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Zimmer’s conjecture: Subexponential
growth, measure rigidity, and strong

property (T)

By AARON BROWN, DAVID FISHER, and SEBASTIAN HURTADO

Abstract

We prove several cases of Zimmer’s conjecture for actions of higher-rank,
cocompact lattices on low-dimensional manifolds. For example, if " is a
cocompact lattice in SL(n,R), M is a compact manifold, and w a volume
form on M, we show that any homomorphism «: I' — Diff (M) has finite
image if the dimension of M is less than n — 1 and that any homomor-
phism «a: I' — Diff(M,w) has finite image if the dimension of M is less
than n. The key step in the proof is to show that any such action has
uniform subexponential growth of derivatives. This is established using
ideas from the smooth ergodic theory of higher-rank abelian groups, struc-
ture theory of semisimple groups, and results from homogeneous dynamics.
Having established uniform subexponential growth of derivatives, we apply
Lafforgue’s strong property (T) to establish the existence of an invariant
Riemannian metric.

1. Introduction

1.1. Results, history, and motivation. As a special case of our main result,
Theorem 2.1 below, we confirm Zimmer’s conjecture for actions of cocompact
lattices in SL(n,R).

THEOREM 1.1. Forn > 3, let ' < SL(n,R) be a cocompact lattice. Let
M be a compact manifold. If dim(M) < n — 1, then any homomorphism
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I' — Diff>(M) has finite image. In addition, if w is a volume form on M and
dim(M) = n — 1, then any homomorphism T' — Diff2(M,w) has finite image.

The key step in the proof is to establish that the derivatives of group ele-
ments for such an action grow subexponentially relative to their word length.
This is inspired by the third author’s paper on the Burnside problem for dif-
feomorphism groups [25]. To prove subexponential growth of derivatives in
this context, we study the induced G-action on a suspension space and apply
a number of measure rigidity results including Ratner’s theorem and recent
work of the first author with Rodriguez Hertz and Wang. Having established
subexponential growth of derivatives, the main theorem is established by using
the strong Banach property (T) of Lafforgue to find an invariant Riemannian
metric. The proof has many surprising features, including its use of hyperbolic
dynamics to prove an essentially elliptic result and its use of results from ho-
mogeneous dynamics to prove results about non-linear actions. We include a
detailed sketch of the proof at the end of the introduction.

Theorem 1.1 lies in the context of the Zimmer Program. In [56] Zimmer
made a number of conjectures concerning smooth volume-preserving actions of
lattices in higher-rank semisimple groups on low-dimensional manifolds. These
conjectures were clarified in [59], [60] and extended to the case of smooth non-
volume-preserving actions by Farb and Shalen in [15].

The Zimmer program is motivated by earlier results on rigidity of linear
representations of lattices in higher-rank Lie groups. The history of the subject
begins in the early 1960s with results of Selberg and Weil that established that
cocompact lattices in simple Lie groups other than PSL(2, R) were locally rigid:
any perturbation of a lattice is given by conjugation by a small group element
[46], [50]. In the late 60s and early 70s, this was improved by Mostow to
a global rigidity theorem showing that any isomorphism between cocompact
lattices in the same class of groups extended to an isomorphism of the ambient
Lie group [36]. The global rigidity result was extended by Margulis and Prasad
to include non-uniform lattices [34], [40]. These developments led to Margulis’
work on superrigidity and arithmeticity in which Margulis classified all linear
representations of irreducible lattices in Lie groups of higher real rank [35] and
established that all such lattices are arithmetic.

Inspired by Margulis’ superrigidity theorem, in the early 1980s Zimmer
proved a superrigidity theorem for cocycles from which he proved results about
orbit equivalence of higher-rank group actions [55]. Motivated by earlier results
in the rigidity of linear representations and the cocycle superrigidity theorem,
Zimmer proposed studying non-linear representations of lattices in higher-rank
simple Lie groups. That is, given a lattice I' C G, rather than studying linear
representations p: I' - GL(d,R), Zimmer proposed studying representations
a: ' — Diff (M), where M is a compact manifold. The main objective of the
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Zimmer program is to show that all such non-linear representations « are of
an “algebraic origin.” In particular, the Zimmer conjecture states that if the
dimension of M is sufficiently small (relative to data associated to G), then any
action a: I' — Diff (M) should preserve a smooth Riemannian metric and thus
factor through the action of a finite group under certain additional dimension
constraints. See Conjecture 1.2 for a precise formulation.

In this paper we establish the non-volume-preserving case of Zimmer’s
conjecture for actions of cocompact lattices in higher-rank split simple Lie
groups as well as certain volume-preserving cases. While there have been a
number of sharp results for actions on extremely low-dimensional manifolds
(for manifolds of dimension 1 or 2) or under strong regularity conditions on
the action or algebraic conditions on the lattice, prior to this paper the ex-
act result conjectured by Zimmer was only known for non-uniform lattices in
SL(3,R). Our results provide a class of higher-rank Lie groups and a large
collection of lattices such that the critical dimension is as conjectured in the
non-volume-preserving and either as conjectured or almost as conjectured in
the volume-preserving case. In addition to establishing the conjecture for co-
compact lattices in split simple Lie groups, we also give strong partial results
for actions of cocompact lattices in non-split simple Lie groups.

In the case of volume-preserving actions, the conjecture is motivated by
the following corollary of Zimmer’s cocycle superrigidity theorem: all volume-
preserving actions in sufficiently low dimensions preserve a measurable Rie-
mannian metric [55]. From this point of view, the main step in proving the
conjecture is to promote a measurable metric to a smooth metric. Conditional
and partial results verifying the existence of a smooth invariant metric in the
volume-preserving case are contained in many papers of Zimmer of which [60]
provides an excellent overview.

Perhaps the best evidence for the conjecture in the case of volume-preser-
ving actions is Zimmer’s result that all actions satisfying the conjecture have
discrete spectrum [61]. In the non-volume-preserving case, evidence for the
conjecture follows from the works of Ghys and of Farb and Shalen on analytic
actions and work of Nevo and Zimmer that produces measurable projective
quotients for actions that do not preserve a measure [22], [15], [38].

Other strong evidence for the conjectures is provided by a plethora of
results concerning actions on compact manifolds of dimension 1 or 2. The
earliest results were those of Witte Morris proving that all C? actions on S' of
SL(n,Z) and Sp(2n,Z) and their finite-index subgroups factor through finite
groups [54]. Later results of Burger and Monod and of Ghys show similar
results for C! actions of all lattices in higher-rank simple Lie groups [12], [23].
Ghys’ result also includes results for irreducible lattices in products of rank-1
groups, which admit infinite actions on the circle. In dimension 2, results of
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Polterovich and of Franks and Handel show that all volume-preserving actions
of non-uniform lattices on surfaces are also all finite [21], [39]. Moreover,
Franks and Handel showed that for any surface of genus at least 1, any action
by a non-uniform lattice in a higher-rank simple Lie group that preserves a
Borel probability measure is finite. Some earlier results on actions on surfaces,
such as those of Farb and Shalen in the analytic category, do not require an
invariant measure but instead make stronger assumptions on the acting group
and the regularity of the action. Combined with results of [21] and [11], we
resolve the conjecture almost completely for C2-actions on surfaces of genus
at least 1 in Theorem 1.5. Above dimension 2, very little is known. See the
second author’s survey of the Zimmer program [17] for a detailed history as
well as earlier surveys by Feres and Katok, Labourie, and Witte Morris and
Zimmer [16], [29], [62].

We recall the full conjecture of Zimmer as extended by Farb and Shalen.
Given a semisimple Lie group G, let n(G) denote the minimal dimension of
a non-trivial real representation of the Lie algebra g of G, and let v(G) de-
note the minimal codimension of a maximal (proper) parabolic subgroup @
of G. Let d(G) denote the minimal dimension of all non-trivial homogeneous
spaces K/C as K varies over all compact real-forms of all simple factors of the
complexification of G.

Conjecture 1.2 (Zimmer’s Conjecture). Let G be a connected, semisimple
Lie group with finite center, all of whose almost-simple factors have real-rank
at least 2. Let I' < GG be a lattice. Let M be a compact manifold and let w be
a volume form on M. Then
(1) if dim(M) < min(n(G),d(G),v(G)), then any homomorphism «a: I' —

Diff (M) has finite image;

(2) if dim(M) < min(n(G),d(G)), then any homomorphism «: I' — Diff (M, w)
has finite image;

(3) if dim(M) < n(G), then for any homomorphism «: I' — Diff (M, w), the
image «(I") preserves a Riemannian metric;

(4) if dim(M) < v(G), then for any homomorphism a: I' — Diff(M), the
image «(I") preserves a Riemannian metric.

Theorem 1.1 verifies the conjecture for cocompact lattices in SL(n,R);
we will discuss other cases below. The conjecture is almost sharp in sev-
eral senses. In dimension v(G), any subgroup of G admits an infinite image,
non-isometric, non-volume-preserving action in dimension v(G), namely, the
projective left-action on G/Q where @ is a parabolic subgroup of codimension
v(G). These actions are the natural analogue of the action of SL(n,R) and
its lattices on RP""!. In dimension n(G), there is always a semisimple Lie
group with finite center G with the same Lie algebra as G, a lattice I' C G,
and a volume-preserving, non-isometric action on the compact manifold TS,
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However, in these examples the lattice I' is, in fact, the integer points of G
with respect to the rational structure for which the representation in dimension
n(Q) is rational; in particular, in such examples I' is necessarily non-uniform.
This construction is the natural analogue of the action of SL(n,Z) on T". In
particular, n(G) is a sharp bound for results about actions of all lattices in
a Lie group G but may not be sharp for results about actions of a particular
lattice; given our results it is natural to ask if sharper bounds can be estab-
lished for cocompact lattices. Lastly, the number d(G) bounds the dimension
in which infinite isometric actions can occur. The existence of an invariant
Riemannian metric g for the action « implies that the action is given by a
homomorphism a: I' — K, where K = Isom(M, g) is a compact Lie group; see
discussion in Section 2.3 below. Margulis’ superrigidity theorem implies that
a(T") cannot be infinite below dimension d(G). In fact, in the presence of an
invariant metric for low-dimensional actions, Margulis’ superrigidity theorem
classifies the possible isometry groups and elementary geometry gives sharper
results on manifolds admitting infinite, isometric actions.

Historical Remarks. Items (2) and (3) are due to Zimmer. Zimmer stated
(2) in slightly different terms that were not sharp. Item (1) is a natural ex-
tension by Farb-Shalen. The conjecture as stated in both [15], [17] assumed
erroneously that one always has v(G) = n(G) — 1, so the conjecture is slightly
misstated in those references. Item (4) is new here, but is a natural extension
of the other conjectures. We are intentionally vague concerning regularity of
the diffeomorphisms in the conjecture. Zimmer originally considered mostly
C™> actions. Most evidence for the conjecture including existing results re-
quires the action to be at least C! but the conjecture might be true for actions
by homeomorphisms; see particularly [51], [4] for a discussion and evidence in
this regularity.

The group SL(n,R) is the standard split simple Lie group with restricted
root system of type A,. We denote by Sp(2n,R) the group of real symplectic
2n X 2n matrices, the standard split simple Lie group of rank n with restricted
root system of type C,.

THEOREM 1.3. Conjecture 1.2 holds for cocompact lattices in Sp(2n,R)
for n > 2. In particular, if M is a compact manifold with dim(M) < 2n — 1
and I' < Sp(2n,R) is a cocompact lattice, then any homomorphism a: T' —
Diff2(M) has finite image. In addition, if dim(M) = 2n —1 and w is a volume
form on M, then any homomorphism o: I' — Difo(M,w) has finite image.

The fact that all actions in Theorems 1.1 and 1.3 factor through finite
quotients follows from the existence of an invariant Riemannian metric and the
fact that, for these cases, v(G) + 1 = n(G) < d(G) where v(SL(n,R)) =n —1
and v(Sp(n,R)) = 2n — 1. See Section 2.3 for a full discussion.
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We now turn to SO(n,n) and SO(n,n + 1), the remaining split simple
classical Lie groups. Note that SO(2,2) is not simple and we omit below the
higher-rank simple groups SO(2,3) and SO(3,3) as their identity components
are double covered by Sp(4,R) and SL(4,R), respectively. For G = SO(n,n)
with n > 4, we have

n(G) =2n, d(G)=2n-1, and v(G)=2n—2,
and similarly for G = SO(n,n + 1) with n > 3, we have
n(G)=2n+1, d(G=2n, and v(G)=2n-1.

THEOREM 1.4. The non-volume-preserving case of Conjecture 1.2 holds

for cocompact lattices I in SO(n,n) with n > 4 and for SO(n,n+1) withn > 3;

the volume-preserving case holds up to dimension 1 less than conjectured.
More precisely, let M be a compact connected manifold and w a volume

form on M.

(1) If T < SO(n,n) is a cocompact lattice and dim(M) < 2n — 2, then any
homomorphism o: I' — Diff>(M) has finite image. If dim(M) = 2n — 2,
then any homomorphism o: T' — Diff?(M,w) has finite image.

(2) If T <SO(n,n+1) is a cocompact lattice and dim(M) < 2n—1, then any
homomorphism o: T' — Diff>(M) has finite image. If dim(M) = 2n — 1,
then any homomorphism o: T' — Diff?(M, w) has finite image.

Again, the finiteness of the action follows from Theorem 2.1 below and a
computation of the value of d(G).

From Conjecture 1.2 for split orthogonal groups, one expects that in di-
mension n(G) — 1 = d(g) = v(g) + 1 all volume-preserving actions necessar-
ily preserve a Riemannian metric. In this case, Margulis’ superrigidity the-
orem would imply the action is finite unless the manifold is the (n(G) — 1)-
dimensional sphere or projective space. While the techniques of this paper im-
pose certain restrictions on volume-preserving actions in dimension n(G)—1, it
seems additional ideas are needed to obtain the conjectured result in dimension
n(G) — 1.

We remark that the conclusions of Theorems 1.1, 1.3, and 1.4 continue
to hold for actions of cocompact lattices in connected Lie groups isogenous
to the groups in the theorems. That is, if G is a connected Lie group with
finite center whose Lie algebra is isomorphic to the Lie algebra of a group in
Theorems 1.1, 1.3, or 1.4, then the conclusion of the corresponding theorem
continues to hold for cocompact lattices in G.

Combined with the main results of [21] and [11] we obtain the following
theorem for actions of lattices on surfaces.

THEOREM 1.5 ([21, Cor. 1.7], [11, Th. 1.6], Theorem 2.1). Let S be a
closed, oriented surface of genus at least 1. Let G be a connected simple Lie
group with finite center and real-rank at least 2, and assume the restricted root
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system of the Lie algebra of G is not of type As. Let T' C G be a lattice. Then
any homomorphism a: T' — Diff%(S) has finite image.

Note that the hypothesis that the restricted root system of G is not of
type Az ensures the number r(G) defined in Section 3.2 below is at least 3. Up
to isogeny, the three simple Lie groups of type Ay are SL(3, k) where k = R, C,
or H. We remark that the conclusion of Theorem 1.5 is expected to hold for
lattices in SL(3,C) and SL(3, H), and for lattices in SL(3,R) assuming that S
is not the 2-sphere.

We defer the statement of our main theorem, Theorem 2.1, which includes
partial results for non-split and exceptional Lie groups, until we have made
some requisite definitions. For non-split groups, our main theorem does not
recover the full conjecture but does imply finiteness of actions in a dimension
that grows linearly with the rank.

1.2. QOutline of the proof. We will illustrate the main ideas of the proof of
Theorem 1.1 by considering the case where I' C G = SL(n, R) is a cocompact
lattice acting on a closed manifold M and dim(M) < n — 1. In this case,
if the action preserves a measure u, Zimmer’s cocycle superrigidity theorem
implies that the derivative cocycle is measurably cohomologous to a cocycle
taking values in a compact subgroup or, equivalently, that the action preserves
a measurable Riemannian metric [55]. This implies, in particular, that all
Lyapunov exponents for all elements of I" are zero. As remarked above, the
conjecture would follow from promoting the invariant measurable metric to a
smooth invariant metric.

It was observed by Zimmer that conjecture would follow from the exis-
tence of an invariant Riemannian metric of quite low regularity. Indeed, in
the case of volume preserving actions, Zimmer observed that it sufficed to find
a metric that was bounded above and below in comparison to a background
smooth metric; that is, it suffices to find an invariant L metric. Very early on,
Zimmer also observed that one might get better regularity by noting that the
metric was invariant, so its growth along orbits was controlled by the derivative
cocycle. Using this he could show that the metric was, in a sense, in L for very
small values of € > 0 [58]. A more sophisticated, non-linear, attempt to average
metrics in order to produce invariant smooth metrics was proposed by the sec-
ond author in [17, §4.6.2]. Both of these attempts fail to produce good results
because even with a measurable (or even slightly more regular) invariant met-
ric, the only a priori bound on growth of derivatives along orbits is exponential.

The first step in the proof of Theorem 1.1 is to show that any action
a: T' — Diff(M) for T and M as in Theorem 1.1 has uniform subexponential
growth of derivatives: for every € > 0, there is C; such that

IDa()|| < Cee,
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where || Da(v)|| = max,enr||Dza(7y)]| denotes the norm of the derivative and
1(-) denotes the word-length with respect to some choice of finite generating
set for I'.

To illustrate how we establish uniform subexponential growth of deriva-
tives, consider a more elementary fact from classical smooth dynamics: a diffeo-
morphism f: M — M of a compact manifold M has uniform subexponential
growth of derivatives if and only if all Lyapunov exponents of f are zero with
respect to any f-invariant probability measure. Clearly, uniform subexponen-
tial growth of derivatives implies that all Lyapunov exponents vanish for any
measure. To prove the converse, assume that for some fixed € > 0, there are
z,, and N,, — oo so that ||D,, f¥| > e™»; then any accumulation point p of
the sequence of measures p, = N%L Zf\[:"l f?* 6., will be a measure p whose
average top Lyapunov exponent (see discussion in Section 4.2 and (2) below)
is positive.

To implement the above idea in the context of I'-actions rather than
Z-actions, in Section 4.1 we induced from the I'-action on M to a G-action
on an auxiliary manifold M®. This space has the structure of an M-bundle
over G/I'. For A C SL(n,R), the subgroup of positive diagonal matrices (that
is, a maximal split Cartan subgroup), the failure of the action a to have uni-
form subexponential growth of derivatives implies the existence of an element
s € A and an s-invariant probability measure p on M with a positive Lya-
punov exponent for the fiberwise derivative cocycle. The key new idea is to
construct from g a G-invariant measure p’ on M® such that the fiberwise
derivative cocycle continues to have a positive Lyapunov exponent for some
s’ € A. This yields a contradiction with Zimmer’s cocycle superrigidity the-
orem as there are no non-trivial linear representations in dimension less then
n. We thus obtain the uniform subexponential growth of derivatives for the
action a.

To construct a G-invariant measure y/, starting with our s-invariant mea-
sure p we build a sequence of measures by averaging: given a measure p that
has a positive fiberwise Lyapunov exponent for some s € A, by averaging u
along A or a unipotent subgroup commuting with s, we obtain a new measure
i/ with better invariance properties and with a positive fiberwise exponent for
some s’ € A. There is some similarity here to Margulis’ original proof of the
superrigidity theorem using Oseledec’s theorem where it is used (see [35]) that
higher-rank semisimple Lie groups can be generated by centralizers of certain
elements of the diagonal subgroup.

While we cannot average directly to obtain a G-invariant measure on M,
we may average so as to obtain an A-invariant measure on M* whose projection
to G/T" is the Haar measure and that has positive fiberwise exponent for some
s’ € A . This step requires a careful choice of subgroups over which to average,
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and it employs Ratner’s theorem on measures invariant under unipotent sub-
groups and an improvement due to Shah concerning averages of measures along
unipotent subgroups. As the general averaging argument requires understand-
ing the combinatorics of root systems, we explain this step for the special case
of SL(n,R) in Section 6.2.

To show that such a measure is, in fact, G-invariant, we use a result
(Proposition 6.9 below) from the work of the first author with Rodriguez Hertz
and Wang where its shown that — under the same dimension bounds as in
Theorem 1.1 — any P-invariant measure on M? is, in fact, G-invariant [11].
Here P denotes the group of upper triangular matrices. As P contains A and
as any P-invariant measure on G/I' is necessarily Haar, we are in a slightly
more general setting than considered in [11]. The key idea in the proof in [11]
of Proposition 6.9 is to relate the Haar-entropy of elements of the A-action
on G/T with the p-entropy of elements of the A-action on M®. For the Haar
measure on G /T, the entropy of elements of A is computed in terms of the roots
of G. Moreover, the contribution from the fiber to the u-entropy of elements
of the A-action is constrained by the dimension assumption. Many key ergodic
theoretic notions for these argument are developed in [8], [5], [9].

Both the main result in [11] and our use of their techniques here employ
the philosophy that “non-resonance implies invariance.” This philosophy was
introduced by the same authors in their study of global rigidity of Anosov
actions of higher-rank lattices in [10]. Given a G-action and an A-invariant
(or equivariant) object O, such as a measure or a semiconjugacy to a linear
action, one may try to associate to O a class of linear functionals O. In the
case of an A-invariant measure, the functionals are the Lyapunov exponents;
in the case of a conjugacy to a linear action, the functionals are the weights
of the representation corresponding to the linear action. The philosophy, im-
plemented in both [10] and [11], is that, given any root § of G that is not
positively proportional to an element of O, the object O will automatically be
invariant (or equivariant) under the unipotent subgroup associated to S (or to
B and 2/). If one can find enough such non-resonant roots, the object O is
automatically G-invariant (or G-equivariant).

The second step in the proof of Theorem 1.1 is to use strong property (T)
introduced by V. Lafforgue and uniform subexponential growth of derivatives
to produce an invariant metric for the action. Strong property (T) was intro-
duced by Lafforgue who proved that all simple Lie groups containing SL(3,RR)
and their cocompact lattices have strong property (T) with respect to Hilbert
spaces. The precise results we use here are an extension of Lafforgue’s due to
de Laat and de la Salle [30], [28].

We formulate a special case of the results of [30], [28] below. Given a
Hilbert or Banach space H, let B(H) denote the bounded operators on #.
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THEOREM 1.6 ([28]). Let H be a Hilbert space, and let T' be as in Theo-
rem 1.1. There exists € > 0, such that for any representation m: I' — B(H),
if there exists C: > 0 such that

I(9)]| < Cee™,

then there exists a sequence of averaging operators p, = 7(uy,) in B(H), defined
by probability measures p, on I' supported in the ball of radius n, such that
for any vector v € H, the sequence v, = py(v) € H converges to a I'-invariant
vector v*. Moreover the convergence is exponentially fast: there exist0 < A < 1
(independent of ) and a C so that ||vy, — vi|| < CA"||v]|.

In the case of C*° actions, we may apply this theorem to the Sobolev
space of sections of the bundle of symmetric 2-tensors on M (which contains
the space of Riemannian metrics as a subset). As the uniform subexponential
growth of derivatives implies subexponential growth of derivatives of higher
order (see Lemma 7.7 below), we verify the slow norm growth required in
Theorem 1.6. Starting from an initial symmetric 2-tensor field g that is a
Riemannian metric, we obtain from Theorem 1.6 a non-negative, I'-invariant,
symmetric 2-tensor field on M. To verify that the tensor is in fact a metric (that
is, to verify that the 2-tensor is non-degenerate) we use that the norms decay
at a subexponential rate under the averaging operator while the convergence
to the limit is exponentially fast.

We remark that a somewhat similar use of subexponential growth of
derivatives along a central foliations also occurs in the work of the second
author with Kalinin and Spatzier on rigidity for Anosov actions of abelian
groups [18]. In that work, subexponential growth is verified from the existence
of a Holder conjugacy and is used in conjunction with exponential decay of
matrix coefficients for abelian groups. These ideas are also applied in the work
of Rodriguez Hertz and Wang [43].
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2. Main theorem and proof of results from introduction

Our main theorem, Theorem 2.1 below, gives a partial solution to Zim-
mer’s conjecture for actions of cocompact lattices in any semisimple Lie group
all of whose non-compact, almost-simple factors are of higher rank. Results
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stated in the introduction follow from Theorem 2.1 and Margulis’ superrigidity
theorem as explained below in Section 2.3.

2.1. Main theorem. To state our main theorem, given a semisimple Lie
group we associated an integer (@) similar to v(G) in Conjecture 1.2. For
R-split Lie groups G, we always have 7(G) = v(G). More generally, we have
r(G) = v(G"), where G’ is a maximal R-split simple subgroup of G. An alter-
native definition of r(G) in terms of root data is given below in Definition 3.1.

THEOREM 2.1. Let G be a connected, semisimple real Lie group with fi-
nite center, all of whose non-compact, almost-simple factors have real-rank at
least 2. Let I' C G be a cocompact lattice, and for k > 2, let a: I' — Diffk(M)
be an action. Suppose that either
(1) dim(M) < r(G), or
(2) dim(M) = r(G) and o preserves a smooth volume.

Then a(T) preserves a Riemannian metric that is C*¥=179 for all § > 0.

Theorem 2.1 gives a partial solution to Zimmer’s conjecture for cocom-
pact lattices in any higher-rank simple Lie group G. In particular, the number
r(QG) provides a critical dimension — which grows linearly in the rank of G —
for which the conclusion of Zimmer’s conjecture holds. Moreover, the number
r(QG) gives the optimal result for non-volume-preserving actions when G is a
split real form.

For non-split simple Lie groups, our critical dimension falls below the
conjectured result. In particular, while we recover the complete conjecture as
stated in Conjecture 1.2 for cocompact lattices in SL(n,R) with n > 2, for
lattices in SL(n,C) and SL(n,H), our critical dimension r(G) is, respectively,
one half and one quarter of the conjectured critical value. For lattices in
SO(n,m), we obtain the conjectured result (for non-volume-preserving actions)
in the split case where m = n or m = n + 1. However, for fixed n our critical
dimension 7(G) for G = SO(n,m), m > n, is constant in m and thus the defect
between the critical dimension in Theorem 2.1 and the conjectured critical
dimension becomes arbitrarily large as m — oo.

The obstruction to improving our results for non-split simple Lie groups
is to improve the results of [11], particularly the result quoted below in Propo-
sition 6.9. In particular, the method of proof of Proposition 4.7 below cannot
distinguish between actions of lattices in two groups with the same restricted
root system.

Remark 2.2. In Theorem 2.1 above, by restricting to a finite-index sub-
group of I', it is with no loss of generality to assume the group G has no
compact factors and is center free. Indeed, G is an almost direct product
G = KL where K is the largest compact normal subgroup of G and L has
no compact normal subgroups of positive dimension. Since compact groups
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are linear, the image of I" in G/L has a torsion-free subgroup of finite index.
Then there is a finite-index subgroup IV of T" such that I N K is the identity.
Then, the map G — G/K restricts to an injection on I'/; thus an action of the
subgroup I' of G induces and action of the subgroup I'V of G/K.

In the remainder of the paper, we will assume G has no compact factors
to simplify some algebraic arguments.

2.2. Proof of Theorem 2.1. We prove Theorem 2.1 in two steps.

Let I' be a finitely generated group. Let 1: I' — N denote the word-length
function relative to some fixed finite symmetric set of generators. Let a: I' —
Diff! (M) be an action of T' on a compact manifold M by C* diffeomorphisms.
We say the action a has uniform subexponential growth of derivatives if for all
€ > 0, there is a C. such that for all v € I'; we have

IDa()|| < Cee',

where [[Da ()| = sup,epr [[Decr(7)]]-

To prove Theorem 2.1 we first establish uniform subexponential growth
of derivatives for actions of cocompact lattices in the low-dimensional settings
consider above.

THEOREM 2.3. Let G be a connected, semisimple Lie group with finite
center. Let I' C G be a cocompact lattice, and let a: I' — DiffHB(M) be an
action for B > 0. Suppose that either

(1) dim(M) < r(G), or

(2) dim(M) = r(G) and « preserves a smooth volume.
Then « has uniform subexponential growth of derivatives.

When G is rank-1 or has rank-1 factors, we have r(G) = 1. In this case,
Theorem 2.3 is trivial if dim(M) < r(G) and is nearly as trivial if dim(M) =
r(G) and « preserves a smooth volume since any group of diffeomorphisms
preserving a smooth volume form on the circle is smoothly conjugate to a
group of isometries.

Having established Theorem 2.3, the second step in the proof of Theo-
rem 2.1 is to show that for a group with strong property (T), any action with
subexponential growth of derivatives preserves a smooth Riemannian metric.

THEOREM 2.4. Let T be a finitely generated group, M a compact manifold,
and o: T' — Diff*(M) an action on M by C* diffeomorphisms for k > 2.
If T' has strong property (T) and if o has uniform subexponential growth of
derivatives, then o preserves a Riemannian metric that is C*~179 for all § > 0.

Theorem 2.1 is an immediate consequence of Theorems 2.4 and 2.3.
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Note that Theorem 2.1 implies Conjecture 1.2 for non-volume-preserving
actions of cocompact lattices in all split simple Lie groups. Moreover, as
the minimal non-trivial linear representations of sl(n,R) and sp(2n,R) oc-
cur in dimensions n and 2n, respectively, Theorem 2.1 implies the volume-
preserving case of Conjecture 1.2 for lattices in (groups isogenous to) SL(n, R)
and Sp(2n,R). For the split orthogonal groups, the minimal linear representa-
tions occur in dimensions 2n = r(g) + 2 for g = so(n,n) and 2n+1 = r(g) + 2
for g = so(n,n + 1) and thus we are unable to recover the full conjecture for
volume-preserving actions from Theorem 2.1.

2.3. From metrics to compact Lie groups and finite actions. To complete
the proofs of the results from the introduction, we recall that the isometry
group of the metric guaranteed by Theorem 2.1 is a compact Lie group whose
dimension is bounded from above; we then apply Margulis’s superrigidity the-
orem with compact codomains to conclude the image a(I") is finite. All argu-
ments in this subsection are well known to experts, and we include them for
completeness.

Let M be equipped with the metric guaranteed by Theorem 2.1. We claim
the isometry group of M is a compact Lie group. When the metric is at least
C? this is an immediate consequence of the Myers-Steenrod Theorem and the
fact that Isom(M) embeds (via the orbit map) into the bundle of orthogonal
frames over M that is an O(dim(M)) bundle [37], [27]. When the metric is not
C?, an additional argument is needed to show that isometries are at least C*.
Recently Taylor proved that isometries of an a-Holder Riemannian metric are
C1*+e [48]. See also related work in [13], [33]. Given Taylor’s result, we again
have an embedding of Isom(M) into the bundle of orthogonal frames and so
Isom (M) is a compact Lie group. One can also argue instead by viewing M as a
compact metric space whose isometry group is compact and use the resolution
of the Lipschitz case of the Hilbert-Smith conjecture by Repovs and ééepin to
see that Isom(M) has no small subgroups and is therefore a Lie group [42].
Isometries of a Holder Riemannian metric, or even an L° Riemannian metric,
are easily seen to be Lipschitz maps.

We now prove finiteness of the image «(I") in any theorem from the intro-
duction. We assume that a: I' — Isom(M) and show that if «(I") is infinite,
then dim(M) > d(G). Let L = «(I') be the closure of a(I') in Isom(M).
Passing to a finite index subgroup of I' one can assume L is connected. By

the structure theory of compact Lie groups L is an almost direct product
L =K x---x K,. Using that compact groups are real algebraic and applying
Margulis’s superrigidity and arithmeticity theorems we will see that each Kj;
is a compact real form of a simple factor of the complexification of G. First,
since the abelianization of I' is trivial, all factors of L are simple. To prove all
remaining assertions, we need only consider a single factor K = K;. Let H be
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the complexifation of K. Arguing as in [57, Lemma 6.1.6], we can see that the
trace of Ady(c(7)) is real algebraic for every v € I'. We can then apply [57,
Lemma 6.1.7] to find an embedding of K into GL(n, C) such that each a(v) has
algebraic entries. Since I' is finitely generated, it follows that there is a number
field &k such that each «(7) has entries in k£ and K is defined over k. Applying
superrigidity with p-adic targets, we see that I' has a finite-index subgroup for
which every a(v) has entries lying in the integer points Oy of k. Applying
restriction of scalars, [57, Prop. 6.1.3], we see that either «(T') is contained
in the integer points of a compact group and is thus finite, or there is a field
automorphism o of k over Q such that o(«(I")) is Zariski dense and unbounded
in a non-compact simple group G’. Applying Margulis’ superrigidity theorem
again, G’ is locally isomorphic to a factor of G. Since G’ is locally isomorphic
to a factor of G, restriction of scalars implies that K is a compact real form of
a simple factor of the complexification of G. Furthermore, since K < Isom(M)
is non-trivial, there is a closed K orbit in M of the form K-z = K/C for some
proper subgroup C. This then forces dim(M) > dim(K/C) > d(G).

To complete the proofs of the results in the introduction, one computes
the number d(G) appearing in Conjecture 1.2, the minimal dimension of K/C
where K is a compact real form K of the classical Lie group G and C'is a proper
closed subgroup. In all cases considered in the introduction, d(G) > dim M
and finiteness of the action follows.

3. Background and facts from Lie theory

We recall some facts and definitions from the structure theory of real Lie
groups as well as some notation that will be used in the sequel. A standard
reference is [26]. For the reader interested only in actions of cocompact lattices
in SL(n,R), we recommend skipping this section on the first read.

3.1. Structure theory of Lie groups. Let G be a connected, semisimple Lie
group with finite center. As usual, write g for the Lie algebra of G. Fix once
and for all a Cartan involution 6 of g and write £ and p, respectively, for the
+1 and —1 eigenspaces of 8. Denote by a a maximal abelian subalgebra of p
and by ¢ the centralizer of a in . We let X denote the set of restricted roots
of g with respect to a. Note that the elements of X are real linear functionals
on a. Recall that dimg(a) is the real-rank of G. We fix a for the remainder.

Recall that a base (or a collection of simple roots) for ¥ is a subset II C X
that is a basis for the vector space a* and such that every non-zero root g € X
is either a positive or a negative integer combination of elements of II. For a
choice of II, elements 8 € II are called simple (positive) roots. Relative to a
choice of base II, let 3 C X be the collection of positive roots, and let 3_ be
the corresponding set of negative roots. For 5 € X, write g° for the associated
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root space. Then n = Pgey, g? is a nilpotent subalgebra. A subalgebra q of
g is said to be a standard parabolic subalgebra or simply parabolic (relative to
the choice of 6 and II) if cda®n C q, where n is defined relative to II. We have
that the standard parabolic subalgebras of g are parametrized by exclusion of
simple (negative) roots: for any sub-collection 1" C II, let

(1) v =cOad b
BeX L USpan(—1II)

Then qr is a Lie subalgebra of g and all standard parabolic subalgebras of g
are of the form qr for some IT" C II [26, Prop. 7.76].

Let A, N, and K be the analytic subgroups of G corresponding to a,n
and €. Then G = K AN is the corresponding Iwasawa decomposition of G. As
G has finite center, K is compact. Note that the Lie exponential exp: g = G
restricts to diffeomorphisms between a and A and n and N. Fixing a basis
for a, we often identify A = exp(a) = R?. Via this identification we extend
linear functionals on a (in particular, the restricted roots of g) to functionals
on A. Write C for the centralizer of a in K and recall that ¢ is the Lie algebra
of C. Then P = CAN is the standard minimal parabolic subgroup. Since C' is
compact, it follows that P is amenable. A standard parabolic subgroup (relative
to the choice of # and II above) is any closed subgroup Q C G containing P.
The Lie algebra of any standard parabolic subgroup @ is a standard parabolic
subalgebra and the correspondence between standard parabolic subgroups and
subalgebras is 1-1.

We say two restricted roots g B e are positively proportional if there is
some ¢ > 0 with

B =cp.

Note that ¢ takes values only in {%, 1,2} and this occurs only if the root system
3 has a factor of type BCy. Let 3> denote the set of coarse restricted roots;
that is, 3 denotes the collection of positively proportional equivalence classes
[3] in ¥. Note that for [8] € &, glf! = Dpeig g? is a nilpotent subalgebra
and the Lie exponential map restricts to a diffeomorphism between gl? and
the corresponding analytic subgroup, which we denote by GIAl,

Let q denote a standard parabolic subalgebra of g. Observe that if g?Nq##0
for some S € ¥ then, from the structure of parabolic subalgebras, glfl c g
where [5] € 3 is the coarse restricted root containing 3. A proper subalgebra b
of g is mazimal if there is no subalgebra b’ with h C ' C g. Note that maximal
standard parabolic subalgebras are of the form qp. 45, for some g € II.

3.2. Resonant codimension and related lemmas. We say a Lie algebra is
saturated by coarse roots spaces if its intersection with a coarse root space is
either trivial or the entire coarse root space. Consider a Lie subalgebra h C g
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that is saturated by coarse root spaces. For such a subalgebra, define the
resonant codimension, 7(h), of h to be the cardinality of the set

{B1es|a” ¢ n}.

For a subgroup H C G whose Lie algebra is saturated by coarse root spaces,
we will also refer to the resonant codimension of the group H.

Note that standard parabolic subalgebras q are automatically saturated by
coarse root spaces whence the resonant codimension is defined for all standard
parabolic subalgebras. As in [11], given a (semi)simple Lie algebra g as above
we define a combinatorial number r(g). As the number depends only on the
Lie algebra g, we use both the notation r(G) and r(g) interchangeably.

Definition 3.1. The minimal resonant codimension of g or GG, denoted by
r(g) or 7(G), is defined to be the minimal value of the resonant codimension
7(q) of q as q varies over all (maximal) proper parabolic subalgebras of g.

Remark 3.2. In the case that the Lie algebra g of G is a split real form,
the minimal resonant codimension r(g) coincides with minimal codimension of
all maximal parabolic subalgebras. In general, we have r(g) < v(G). That this
definition of r(G) agrees with the one given immediately before Theorem 2.1
follows from [2, Th. 7.2].

In the case that g is semisimple, 7(g) is the minimal value of r(g’) as ¢
varies over all non-compact simple ideals of g. In particular, if g has rank-1
factors, then r(g) = 1.

Ezample 3.3. We compute r(g) for a number of classical real simple Lie
algebras. Note that it follows from definition that the minimal resonant codi-
mension depends only on the restricted root system of g and not on the Lie
algebra g.

Type Ap: r(g) = n. This includes sl(n + 1,R), sl(n + 1,C), sl(n + 1, H).

Type By, Cy, and (BC),: r(g) = 2n — 1. This includes sp(2n,R), so(n,m)
for n < m, and su(n,m) and sp(n, m) for n < m.

Type D,, n > 4: r(g) = 2n — 2. This includes so(n,n) for n > 4

Type Es: r(g) = 16.

Type E7: r(g) = 27.

Type Es: r(g) = 57.

Type Fy: r(g) = 15.

Type Ga: r(g) = 5.

We note that for all root systems above, the minimal resonant codimen-
sion 7(g) corresponds to the codimension of the maximal parabolic subalgebra
I {a;}» Where the simple roots are as enumerated as in the Dynkin diagrams
in Table 1.
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For the remainder of this subsection, we show that certain subgroups of G
with resonant codimension at most r(G) are parabolic. With g the Lie algebra
of G, let 3 = ¥(g) be the restricted root system of g, and let

g:c@a@@gﬁ
BEX

be the restricted root space decomposition (relative to the choice of Cartan
involution ). Note that g” is not a Lie subalgebra if 243 is a root; in this case
let (g®) denote the Lie-subalgebra generated by g”.

LEMMA 3.4. For any root B € 3, the subalgebra ¢ acts irreducibly under
the adjoint action on the root space g°.

As a corollary, let h C g be a Lie subalgebra with ¢ C . Then for every
B €% with b g? # 0, we have

(") Cb.
A proof of Lemma 3.4 using the complexification of g appears in [24, Lemma

5.3]. We give an alternative shorter proof of this fact using representation
theory.

Proof of Lemma 3.4. Let V. C g® be a non-trivial, c-invariant subspace.

Let
h=Vaeg’acaa

Since the adjoint action of a on g° is by scalar multiplication, and since a
centralizes ¢, it follows that § is a subalgebra.

Fix a non-zero X € V. By [26, Lemma 7.73b] applied to X instead of
0(X), we have that

(adX): (adX)(g™") — ¢°

is a bijection and since (ad X)(g™?) C g° = ¢c@a C b, it follows that g° C h. O

ProOPOSITION 3.5. Let b C g be a Lie subalgebra with ¢ & a C h. If the
cardinality of the set {[3] € £(g): g!®) ¢ b} is at most r(g), then b is parabolic.

Before we give the proof of Proposition 3.5, we need the following lemma
whose proof requires case-by-case analysis. In the analysis in the following
lemma, we fix an inner product on a* that is preserved by the Weyl group and
an orthonormal basis {e1,ea, ..., } for a* relative to which we may express all
roots in a standard presentation such as in [26, App. C]. Relative to the inner
product, we may measure the lengths of roots. All roots of the same length
are in the same orbit of the Weyl group. If g is simple and if X(g) is of type
Ay, Dy, Eg, E7, or Eg, then all roots have the same length; if ¥(g) is of type
By, Cy, Go, or Fy, there are two distinct lengths of roots, and if ¥(g) is of type
(BC)y, there are three distinct lengths of roots.
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LEMMA 3.6. Let g be a simple Lie algebra, and let h C g be a Lie subal-
gebra satisfying the hypotheses of Proposition 3.5. Then either b = g or there
exists a long root By such that g N = {0}.

Proof. First note from Lemma 3.4 that h is saturated by full root spaces;
that is, g® N'h = {0} or g’ C b for all roots B € X(g). If X(g) is of type
Ay, Dy, Eg, E7, or Eg, then all roots are of the same length. We argue the
lemma case-by-case for the remaining possible abstract root systems X(g).

Y(g) is of type By: Relative to a choice of orthonormal basis {e1, ..., ez}
the roots are {£e; £e; : 1 <i < j < £} U{%e; : 1 < i < ¢}; the long roots
are {*e; £ e;}. Suppose g® c b for all long roots 3. Since r(g) = 2¢ — 1, by
hypotheses and assumption there exists 1 < 79 < £ and a short root 8’ € {*e;, }
with g? C h. For each 1 < i < ¢, we have g+ —¢o, g=¢itcio c . Bracketing
with gB/, we have gt® C b for every 1 < i < £. It follows that h = g.

Y(g) is of type Cyp: The roots are {£e; £ e; : 1 < i < j < £} U {£2e;};
the long roots are {£2e;}. We induct on ¢. In the case ¢ = 2, the conclusion
follows from the above since Cy and By are isomorphic. Suppose g? C § for all
long roots 5 € {£2e;}. For the sake of contradiction, assume h # g; then there
is a short root §' = +e; + e; with g N = {0}. Acting by the Weyl group,
we may assume 3 = e; — es = aq is the left-most root in the Dynkin diagram
with respect to some base II. Let g’ be the Lie subalgebra of g generated by
the root spaces associated to roots +ag,...,+ay. Then X(g’) is of type Cyp_;.

Since g~ Nh = {0} and g° C b for B € {+2e1,42e2}, we conclude
that g% N = {0} for the four roots § € {+e; + es}. Let ' = hNg’. Then
the cardinality of the set {[8] € %(g'): g¥! ¢ b} is at most r(g) — 4 = 20 —
1—-4=2((-1)-3 < r(¢g/). In particular, i’ C ¢ satisfies the hypotheses
of Proposition 3.5 and, since g’ contains all root spaces associated to its long
roots, by the inductive hypotheses we conclude that ' = g’.

Finally, there are 4¢ — 4 roots of the form +e; +e;, 7 > 2. As we assume b
contains all root spaces associated to long roots and since r(g) = 20—1 < 40—4,
there exists 2 < iy < ¢ such that gﬂ, C b for some, and hence all, roots
B’ € {£e1 £ e;,}. Since g’ C g and since te; £ e; = (te1 — e;) + (€5,  €),
we conclude that g% C b for all 3’ € {+e; + ej : 2 < j <t} It follows that
h = g, contradicting the assumption h # g above.

Y(g) is of type (BC)e: The roots are {+e; = e;} U {£e;} U {+2¢;}; the
long roots are {£2e;}. Suppose g” C b for all long roots § € {£2e¢;}. From
the previous analysis,  contains the subalgebra (with root system of type Cy)
containing all root spaces g” associated to roots of the form 8 = {£e; £ ¢;} U
{+2¢;}. From the analysis when Y(g) is of type By, it follows that g% C b for
every root ' € {+e;} and thus h = g.
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Y(g) is of type Go: The roots are {e; —e;j : 1 <i,5 <3 :i# jEU{£(2e; —
e2—e3), £(2ea—e1 —e3), £(2e3—e; —e2)}; the long roots are {£(2e; —ex —e3),
+(2e5 —e1 —e3), +(2e3 —e1 — e2)}. Suppose g? C b for all long roots 3. Since
r(g) = 5, there is at least one short root 3’ with g% C b; acting by the Weyl
group, we may assume ' = e; —eg. Observe that (e; —e3) = 2e3 —e1 —e3+ 3,
(e1—e3) = B'+(ea—e3), (e3—e1) = —(2e1—ea—e3)+f3', (e3—ea) = (e3—e1)+f,
and (ez —e1) = (e — e3) + (e3 — e1). Tt follows that g” C b for all short roots
8 whence h = g.

Y(g) is of type Fy: There are 48 roots {£e; ej: 1 <i < j <4} U {*e;:
1 <i<4}U{3(e1 teategtes)}; the long roots are the 24 roots {Le; te; :
1 <i < j <4}. Suppose g’ C b for all long roots 3. We have r(g) = 15 so
there is at least one short root 8’ with g? C b; acting by the Weyl group, we
may assume [’ = %(el + ey + e3 + e4). Taking brackets of g% with g? for all
long roots 3, we have g% C b for the eight roots 8" € {1(Ze1 £eateg+es)}
with an even number of positive terms.

We also claim gﬁ C b for at least one E = %(:I:el + ey £ e3 £ e4) with
an odd number of positive terms. Indeed there are eight roots of the form
%(:l:el + ey + e3 + e4) with an odd number of positive terms and eight roots
of the form +e;. Since r(g) = 15, one of these 16 roots corresponds to a root
space in b; the former case gives such a 5 and the latter case gives such 5 after
bracketing with some root space associated to a root %(:l:el +egtegtey) with

an even number of positive terms. Taking brackets of g? with g? for all long
roots (3, we have g? C b for the eight roots § € {%(:l:el + ey te3tey)} with
an odd number of positive terms.

Finally, we have e; = %(61 +ex+e3+eq) + %(el — e9 — e3 — e4) and
—e1 = %(—61 +exstes+eq)+ %(—el —eg — e3 — e4). Moreover, for 2 <i <4,
we have te; = (—e; £ e;) + e1. It follows that gﬁm C b for the eight roots
" € {£e;}. Combined with the above analysis, it follows that h = g. O

Proof of Proposition 3.5. First recall from Remark 3.2 that r(g) is the
minimal value of r(g’) as g’ varies over simple non-compact ideals in g. In
particular, if the conclusion holds for all simple Lie algebras g, then it au-
tomatically holds for all semisimple Lie algebras. Thus we may assume g is
simple for the remainder.

We may assume h # g. Let b’ C h be the Lie subalgebra generated by c,
a, and all coarse root spaces gw] where g[ﬁ] C b. It follows from Lemma 3.6
that there exists a long root fy with g’ N = {0}. Acting by the Weyl group,
the root —fy is the highest root for some choice of base II. If IT = {ay, ..., ap}
are the simple positive roots for this base, select X € a such that o;(X) > 0
for all 1 <4 < {. Then fy(X) is the minimal value of 3(X) as [ varies over all
B € X(g); moreover for all 8 € X(g) \ {Bo}, we have [y(X) < B(X).
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Let n be the Lie subalgebra generated by all positive roots relative to II.
Let [ be the Lie subalgebra generated by h’ and n; observe that [ is parabolic.
Since the minimal value of 3(X) is By(X), it follows that g™ is not a subspace
of I; in particular, [ # g. Since b’ C [ # g, it follows from the definition of r(g)
that b’ = [. Since [ = B’ C b, the conclusion follows. O

For the reader less familiar with finite-dimensional representation theory
and root systems we also include a geometric proof of a weaker assertion that
suffices for all our proofs in the case of R-split groups. It is also possible to
give a proof of Proposition 3.5 above using Lemma 3.7 below and Lemma 3.4.

LEMMA 3.7. Let h C g be a subalgebra whose codimension is at most
the minimal codimension of all proper parabolic subalgebras of g. Then by is
parabolic.

Proof. We may assume that dim b is maximal among all proper subalge-
bras of g. Let H be the connected Lie subgroup of G whose Lie algebra is b.
As the statement concerns Lie algebras, we may replace G with its adjoint
group and assume that G is a (real) linear algebraic group. So we may let H
be the Zariski closure of H in G. Since H is connected, we know that H is not
Zariski dense, so dim H < dim G. Then the maximality of dim H implies that
H is the identity component of H, and therefore has finite index in H so b is
also the Lie algebra of the real algebraic group H.

By Chevalley’s Lemma [57, Prop. 3.1.4], there is a finite-dimensional rep-
resentation p: G — GL(n,R), such that H is the stabilizer of a point z in
the corresponding projective space RP"~!. Since finite-dimensional represen-
tations of G are completely reducible and G has no non-trivial 1-dimensional
representations, we may assume without loss of generality that G has no fixed
points in RP™ 1.

Since this is an action of an algebraic group on a variety, we know that the
closure of the G-orbit of = consists of the union of Gz with orbits of strictly
smaller dimension. However, the maximality of dim H and the absence of fixed
points implies that there are no G-orbits of smaller dimension. So Gz must
be a closed subset of RP"~! and is therefore compact. This means G/H is
compact.

If H and H are reductive, then they are unimodular and G/H admits
a finite invariant measure. By the Borel density theorem [57, Th. 3.2.5] this
implies G = H, a contradiction. If H is not reductive, then the unipotent
radical, U, of H is non-trivial. A result of Borel and Tits [3, Prop. 3.1] states
that U is contained in the unipotent radical of a parabolic subgroup P that
contains the normalizer of U. Since H is contained in this normalizer, it must
be contained in P. Moreover, P is proper because its unipotent radical contains
U and is therefore non-trivial. Then the maximality of dim H implies that H
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is the identity component of P, so b is the Lie algebra of P. This is also a
consequence of the more detailed result [53, Th. 1.2]. O

4. Suspension action and proof of Theorem 2.3

We begin by introducing the suspension action with which we work for the
remainder of the proof of Theorem 2.3. We then give some general background
on Lyapunov exponents and state the two key propositions used in the proof
of Theorem 2.3.

4.1. Suspension space. Recall we fix G to be a semisimple Lie group with
real-rank at least 2. Let I' C G be a cocompact lattice, and let a: I' —
Diff!*#(M) be an action for § > 0.

We construct an auxiliary space on which the action « of I' on M embeds
as a Poincaré section for an associated G-action. On the product G x M
consider the right I'-action

(9,2) -7 = (g7, (v )(x))
and the left G-action
a- (g,ZE) = (ag,az).

Define the quotient manifold M® := G x M/T. As the G-action on G x M
commutes with the I'-action, we have an induced left G-action on M. For
g € G and x € M“, we denote this action by g -« and denote the derivative of
the diffeomorphism x — ¢ - by Dg. We write m: M* — G/T" for the natural
projection map. Note that M has the structure of a fiber-bundle over G/T
induced by the map 7 with fibers diffeomorphic to M. Note that the G-action
intertwines the fibers of M®. As the action of « is by C? diffeomorphisms,
M is naturally a C? manifold. Equip M® with a C* structure compatible
with the C? structure; the existence of this compatible structure is guaranteed
by a classical theorem of Whitney [52, Th. 1]. Choose a right-I'-invariant
Riemannian metric on G x M whose restriction to any G x {m} is right-G-
invariant. This exists because the I'-action on G x M is proper. This metric
defines a Riemannian metric on M“ whose restriction to the tangent space to
any G-orbit pushes forward to a metric on G/I" defined by a right-G-invariant
metric on G.

4.2. Lyapunov exponents and Oseledec’s theorem. Let X be a compact

metric space equipped with a continuous (left) G-action. A measurable func-
tion A: G x X — GL(d,R) defines a linear cocycle if

Alg' g-x)A(g,z) = Ald g, x).

Then A defines an action by vector bundle automorphisms on the trivial bundle
X x R? that projects to the G-action on X.
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More generally, let £ — X be a continuous, finite-dimensional, normed
vector bundle. A measurable linear cocycle over the G-action on X is a mea-
surable action

A:GxE =&

by vector-bundle automorphisms that projects to the G-action on X. We write
&, for the fiber of £ over x and

A(g,2): & = Egr

for the linear map between Banach spaces &, and &g.,.
Below, we will always assume our cocycle A: G x £ — £ is bounded: for
every compact K C G,

sup || A(g, 2|
(g,2)eKxX

is bounded. Moreover, we typically assume the action A: G x £ — £ is con-
tinuous, which automatically implies boundedness. If one cares only about
measurable cocycles, one may assume the bundle £ is trivial.

Given s € G and an s-invariant Borel probability measure p on X, we
define the average top (or leading) Lyapunov exponent of A to be

©) Moo A= it [ log | AG", )] d(o).

Note that for an s-invariant measure y, the sequence + [log ||A(s", z)| du(z)
is subadditive whence the infimum in (2) may be replaced by a limit. By
the Kingman subadditive ergodic theorem (see [49, Th. 3.3]), if u is ergodic,
the sequence of functions %log | A(s™, z)|| converges p-a.e. to A\i(s,u, A) as
n — oo.

We have the following elementary fact.

CrAM 4.1. If the restriction of the cocycle to A: G X & — & to s € G is
continuous, then the map
= )‘+(87 s A)
is upper-semicontinuous on the set of all s-invariant Borel probability measures

equipped with the weak-x topology.

We recall the following standard fact, which is crucial in our later averag-
ing arguments. Given an amenable subgroup H C G, a bounded measurable
set F' C H of positive Haar measure, and a probability measure u on X, denote
by F'* u the probability measure defined as follows: for a Borel B C X, let

(P 0(B) = i [ uts B ds

where | F| is the volume of the set F' induced by the (left-)Haar measure on H.
For x € X, we write
yf = F x0,.
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LEMMA 4.2. Let A: G x £ — & be a bounded, continuous linear cocycle.
Let s € G, and let p be an s-invariant, Borel probability measure on X. Let
H C G be an amenable subgroup contained in the centralizer of s in G. Let
F,, be a Folner sequence of precompact sets in H, and let ' be a Borel proba-
bility measure that is a weak-x subsequential limit of the sequence of measures
{Fmn *u}. Then
(a) ' is s-invariant and H-invariant;

(b) )‘+(87/‘,7~A) > )‘+(8’M7~A)‘

Proof. (a) follows as each {F}, *u} is s-invariant and s-invariance is closed
under weak-* convergence.

For (b), first note that as A is assumed bounded, it follows from the
cocycle relation that Ay (s, Fy, * p, A) = A\i(s,p, A) for every m. Indeed, for
any t € H, let C; = sup,ex log | At 2)|, and let Cp, = supyep, C;. For
x € M and t € F,,, the cocycle property and subadditivity of norms yields

log |l A(s", t)]] < i + log |LA(s"t, )]
= Ci + log [|A(ts", 2) |
< 2C; + log || A(s™, x)||
<20y, + log ||A(s"™, z)]|.
Similarly, we can prove that log || A(s", tz)|| > log || A(s", z)|| — 2Cp,.
Thus,

/ log [LA(s™, 2) | d(Fyn * 1))

_ |P}m|/m/10g|y,4(s",ac)|| dt * ()
_ wfﬂ'/Fm/loguA(s”,m)u dtdp()
< L (20 [roelacr o du) o

<20, + /log IA(s", )| dp().

Dividing by n yields A; (s, Fyy, * pu, A) < A4 (s, i1, A). The reverse inequality is
similar. Conclusion (b) follows from the upper semicontinuity in Claim 4.1. [

Consider an abelian subgroup A C G isomorphic to R*. Equip A = R¥
with any norm |- |. Consider an A-invariant, A-ergodic probability measure
@ on X. For a bounded measurable linear cocycle A: A x X — GL(d,R),
we have the following consequence of the higher-rank Oseledec’s multiplicative
ergodic theorem (cf. [8, Th. 2.4]).
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PRrROPOSITION 4.3. There are

(1) an a-invariant subset Ao C X with u(Ao) = 1;

(2) linear functionals \i: R¥ — R for 1 < i < p;

(3) and splittings R = P L Ex(z) into families of mutually transverse,
p-measurable subbundles Ey,(x) C R defined for x € Ag

such that

(a) A(s,2)Ex,(2) = By, (s ) and

(o) i EAGDEI A
|s|—s0 5]

for all x € A and all v € Ey,(z) ~ {0}.

Note that (b) implies for v € Ej,(x) the weaker result that for s € A,
lim 11 k = \i(s).
Jm o log |A(sY, 2)(v)] = Ai(s)

We also remark that if y is an A-invariant, A-ergodic measure, then for
any s € A the average top Lyapunov exponent is given as

(3) At (s, p, A) = max Ai(s).

In the case that p is A-invariant but not A-ergodic, Proposition 4.3 holds
on each A-ergodic component of . Even more is true: the number of Lyapunov
exponents is determined by an integer valued measurable function 1 < p(z) < k
constant on ergodic components and all the data arising from Proposition 4.3,
including the linear functionals and the subspaces, varies measurably in X; see
[1, §3.6.1]. In this case we have the following construction, which will be used
later to avoid passing to ergodic components.

LEMMA 4.4. If p is an A-invariant Borel probability measure on X, then
for any s' € A, there is a linear functional Ay ¢ ,: A — R so that
(1) >‘+,s’,,u(t5/) = Ay (ts', 11, A) for any t > 0;
(2) Ap(s,p,A) > A g (8) forall s € A.

Proof. We first pass to an ergodic decomposition of the A-action on (X, ).
See, for instance, [20, Th. 2.19]. This gives a Borel map ¢: X — Q, where
is the space of ergodic components of the A-action and a Borel map &: Q2 —
Prob(X) where the target is the space of probability measures on X, such that

MZ/Qf(W)dC*M'

See, for example, [20] for more details. Since the function p mentioned in the
paragraph preceding this lemma is constant on ergodic components, we can
view it as a function on (2.
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By the dominated convergence theorem, one checks that

M (5, A) = /Q A (5,€(w), A) gt

From this and (3), one verifies that Ay (ts, u, A) = tA4 (s, u, A) for any positive
real number ¢. This can also be proven directly from properties of A (s, i, .A).
Once we construct a linear functional A} y ,,, this immediately implies the first
claim of the lemma.

Let £, = {Aiw,1 < i < p(w)} be the collection of Lyapunov exponents for
the cocycle A and the measure £(w). Let x: w +— Ay g, € Ly, be a measurable,
A-invariant assignment satisfying

Ao w(8’) = max A, (s).

We briefly defer justifying the existence of x. Take A s ,: A — R to be

A st u(s) = /)Ur,S’,w(S) dG .

The integral is defined since A} ¢ () is bounded, and one verifies that A} ¢ (s)
satisfies the properties of the lemma.

To justify the existence of the measurable map x one can use the mea-
surable selection theorem (see, e.g., [20, Th. 2.3]), but one can also give a
simpler argument. We construct this map from a map yx from X that factors
through €). Since we can partition X into finitely many disjoint measurable
subsets where p(x) is constant, we assume p = p(x) is constant. Let X, be the
union of p disjoint copies of X, and let £* be the dual bundle to £. There is a
measurable map x,: X, — £* sending x to the set L¢(;). Choosing s’ e A, we
can define a subset of X™® and a restriction Xmax: XM — £ where X™#*
consists of those linear functional in L,y such that Aiw(s') = max; \jw(5').
We can partition X into finitely many measurable sets X; where X™#* is ¢
disjoint copies of X for ¢ < p. On each X; we can make a choice of one copy
of X, that chooses the linear functional that is the image of xy on X;. This
assignment is clearly measurable on Xj. O

4.3. Subexponential growth of fiberwise derivatives. We return to the set-
ting introduced in Section 4.1. With 7: M* — G/I' the projection, let
F = ker(Dm) denote the fiberwise tangent bundle of M<.

We say the induced action of G on M has uniform subexponential growth
of fiberwise derivatives if for all € > 0, there is a C such that

1Dg| | < Ces9),

where ||Dg|r| = sup,cpro [[Dg(z)|pll- As T is cocompact, there is a clear
relation between the growth of the fiberwise derivatives for the G-action and
the growth of derivatives of the I'-action.
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CrAM 4.5. The action « of I' on M has uniform subexponential growth
of derivatives if and only if the induced action of G on M® has uniform subex-
ponential growth of fiberwise derivatives.

4.4. Proof of Theorem 2.3. We let A denote the fiberwise derivative co-
cycle for the action of G on M%; that is, A(g,x) = D,g|p. Let A=expa C G
be a maximal split Cartan subgroup. Given s € A and an s-invariant Borel
probability measure u, we write

) 1 "
AL (s, = A5, A) = int - [ log 1D (6" e dla)

for the average top fiberwise Lyapunov exponent of s with respect to pu.
The proof of Theorem 2.3 is by contradiction. Assuming Theorem 2.3
fails, from Claim 4.5 we first establish the following.

PROPOSITION 4.6. Suppose the induced action of G on M fails to have
uniform subexponential growth of fiberwise derivatives. Then there are an s €
A and an A-invariant Borel probability measure p with N (s, i) > 0.

As discussed above, Theorem 2.3 holds trivially in the case where G has
rank-1 factors. To complete the proof of Theorem 2.3 we may thus assume
that all non-compact, almost-simple factors of G are of higher-rank. The proof
of the following proposition contains the major technical innovations in this

paper.

PROPOSITION 4.7. Let G be a connected, semisimple Lie group with finite
center, all of whose non-compact, almost-simple factors are of real-rank at
least 2. Let T C G be a cocompact lattice, and let oc: T' — Diff'+#(M) be an
action. Suppose that either
(1) dim(M) < r(G), or
(2) dim(M) = r(G) and « preserves a smooth volume,
and that there are an s € A and an A-invariant Borel probability measure p on
M with )\i(s, w) > 0. Then there are a G-invariant Borel probability measure
@ and s’ € A with N (s', ') > 0.

From Proposition 4.7 we immediately obtain a contradiction with Zim-
mer’s cocycle superrigidity theorem and the fact that there are no non-trivial
linear representations of G into GL(r(G),R) [60]. Theorem 2.3 follows imme-
diately from Propositions 4.6, 4.7 and Claim 4.5.

5. Proof of Proposition 4.6

To establish Proposition 4.6, suppose the induced action of G on M¢ fails
to have uniform subexponential growth of fiberwise derivatives. Then there
exist € > 0, a sequence of elements g, in G with d(e, g,) — 00, a sequence of
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base points =, € M“, and a sequence of unit vectors v, € F(zy,) := T, M*NF
tangent to the fibers of M, satisfying

| D, g (v3)]| > €30m).,

Let G = KAK be the Cartan decomposition of G (cf. [26, Th. 7.39]).
For each g,, write g, = kpa,k], where k,, k|, € K and a,, € A. Note that
a, — oo as n — 0o. As K is compact, the fiberwise derivative sup,c g || Dk|F||
is bounded above and thus

1Da, an (vn)|| > €20

for all sufficiently large n.

Recall that the Lie exponential exp: g — G restricts to a diffeomorphism
from a to A; moreover, exp: a — A is an isometry. Write a,, = exp(t,uy),
where u,, is a unit vector in a and ¢, = d(a,,e). Given t € R, let [t] denote
the integer part of ¢t. Then for sufficiently large n, we have

|Da, exp([taitn)(wn)]] = et

Passing to a subsequence, we assume u,, converges to a unit vector u € a. The
element s = exp(u) € A will be the element satisfying the conclusion of the
proposition.

Recall that F' = ker(Dm) denotes the fiberwise tangent bundle of M. Let
UF denote the associated unit-sphere bundle; that is, the quotient of ' under
the equivalence relation of positive proportionality in each fiber F'(z) of F'. We
represent elements of UF' by pairs of elements (z,v), where x € M and v is a
unit vector in the fiber F'(x). The derivative of the G-action on M“ induces a
G-action on F' by fiber-bundle automorphisms; the map intertwining fibers is
denoted by Dyg: F(z) — F(gx). The G-action of F' induces a G-action on U F’;
we denote the map intertwining fibers of UF by UD,g: UF (z) — UF(gx).

For each n, we define a Borel probability measure v,, on UF as follows:
Given a continuous ¢: UF — R, let

tn]—1

[
/d) dvy, == [7;] Z ¢(exp(muy,) - (z), UDy exp(muy)(vy)).

m=0
Given g € G and a probability measure v on UF', consider the expression
D
vy = [ o (1Pe8Mer ) gz
UF [[v]]e

From the definition of v, we have for every n that

(4) Y(exp(un), vn) > €.

Consider any weak-* accumulation point v of the sequence of probability
measures {v,} on UF. We have that v is invariant under s := exp(u). Indeed,
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let f: UF — R be a continuous function. Then
/ fos—fdun:/ foexp(u) — foexp(uy) dvy
UF UF

+ | foexp(un) — f dvn.
UF

The first integral converges to zero as the functions foexp(u)— foexp(uy,)
converge uniformly to zero in n. The second integral clearly converges to zero
by compactness and the definition of v,,. Taking n — oo,

fosdv = / fdv.
UF UTM«

From uniform convergence and (4) we have
(5) U(s.v) = Tim plexplun),v) > <.

Replacing v with an ergodic component of v satisfying (5) we can suppose v
is s-ergodic.

Let p denote the natural projection of UF onto M®, and let /' = p,v.
Clearly p' is s-invariant and ergodic. We show that )\i(s, u'), the average top
fiberwise Lyapunov exponent, is positive. Indeed for v-almost every (zg,vp) in
UF, it follows from the pointwise ergodic theorem and the chain rule that

e < /UFlog (M> dv(z,v)

[|v]]
N—-1
o1 | Dy p8(UD, skvo)n)
— 1 o l ( stv-x 0
Noso N kz_:o °8 |U Dy 00|

1 N
= ]\}gnoo N log (HD:EOS (UO)H) .

As infN_yo0 1108 (| Dzos™ |F||) > € for p/-a.e. g, it follows that A (s, p) > e.

Finally, averaging p/ against a Fglner sequence in A and passing to a
subsequential limit g, from Lemma 4.2 we have that p is A-invariant and
M (s,p) > Al (s, /) > 0. This completes the proof of Proposition 4.6.

6. Proof of Proposition 4.7

To prove Proposition 4.7 we apply an averaging argument to improve
certain invariance properties of the A-invariant measure on M with positive
exponents produced in Proposition 4.6. Using measure rigidity results from
homogeneous dynamics, the projection of the averaged measure i to G/I" will
be the Haar measure. Using the key technical proposition of [11] and the
algebraic results in Section 3.2, we deduce that f is in fact G-invariant. We
first recall some facts from homogeneous dynamics, particularly a number of
results related to Ratner’s measure classification theorem, and then describe
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the averaging arguments in the proof. To illustrate the general argument, the
averaging argument is explained for the special case of SL(n,R) in Section 6.2.

6.1. Facts from homogeneous dynamics. Let G be a connected, semisimple
Lie group, and let I' C G be a lattice. Recall that a nilpotent subgroup U C G
is called unipotent if ad(u) — Id is a nilpotent for every element v € U. Let
U = expu C G be a unipotent subgroup. Let {b1,...,bx} be a regular basis
for u (see [47]) and for m = (my,...,mz) € [0,00)*, let

F = {exp(tlbl) ----- exp(tkbk) :0< tj < mj} cU.

Let |Fm| denote the Haar measure of Fi, in U. Recall for z € G/T" we write
vim — Fy % 0,. Also recall that a measure v is called homogeneous if there is
a closed subgroup L < G such v is Haar measure on a closed L orbit in G/T.

THEOREM 6.1 (Ratner, Shah). Let X = G/I', and let U be a unipotent
subgroup. The following hold:

(a) Ewvery ergodic, U-invariant measure is homogeneous [41, Th. 1].
(b) The orbit closure Oy := {u-x : u € U} is homogeneous for every x € G /T’

[41, Th. 3].
(c) The orbit Fyy - x equidistributes in O,; that is, vim converges to the Haar
measure on Oy as my — 00, ..., my — oo [47, Cor. 1.3].

(d) Let A = expa be a maximal split Cartan subgroup, let B be a restricted root
of g relative to a, and let p be a GU¥)-invariant Borel probability measure
on X. If p is A-invariant, then p is GI=Pl-invariant.

Note that (d) follows from [41, Th. 9] and the structure of sl(2, R)-triples.
Given x € G/T, let mU denote the Haar measure on the homogeneous
manifold O, in Theorem 6.1(b). Given a measure p on G/T, let

U*M—/mg du(x).

PROPOSITION 6.2. Let A = expa be a maximal split Cartan subgroup,
and let U = expu be a unipotent subgroup normalized by A. Let p be a Borel
probability measure on G/I'. Then

(a) Fyn * o — U * p for any my — 00,...,my — 00;
(b) if u is A-invariant, then U * p is AU -invariant;
(c) if p is A-invariant and A-ergodic, then U x p is A-ergodic.

Proof. For x € G/T', we have that

vim = Fo %6,
U

xT

converges to the Haar measure m_, on the orbit closure O, of U - z. By

dominated convergence we have

Fm*u:/yfm du(w)%/mg du(z) = U * p,

and (a) follows.



920 A. BROWN, D. FISHER, and S. HURTADO

For (b), note that if s € A and if {Fmm} is a Folner sequence as above,
then {sFms '} is also a Fglner sequence as above. From the s-invariance of p
and equidistribution in Theorem 6.1(c), we have that

S (U % ) = s <lim/yfm du(aﬁ))

_ lims, ( / e du(w))

For (c), first write Y for the ergodic decomposition of U * yi for the action
of U. By definition, Y coincides with the (U * u)-measurable hull of the
partition of X into U-orbits. Let { ,uiU} denote a family of conditional measures
for this partition. The Fglner sequence {Fy,} satisfies a pointwise ergodic
theorem as m — oo. Since each homogeneous measure mY is U-ergodic, it
follows for p-a.e. 2’ and ug/U—a.e. x that
U

ev
My = M.

Let ¢ be a bounded, A-invariant Borel function. Using that U = expu is
unipotent and normalized by A, we may select sg € A such that U is contracted
by so; that is, u C Pg(s)<0 g®. By the pointwise ergodic theorem (for the
action of sg), ¢ coincides modulo U * p with a U-invariant function. This
follows from the density of uniformly continuous functions in L'(U x u). In
particular, the partition into level sets of ¢ is coarser (mod U * p) than EV. Tt
follows for p-a.e. 2’ € X and ,ui,U—a.e. x € X that

o) = [ a” = [ o ami.

In particular, for (U * p)-a.e. z € X, there is 2’ such that ¢(z) = [ ¢ dmU,.
Consider the function ®: X — R,

d(z') = /¢ dmY,.

We have that ® is p-measurable and, since U * 1 is A-invariant, ® is also A-
invariant. From the A-ergodicity of u, ® is constant p-a.e., which implies ¢ is
constant (U * u)-a.e. O
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Remark 6.3. In the averaging arguments below, we frequently encounter
non-ergodic invariant measures p on the fiber bundle M that project to mea-
sures in G/T" with certain desired properties. To overcome non-ergodicity in
our arguments, one may use either Proposition 6.2(c) or Lemma 4.4. In the
arguments appearing below, we use Lemma 4.4 and we never actually use
Proposition 6.2(c). The approach using Proposition 6.2(c) appears in other
versions of the averaging procedure; see, for example, [6].

6.2. Averaging argument for G = SL(n,R). We explain the first step of
the proof of Proposition 4.7 in the case G = SL(n,R), n > 3. Taking the
Cartan involution 6: sl(n,R) — sl(n,R) to be §(X) = —X* we have

et
et?

A = {diag(e,e',...,e")} = ,

€t”

where t; +t3+ - +t, = 0. Also, ¢ = {0}, C is the finite group with +1 along
the diagonals, K = SO(n) and (relative to the standard base)

1 x % ... %

1 % ... %

N = :
1 =«

1

Fori#je{l,...n—1}, let §; ;: A— R be the linear functional
Bi;(diag(e, e, ... e'm)) = t; — ;.
These are the roots of sl(n,R), and the standard base for X(sl(n,R)) is

II={og = P12, =P23,...,0n—1 = Bn-1,n}-

To prove Proposition 4.7 it is enough to find an A-invariant measure '
on M with a non-zero fiberwise Lyapunov exponent projecting to the Haar
measure on G/T". By Proposition 3.5 and Proposition 6.9 below, such a measure
will automatically be G-invariant.

By the hypotheses of Proposition 4.7, we have an ergodic, A-invariant
measure p with a non-zero fiberwise Lyapunov exponent )\5 : A — R. Note
that p need not project to the Haar measure on G/T". Our goal will be to
average j over various subgroups of G in order to obtain a new A-invariant
measure 4’ projecting to the Haar measure. The subtlety of the argument is to
choose the subgroups so that the fiberwise Lyapunov exponents do not vanish
after averaging.

Recall that )\5 : A — R and each 3;;: A — R are non-zero linear func-
tionals. Consider the linear span V of {ag,...,a,—1} in a*. It may be that
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)\5 € V. However, given a permutation matrix (that is, an element of the Weyl
group) P € SL(n,R), let

POA)(s) = A, (P71sP).

One may check (as the Weyl group acts irreducibly on a*) that P(AE )¢V
for some P. Thus, up to conjugating G by a permutation matrix, without
loss of generality we may assume /\5 : A — R is not in the linear span of
{OéQ, ooy an—l}-

Let U be the unipotent subgroup

10 0 --- 0
1 % - %
U =
1
1

and let

1
S1 :dlag(ﬁn_l,ﬁ, ,6) c A.

Note that s; commutes with every element of U and since /\5 is not in the
linear span of {aa,...,an_1},

Al (s1) # 0.

Replacing s; with s;!, we may assume )\5(51) > 0.

Take a Fglner sequence along U as in Proposition 6.2, average the mea-
sure u, and pass to a subsequential limit ;. From Proposition 6.2, we have
that uy projects to an AU-invariant measure fi; in G/T". Note, however, that
11 may not be AU-invariant. From Lemma 4.2 however, py is sj-invariant,
U-invariant and )\i(sl, u1) > 0. Averaging p; along a Fglner sequence in A
and taking a subsequential limit p9, we have that uy is A-invariant (and in fact
(AU)-invariant) and A% (s1, ua) > 0. Moreover, as the projection fiy of i is an
AU-invariant measure, ps and p; project to the same AU-invariant measure
fi1 = jiz in G/T. From Theorem 6.1(d), it follows that fi; = fig is G'-invariant
where

* 00 --- 0
0 x =* *
G = 0 * * *

0 % * %
Let Ay s up: A — R be the linear functional as in Lemma 4.4. Consider

the two roots

OélzﬁLQIA—)R, (5251771214—)1@
(the simple root o and the highest root ¢). Note that Ay g, ., is proportional
to at most one of ay or §.
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Assume that A 5, ,, is not proportional to ;. Let

1 = 0 --- 0

1 0 0

U = :
1 0

1

and select any s € kerag N\ ker Ay 5, 4.

Replacing ss with s, ' if necessary, we have A (s, f12) > Aj 5, i (52) > 0.
Average ps along the one-parameter subgroup U’ and pass to a subsequential
limit p3. The measure us projects to an AU’-invariant measure fi3 in G/T.
Average 3 along A and pass again to a subsequential limit p4. We then have

(1) pq is A-invariant;
(2) A (s2, pa) > 0;
(3) pa4 projects to an AU’-invariant measure fi4 = fi3 on G/T.

We note that U’ commutes with the subgroup H C &,

1 0 0 - 0
0 0 0

H = 0 *= = * ,
0 * * x *

whence fi3 = fi4 is also invariant under H and A. From Theorem 6.1(d), it
follows that the projection iy = fi3 in G/T " is invariant under the groups

* x 0 - 0 1 0

* x 0 0 0

0 0 1 0 , 0 x = *
0 0 0 1 0 * *x % x

Since these generate G, the projection fi4 is the Haar measure on G/T". Taking
an appropriate A-ergodic component ' of py we have

(1) ¢’ is A-invariant and A-ergodic;
(2) p' projects to the Haar measure on G/T;
(3) )\5(82, w') > 0, whence p/ has a non-zero fiberwise Lyapunov exponent.
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Above we assumed Ai s, ,, wWas not proportional to ai. If Ap ., is
proportional to «aq, then it is not proportional to é and we may take

1 0 O *

1 0 0

U = :
1 0

1

and select any so € kerd \ ker Ay 5, ,,. We may repeat the above arguments
(which are now slightly simpler as U’ and U commute) to obtain u4 and g’
with the same properties as before.

6.3. Averaging argument on G/T'. We present in this and the next sub-
section the generalization of the averaging procedure described in Section 6.2
for general Lie groups. Here, we describe what happens to the projection of
the measure to G/T" as we average the measure on M over various subgroups
of G.

Let g be a semisimple Lie algebra. Let g be a simple ideal of g with
rank ¢ > 2, and let G’ C G be the corresponding analytic subgroup. Let X
be the set of restricted roots of g’, and let II be a choice of base generating a
system of positive roots ¥ . Let IT = {1, o, ..., ay} be enumerated such that
a1 is the left-most element in the corresponding Dynkin diagram as drawn in
Appendix A.

PROPOSITION 6.4. With respect to 11, let B be either
(a) B =4, the highest root, if g is of type Ay, By, Dy, Eg, or Exq;
(b) B =4¢, the second highest root, if g’ is of type Cy, (BC)y, Es, Fy, or Gs.
Let u be the Lie subalgebra generated by {g*2,...,9%*}, and let U = expu.
Let o' denote either the Lie subalgebra g or the Lie subalgebra g®, and let
U =expu'.

LetT' C G be a lattice, and let p be an A-invariant measure on G/T'. Then

U' s (U * p)
is G'-invariant.
Remark 6.5. The choice of B as the highest root ¢ or second highest root
4’ in Proposition 6.4 ensures the following two properties hold:

(1) the root subgroups U B and U% commute for each 2 < j<¢;
(2) there is a string of roots

~

/Bozalv 627 /837 ceey Bp:ﬁ

such that 8, = 8,1 + «;, for some 2 < j; < £ for each 1 <7 < p.
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If ¢ is of type Cy, (BC)y, Eg, Fy, or Ga, the first property holds for the
highest root B = 0 but the second property fails as a; has a coeflicient of
2 in §. (See Table 1 in Appendix A.) The second property is used below to
obtain G’-invariance after two steps of averaging by obtaining invariance under
root subgroups that generate G’; i.e. we first pick a G” and average to obtain
a G"-invariant measure and then make a careful choice of another group to
average over to allow us to obtain a G’-invariant measure.

Note also in the case that ¥(g') is of type (BC), that neither § = & nor
B = a is positively proportional to any other root. In particular, v’ = g? is,
in fact, a Lie subalgebra.

Proof of Proposition 6.4. Note that U % u is U-invariant. Let v denote
U * (U * ). )

Consider first the case that W = g®. From the choice of A, g” commutes
with each of g% for every 2 < j < {. From Lemma 4.2(a), v is U-invariant.
From Proposition 6.2(b), the measure v is also A-invariant. It follows from
Theorem 6.1(d) that v is exp(g~®/)-invariant for 2 < j < £. From the choice
of B and examining tables of positive roots, there is a sequence of roots o =
Bo,B1s--.,Bp = B where Bi_1 = B + (—a; ) for some 2 < j < £ and every
1 <k < p. It follows that v is exp(g®!)-invariant. It then follows that v is
G’-invariant.

In the case that u' = g* we first observe that, as U * p is U-invariant,
U * p is exp(g*aj)—invariant for every 2 < j < £. Since g* commutes with
g% for every 2 < j < /£, it follows that v is exp(g_aﬂ')—invariant for every
2 < j </ Asvis A-invariant, it follows that v is U-invariant and, as above,
v is G’-invariant. O

6.4. Averaging argument on M. Recall that by Remark 2.2 we may as-
sume that G is a connected, semisimple Lie group with finite center, no compact
factors, and all almost-simple factors of real-rank at least 2. Recall that the
G-action on X = M® preserves the fiberwise tangent bundle F' = ker D7. Let
A =expa C G be our fixed maximal split Cartan subgroup.

We assume as in Proposition 4.7 that there are an s € A and an A-invariant
Borel probability measure p on M* with /\f(s, p) > 0. Let g = @Y _, g), be the
decomposition of g into ideals. For each gj, let G}, C G be the corresponding
analytic subgroup. To complete the proof of Proposition 4.7, we show the
following.

LEMMA 6.6. For 1 < j < p, if the projection of u to G/T" is G} -invariant
forall 1 <k <j—1<p, then there are an s € A and an A-invariant Borel
probability measure y' on M* with A (s, ') > 0 such that the projection of i/
to G/T is G} -invariant for all 1 < k < j < p.
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Proof. Fix such G with Lie algebra g} and note that G’ has rank at

least 2. Let U,U’ be as in Proposition 6.4, where the choice of base II and 3
determining U and U’ will be made explicit in the proof of Claim 6.7 below.
Let F;, F, F/" be Folner sequences along the nilpotent subgroups U, U’, and
A, respectively, of the type discussed in Section 6.1. With pug = p, passing
to subsequential limits, we may assume we have the following sequences of
measures converging in the weak-* topology on M%:

(1) Fiy, * po = pa;

(2) FZ’;’c * (U] — [42;

(3) F,-/;C/ * 2 = 435

(4) Fl’é,, % U3 —> [Lq.

Note that po and py are A-invariant. Let pu/ = puy. We have the following
claim.

CLAIM 6.7. There are a choice of base II C X(g) and a choice ofB n
Proposition 6.4 such that for U and U’ as in Proposition 6.4, Folner sequences
F;, Fj’», F](’ as above, and i’ as above,

(a) p' projects to a measure on G /T that is G} -invariant for all 1 < k < j;
(b) M(s', 1) > 0 for some s’ € A.

Lemma 6.6 follows immediately from the above claim. ([
We finish the proof of Lemma 6.6 with the proof of Claim 6.7.

Proof of Claim 6.7. For any choice of II and choice of B, let f1; denote
the image of p; in G/I'. We have that iy is A-invariant. We have that fi; =
U x fig is AU-invariant whence fio = ji;. From Proposition 6.4 we have that
fis = U (U * fig) is G-invariant. As U C G} and U’ C G} and as G and
G}, commute for k # k', it follows from Lemma 4.2(a) that fi3 is G)-invariant
for all 1 < k < j — 1. Then clearly fq4 is G;g—invariant for all 1 < k < 3.
Conclusion (a) follows.

For (b) recall that we assume A} (s, pg) > 0 for some s € A. Recall the
linear functional Ay 5,0 A — R with Ay s 0 (s) = M (s, po). Also, recall that
restricted roots 5: A — R are linear functionals on A.

We claim there is a choice base IT = {aq,..., o} so that A\, ,,, is not
in the linear span of {as,...,as}. Indeed, the Weyl group of X(g) acts ir-
reducibly on (a N g;)* and simply transitively on bases II of ¥(g). More-
over the Weyl group preserves angles and lengths so if II = {a1,...,az} is
a base of ¥(g}) and II' = {a},...,ay} = {w(a1),...,w(ayp)} is the image of
IT under an element w in the Weyl group, then the vertices {a],...,a}} and
{aq,...,as} generate the same Dynkin diagram with the same ordering on the
vertices. For a fixed II' = {o, ..., a}}, there is an element w of the Weyl group
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such that w(A4 s ,,) is not in the linear span of {c4,...,a}}. Then, letting
II = {ai,...,o} map to II' under w, we have that A\; s ,, is not in the linear
span of {aw,...,ap}.

We fix this choice of IT = {a, ..., ap} for the remainder.

Let U be as in Proposition 6.4 for the above choice of II. Fix s; € A
ker A4 s, such that a;(s1) = 0 for all 2 < j < £. Replacing s; with 31_1 if
needed, we have

(1) U commutes with sq;
(2) ME(s1,00) 2 At s puo(51) > 0.

It then follows from Lemma 4.2 that

(1) w1 is sj-invariant;
(2) M (s1,p1) > M (s1,p0) > 0;
(3) Ai(s1,p2) > M (s1, 1) > 0.

As ps is an A-invariant measure on M®, there is a linear functional
Mpsipt A = R with A, 4, (s1) = A (s1,p2) > 0. Let 3 be as in Propo-
sition 6.4 (relative to the choice of II above). Note that 3 and o are not
proportional. In particular, Ay s, .., is proportional to at most one of {B , a1}
Let 8’ € {$, a1} be such that 8/ # CAt 51,10 fOr any ¢ € R, and take 1’ in Propo-
sition 6.4 to be u' = g”'. Fix sy € A with §/(s9) = 0 and Ay 4, i, (52) > 0.

From Lemma 4.2 we have that

(1) psg is se-invariant;
(2) M(s2, u3) > M (s, p2) > A sy pua(52) > 05
(3) M(s2, p1a) > N (52, p13) > 0.

Taking s’ = so completes the proof of the claim. O

6.5. Proof of Proposition 4.7. From Lemma 6.6 it follows that there ex-
ist an s € A and an A-invariant Borel probability measure p’ on M% with
A (s, 1) > 0 such that the projection of 4/ to G/I" is G-invariant. In particu-
lar, i/ projects to the Haar measure on G/T.

Let C denote the centralizer of A in K, and " = C*xy’. Since C' commutes
with A, we have that

(1) p” is (CA)-invariant;
(2) M(s, ") = (s, /) > 0;
(3) " projects to the Haar measure on G/T.

Consider a (C'A)-ergodic component fi of p”. As the Haar measure on G/T
is (CA)-ergodic by Moore’s ergodicity theorem, it follows that any such p
projects to the Haar measure on G/I'. With s as above, we may select i so
that AY (s, i) > 0.



928 A. BROWN, D. FISHER, and S. HURTADO

Definition 6.8. Given an A-invariant, A-ergodic measure p on M%) let
£ = {)\f } denote the Lyapunov exponent functionals for the fiberwise deriv-
ative cocycle for the measure p. We say a restricted root 8 € 3(g) is resonant
with the fiberwise exponents of g if there are A\I' € £ and ¢ > 0 with

_AF
/B = C)\i .
If there are no such A" and ¢, we say 8 is non-resonant.

Note that resonance and non-resonance descend to coarse equivalence
classes of restricted roots [5] € X(g).
We recall the following key observation from [11].

PROPOSITION 6.9 ([11, Prop. 5.1]). Let i be an A-invariant Borel prob-
ability measure on M projecting to the Haar measure on G/T'. Let u be an
A-invariant, A-ergodic component of i. Then, given a coarse restricted root
8] € S that is non-resonant with the fiberwise Lyapunov exponents of u, the
measure [ 18 GV -invariant.

Note that the group C' acts ergodically (in fact transitively) on the set
of A-ergodic components of ji. Moreover, as C' commutes with A, the group
C preserves the Lyapunov exponents for the A-action with respect to distinct
A-ergodic components of 1. In particular, the set of roots of g that are non-
resonant with the fiberwise exponents is constant for almost every (in fact
every) A-ergodic component of fi. Let ¥xgr z denote the almost surely constant
collection of restricted roots of g that are non-resonant with the fiberwise
exponents (of ergodic components of fi.)

Let h C g be the Lie subalgebra generated by

coan P gl

BEXLNR,

As there are at most dim(M) fiberwise Lyapunov exponents, it follows that
there are at most dim(M) resonant coarse restricted roots. It follows that b
has resonant codimension at most dim(M/). As we assume dim(M) < r(g), it
follows from Proposition 3.5 that h is parabolic.

Let H C G be the analytic subgroup with Lie algebra h. Proposition 6.9
guarantees that i is H-invariant. We claim H = G. Indeed if dim(M) < r(G),
then g = b follows immediately from the minimality of r(G). If dim(M) = r(g)
and H # G then, as b is parabolic, we have

hb=cPad @ g[ﬁ].
BEXNR,
It follows that every fiberwise Lyapunov exponent is positively proportional
with some restricted root 3 with gl®! N = 0. In particular, there is an s € A
such that )\ZF (s) < 0 for every fiberwise Lyapunov exponent )\f e £F. However,
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in case that the G-action preserves a smooth volume in the fibers, the sum of
all fiberwise exponents is zero, contradicting the existence of such an s. It thus
follows under the hypotheses of Proposition 4.7(2) that g is G-invariant. This
completes the proof of the proposition.

Remark 6.10. If one wants to obtain a weaker bound in Theorem 2.1, one
can replace the argument above using [11, Prop. 5.1] with an easier argument
using work of Ledrappier and Young [31]. This was discovered while this paper
was under review and is explained in [14, §8.3]; see also [7, Props. 3 and 4].
This approach gives similar looking dimension bounds on actions, but with the
real rank of G replacing r(G), which is worse in all cases except SL(n,R).

7. Finding smooth metrics

In this section we prove Theorem 2.4. In particular, we establish the exis-
tence of an invariant Riemannian metric from uniform subexponential growth
of derivatives in conjunction with the strong property (T) of Lafforgue.

7.1. Lafforgue’s strong property (T). We recall basic facts about strong
property (T). The reader only interested in the case of C°° actions may consider
only representations into Hilbert spaces and ignore the class of Banach spaces
&1o introduced in [28]. This in fact suffices to prove theorems for actions by

C* diffeomorphisms on a manifold M when k = dimT(M) + 2.

Definition 7.1. Let I' be a group with a length function 1, X a Banach
space, and 7: I' — B(X). Given ¢ > 0, we say 7 has e-subexponential norm
growth if there exists a constant L such that |7 (v)|| < Le?!) for all v € T. We
say 7w has subexponential norm growth if it has e-subexponential norm growth
for all € > 0.

Given a group I' and a generating set S, let 1 be the word length on T'.
Here we say a group I' has strong property (T) if it has strong property (T) on
Banach spaces for Banach spaces of class €19 in the quantitative sense of [28,
§6]. In what follows X will denote a Banach space and B(X) will denote the
bounded operators on X. We will always be considering the operator norm
topology on B(X), and we will always mean the operator norm when we write
|T|| for T € B(X).

Definition 7.2. A group I" has strong property (T) if there exist a sequence
of probability measures p, in I" supported in the balls B(n)={y € T'|l(v) <n}
such that for every Banach space X € &1, there exists a constant ¢ > 0 such
that for any representation 7: I' — B(X) with t-subexponential norm growth,
the operators m(uy,) converge exponentially quickly to a projection onto the
space of invariant vectors. That is, there exist 0 < A < 1 (independent of ),
a projection P € B(X) onto the space of I'-invariant vectors, and an ng € N
such that ||7(u,) — P|| < A™ for all n > ny.
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We recall the following results obtained from combining results in [30], [28].

THEOREM 7.3. Let G be a connected semisimple Lie group with all simple
factors of higher-rank and I' < G a cocompact lattice. Then G and T' have
strong property (T).

Proof. For the connected Lie group, this is proven explicitly in [28, §6].
For the cocompact lattices, this follows from that fact using the proof of [30,
Prop. 4.3]. In particular, the p, for T are constructed there explicitly from p!,
for GG, and the properties we desire all follow immediately from this definition
since the function f is chosen in Co(G). A priori, this produces a sequence of
measures (i, with support in B(Dn) for some fixed number D, but by rein-
dexing one can take measures p, supported in B(n). This is not particularly
relevant to applications. O

We summarize here some history of strong property (T) and some drift
in the definitions of strong property (T). Lafforgue’s original definition only
concluded the existence of a self-adjoint projection onto the invariant vectors
[30]. In that paper, Lafforgue introduced strong property (T) and proved that
the groups SL(3, F') for F' any local field have strong property (T) for repre-
sentations on Hilbert spaces. He also noted that this implied strong property
(T) on Hilbert spaces for any Lie group containing SL(3,R) and for cocom-
pact lattice in all such groups. In subsequent papers, de la Salle and de Laat
modified the definition to explicitly include that the projection was a limit of
averaging operators defined by measures, but they did not assume that the
convergence to the limit was exponential [44, 28]. In [44], de la Salle proved
strong property (T) for a much wider class of Banach spaces for SL(3,R), and
in [28] de Laat and de la Salle proved strong property (T) for both SL(3,R)
and Sp(4,R) and its universal cover for an even wider class of Banach spaces.
These results combined with existing arguments imply strong property (7T)
for all higher rank simple Lie groups and for their cocompact lattices. More
recently de la Salle has shown that the definition in [30] and the definition in
[44], [28] are equivalent if one does not necessarily assume that the measures
in question are positive [45]. It does, however, follow from the proof of [45,
Th. 3.9] that if one has positive measures converging to the projection, then
there are positive measures converging exponentially quickly to the projection,
namely the convolution powers of any measure close enough to the projection.
All existing proofs of strong property (T) explicitly construct sequences of
positive measures converging exponentially fast to a projection [30], [44], [28].
While it is not explicitly relevant here, we remark that this is also true of the
proof by Liao of strong Banach property (T) for higher rank simple algebraic
groups over totally disconnected local fields [32]. We also remark that while
many of these results extend the class to of Banach spaces satisfying strong
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property (T) to include some quite exotic Banach spaces, for our purposes it
is enough to know the property holds for #-Hilbertian spaces.

7.2. Sobolev spaces of inner products. To prove Theorem 2.4 from Theo-
rem 7.3, we need to realize various spaces of k-jets of metrics on M as Banach
spaces acted on by I'. What follows is a special case of the discussion in [19, §4]
and we refer the reader there for more details and justifications. Any result
stated in this subsection without a reference can be found there.

We will consider the bundle of symmetric two forms on M written as
S%)(TM*) — M. The k-jets of sections of S?(TM*) are

k
JH(SH(TM™)) = P SHTM*)RS*(TM*).
i=0

A background Riemannian metric on M defines Riemannian metrics on all
associated tensor bundles and hence on J¥(S?(TM*)). There is a natural
inclusion

CH(M,S*(TM*)) C CO(M, J*(S*(TM*)))
as a closed subspace, but we note that not every section of J*(S2(TM*)) — M
is the k-jet of a section of S?(T'M*). Given a fixed volume form w, we denote
by LP(M,w, J*(S?(TM))) the space of LP sections of this bundle equipped
with norm defined by

loll; = /M [lo(m)[[Pdew(m).

Here the norm inside the integral is defined by the inner product on S?(TM*),,
induced by a fixed background Riemannian metric g on M. Note that, as M
is compact, changing the smooth volume w or Riemannian metric g gives an
isomorphic L? space and the identity map between any pair of such spaces is
bounded. The set of smooth sections of S?(TM*) — M is naturally included
in LP(M,w, J¥(S2(TM*)). Let WPk(M,w, S?(TM*)) be the completion of the
set of smooth sections with respect to this norm, which we denote || ||, z. Thus

WPHF(M,w, S>(TM*)) € LP(M,w, J*(S*(TM*)))

is a closed subspace.

The following lemma verifies that all the Sobolev spaces discussed above
are in the class £19. The reader only interested in C'°° actions should consider
the case p = 2 in which all spaces discussed above are Hilbert.

LEMMA 7.4. The Sobolev spaces WPk (M, w, S?(TM*)) are in the class E1g.

Proof. We use only three facts about &£1g: that it contains Hilbert spaces,
that the complex interpolation of a space in £1g with any other space is in &g,
and that &g is closed under taking subspaces. This is equivalent to saying
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that &9 contains all 6-Hilbertian spaces. Given any complex finite dimen-
sional Hilbert space V', the space LP(M,w,V) is an interpolation space of
L*(M,w, V) with L” (M,w, V) for any ' > p and therefore in Eyg. Taking the
complexification of J*¥(S?(T'M*)) and then passing back to the closed subspace
of real valued sections, we see that LP(M,w, JF(S?(TM*))) is in 9. As the
class &1 is closed under taking closed subspaces, WP*(M,w, S?(TM*)) is also
in Elg. O

Denote by C*(M, S?(TM*)) the space of C* sections of S?(TM*). In
the case that k is not integral, with | = |k] and A = k — [, elements of
CH(M,S*>(TM*)) = C"N(M, S?>(TM*)) are sections of S?(TM*) that are I-
times differentiable and whose order-l derivatives are A-Holder. We will need
the following special case of the Sobolev embedding theorems.

THEOREM 7.5. There is a bounded inclusion WPH(M,w, S2(TM*)) C

C*(M, S*2(TM*)) where s =1 — T

As explained in [19, §4], this is an easy consequence of the corresponding
embedding theorem for domains in R™ and the existence of partitions of unity.
We remark that the spaces WP (M, w, S2(TM*)) are defined relative to a fixed
volume form and metric. The background volume form and metric need not
be preserved. In our arguments below, the fact that the volume form and
metric are not preserved is controlled by the uniform subexponential growth
of derivatives.

7.3. Proof of Theorem 2.4. To construct a I'-invariant metric, we first
check that the induced action of I' on appropriate Sobolev spaces has subex-
ponential norm growth. Note that C* actions preserve the class of C*~! Riem-
manian metrics, since metrics are defined on the tangent bundle.

LEMMA 7.6. Suppose that the action a: T — Diff*(M) is an action with
uniform subexponential growth of derivatives. Then the induced representation
7 on WPF1(M, S%(TM)) has uniform subexponential norm growth.

To prove Lemma 7.6, the key is to see that subexponential growth of the
first derivative implies subexponential growth of all derivatives. While this
is already observed in [25], we include a proof for completeness. We recall a
special case of [19, Lemma 6.4]. Here given a diffeomorphism ¢: M — M, we
write ||¢||x for the norm of ¢ as an operator on C* vector fields or equivalently
Ik = supgens || J¥0(z)|| where J*¢ is the k-jet of ¢ or the induced map on
JETM) = ok S{TM*).

LEMMA 7.7 ([19, Lemma 6.4]). Consider ¢, ..., ¢, € Diff*(M). Let Ny=
maxi<i<n ||@illk and N1 =maxi<i<p ||¢il|1. Then there exists a polynomial Q
depending only on the dimension of M and k such that for every n € N,

[¢10+ - 0dnlk < NT"Q(nNy).
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From this we deduce the following corollary on subexponential growth of
higher derivatives.

COROLLARY 7.8. 6 If I" is a finitely generated group, M 1is a compact
manifold and o: I'— Diﬁk(M) has subexponential growth of derivatives, then
a also has subexponential growth of higher derivatives. More precisely, subex-
ponential growth of derivatives for a implies that for all € > 0, there exists
L.}, such that

lae()[lx < Le g™
for all v e T.

Proof of Corolary 7.8. We first remark that exponential growth of deriva-
tives is clearly equivalent to the fact that for all ¢ > 0, there exists an ng
such that |ja(y)|1 < €1 for all y with 1(y) > ng. Applying Lemma 7.7 to
words in I' of length Ing for [ € N, we see that we have for such words that
la(Y)|lx < Le®+De) | where the L and the k + 1 instead of k are to absorb
the polynomial growth into the exponential. Letting L' = supj(,)<p, [[a(7)][x,
by writing all words as products of [ words of length ng and a word of length
less than ng, we see that [|a(y)||x < LL'e D510 for all v € T. O

Proof of Lemma 7.6. From Corollary 7.8, we have that for every ¢, there
is an L such that ||a(y)|[x < Le?'™. Up to relabelling ¢ and L to account
for the action on S%(T'M*), this implies that for o € J*(M,S?(TM*)), we
have a pointwise bound ||(a(7)«0)(z)|| < ||o(a(y) " z)||Les'™). This yields the
integral bound

[ lamo)@l? dsta) < 2219 [ fo(al) T @)1? dota).

Write Aa(7) for the Jacobian of derivative of a (7). Uniform subexponen-
tial growth of derivatives implies that for every € > 0, there is an F' > 1 such
that %e‘”d(“’) < Aa(v)(z) < Fee'™) for every x € M, where n = dim(M).
By change of variable,

[ et @l dotw) = [ lot)lPAa(a) dota)

so we have

[ Nat )@l dote) < FLE 0ol

As € > 0 was arbitrary, this completes the proof. O

Proof of Theorem 2.4. Fix an initial smooth metric g. From Theorem 7.3
and Lemma 7.6, there exist measures p, supported on B(n) in I' such that
gn = m(pn)g converges to an invariant, possibly degenerate, metric g, €
WrPk=1(M, S?(TM*)). In other words gg, is a non-negative, symmetric, 2-form
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at each point, but Theorem 7.3 does not rule out that gg, is zero on some vector
at some point. Note that each g, is a linear averages of g under the measure
tn on I' and, in particular, does not depend on p or k. Further note that

|gn — gfinllpx < Cpy for some O < Cp, < 1 and all n sufficiently large. Ap-

;1 dim(M)
plying Theorem 7.5, it follows that ggy, is in CF 1777 for all choices of D

and is thus C*~1=8 for all 8 > 0. If the action is by C™ diffeomorphisms, this
proves ga, is C*. If the action is C2, the metric gg, is only Hélder.

It remains to check that gg, is not degenerate. This follows as the av-
eraged metrics g, degenerate subexponentially while the convergence to ggn
is exponentially fast. To see this explicitly, we check that gg,(v,v) > 0 for
any unit vector v in T'M,,. The Sobolev embedding theorems imply that
llgn — gfin]lo < KC™ for some 0 < C < 1, K > 0, and all sufficiently large n.
Choose € > 0 with Ce® < 1. Uniform subexponential growth of derivatives
implies that there is a constant L > 0 such that

lg(Da()(v), Da(y)(v))]| = Le~*'.

This implies that
gn(v,v) > Le*E”HvHQ.

If gn(v,v) = 0, then it would follow that g, (v,v) < C™ whence Le " < KC"
for all sufficiently large n. But then

=< (O

for all sufficiently large n, a contradiction. ([

Appendix A. Table of root data

Table 1 on page 940 includes Dynkin diagrams of all irreducible root sys-
tems and an enumeration of the simple roots relative to a choice of base II.
We also include the highest and second highest roots 6 and ¢’ relative to the
base II and the resonant codimension of all maximal parabolic subalgebras

qj = dr~{a;}-
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Dynkin diagram and
simple roots

Highest root § and second-highest root §';
resonant codimension 7(q;) where q; = qr{a;}

o—0C---0—0

d=a1+- -+ ae

Ap
a1 s ol o _ . .
PoT e 7(a;) = 3((L+1)° —5° — (L +1—j)%)
- 9 ce 49
B, OO - - -O==C 0 =o1+2a2 + + 2ap
a1 s ol o _ . . .
vt e 7(q;) = 5 (020 +1) — 5% — (£ = §)(2(L - j) + 1))
6 =201 + 202+ -+ 2001 + ¢
C, O0—0O - - 00 8 =a1+2as 4+ + 201 + e
a1l Qa2 Qp—1 Oy
7(q;) = 5 (€20 +1) = j° = (£ = §)(2(¢ - j) + 1))
BC, O0—O - - -0==0 =201 + 202+ -+ 2001 + 204
e 8 =on 4202+ + 2001 + 20
Qo1 d=oa1+2a2+ -+ 202+ a1+ oy
Dy | o—0 -- 7(q;) = 5 (€20 = 1) = 5 = (L= ) (2(t - j) = 1))
a1 Qa2 Qg2 for 1<j<£-2
a F(a;) = 1620 - 1) — £2) for (—1<j<¢
ag 0 =a1+2az +3as + 204 + a5 + 206
2 i—o—o 7(q1) =16 7(q2) =25 7(q3) =29
o @ 04 05| () =2 ras) =16 rlas) =21
0 = a1 + 2a9 + 3as + 4oy + 3as + 2a6 + 207
[0%¢
Er | o 7(q1) =27 7(q2) =42 7(qs) = 50
a1 as Qs Qg f(q4) =53 F(q5) = 47 F(qG) =33
7(g7) =42
0 = 21 + 3a + 4das + Sayg + 6as+
4o + 27 + 3as
as 8 = a1 + 3a2 + 4as + bay + 6as+
Es o - - 4o + 2007 + 3as
a1 a5 s a7 | (q) =57 r(q2) =83 7(qs) = 97
7(q4) = 105 7(qs) = 106 7(qs) = 98
F(q7) =178 f(qg) =92
0 =21 + 3ag + 4oz + 204
£ O0—0O=0—0 & = a1 + 3as + das + 2aq
a1 Q2 3 o4
7(q1) =15 7(gq2) =20 7(q3) =20 7(qa) =15
G2 0 =21 + 3as & = a1 + 3aq
e Fa) =5 7(a2) =5

Table 1. Roots systems, highest and 2nd highest roots, and
resonant codimension of maximal parabolic subalgebras
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