylargeorverylong-lasting. Considering theimportance of reversing
declines in numeracy, we close with some observations about how to
devise more powerful training regimens.

Based on fuzzy-trace theory’s training research in domains that
involve processing numerical information®*°, a promising approach
is to enrich current training on numeracy with a focus on the gist of
numbers and numerical principles. Thus, training methods should
aim for deep learning that transfers beyond the literal examples that
were explicitly taught (Fig. 3). Deep learning is not achieved simply
through trial-and-error practice with concrete learning, by extracting
surface form from training sets as machines do?*®. Machine learning
algorithms do not understand what they have learned; they simulate
deeplearningbutdonotachieve it. When machines appear to transfer
theirso-called deep learning, they nevertheless remain constrained by
the trainingset used to trainthem. Humanintelligenceis strong where
machines are weak because it takes meaning and contextintoaccount,
notjusttheliteral data. When humans are at their best cognitively, they
engage in the transfer of deep learning needed to meet everchanging
(and unpredictable) demands from the environment. A key challenge
will be how to best train individuals to exploit human strengths — to
train humans to extract gist information to create substantial and
long-lasting improvements to their numeracy abilities that transfer
across contexts.

Arecipe for deciding what the gists of a contentdomain are when
designing trainingis provided by research on complicated medication
regimesin arthritis'®? (see also Table linref.155). That recipe isaimed at
generating the bottom-line, categorical pivot pointsin decisions, as fol-
lows: gather together experts and experienced stakeholders, then ask
themwhat are the categorically (for example, incurable disease, finan-
cialruin, inescapable debt) and ordinally importantgists that need to
be conveyed (and why) — and ask them what few details must be memo-
rized or communicated by rote. Note that we do not advocate merely
presenting the gist that experts understand without helping learners
(who are not experts) understand that gist and, moreover, learn to
extrapolate beyond what was taught to transfer their learning to other
contexts. Deeply understanding what the facts mean and how to distil
whatisimportant from those factsisaninitial step informed by exper-
tise and experience in designing training for others who lack that
expertiseand experience. Thus, our message is not to avoid presenting
numbers or numerical representations suchas graphs. To the contrary,
weadvocate presenting numbers and numerical representations but we
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encourage avoiding confusing objectivity and precision withaccurate
meaningand usefulness. However, knowledgeable individuals need to
digest theinformation to ascertain whatthe gist of thatinformation is
sothatitcanbeconveyed properly toothers. Forexample, the design
of tables or graphs should depend on what the gist of the informa-
tion is — the bottom-line meaning should shape the graph, not the
otherwayaround. Arbitrary rules about objectively graphing data that
obscure important differences or emphasize trivial differencesshould
berejected. Putting the qualitative gist first and the graphs and num-
bers second, in service of the gist, changes the message and how it is
conveyed. Thegoaliis no longer tosimply rid judgements and decisions
of non-linearity and biases, but to connect the meaning of messages to
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the values represented by numbers®””.
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