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ABSTRACT

I share some reminiscences of the late Steven Weinberg. Then I discuss a
topic in quantum field theory which he taught me: the role of state wave
functionals in deriving the 7e term of the Feynman propagator when using
the functional formalism. This is perhaps a curiosity for in-out scattering
amplitudes on flat space backgrounds, but it is has much greater significance
for the in-in amplitudes of the Schwinger-Keldysh formalism in cosmology.
It also touches on the fate, about which Weinberg wondered, of the large
logarithms one sometimes finds in quantum corrections from inflationary
particle production.
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1 Reminiscences of Big Steve

Physicists recall the oddest things about Steven Weinberg, often having noth-
ing to do with his towering scientific achievements. I first heard him speak
at a colloquium at MIT, during September of 1977. 1 had just met Nick
Tsamis, a fellow freshman grad student who became Weinberg’s final stu-
dent at Harvard. Nick would also become my best friend, and a collaborator
with whom I have so far written 71 papers. Fall classes had not yet begun
so we hiked over to nearby MIT to hear Weinberg speak on spontaneous
symmetry breaking. My memory may have faded but I believe he was in-
troduced by Viki Weisskopf, who recalled Weinberg’s greatest contribution
during his six years at MIT (1967-1973). Of course that period witnessed
the paper which would earn the 1979 Nobel Prize, but Weisskopf passed this
over to instead commend Weinberg’s insistence that one should be able to
open the windows of MIT’s Center for Theoretical Physics! The other thing
I recall from that colloquium is that Weinberg illustrated spontaneous sym-
metry breaking using the example of a cigar: both ends are equivalent but
one end is lighted and the other is smoked.

Like many Harvard students, I took to calling Weinberg “Big Steve”. He
taught my first course on quantum field theory during the 1977-78 academic
year and it was one of the seminal experiences of my life. We students had
a saying that you must take QFT three times before really understanding it.
In the end I took it only twice, and if I have understood the subject, it is due
to the genius of the men who taught me: first, Steven Weinberg and then,
Sidney Coleman. Their styles were interestingly different. Whereas Sidney
emphasized mathematical elegance, Big Steve proceeded from universal prin-
ciples and erected a workmanlike framework of mutually reinforcing theory.
His approach reminded me of the enormous structural strength evident in
bridges which survive from the early industrial period of the United States.

Big Steve’'s QFT course was a mind-expanding experience. After most
lectures I would stumble back to my room in Perkins Hall and lay there,
staring at the empty ceiling as my mind struggled to process the powerful
concepts that were being impressed upon it. The course also had humorous
aspects. Harvard policy required faculty to provide office hours, so Wein-
berg announced that his would take place right after class on Tuesdays and
Thursdays. However, he didn’t really want to sit in his office for questions
which might never come, so each lecture ended with him apologizing that
a dental appointment precluded holding office hours that day. That same



dental appointment stretched throughout the entire 1977-78 academic year!
The funny thing is, I don’t recall anyone complaining: Big Steve’s lectures
were so brilliantly clear that no office hours were necessary.

History was important to Big Steve, and he made effective use of it in writ-
ing and in teaching. His 1972 text on Gravitation and Cosmology prefaces its
historical review of mankind’s long struggle to perceive order in the cosmos
with a passage from Anna Comnena’s encomium to her father, who spent
his life restoring order from the chaos which followed Manzikert. Weinberg
devoted the first lectures of his QFT course to a historical review of quantum
field theory, with particular attention to the many attempts at supplanting
it. His message was that these alternatives always ended being recognized as
either incorrect, or else consequences of quantum field theory. Listening to
Weinberg speak made you share his conviction that QFT is the finest thing
our species ever created. I recall an Arthur C. Clarke novel, set more than
a billion years in the future, in which a character casually comments about
needing to consult a “field theory expert” to understand a particular device.
You could believe in that future after hearing Weinberg lecture.

Big Steve was full of historical anecdotes, such as Dirac’s explanation for
failing to quantize the photon field because he was afraid something “would
go wrong”. In fact, something did go wrong when the first loop computations
revealed ultraviolet divergences, and some physicists over-reacted by reject-
ing quantum field theory. Then came the Shelter Island Conference, after
which the leading theorists of the day began to puzzle out renormalization.
Weinberg recounted [1] how students poked fun at the erroneous dismissal of
loop corrections with the quip, “Just because something is infinite does not
mean it is zero!” That story about divergences meant a lot to me when I later
encountered skepticism about large logarithmic loop corrections from infla-
tionary gravitons [2-8] because of the potential for gauge dependence [9-12].
A procedure for removing gauge dependence is being developed [13,14], and
I intend to channel Big Steve when announcing its success: “Just because
something is gauge dependent does not mean it is zero!”

Weinberg never questioned the reality of large logarithms when he dis-
covered them in loop corrections to the primordial power spectrum. Quoting
from the second of his famous papers on cosmological correlators [15]:

In generic theories the N integrals over time in N-th order
perturbation theory will yield correlation functions at time ¢ that
grow as In"[a(t)]. Such a power series in In[a(t)] can easily add



up to a time dependence that grows like a power of a(t), or even
more dramatically. As everyone knows, the series of powers of
the logarithm of energy encountered in various flat-space theo-
ries such as quantum chromodynamics can be summed by the
method of the renormalization group. It will be interesting to see
if the power series in In[a(t)] encountered in calculating cosmo-
logical correlation functions at time ¢, though arising here in a
very different way, can be summed by similar methods.

Some disagree [16], but I think Big Steve was right about the basic physics
[17]. And I hope he would appreciate the procedure being devised for imple-
menting the resummation whose potential he foresaw [18,19].

Everyone who had the privilege of working with Weinberg knows the
enthusiasm he brought to research, and his determination to overcome all
obstacles. I well recall the time he asked me to visit the UT in 2005, in
order to consult about his work on loop corrections to the primordial power
spectrum [20]. He had just realized that the in-out amplitudes of conven-
tional quantum field theory are not the appropriate objects of study in cos-
mology because they are dominated by assumptions about the yet-unknown
future, and because even the matrix elements of Hermitian operators are not
generally real. I cannot count the number of times I have grown irritated
listening to intellectually dishonest colleagues attempt to avoid these prob-
lems by devising tricks to make the in-out formalism accomplish something
for which it was never intended, and for which it is not well suited. Not
Big Steve. He understood that true expectation values are the better object
of study in cosmology and, not knowing of the Schwinger-Keldysh formal-
ism [21-25], he devised a Hamiltonian technique for computing them [20],
which is now more commonly used than Schwinger’s method. Weinberg only
learned of Schwinger’s work from his then-student, Bua Chaicherdsakul, and
he of course gave full credit to Schwinger thereafter.

Aside from being blown away by Big Steve having invented his own ver-
sion of the Schwinger-Keldysh formalism, the incident I most recall from that
visit came during the morning of my final day. I had gotten up early and
was waiting in the hotel before departing for the airport. The phone rings
and who should it be but Steven Weinberg, apologizing for the early call and
asking to discuss a physics issue which had been troubling him. Another
passage from that Clarke novel comes to mind, about the men of the Dawn
Ages never permitting problems to hold them up for very long.



I'll close by recalling part of the final e-mail notes we exchanged. I had
written to congratulate him on winning the Breakthrough Prize, and to share
some sad news about a mutual friend. That was September of 2020, when the
pandemic still dominated our lives, and I mentioned the travel bans which
had kept my wife and me apart for six months. Weinberg replied:

I am glad that you and your wife are together again. My wife
and I are together, fanatically isolated at home, but both of us
getting a lot of work done and staying safe.

He was 87 at the time! I recall thinking how fine it would be, should I chance
to reach that age, to remain so active and so passionate about physics. Big
Steve was a force of nature; it was a privilege to have known him.

2 The True Origin of the ie

Weinberg believed that everything about quantum field theory should be
derived. He used the term “folk theorems” to describe commonly accepted
beliefs for which no derivation was currently available. I have chosen the
topic for this article to be a minor but irritating lacuna in the derivation of
propagators from the functional formalism. It was a point Big Steve derived
for us back in 1977-78, which is usually resolved by hand-waving. I refer to
the famous “7¢” part of the Feynman propagator. To make the discussion
transparent I will work in the context of a Simple Harmonic Oscillator whose
position is ¢(t), and whose dynamics are controlled by the Lagrangian,

1 1
L= iqu — imwzqz . (1)
The propagator we will use the functional integral formalism to derive is,
h —iw|t—t'|
IA(t ) <Q‘T[ (')] Q> e 2)
B dkO Ze—iko(t—t’) oodko ie —zko t—t')
=lim — [ — : / (3)
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Of course there is absolutely no ambiguity about the Canomcal derivation,
which proceeds from (2) to (3). The issue is how we would get (3) directly
from the functional integral formalism,

[aa@rel; [as{imie - e} @
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The short answer is that it just isn’t possible. Although expression (4) should
result in some function which obeys the propagator equation,
im / d?

f(ﬁ +w2>zA(t;t’) = §(t—t) (5)

it is not at all clear how iA(t;t') acquires the correct real part from an expo-
nent which is entirely imaginary. Some QFT texts argue that the ze follows
from complex analysis, by the need to deform the functional integration over
q(s) into the complex plane. However, this is problematic when one consid-
ers the four different propagators of the Schwinger-Keldysh formalism which
each follow from a functional integral. Other texts argue that the ie has
something to do with the temporal integration running from —oo to +o0,
but this is also problematic when one considers that the free Lagrangian
(1) must produce the very same propagator (3), no matter when the initial
and final states are specified. Big Steve had no patience with this sort of
hand-waiving, and he discovered a better explanation.

The key is incorporating the ground state wave function in the functional
integral expression (4). For the simple harmonic oscillator (1) this is,

() = [2) " exp[-20¢2) ©)

Let us also make the range of temporal integration finite, and employ a
classical source J(s),

217 = [[aa o (a(e0)
1

. tf 1

X exp [% /ds{imq'Q(s) — imw2q2(s) + J(s)q(s)}] Q(q(tz)) . (7
t;

Note that the functional integration in expression (7) only extends over func-

tions ¢(s) for ¢; < s < t;. We should be able to recover the propagator (3)

by functionally differentiating Z[.J],
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A py = SO ZU
IMEE) = ST |, ®)
Expression (7) is the functional integral of exp[%E[g, J]], with exponent,
e ol 1 1mw
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ti

(9)



The result of any Gaussian integral is the exponential evaluated at its station-
ary point. To find this stationary point we vary (9), taking care to include
the surface variations,

dE[q, J]
dq(t)

:nw@—wﬂawymwﬂwﬂ

w

—m[éj(t)+w2q(t)— - —mé(t—ti)[q'(ti)—iwq(ti)] . (10)

Note that the surface variations enforce Feynman boundary conditions, which
is the part one couldn’t get without including the initial and final states.
Setting (10) to zero has the unique solution,

e % /t dt A ) I(F) (11)

Partial integration makes it simple to evaluate the exponent (9) at its sta-
tionary point,

E[Q[JLJ] = %nQ(tf) [Q(tf)jLiwq(tf)] i /t.tgit{_lmq(t) [d%—wzq(t)—%]

2
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Hence we conclude,
In[z(] = —2%2 ) / I A (14)

which obviously gives the Feynman propagator in expression (8).

The generalization to quantum field theory is straightforward; in making
it I shall adopt the usual convention of setting h = ¢ = 1. The Lagrangian
density of a free scalar field on flat space with spacelike signature is,

1 1 5,
L= —§8ug08”g0 —5my (15)
It seems that application of quantum field theory brings me back to some-
thing else Big Steve taught us: that all free theories become simple harmonic
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oscillators in spatial Fourier coordinates,

P(t, k) = / B (¢, 7) | (16)

We can identify each modes’ mass and frequency by using Parseval’s theorem
on the Lagrangian,

L= /d%ﬁ _ / %{%g(t, BE (0 F) + 52 BE e B } . 07)

Comparison with (1) implies the identifications,

3
w— VEk? 4+ m? ) m —> 'k (18)
(2m)?
Hence the ground state wave functional is,
1 o
O[(0)] = Ve[ S me 0.7 (0.7 (19)
-k
1 [Pk . - 5 5 ~xp, T
= Nexp 5 | 2ny o(t, k)VEk2+m2 o (t, k)| , (20)
= Nexp % /d?’x o(t, )V —=V2 +m? gp(t,f)} : (21)

3 State Wave Functionals in Cosmology

I hope people will agree that Big Steve’s functional derivation of the ie in the
propagator is far superior to the usual hand-waiving. However, we already
knew the answer from the canonical formalism. The real efficacy of state wave
functionals becomes evident when applying the Schwinger-Keldysh formalism
to study the time evolution of expectation values in cosmology.

3.1 Cosmological Particle Production

Quantum field theory in cosmology is much more interesting than its flat
space cousin owing to what Schrodinger termed “the alarming phenomena” of
particle production “caused by accelerated expansion.” [26]. To understand



this, consider a homogeneous, isotropic and spatially flat geometry with scale
factor a(t), Hubble parameter H(t) and first slow roll parameter €(t),
2 2 | 20\ g 9 _a _

ds® = —dt* + a*(t)dz-dz = H(t) = - €(t) = 4z (22)
Students of QFT are familiar with how the Energy-Time Uncertainty Prin-
ciple permits a virtual particle of energy E = v k% + m? to exist for a time
At < 1/E. The simplest way of understanding many QFT effects is by
positing the existence of these virtual particles and then using classical field
theory, from which it follows that the strongest effects come from virtual par-
ticles with the longest persistence times At. An expanding universe (H > 0)
strengthens QFT effects because the momentum £ redshifts to increase the
persistence time, which is governed by the integral,

t+At k2
dt’ 2 < 1. 2
[ am e = )

Just as in flat space, the longest-lived virtual particles are the lightest. Taking

the massless limit gives,

t+At k

/ dt’ < 1. (24)
¢ a(t’)

For accelerated expansion (e < 1) the integral converges even as At — oo.
Hence a sufficiently long wave length virtual particle can live forever.

Although correct, the preceding discussion fails to account for the rate
dN/dt at which virtual particles emerge from the vacuum. This is very
important because almost all massless particles possess a killer symmetry
known as conformal invariance which means they cannot tell the difference
between a metric ¢, (z) and another Q*(x) x g,,(z). Changing the time
coordinate ¢ of the cosmological geometry (22) to “conformal time” 7 with
dn = dt/a(t) makes the geometry conformal to flat space,

ds* = —dt* + a*dZ-d7 = a* | —dn® + d¥x dT| . (25)

This means that the emergence rate in conformal coordinates is the same as
in flat space,

dN dN dN dn 1

= = w T s a e
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Therefore, any sufficiently long wave length, massless particle which emerges
during accelerated expansion can exist forever, but very few emerge.
Massless fermions and vector gauge bosons are conformally invariant, and
so are conformally coupled scalars. These particles do not, by themselves,
give rise to interesting effects in cosmology. However, massless, minimally
coupled scalars are not conformally invariant, nor are gravitons, which obey
the same linearized equation of motion [27]. On de Sitter background (which
means € = 0, H is constant and a(t) = e*) the occupation number for a
scalar of wave vector k (or each polarization of graviton) is staggering,

Nt F) = {Z’Tgﬁ]z. (27)

In addition to the obvious exponential growth, note also that the occupation
number only becomes of order one at horizon crossing, ||k|| = k = Hal(t).
This is very important because it guarantees that cosmological particle pro-
duction is an infrared effect which can be studied reliably using general rel-
ativity as a low energy effective field theory, without needing its unknown
ultraviolet completion.

The explosive growth evident in expression (27) is the origin of two ob-
servables from the epoch of primordial inflation: the power spectra of gravi-
tons [28] and scalars [29]. In fact, the occupation number (27) can be ex-
pressed in terms of the tensor power spectrum AZ(k), not just for de Sitter
(e =0) but for general € < 1,

7 WA%(I{?) 2
N(t, k) — GICE? xa“(t) .

The power spectra are tree order quantum effects but the quanta from which
they derive must interact with themselves and with other particles. In certain
cases these interactions lead to time dependent effects which grow as more
and more particles are ripped out of the vacuum.

The choice of vacuum is so contentious in cosmological QFT that I had
better explain how expression (27) was derived. The spatial integral of the
Lagrangian density of a massless, minimally coupled scalar ¢(t, ) can be
written, using Parseval’s theorem, as a Fourier mode sum of independent
harmonic oscillators @(t, k),

1 1 = d3k 1 k?
3. 3[+.2 L 2] _ 3 ti=2 . M2
256 - 5al9el] = [ o508 - glef] . @9
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Each wave vector k corresponds to an independent harmonic oscillator with
time-dependent mass and frequency,
d3k 3 k

xa’(t , w(t, k) — — . 30
X0 (1K) — o (30)
At any instant this system is a harmonic oscillator, so we can define the
instantaneous occupation number N by writing the expectation value of its
energy as B = w(% + N). For the de Sitter geometry the mode function
u(t, k) is simple and we find,

(1 k) H [1 ik } [ ik } H

u = — —|exp|—| =

’ V2k3 afl) P lam V2k3

Lar,..0 K 2} B k:[l (aH)?

— s [[af? + S| == |2+ (5) ] 6D

The mode function (31) is known as Bunch-Davies vacuum, and one can see

from the occupation number (27) that it corresponds to a state which was

empty in the distant past when a(t) — 0.

m(t) —

[1 + ikn} e~ thn

3.2 Time Dependence in Cosmological QFT

Accelerated expansion changes cosmological quantum field theory in pro-
found ways. First, it is nonsense to base the theory on asymptotic scattering
experiments. At least classically, the universe began with a singularity at
some finite time, and no one knows how it will end. Fixtures of flat space
QFT such as Euclideanization and defining “the vacuum” as “the unique,
normalizable energy eigenstate” come to seem quaint. Instead of in-out ma-
trix elements between states which were free at asymptotically early and late
times, we must become accustomed to computing true expectation values
in the presence of states which are defined at some finite time. Finally, the
explosive production of massless, minimally coupled scalars and gravitons ev-
ident in expression (27) implies that we must expect time-dependent effects
as more and more virtual particles emerge from the vacuum.
Consider a self-interacting scalar field on de Sitter background,

1 1
L= =50:50,09"V =g = ZM“\/—Q : (32)

The first dimensionally regulated computation I ever did on de Sitter back-
ground was the expectation value of this model’s stress-energy tensor at 1
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and 2-loop order [30,31],

1 1
T = 0,90, — §g,wgp 0,00, — ig,w)\gpﬂ‘ ) (33)

Although the vacuum is not unique, most people work on Bunch-Davies
vacuum, which we saw from (31) was empty in the distant past. However,
cosmological particle production means that we must release the state at
some finite time which can be taken to be ¢t = 0, at which point the de Sitter
scale factor a(t) = efl is unity.

Because the state is homogeneous and isotropic, the expectation value
takes the perfect fluid form,

<Q‘Tw(t,f)

Q> = U, Uy, X [p(t)+p(t)] + g X p(t) : u, = 6%, . (34)

The renormalized result consists of a “simple” part which grows with time, or
remains constant, plus a “complicated” part that falls off exponentially [32],

3H?  A\H* ) 13 43 2
p(t) = %—I— (2ﬂ)4{21n (a)+gln(a)—ﬁ+§
3 — (n+1) 2
o 2; o }+O()\), (35)
(t) = _3HE —21n2(q) — ~In( )+§—7T—2
PO = 756 T 2n D R
1 2 (n=3)(n+1) )
+o g;—nza” +0(X\?) . (36)

A nice check on accuracy is that (35-36) obey conservation, p = —3H (p+p).

3.3 Eliminating the Divergence with the Initial State

In addition to being complicated, the infinite sums actually cause expressions
(35-36) to diverge at t = 0, for which a = 1. These divergences have nothing
to do with inflationary particle production. They derive instead from the
initial state having been free, in spite of the interaction. Similar divergences
would occur in flat space QFT if we had specified the state to be free vacuum
at some finite time. The cure for these divergences is to correct the initial
state. Note that we do not need the full state — no one is ever going to find
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the full state wave functional for an interacting quantum field theory in 3+1
dimensions. All we need is the order A correction; only this part of the initial
state can affect our perturbative results (35-36).

It is well to recall how a quartic interaction would change the ground
state of a simple harmonic oscillator (1) in quantum mechanics,

AMnlq*|0)

4Anw

+O(NY) .

+—, +Zan|n = a, = —

(37)
If we release the system at ¢ = 0 in a functional integral over configurations
q(t) then its wave function depends upon the position go = ¢(t = 0). The

first order correction is,
A 2
Ql((]()) = —m |:1 — 2qugi| X QO(QO) 5 (38)

where (go) is the harmonic oscillator ground state (6).

If we release the QF'T state at ¢ = 0 in the functional formalism then the
state wave functional will depend on ¢o(Z) = ¢(t = 0, Z). From the preceding
quantum mechanical discussion we expect that the order A correction to
Bunch-Davies vacuum Qy[¢o] will involve zero, two and four powers of .
Because the stress tensor operator (33) has the form dpdp + Ap?, only the
0p0dyp part can couple with the order A\ state correction to contribute to the
expectation value at order \. If this contribution is to depend upon the time
t at which the stress tensor is evaluated, it must couple with the order A
state correction involving two powers of ¢y. Homogeneity and isotropy then
imply a correction of the form,

g = [ (] il

A straightforward calculation reveals that the kernel is [32],
ie%® , ®dz
Flo) = ——C _Jo2ie _ 3 ——2“[1 21( )} . (40
() 327r2(1+z'93)2{6 * . 2 e x (40)
And the corrected energy density and pressure are free of both divergences
and exponentially falling contributions,

SH2  AH' (., . 13 43 7 ,
prow = o Lo+ ) - 2+ T o).

pm:_;’fG+(w) { 9 1n%(a) — —1n<a)+§—”—}+0(v). (42)
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3.4 Can We Absorb the Logarithms?

The factors of In(a) = Ht in expressions (41-42) derive from inflationary
particle production. There are two such factors because the expectation value
of the ¢* part of the stress tensor (33) involves two coincident propagators,
each of which contributes a In(a) [33-35],

2

H
<Qo‘g02(t, f))90> = UV Divergence + - In(a) (43)

The physical way of understanding this is that inflationary particle produc-
tion forces the scalar further and further up its potential.

Higher loop corrections involve even more factors of In(a). At order AV
there can be up to 2N factors of In(a) [36]. Starobinsky has inferred a stochas-
tic formalism [37] which can be proven to reproduce the leading logarithms
at each order in perturbation theory [36]. In cases, such as this model (32),
where a time-independent limit is approached, Starobinsky’s technique can
even be used to find this limit [38],

Q> s (44)

<Q‘Tw(t, 7) 52

The physical picture is that inflationary particle production pushes the scalar
up its potential until an equilibrium is reached with the classical downward
force. Of course that equilibrium corresponds to a particular state wave
functional and, were one to release the system in this state, there would be
no time dependence.

Some people invoke the existence of an equilibrium state to argue that
inflationary particle production is somehow not real, or else does not in-
duce time dependence in QFT. This shows the same level of disingenuity
as denying the inflationary origin of primordial perturbations because one
could obtain identical results by starting with a state which had exactly the
desired pattern of correlations. However, the anti-time dependence position
becomes completely untenable when one considers models for which no static
limit is approached. Although scalar quantum electrodynamics approaches a
static limit [39], a Yukawa-coupled massless, minimally coupled scalar does
not [40]. Nonlinear sigma models also show large logarithms [36,41-43], and
some of these models do not approach a static limit [18,19].

Nonlinear sigma models are interesting in that capturing their large loga-
rithms requires a variant of the renormalization group in addition to a variant
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of Starobinsky’s stochastic formalism [18,19]. This is because their interac-
tions involve derivatives, unlike the ? interaction of the scalar model (32).
Quantum gravity also involves derivative interactions and its large inflation-
ary logarithms [3-8,44] are not completely captured by Starobinsky’s stochas-
tic formalism [45]. I suspect that combining Starobinsky’s formalism with a
variant of the renormalization group will suffice [6], as it did for nonlinear
sigma models, but that remains to be proven. It is not known if the large
logarithms of quantum gravity add up to approach a static limit.

4 Conclusions

Steven Weinberg dominated high energy particle theory for decades and in-
spired generations of physicists. [ was fortunate to be among them. Two of
the things I most admired about Weinberg were his refusal to accept dogma
and his willingness to take risks. In addition to sharing some reminiscences,
I have here discussed a topic which illustrates both of those characteristics:
the role of state wave functionals in quantum field theory.

State wave functionals are the correct way to derive the ie of the Feynman
propagator from the flat space functional formalism. They assume a larger
role in cosmological QFT because one must specify states at finite time, and
because inflationary particle production sometimes injects secular growth
into expectation values, the potential for which Weinberg discovered in the
scalar power spectrum [15]. Perturbative corrections to free vacuum are
necessary to remove divergences on the initial value surface [32], which leaves
large logarithms from inflationary particle production. Weinberg realized
the importance of resumming these logarithms [15]. In some cases, they can
be summed to produce a static limit which can be subsumed into a highly
nonlinear state wave functional [38]. For other models, time dependence
persists forever [18,19] and one is tempted to wonder if some otherwise curious
features of late time cosmology might be explained as residual QFT effects
[46,47]. Wherever he is now, Big Steve would love that.
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