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Zimmer’s conjecture: Subexponential
growth, measure rigidity, and strong

property (T)

By Aaron Brown, David Fisher, and Sebastian Hurtado

Abstract

We prove several cases of Zimmer’s conjecture for actions of higher-rank,

cocompact lattices on low-dimensional manifolds. For example, if Γ is a

cocompact lattice in SL(n,R), M is a compact manifold, and ω a volume

form on M , we show that any homomorphism α : Γ → Diff(M) has finite

image if the dimension of M is less than n − 1 and that any homomor-

phism α : Γ → Diff(M,ω) has finite image if the dimension of M is less

than n. The key step in the proof is to show that any such action has

uniform subexponential growth of derivatives. This is established using

ideas from the smooth ergodic theory of higher-rank abelian groups, struc-

ture theory of semisimple groups, and results from homogeneous dynamics.

Having established uniform subexponential growth of derivatives, we apply

Lafforgue’s strong property (T) to establish the existence of an invariant

Riemannian metric.

1. Introduction

1.1. Results, history, and motivation. As a special case of our main result,

Theorem 2.1 below, we confirm Zimmer’s conjecture for actions of cocompact

lattices in SL(n,R).

Theorem 1.1. For n ≥ 3, let Γ < SL(n,R) be a cocompact lattice. Let

M be a compact manifold. If dim(M) < n − 1, then any homomorphism
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Γ→ Diff2(M) has finite image. In addition, if ω is a volume form on M and

dim(M) = n− 1, then any homomorphism Γ→ Diff2(M,ω) has finite image.

The key step in the proof is to establish that the derivatives of group ele-

ments for such an action grow subexponentially relative to their word length.

This is inspired by the third author’s paper on the Burnside problem for dif-

feomorphism groups [25]. To prove subexponential growth of derivatives in

this context, we study the induced G-action on a suspension space and apply

a number of measure rigidity results including Ratner’s theorem and recent

work of the first author with Rodriguez Hertz and Wang. Having established

subexponential growth of derivatives, the main theorem is established by using

the strong Banach property (T) of Lafforgue to find an invariant Riemannian

metric. The proof has many surprising features, including its use of hyperbolic

dynamics to prove an essentially elliptic result and its use of results from ho-

mogeneous dynamics to prove results about non-linear actions. We include a

detailed sketch of the proof at the end of the introduction.

Theorem 1.1 lies in the context of the Zimmer Program. In [56] Zimmer

made a number of conjectures concerning smooth volume-preserving actions of

lattices in higher-rank semisimple groups on low-dimensional manifolds. These

conjectures were clarified in [59], [60] and extended to the case of smooth non-

volume-preserving actions by Farb and Shalen in [15].

The Zimmer program is motivated by earlier results on rigidity of linear

representations of lattices in higher-rank Lie groups. The history of the subject

begins in the early 1960s with results of Selberg and Weil that established that

cocompact lattices in simple Lie groups other than PSL(2,R) were locally rigid:

any perturbation of a lattice is given by conjugation by a small group element

[46], [50]. In the late 60s and early 70s, this was improved by Mostow to

a global rigidity theorem showing that any isomorphism between cocompact

lattices in the same class of groups extended to an isomorphism of the ambient

Lie group [36]. The global rigidity result was extended by Margulis and Prasad

to include non-uniform lattices [34], [40]. These developments led to Margulis’

work on superrigidity and arithmeticity in which Margulis classified all linear

representations of irreducible lattices in Lie groups of higher real rank [35] and

established that all such lattices are arithmetic.

Inspired by Margulis’ superrigidity theorem, in the early 1980s Zimmer

proved a superrigidity theorem for cocycles from which he proved results about

orbit equivalence of higher-rank group actions [55]. Motivated by earlier results

in the rigidity of linear representations and the cocycle superrigidity theorem,

Zimmer proposed studying non-linear representations of lattices in higher-rank

simple Lie groups. That is, given a lattice Γ ⊂ G, rather than studying linear

representations ρ : Γ → GL(d,R), Zimmer proposed studying representations

α : Γ → Diff(M), where M is a compact manifold. The main objective of the



ZIMMER’S CONJECTURE 893

Zimmer program is to show that all such non-linear representations α are of

an “algebraic origin.” In particular, the Zimmer conjecture states that if the

dimension of M is sufficiently small (relative to data associated to G), then any

action α : Γ→ Diff(M) should preserve a smooth Riemannian metric and thus

factor through the action of a finite group under certain additional dimension

constraints. See Conjecture 1.2 for a precise formulation.

In this paper we establish the non-volume-preserving case of Zimmer’s

conjecture for actions of cocompact lattices in higher-rank split simple Lie

groups as well as certain volume-preserving cases. While there have been a

number of sharp results for actions on extremely low-dimensional manifolds

(for manifolds of dimension 1 or 2) or under strong regularity conditions on

the action or algebraic conditions on the lattice, prior to this paper the ex-

act result conjectured by Zimmer was only known for non-uniform lattices in

SL(3,R). Our results provide a class of higher-rank Lie groups and a large

collection of lattices such that the critical dimension is as conjectured in the

non-volume-preserving and either as conjectured or almost as conjectured in

the volume-preserving case. In addition to establishing the conjecture for co-

compact lattices in split simple Lie groups, we also give strong partial results

for actions of cocompact lattices in non-split simple Lie groups.

In the case of volume-preserving actions, the conjecture is motivated by

the following corollary of Zimmer’s cocycle superrigidity theorem: all volume-

preserving actions in sufficiently low dimensions preserve a measurable Rie-

mannian metric [55]. From this point of view, the main step in proving the

conjecture is to promote a measurable metric to a smooth metric. Conditional

and partial results verifying the existence of a smooth invariant metric in the

volume-preserving case are contained in many papers of Zimmer of which [60]

provides an excellent overview.

Perhaps the best evidence for the conjecture in the case of volume-preser-

ving actions is Zimmer’s result that all actions satisfying the conjecture have

discrete spectrum [61]. In the non-volume-preserving case, evidence for the

conjecture follows from the works of Ghys and of Farb and Shalen on analytic

actions and work of Nevo and Zimmer that produces measurable projective

quotients for actions that do not preserve a measure [22], [15], [38].

Other strong evidence for the conjectures is provided by a plethora of

results concerning actions on compact manifolds of dimension 1 or 2. The

earliest results were those of Witte Morris proving that all C0 actions on S1 of

SL(n,Z) and Sp(2n,Z) and their finite-index subgroups factor through finite

groups [54]. Later results of Burger and Monod and of Ghys show similar

results for C1 actions of all lattices in higher-rank simple Lie groups [12], [23].

Ghys’ result also includes results for irreducible lattices in products of rank-1

groups, which admit infinite actions on the circle. In dimension 2, results of
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Polterovich and of Franks and Handel show that all volume-preserving actions

of non-uniform lattices on surfaces are also all finite [21], [39]. Moreover,

Franks and Handel showed that for any surface of genus at least 1, any action

by a non-uniform lattice in a higher-rank simple Lie group that preserves a

Borel probability measure is finite. Some earlier results on actions on surfaces,

such as those of Farb and Shalen in the analytic category, do not require an

invariant measure but instead make stronger assumptions on the acting group

and the regularity of the action. Combined with results of [21] and [11], we

resolve the conjecture almost completely for C2-actions on surfaces of genus

at least 1 in Theorem 1.5. Above dimension 2, very little is known. See the

second author’s survey of the Zimmer program [17] for a detailed history as

well as earlier surveys by Feres and Katok, Labourie, and Witte Morris and

Zimmer [16], [29], [62].

We recall the full conjecture of Zimmer as extended by Farb and Shalen.

Given a semisimple Lie group G, let n(G) denote the minimal dimension of

a non-trivial real representation of the Lie algebra g of G, and let v(G) de-

note the minimal codimension of a maximal (proper) parabolic subgroup Q

of G. Let d(G) denote the minimal dimension of all non-trivial homogeneous

spaces K/C as K varies over all compact real-forms of all simple factors of the

complexification of G.

Conjecture 1.2 (Zimmer’s Conjecture). Let G be a connected, semisimple

Lie group with finite center, all of whose almost-simple factors have real-rank

at least 2. Let Γ < G be a lattice. Let M be a compact manifold and let ω be

a volume form on M . Then

(1) if dim(M) < min(n(G), d(G), v(G)), then any homomorphism α : Γ →
Diff(M) has finite image;

(2) if dim(M) < min(n(G), d(G)), then any homomorphism α : Γ→Diff(M,ω)

has finite image;

(3) if dim(M) < n(G), then for any homomorphism α : Γ → Diff(M,ω), the

image α(Γ) preserves a Riemannian metric;

(4) if dim(M) < v(G), then for any homomorphism α : Γ → Diff(M), the

image α(Γ) preserves a Riemannian metric.

Theorem 1.1 verifies the conjecture for cocompact lattices in SL(n,R);

we will discuss other cases below. The conjecture is almost sharp in sev-

eral senses. In dimension v(G), any subgroup of G admits an infinite image,

non-isometric, non-volume-preserving action in dimension v(G), namely, the

projective left-action on G/Q where Q is a parabolic subgroup of codimension

v(G). These actions are the natural analogue of the action of SL(n,R) and

its lattices on RPn−1. In dimension n(G), there is always a semisimple Lie

group with finite center Ĝ with the same Lie algebra as G, a lattice Γ ⊂ G,

and a volume-preserving, non-isometric action on the compact manifold Tn(G).
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However, in these examples the lattice Γ is, in fact, the integer points of Ĝ

with respect to the rational structure for which the representation in dimension

n(G) is rational; in particular, in such examples Γ is necessarily non-uniform.

This construction is the natural analogue of the action of SL(n,Z) on Tn. In

particular, n(G) is a sharp bound for results about actions of all lattices in

a Lie group G but may not be sharp for results about actions of a particular

lattice; given our results it is natural to ask if sharper bounds can be estab-

lished for cocompact lattices. Lastly, the number d(G) bounds the dimension

in which infinite isometric actions can occur. The existence of an invariant

Riemannian metric g for the action α implies that the action is given by a

homomorphism α : Γ→ K, where K = Isom(M, g) is a compact Lie group; see

discussion in Section 2.3 below. Margulis’ superrigidity theorem implies that

α(Γ) cannot be infinite below dimension d(G). In fact, in the presence of an

invariant metric for low-dimensional actions, Margulis’ superrigidity theorem

classifies the possible isometry groups and elementary geometry gives sharper

results on manifolds admitting infinite, isometric actions.

Historical Remarks. Items (2) and (3) are due to Zimmer. Zimmer stated

(2) in slightly different terms that were not sharp. Item (1) is a natural ex-

tension by Farb-Shalen. The conjecture as stated in both [15], [17] assumed

erroneously that one always has v(G) = n(G)− 1, so the conjecture is slightly

misstated in those references. Item (4) is new here, but is a natural extension

of the other conjectures. We are intentionally vague concerning regularity of

the diffeomorphisms in the conjecture. Zimmer originally considered mostly

C∞ actions. Most evidence for the conjecture including existing results re-

quires the action to be at least C1 but the conjecture might be true for actions

by homeomorphisms; see particularly [51], [4] for a discussion and evidence in

this regularity.

The group SL(n,R) is the standard split simple Lie group with restricted

root system of type An. We denote by Sp(2n,R) the group of real symplectic

2n×2n matrices, the standard split simple Lie group of rank n with restricted

root system of type Cn.

Theorem 1.3. Conjecture 1.2 holds for cocompact lattices in Sp(2n,R)

for n ≥ 2. In particular, if M is a compact manifold with dim(M) < 2n − 1

and Γ < Sp(2n,R) is a cocompact lattice, then any homomorphism α : Γ →
Diff2(M) has finite image. In addition, if dim(M) = 2n−1 and ω is a volume

form on M , then any homomorphism α : Γ→ Diff2(M,ω) has finite image.

The fact that all actions in Theorems 1.1 and 1.3 factor through finite

quotients follows from the existence of an invariant Riemannian metric and the

fact that, for these cases, v(G) + 1 = n(G) ≤ d(G) where v(SL(n,R)) = n− 1

and v(Sp(n,R)) = 2n− 1. See Section 2.3 for a full discussion.
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We now turn to SO(n, n) and SO(n, n + 1), the remaining split simple

classical Lie groups. Note that SO(2, 2) is not simple and we omit below the

higher-rank simple groups SO(2, 3) and SO(3, 3) as their identity components

are double covered by Sp(4,R) and SL(4,R), respectively. For G = SO(n, n)

with n ≥ 4, we have

n(G) = 2n, d(G) = 2n− 1, and v(G) = 2n− 2,

and similarly for G = SO(n, n+ 1) with n ≥ 3, we have

n(G) = 2n+ 1, d(G = 2n, and v(G) = 2n− 1.

Theorem 1.4. The non-volume-preserving case of Conjecture 1.2 holds

for cocompact lattices Γ in SO(n, n) with n ≥ 4 and for SO(n, n+1) with n ≥ 3;

the volume-preserving case holds up to dimension 1 less than conjectured.

More precisely, let M be a compact connected manifold and ω a volume

form on M .
(1) If Γ < SO(n, n) is a cocompact lattice and dim(M) < 2n − 2, then any

homomorphism α : Γ → Diff2(M) has finite image. If dim(M) = 2n − 2,

then any homomorphism α : Γ→ Diff2(M,ω) has finite image.

(2) If Γ < SO(n, n+1) is a cocompact lattice and dim(M) < 2n−1, then any

homomorphism α : Γ → Diff2(M) has finite image. If dim(M) = 2n − 1,

then any homomorphism α : Γ→ Diff2(M,ω) has finite image.

Again, the finiteness of the action follows from Theorem 2.1 below and a

computation of the value of d(G).

From Conjecture 1.2 for split orthogonal groups, one expects that in di-

mension n(G) − 1 = d(g) = v(g) + 1 all volume-preserving actions necessar-

ily preserve a Riemannian metric. In this case, Margulis’ superrigidity the-

orem would imply the action is finite unless the manifold is the (n(G) − 1)-

dimensional sphere or projective space. While the techniques of this paper im-

pose certain restrictions on volume-preserving actions in dimension n(G)−1, it

seems additional ideas are needed to obtain the conjectured result in dimension

n(G)− 1.

We remark that the conclusions of Theorems 1.1, 1.3, and 1.4 continue

to hold for actions of cocompact lattices in connected Lie groups isogenous

to the groups in the theorems. That is, if G is a connected Lie group with

finite center whose Lie algebra is isomorphic to the Lie algebra of a group in

Theorems 1.1, 1.3, or 1.4, then the conclusion of the corresponding theorem

continues to hold for cocompact lattices in G.

Combined with the main results of [21] and [11] we obtain the following

theorem for actions of lattices on surfaces.

Theorem 1.5 ([21, Cor. 1.7], [11, Th. 1.6], Theorem 2.1). Let S be a

closed, oriented surface of genus at least 1. Let G be a connected simple Lie

group with finite center and real-rank at least 2, and assume the restricted root
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system of the Lie algebra of G is not of type A2. Let Γ ⊂ G be a lattice. Then

any homomorphism α : Γ→ Diff2(S) has finite image.

Note that the hypothesis that the restricted root system of G is not of

type A2 ensures the number r(G) defined in Section 3.2 below is at least 3. Up

to isogeny, the three simple Lie groups of type A2 are SL(3, k) where k = R,C,

or H. We remark that the conclusion of Theorem 1.5 is expected to hold for

lattices in SL(3,C) and SL(3,H), and for lattices in SL(3,R) assuming that S

is not the 2-sphere.

We defer the statement of our main theorem, Theorem 2.1, which includes

partial results for non-split and exceptional Lie groups, until we have made

some requisite definitions. For non-split groups, our main theorem does not

recover the full conjecture but does imply finiteness of actions in a dimension

that grows linearly with the rank.

1.2. Outline of the proof. We will illustrate the main ideas of the proof of

Theorem 1.1 by considering the case where Γ ⊂ G = SL(n,R) is a cocompact

lattice acting on a closed manifold M and dim(M) < n − 1. In this case,

if the action preserves a measure µ, Zimmer’s cocycle superrigidity theorem

implies that the derivative cocycle is measurably cohomologous to a cocycle

taking values in a compact subgroup or, equivalently, that the action preserves

a measurable Riemannian metric [55]. This implies, in particular, that all

Lyapunov exponents for all elements of Γ are zero. As remarked above, the

conjecture would follow from promoting the invariant measurable metric to a

smooth invariant metric.

It was observed by Zimmer that conjecture would follow from the exis-

tence of an invariant Riemannian metric of quite low regularity. Indeed, in

the case of volume preserving actions, Zimmer observed that it sufficed to find

a metric that was bounded above and below in comparison to a background

smooth metric; that is, it suffices to find an invariant L∞ metric. Very early on,

Zimmer also observed that one might get better regularity by noting that the

metric was invariant, so its growth along orbits was controlled by the derivative

cocycle. Using this he could show that the metric was, in a sense, in Lε for very

small values of ε > 0 [58]. A more sophisticated, non-linear, attempt to average

metrics in order to produce invariant smooth metrics was proposed by the sec-

ond author in [17, §4.6.2]. Both of these attempts fail to produce good results

because even with a measurable (or even slightly more regular) invariant met-

ric, the only a priori bound on growth of derivatives along orbits is exponential.

The first step in the proof of Theorem 1.1 is to show that any action

α : Γ→ Diff2(M) for Γ and M as in Theorem 1.1 has uniform subexponential

growth of derivatives : for every ε > 0, there is Cε such that

‖Dα(γ)‖ ≤ Cεeεl(γ),
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where ‖Dα(γ)‖ = maxx∈M‖Dxα(γ)‖ denotes the norm of the derivative and

l(·) denotes the word-length with respect to some choice of finite generating

set for Γ.

To illustrate how we establish uniform subexponential growth of deriva-

tives, consider a more elementary fact from classical smooth dynamics: a diffeo-

morphism f : M → M of a compact manifold M has uniform subexponential

growth of derivatives if and only if all Lyapunov exponents of f are zero with

respect to any f -invariant probability measure. Clearly, uniform subexponen-

tial growth of derivatives implies that all Lyapunov exponents vanish for any

measure. To prove the converse, assume that for some fixed ε > 0, there are

xn and Nn →∞ so that ‖Dxnf
Nn‖ ≥ eεNn ; then any accumulation point µ of

the sequence of measures µn := 1
Nn

∑Nn
i=1 f

i ∗ δxn will be a measure µ whose

average top Lyapunov exponent (see discussion in Section 4.2 and (2) below)

is positive.

To implement the above idea in the context of Γ-actions rather than

Z-actions, in Section 4.1 we induced from the Γ-action on M to a G-action

on an auxiliary manifold Mα. This space has the structure of an M -bundle

over G/Γ. For A ⊂ SL(n,R), the subgroup of positive diagonal matrices (that

is, a maximal split Cartan subgroup), the failure of the action α to have uni-

form subexponential growth of derivatives implies the existence of an element

s ∈ A and an s-invariant probability measure µ on Mα with a positive Lya-

punov exponent for the fiberwise derivative cocycle. The key new idea is to

construct from µ a G-invariant measure µ′ on Mα such that the fiberwise

derivative cocycle continues to have a positive Lyapunov exponent for some

s′ ∈ A. This yields a contradiction with Zimmer’s cocycle superrigidity the-

orem as there are no non-trivial linear representations in dimension less then

n. We thus obtain the uniform subexponential growth of derivatives for the

action α.

To construct a G-invariant measure µ′, starting with our s-invariant mea-

sure µ we build a sequence of measures by averaging: given a measure µ that

has a positive fiberwise Lyapunov exponent for some s ∈ A, by averaging µ

along A or a unipotent subgroup commuting with s, we obtain a new measure

µ′ with better invariance properties and with a positive fiberwise exponent for

some s′ ∈ A. There is some similarity here to Margulis’ original proof of the

superrigidity theorem using Oseledec’s theorem where it is used (see [35]) that

higher-rank semisimple Lie groups can be generated by centralizers of certain

elements of the diagonal subgroup.

While we cannot average directly to obtain a G-invariant measure on Mα,

we may average so as to obtain an A-invariant measure on Mα whose projection

to G/Γ is the Haar measure and that has positive fiberwise exponent for some

s′ ∈ A . This step requires a careful choice of subgroups over which to average,
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and it employs Ratner’s theorem on measures invariant under unipotent sub-

groups and an improvement due to Shah concerning averages of measures along

unipotent subgroups. As the general averaging argument requires understand-

ing the combinatorics of root systems, we explain this step for the special case

of SL(n,R) in Section 6.2.

To show that such a measure is, in fact, G-invariant, we use a result

(Proposition 6.9 below) from the work of the first author with Rodriguez Hertz

and Wang where its shown that — under the same dimension bounds as in

Theorem 1.1 — any P -invariant measure on Mα is, in fact, G-invariant [11].

Here P denotes the group of upper triangular matrices. As P contains A and

as any P -invariant measure on G/Γ is necessarily Haar, we are in a slightly

more general setting than considered in [11]. The key idea in the proof in [11]

of Proposition 6.9 is to relate the Haar-entropy of elements of the A-action

on G/Γ with the µ-entropy of elements of the A-action on Mα. For the Haar

measure on G/Γ, the entropy of elements of A is computed in terms of the roots

of G. Moreover, the contribution from the fiber to the µ-entropy of elements

of the A-action is constrained by the dimension assumption. Many key ergodic

theoretic notions for these argument are developed in [8], [5], [9].

Both the main result in [11] and our use of their techniques here employ

the philosophy that “non-resonance implies invariance.” This philosophy was

introduced by the same authors in their study of global rigidity of Anosov

actions of higher-rank lattices in [10]. Given a G-action and an A-invariant

(or equivariant) object O, such as a measure or a semiconjugacy to a linear

action, one may try to associate to O a class of linear functionals O. In the

case of an A-invariant measure, the functionals are the Lyapunov exponents;

in the case of a conjugacy to a linear action, the functionals are the weights

of the representation corresponding to the linear action. The philosophy, im-

plemented in both [10] and [11], is that, given any root β of G that is not

positively proportional to an element of O, the object O will automatically be

invariant (or equivariant) under the unipotent subgroup associated to β (or to

β and 2β). If one can find enough such non-resonant roots, the object O is

automatically G-invariant (or G-equivariant).

The second step in the proof of Theorem 1.1 is to use strong property (T)

introduced by V. Lafforgue and uniform subexponential growth of derivatives

to produce an invariant metric for the action. Strong property (T) was intro-

duced by Lafforgue who proved that all simple Lie groups containing SL(3,R)

and their cocompact lattices have strong property (T) with respect to Hilbert

spaces. The precise results we use here are an extension of Lafforgue’s due to

de Laat and de la Salle [30], [28].

We formulate a special case of the results of [30], [28] below. Given a

Hilbert or Banach space H, let B(H) denote the bounded operators on H.



900 A. BROWN, D. FISHER, and S. HURTADO

Theorem 1.6 ([28]). Let H be a Hilbert space, and let Γ be as in Theo-

rem 1.1. There exists ε > 0, such that for any representation π : Γ → B(H),

if there exists Cε > 0 such that

‖π(g)‖ ≤ Cεeεl(γ),

then there exists a sequence of averaging operators pn = π(µn) in B(H), defined

by probability measures µn on Γ supported in the ball of radius n, such that

for any vector v ∈ H, the sequence vn = pn(v) ∈ H converges to a Γ-invariant

vector v∗. Moreover the convergence is exponentially fast : there exist 0 < λ < 1

(independent of π) and a C so that ‖vn − v∗‖ ≤ Cλn‖v‖.

In the case of C∞ actions, we may apply this theorem to the Sobolev

space of sections of the bundle of symmetric 2-tensors on M (which contains

the space of Riemannian metrics as a subset). As the uniform subexponential

growth of derivatives implies subexponential growth of derivatives of higher

order (see Lemma 7.7 below), we verify the slow norm growth required in

Theorem 1.6. Starting from an initial symmetric 2-tensor field g that is a

Riemannian metric, we obtain from Theorem 1.6 a non-negative, Γ-invariant,

symmetric 2-tensor field on M . To verify that the tensor is in fact a metric (that

is, to verify that the 2-tensor is non-degenerate) we use that the norms decay

at a subexponential rate under the averaging operator while the convergence

to the limit is exponentially fast.

We remark that a somewhat similar use of subexponential growth of

derivatives along a central foliations also occurs in the work of the second

author with Kalinin and Spatzier on rigidity for Anosov actions of abelian

groups [18]. In that work, subexponential growth is verified from the existence

of a Hölder conjugacy and is used in conjunction with exponential decay of

matrix coefficients for abelian groups. These ideas are also applied in the work

of Rodriguez Hertz and Wang [43].
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2. Main theorem and proof of results from introduction

Our main theorem, Theorem 2.1 below, gives a partial solution to Zim-

mer’s conjecture for actions of cocompact lattices in any semisimple Lie group

all of whose non-compact, almost-simple factors are of higher rank. Results
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stated in the introduction follow from Theorem 2.1 and Margulis’ superrigidity

theorem as explained below in Section 2.3.

2.1. Main theorem. To state our main theorem, given a semisimple Lie

group we associated an integer r(G) similar to v(G) in Conjecture 1.2. For

R-split Lie groups G, we always have r(G) = v(G). More generally, we have

r(G) = v(G′), where G′ is a maximal R-split simple subgroup of G. An alter-

native definition of r(G) in terms of root data is given below in Definition 3.1.

Theorem 2.1. Let G be a connected, semisimple real Lie group with fi-

nite center, all of whose non-compact, almost-simple factors have real-rank at

least 2. Let Γ ⊂ G be a cocompact lattice, and for k ≥ 2, let α : Γ→ Diffk(M)

be an action. Suppose that either

(1) dim(M) < r(G), or

(2) dim(M) = r(G) and α preserves a smooth volume.

Then α(Γ) preserves a Riemannian metric that is Ck−1−δ for all δ > 0.

Theorem 2.1 gives a partial solution to Zimmer’s conjecture for cocom-

pact lattices in any higher-rank simple Lie group G. In particular, the number

r(G) provides a critical dimension — which grows linearly in the rank of G —

for which the conclusion of Zimmer’s conjecture holds. Moreover, the number

r(G) gives the optimal result for non-volume-preserving actions when G is a

split real form.

For non-split simple Lie groups, our critical dimension falls below the

conjectured result. In particular, while we recover the complete conjecture as

stated in Conjecture 1.2 for cocompact lattices in SL(n,R) with n > 2, for

lattices in SL(n,C) and SL(n,H), our critical dimension r(G) is, respectively,

one half and one quarter of the conjectured critical value. For lattices in

SO(n,m), we obtain the conjectured result (for non-volume-preserving actions)

in the split case where m = n or m = n+ 1. However, for fixed n our critical

dimension r(G) for G = SO(n,m), m > n, is constant in m and thus the defect

between the critical dimension in Theorem 2.1 and the conjectured critical

dimension becomes arbitrarily large as m→∞.

The obstruction to improving our results for non-split simple Lie groups

is to improve the results of [11], particularly the result quoted below in Propo-

sition 6.9. In particular, the method of proof of Proposition 4.7 below cannot

distinguish between actions of lattices in two groups with the same restricted

root system.

Remark 2.2. In Theorem 2.1 above, by restricting to a finite-index sub-

group of Γ, it is with no loss of generality to assume the group G has no

compact factors and is center free. Indeed, G is an almost direct product

G = KL where K is the largest compact normal subgroup of G and L has

no compact normal subgroups of positive dimension. Since compact groups
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are linear, the image of Γ in G/L has a torsion-free subgroup of finite index.

Then there is a finite-index subgroup Γ′ of Γ such that Γ′ ∩K is the identity.

Then, the map G→ G/K restricts to an injection on Γ′; thus an action of the

subgroup Γ of G induces and action of the subgroup Γ′ of G/K.

In the remainder of the paper, we will assume G has no compact factors

to simplify some algebraic arguments.

2.2. Proof of Theorem 2.1. We prove Theorem 2.1 in two steps.

Let Γ be a finitely generated group. Let l : Γ→ N denote the word-length

function relative to some fixed finite symmetric set of generators. Let α : Γ→
Diff1(M) be an action of Γ on a compact manifold M by C1 diffeomorphisms.

We say the action α has uniform subexponential growth of derivatives if for all

ε > 0, there is a Cε such that for all γ ∈ Γ, we have

‖Dα(γ)‖ ≤ Cεeεl(γ),

where ‖Dα(γ)‖ = supx∈M ‖Dxα(γ)‖.
To prove Theorem 2.1 we first establish uniform subexponential growth

of derivatives for actions of cocompact lattices in the low-dimensional settings

consider above.

Theorem 2.3. Let G be a connected, semisimple Lie group with finite

center. Let Γ ⊂ G be a cocompact lattice, and let α : Γ → Diff1+β(M) be an

action for β > 0. Suppose that either

(1) dim(M) < r(G), or

(2) dim(M) = r(G) and α preserves a smooth volume.

Then α has uniform subexponential growth of derivatives.

When G is rank-1 or has rank-1 factors, we have r(G) = 1. In this case,

Theorem 2.3 is trivial if dim(M) < r(G) and is nearly as trivial if dim(M) =

r(G) and α preserves a smooth volume since any group of diffeomorphisms

preserving a smooth volume form on the circle is smoothly conjugate to a

group of isometries.

Having established Theorem 2.3, the second step in the proof of Theo-

rem 2.1 is to show that for a group with strong property (T), any action with

subexponential growth of derivatives preserves a smooth Riemannian metric.

Theorem 2.4. Let Γ be a finitely generated group, M a compact manifold,

and α : Γ → Diffk(M) an action on M by Ck diffeomorphisms for k ≥ 2.

If Γ has strong property (T) and if α has uniform subexponential growth of

derivatives, then α preserves a Riemannian metric that is Ck−1−δ for all δ > 0.

Theorem 2.1 is an immediate consequence of Theorems 2.4 and 2.3.
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Note that Theorem 2.1 implies Conjecture 1.2 for non-volume-preserving

actions of cocompact lattices in all split simple Lie groups. Moreover, as

the minimal non-trivial linear representations of sl(n,R) and sp(2n,R) oc-

cur in dimensions n and 2n, respectively, Theorem 2.1 implies the volume-

preserving case of Conjecture 1.2 for lattices in (groups isogenous to) SL(n,R)

and Sp(2n,R). For the split orthogonal groups, the minimal linear representa-

tions occur in dimensions 2n = r(g) + 2 for g = so(n, n) and 2n+ 1 = r(g) + 2

for g = so(n, n + 1) and thus we are unable to recover the full conjecture for

volume-preserving actions from Theorem 2.1.

2.3. From metrics to compact Lie groups and finite actions. To complete

the proofs of the results from the introduction, we recall that the isometry

group of the metric guaranteed by Theorem 2.1 is a compact Lie group whose

dimension is bounded from above; we then apply Margulis’s superrigidity the-

orem with compact codomains to conclude the image α(Γ) is finite. All argu-

ments in this subsection are well known to experts, and we include them for

completeness.

Let M be equipped with the metric guaranteed by Theorem 2.1. We claim

the isometry group of M is a compact Lie group. When the metric is at least

C2 this is an immediate consequence of the Myers-Steenrod Theorem and the

fact that Isom(M) embeds (via the orbit map) into the bundle of orthogonal

frames over M that is an O(dim(M)) bundle [37], [27]. When the metric is not

C2, an additional argument is needed to show that isometries are at least C1.

Recently Taylor proved that isometries of an α-Hölder Riemannian metric are

C1+α [48]. See also related work in [13], [33]. Given Taylor’s result, we again

have an embedding of Isom(M) into the bundle of orthogonal frames and so

Isom(M) is a compact Lie group. One can also argue instead by viewing M as a

compact metric space whose isometry group is compact and use the resolution

of the Lipschitz case of the Hilbert-Smith conjecture by Repovs̆ and S̆c̆epin to

see that Isom(M) has no small subgroups and is therefore a Lie group [42].

Isometries of a Hölder Riemannian metric, or even an L∞ Riemannian metric,

are easily seen to be Lipschitz maps.

We now prove finiteness of the image α(Γ) in any theorem from the intro-

duction. We assume that α : Γ → Isom(M) and show that if α(Γ) is infinite,

then dim(M) ≥ d(G). Let L = α(Γ) be the closure of α(Γ) in Isom(M).

Passing to a finite index subgroup of Γ one can assume L is connected. By

the structure theory of compact Lie groups L is an almost direct product

L = K1×· · ·×Kr. Using that compact groups are real algebraic and applying

Margulis’s superrigidity and arithmeticity theorems we will see that each Ki

is a compact real form of a simple factor of the complexification of G. First,

since the abelianization of Γ is trivial, all factors of L are simple. To prove all

remaining assertions, we need only consider a single factor K = Ki. Let H be
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the complexifation of K. Arguing as in [57, Lemma 6.1.6], we can see that the

trace of Adh(α(γ)) is real algebraic for every γ ∈ Γ. We can then apply [57,

Lemma 6.1.7] to find an embedding of K into GL(n,C) such that each α(γ) has

algebraic entries. Since Γ is finitely generated, it follows that there is a number

field k such that each α(γ) has entries in k and K is defined over k. Applying

superrigidity with p-adic targets, we see that Γ has a finite-index subgroup for

which every α(γ) has entries lying in the integer points Ok of k. Applying

restriction of scalars, [57, Prop. 6.1.3], we see that either α(Γ) is contained

in the integer points of a compact group and is thus finite, or there is a field

automorphism σ of k over Q such that σ(α(Γ)) is Zariski dense and unbounded

in a non-compact simple group G′. Applying Margulis’ superrigidity theorem

again, G′ is locally isomorphic to a factor of G. Since G′ is locally isomorphic

to a factor of G, restriction of scalars implies that K is a compact real form of

a simple factor of the complexification of G. Furthermore, since K < Isom(M)

is non-trivial, there is a closed K orbit in M of the form K ·x = K/C for some

proper subgroup C. This then forces dim(M) ≥ dim(K/C) ≥ d(G).

To complete the proofs of the results in the introduction, one computes

the number d(G) appearing in Conjecture 1.2, the minimal dimension of K/C

where K is a compact real form K of the classical Lie group G and C is a proper

closed subgroup. In all cases considered in the introduction, d(G) > dimM

and finiteness of the action follows.

3. Background and facts from Lie theory

We recall some facts and definitions from the structure theory of real Lie

groups as well as some notation that will be used in the sequel. A standard

reference is [26]. For the reader interested only in actions of cocompact lattices

in SL(n,R), we recommend skipping this section on the first read.

3.1. Structure theory of Lie groups. Let G be a connected, semisimple Lie

group with finite center. As usual, write g for the Lie algebra of G. Fix once

and for all a Cartan involution θ of g and write k and p, respectively, for the

+1 and −1 eigenspaces of θ. Denote by a a maximal abelian subalgebra of p

and by c the centralizer of a in k. We let Σ denote the set of restricted roots

of g with respect to a. Note that the elements of Σ are real linear functionals

on a. Recall that dimR(a) is the real-rank of G. We fix a for the remainder.

Recall that a base (or a collection of simple roots) for Σ is a subset Π ⊂ Σ

that is a basis for the vector space a∗ and such that every non-zero root β ∈ Σ

is either a positive or a negative integer combination of elements of Π. For a

choice of Π, elements β ∈ Π are called simple (positive) roots. Relative to a

choice of base Π, let Σ+ ⊂ Σ be the collection of positive roots, and let Σ− be

the corresponding set of negative roots. For β ∈ Σ, write gβ for the associated
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root space. Then n =
⊕

β∈Σ+
gβ is a nilpotent subalgebra. A subalgebra q of

g is said to be a standard parabolic subalgebra or simply parabolic (relative to

the choice of θ and Π) if c⊕a⊕n ⊂ q, where n is defined relative to Π. We have

that the standard parabolic subalgebras of g are parametrized by exclusion of

simple (negative) roots: for any sub-collection Π′ ⊂ Π, let

(1) qΠ′ = c⊕ a⊕
⊕

β∈Σ+∪Span(−Π′)

gβ .

Then qΠ′ is a Lie subalgebra of g and all standard parabolic subalgebras of g

are of the form qΠ′ for some Π′ ⊂ Π [26, Prop. 7.76].

Let A,N, and K be the analytic subgroups of G corresponding to a, n

and k. Then G = KAN is the corresponding Iwasawa decomposition of G. As

G has finite center, K is compact. Note that the Lie exponential exp: g→ G

restricts to diffeomorphisms between a and A and n and N . Fixing a basis

for a, we often identify A = exp(a) = Rd. Via this identification we extend

linear functionals on a (in particular, the restricted roots of g) to functionals

on A. Write C for the centralizer of a in K and recall that c is the Lie algebra

of C. Then P = CAN is the standard minimal parabolic subgroup. Since C is

compact, it follows that P is amenable. A standard parabolic subgroup (relative

to the choice of θ and Π above) is any closed subgroup Q ⊂ G containing P .

The Lie algebra of any standard parabolic subgroup Q is a standard parabolic

subalgebra and the correspondence between standard parabolic subgroups and

subalgebras is 1-1.

We say two restricted roots β, β̂ ∈ Σ are positively proportional if there is

some c > 0 with

β̂ = cβ.

Note that c takes values only in {1
2 , 1, 2} and this occurs only if the root system

Σ has a factor of type BC`. Let Σ̂ denote the set of coarse restricted roots ;

that is, Σ̂ denotes the collection of positively proportional equivalence classes

[β] in Σ. Note that for [β] ∈ Σ̂, g[β] :=
⊕

β′∈[β] g
β′ is a nilpotent subalgebra

and the Lie exponential map restricts to a diffeomorphism between g[β] and

the corresponding analytic subgroup, which we denote by G[β].

Let q denote a standard parabolic subalgebra of g. Observe that if gβ∩q 6=0

for some β ∈ Σ then, from the structure of parabolic subalgebras, g[β] ⊂ q

where [β] ∈ Σ̂ is the coarse restricted root containing β. A proper subalgebra h

of g is maximal if there is no subalgebra h′ with h ( h′ ( g. Note that maximal

standard parabolic subalgebras are of the form qΠr{β} for some β ∈ Π.

3.2. Resonant codimension and related lemmas. We say a Lie algebra is

saturated by coarse roots spaces if its intersection with a coarse root space is

either trivial or the entire coarse root space. Consider a Lie subalgebra h ⊂ g
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that is saturated by coarse root spaces. For such a subalgebra, define the

resonant codimension, r̄(h), of h to be the cardinality of the set

{[β] ∈ Σ̂ | g[β] 6⊂ h}.

For a subgroup H ⊂ G whose Lie algebra is saturated by coarse root spaces,

we will also refer to the resonant codimension of the group H.

Note that standard parabolic subalgebras q are automatically saturated by

coarse root spaces whence the resonant codimension is defined for all standard

parabolic subalgebras. As in [11], given a (semi)simple Lie algebra g as above

we define a combinatorial number r(g). As the number depends only on the

Lie algebra g, we use both the notation r(G) and r(g) interchangeably.

Definition 3.1. The minimal resonant codimension of g or G, denoted by

r(g) or r(G), is defined to be the minimal value of the resonant codimension

r̄(q) of q as q varies over all (maximal) proper parabolic subalgebras of g.

Remark 3.2. In the case that the Lie algebra g of G is a split real form,

the minimal resonant codimension r(g) coincides with minimal codimension of

all maximal parabolic subalgebras. In general, we have r(g) ≤ v(G). That this

definition of r(G) agrees with the one given immediately before Theorem 2.1

follows from [2, Th. 7.2].

In the case that g is semisimple, r(g) is the minimal value of r(g′) as g′

varies over all non-compact simple ideals of g. In particular, if g has rank-1

factors, then r(g) = 1.

Example 3.3. We compute r(g) for a number of classical real simple Lie

algebras. Note that it follows from definition that the minimal resonant codi-

mension depends only on the restricted root system of g and not on the Lie

algebra g.

Type An: r(g) = n. This includes sl(n+ 1,R), sl(n+ 1,C), sl(n+ 1,H).

Type Bn, Cn, and (BC)n: r(g) = 2n − 1. This includes sp(2n,R), so(n,m)

for n < m, and su(n,m) and sp(n,m) for n ≤ m.

Type Dn, n ≥ 4: r(g) = 2n− 2. This includes so(n, n) for n ≥ 4

Type E6: r(g) = 16.

Type E7: r(g) = 27.

Type E8: r(g) = 57.

Type F4: r(g) = 15.

Type G2: r(g) = 5.

We note that for all root systems above, the minimal resonant codimen-

sion r(g) corresponds to the codimension of the maximal parabolic subalgebra

qΠr{α1}, where the simple roots are as enumerated as in the Dynkin diagrams

in Table 1.



ZIMMER’S CONJECTURE 907

For the remainder of this subsection, we show that certain subgroups of G

with resonant codimension at most r(G) are parabolic. With g the Lie algebra

of G, let Σ = Σ(g) be the restricted root system of g, and let

g = c⊕ a⊕
⊕
β∈Σ

gβ

be the restricted root space decomposition (relative to the choice of Cartan

involution θ). Note that gβ is not a Lie subalgebra if 2β is a root; in this case

let 〈gβ〉 denote the Lie-subalgebra generated by gβ .

Lemma 3.4. For any root β ∈ Σ, the subalgebra c acts irreducibly under

the adjoint action on the root space gβ .

As a corollary, let h ⊂ g be a Lie subalgebra with c ⊂ h. Then for every

β ∈ Σ with h ∩ gβ 6= 0, we have

〈gβ〉 ⊂ h.

A proof of Lemma 3.4 using the complexification of g appears in [24, Lemma

5.3]. We give an alternative shorter proof of this fact using representation

theory.

Proof of Lemma 3.4. Let V ⊂ gβ be a non-trivial, c-invariant subspace.

Let

h = V ⊕ g2β ⊕ c⊕ a.

Since the adjoint action of a on gβ is by scalar multiplication, and since a

centralizes c, it follows that h is a subalgebra.

Fix a non-zero X ∈ V . By [26, Lemma 7.73b] applied to X instead of

θ(X), we have that

(adX) : (adX)(g−β)→ gβ

is a bijection and since (adX)(g−β) ⊂ g0 = c⊕a ⊂ h, it follows that gβ ⊂ h. �

Proposition 3.5. Let h ⊂ g be a Lie subalgebra with c ⊕ a ⊂ h. If the

cardinality of the set {[β] ∈ Σ̂(g) : g[β] 6⊂ h} is at most r(g), then h is parabolic.

Before we give the proof of Proposition 3.5, we need the following lemma

whose proof requires case-by-case analysis. In the analysis in the following

lemma, we fix an inner product on a∗ that is preserved by the Weyl group and

an orthonormal basis {e1, e2, . . . , } for a∗ relative to which we may express all

roots in a standard presentation such as in [26, App. C]. Relative to the inner

product, we may measure the lengths of roots. All roots of the same length

are in the same orbit of the Weyl group. If g is simple and if Σ(g) is of type

A`, D`, E6, E7, or E8, then all roots have the same length; if Σ(g) is of type

B`, C`, G2, or F4, there are two distinct lengths of roots, and if Σ(g) is of type

(BC)`, there are three distinct lengths of roots.
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Lemma 3.6. Let g be a simple Lie algebra, and let h ⊂ g be a Lie subal-

gebra satisfying the hypotheses of Proposition 3.5. Then either h = g or there

exists a long root β0 such that gβ0 ∩ h = {0}.

Proof. First note from Lemma 3.4 that h is saturated by full root spaces;

that is, gβ ∩ h = {0} or gβ ⊂ h for all roots β ∈ Σ(g). If Σ(g) is of type

A`, D`, E6, E7, or E8, then all roots are of the same length. We argue the

lemma case-by-case for the remaining possible abstract root systems Σ(g).

Σ(g) is of type B`: Relative to a choice of orthonormal basis {e1, . . . , e`}
the roots are {±ei ± ej : 1 ≤ i < j ≤ `} ∪ {±ei : 1 ≤ i ≤ `}; the long roots

are {±ei ± ej}. Suppose gβ ⊂ h for all long roots β. Since r(g) = 2` − 1, by

hypotheses and assumption there exists 1 ≤ i0 ≤ ` and a short root β′ ∈ {±ei0}
with gβ

′ ⊂ h. For each 1 ≤ i ≤ `, we have g±ei−ei0 , g±ei+ei0 ⊂ h. Bracketing

with gβ
′
, we have g±ei ⊂ h for every 1 ≤ i ≤ `. It follows that h = g.

Σ(g) is of type C`: The roots are {±ei ± ej : 1 ≤ i < j ≤ `} ∪ {±2ei};
the long roots are {±2ei}. We induct on `. In the case ` = 2, the conclusion

follows from the above since C2 and B2 are isomorphic. Suppose gβ ⊂ h for all

long roots β ∈ {±2ei}. For the sake of contradiction, assume h 6= g; then there

is a short root β′ = ±ei ± ej with gβ
′ ∩ h = {0}. Acting by the Weyl group,

we may assume β′ = e1 − e2 = α1 is the left-most root in the Dynkin diagram

with respect to some base Π. Let g′ be the Lie subalgebra of g generated by

the root spaces associated to roots ±α2, . . . ,±α`. Then Σ(g′) is of type C`−1.

Since ge1−e2 ∩ h = {0} and gβ ⊂ h for β ∈ {±2e1,±2e2}, we conclude

that gβ
′ ∩ h = {0} for the four roots β′ ∈ {±e1 ± e2}. Let h′ = h ∩ g′. Then

the cardinality of the set {[β] ∈ Σ̂(g′) : g[β] 6⊂ h′} is at most r(g) − 4 = 2` −
1 − 4 = 2(` − 1) − 3 < r(g′). In particular, h′ ⊂ g′ satisfies the hypotheses

of Proposition 3.5 and, since g′ contains all root spaces associated to its long

roots, by the inductive hypotheses we conclude that h′ = g′.

Finally, there are 4`−4 roots of the form ±e1±ej , j ≥ 2. As we assume h

contains all root spaces associated to long roots and since r(g) = 2`−1 < 4`−4,

there exists 2 ≤ i0 ≤ ` such that gβ
′ ⊂ h for some, and hence all, roots

β′ ∈ {±e1 ± ei0}. Since g′ ⊂ g and since ±e1 ± ej = (±e1 − ei0) + (ei0 ± ej),
we conclude that gβ

′ ⊂ h for all β′ ∈ {±e1 ± ej : 2 ≤ j ≤ `}. It follows that

h = g, contradicting the assumption h 6= g above.

Σ(g) is of type (BC)`: The roots are {±ei ± ej} ∪ {±ei} ∪ {±2ei}; the

long roots are {±2ei}. Suppose gβ ⊂ h for all long roots β ∈ {±2ei}. From

the previous analysis, h contains the subalgebra (with root system of type C`)

containing all root spaces gβ associated to roots of the form β = {±ei ± ej} ∪
{±2ei}. From the analysis when Σ(g) is of type B`, it follows that gβ

′ ⊂ h for

every root β′ ∈ {±ej} and thus h = g.
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Σ(g) is of type G2: The roots are {ei−ej : 1 ≤ i, j ≤ 3 : i 6= j}∪{±(2e1−
e2−e3), ±(2e2−e1−e3), ±(2e3−e1−e2)}; the long roots are {±(2e1−e2−e3),

±(2e2− e1− e3), ±(2e3− e1− e2)}. Suppose gβ ⊂ h for all long roots β. Since

r(g) = 5, there is at least one short root β′ with gβ
′ ⊂ h; acting by the Weyl

group, we may assume β′ = e1−e2. Observe that (e2−e3) = 2e2−e1−e3 +β′,

(e1−e3) = β′+(e2−e3), (e3−e1) = −(2e1−e2−e3)+β′, (e3−e2) = (e3−e1)+β′,

and (e2 − e1) = (e2 − e3) + (e3 − e1). It follows that gβ ⊂ h for all short roots

β whence h = g.

Σ(g) is of type F4: There are 48 roots {±ei ± ej : 1 ≤ i < j ≤ 4} ∪ {±ei :

1 ≤ i ≤ 4}∪{1
2(±e1± e2± e3± e4)}; the long roots are the 24 roots {±ei± ej :

1 ≤ i < j ≤ 4}. Suppose gβ ⊂ h for all long roots β. We have r(g) = 15 so

there is at least one short root β′ with gβ
′ ⊂ h; acting by the Weyl group, we

may assume β′ = 1
2(e1 + e2 + e3 + e4). Taking brackets of gβ

′
with gβ for all

long roots β, we have gβ
′′ ⊂ h for the eight roots β′′ ∈ {1

2(±e1± e2± e3± e4)}
with an even number of positive terms.

We also claim gβ̃ ⊂ h for at least one β̃ = 1
2(±e1 ± e2 ± e3 ± e4) with

an odd number of positive terms. Indeed there are eight roots of the form
1
2(±e1 ± e2 ± e3 ± e4) with an odd number of positive terms and eight roots

of the form ±ei. Since r(g) = 15, one of these 16 roots corresponds to a root

space in h; the former case gives such a β̃ and the latter case gives such β̃ after

bracketing with some root space associated to a root 1
2(±e1±e2±e3±e4) with

an even number of positive terms. Taking brackets of gβ̃ with gβ for all long

roots β, we have gβ̄ ⊂ h for the eight roots β̄ ∈ {1
2(±e1 ± e2 ± e3 ± e4)} with

an odd number of positive terms.

Finally, we have e1 = 1
2(e1 + e2 + e3 + e4) + 1

2(e1 − e2 − e3 − e4) and

−e1 = 1
2(−e1 + e2 + e3 + e4) + 1

2(−e1 − e2 − e3 − e4). Moreover, for 2 ≤ i ≤ 4,

we have ±ei = (−e1 ± ei) + e1. It follows that gβ
′′′ ⊂ h for the eight roots

β′′′ ∈ {±ei}. Combined with the above analysis, it follows that h = g. �

Proof of Proposition 3.5. First recall from Remark 3.2 that r(g) is the

minimal value of r(g′) as g′ varies over simple non-compact ideals in g. In

particular, if the conclusion holds for all simple Lie algebras g, then it au-

tomatically holds for all semisimple Lie algebras. Thus we may assume g is

simple for the remainder.

We may assume h 6= g. Let h′ ⊂ h be the Lie subalgebra generated by c,

a, and all coarse root spaces g[β] where g[β] ⊂ h. It follows from Lemma 3.6

that there exists a long root β0 with gβ0 ∩ h = {0}. Acting by the Weyl group,

the root −β0 is the highest root for some choice of base Π. If Π = {α1, . . . , α`}
are the simple positive roots for this base, select X ∈ a such that αj(X) > 0

for all 1 ≤ i ≤ `. Then β0(X) is the minimal value of β(X) as β varies over all

β ∈ Σ(g); moreover for all β ∈ Σ(g) r {β0}, we have β0(X) < β(X).
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Let n be the Lie subalgebra generated by all positive roots relative to Π.

Let l be the Lie subalgebra generated by h′ and n; observe that l is parabolic.

Since the minimal value of β(X) is β0(X), it follows that gβ0 is not a subspace

of l; in particular, l 6= g. Since h′ ⊂ l 6= g, it follows from the definition of r(g)

that h′ = l. Since l = h′ ⊂ h, the conclusion follows. �

For the reader less familiar with finite-dimensional representation theory

and root systems we also include a geometric proof of a weaker assertion that

suffices for all our proofs in the case of R-split groups. It is also possible to

give a proof of Proposition 3.5 above using Lemma 3.7 below and Lemma 3.4.

Lemma 3.7. Let h ⊂ g be a subalgebra whose codimension is at most

the minimal codimension of all proper parabolic subalgebras of g. Then h is

parabolic.

Proof. We may assume that dim h is maximal among all proper subalge-

bras of g. Let H be the connected Lie subgroup of G whose Lie algebra is h.

As the statement concerns Lie algebras, we may replace G with its adjoint

group and assume that G is a (real) linear algebraic group. So we may let H

be the Zariski closure of H in G. Since H is connected, we know that H is not

Zariski dense, so dimH < dimG. Then the maximality of dimH implies that

H is the identity component of H, and therefore has finite index in H so h is

also the Lie algebra of the real algebraic group H.

By Chevalley’s Lemma [57, Prop. 3.1.4], there is a finite-dimensional rep-

resentation ρ : G → GL(n,R), such that H is the stabilizer of a point x in

the corresponding projective space RPn−1. Since finite-dimensional represen-

tations of G are completely reducible and G has no non-trivial 1-dimensional

representations, we may assume without loss of generality that G has no fixed

points in RPn−1.

Since this is an action of an algebraic group on a variety, we know that the

closure of the G-orbit of x consists of the union of Gx with orbits of strictly

smaller dimension. However, the maximality of dimH and the absence of fixed

points implies that there are no G-orbits of smaller dimension. So Gx must

be a closed subset of RPn−1, and is therefore compact. This means G/H is

compact.

If H and H are reductive, then they are unimodular and G/H admits

a finite invariant measure. By the Borel density theorem [57, Th. 3.2.5] this

implies G = H, a contradiction. If H is not reductive, then the unipotent

radical, U , of H is non-trivial. A result of Borel and Tits [3, Prop. 3.1] states

that U is contained in the unipotent radical of a parabolic subgroup P that

contains the normalizer of U . Since H is contained in this normalizer, it must

be contained in P . Moreover, P is proper because its unipotent radical contains

U and is therefore non-trivial. Then the maximality of dimH implies that H
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is the identity component of P , so h is the Lie algebra of P . This is also a

consequence of the more detailed result [53, Th. 1.2]. �

4. Suspension action and proof of Theorem 2.3

We begin by introducing the suspension action with which we work for the

remainder of the proof of Theorem 2.3. We then give some general background

on Lyapunov exponents and state the two key propositions used in the proof

of Theorem 2.3.

4.1. Suspension space. Recall we fix G to be a semisimple Lie group with

real-rank at least 2. Let Γ ⊂ G be a cocompact lattice, and let α : Γ →
Diff1+β(M) be an action for β > 0.

We construct an auxiliary space on which the action α of Γ on M embeds

as a Poincaré section for an associated G-action. On the product G × M

consider the right Γ-action

(g, x) · γ = (gγ, α(γ−1)(x))

and the left G-action

a · (g, x) = (ag, x).

Define the quotient manifold Mα := G ×M/Γ. As the G-action on G ×M
commutes with the Γ-action, we have an induced left G-action on Mα. For

g ∈ G and x ∈Mα, we denote this action by g · x and denote the derivative of

the diffeomorphism x 7→ g · x by Dg. We write π : Mα → G/Γ for the natural

projection map. Note that Mα has the structure of a fiber-bundle over G/Γ

induced by the map π with fibers diffeomorphic to M . Note that the G-action

intertwines the fibers of Mα. As the action of α is by C2 diffeomorphisms,

Mα is naturally a C2 manifold. Equip Mα with a C∞ structure compatible

with the C2 structure; the existence of this compatible structure is guaranteed

by a classical theorem of Whitney [52, Th. 1]. Choose a right-Γ-invariant

Riemannian metric on G ×M whose restriction to any G × {m} is right-G-

invariant. This exists because the Γ-action on G ×M is proper. This metric

defines a Riemannian metric on Mα whose restriction to the tangent space to

any G-orbit pushes forward to a metric on G/Γ defined by a right-G-invariant

metric on G.

4.2. Lyapunov exponents and Oseledec’s theorem. Let X be a compact

metric space equipped with a continuous (left) G-action. A measurable func-

tion A : G×X → GL(d,R) defines a linear cocycle if

A(g′, g · x)A(g, x) = A(g′g, x).

ThenA defines an action by vector bundle automorphisms on the trivial bundle

X × Rd that projects to the G-action on X.
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More generally, let E → X be a continuous, finite-dimensional, normed

vector bundle. A measurable linear cocycle over the G-action on X is a mea-

surable action

A : G× E → E
by vector-bundle automorphisms that projects to the G-action on X. We write

Ex for the fiber of E over x and

A(g, x) : Ex → Eg·x
for the linear map between Banach spaces Ex and Eg·x.

Below, we will always assume our cocycle A : G× E → E is bounded: for

every compact K ⊂ G,
sup

(g,x)∈K×X
‖A(g, x)‖

is bounded. Moreover, we typically assume the action A : G × E → E is con-

tinuous, which automatically implies boundedness. If one cares only about

measurable cocycles, one may assume the bundle E is trivial.

Given s ∈ G and an s-invariant Borel probability measure µ on X, we

define the average top (or leading) Lyapunov exponent of A to be

(2) λ+(s, µ,A) := inf
n

1

n

∫
log ‖A(sn, x)‖ dµ(x).

Note that for an s-invariant measure µ, the sequence 1
n

∫
log ‖A(sn, x)‖ dµ(x)

is subadditive whence the infimum in (2) may be replaced by a limit. By

the Kingman subadditive ergodic theorem (see [49, Th. 3.3]), if µ is ergodic,

the sequence of functions 1
n log ‖A(sn, x)‖ converges µ-a.e. to λ+(s, µ,A) as

n→∞.

We have the following elementary fact.

Claim 4.1. If the restriction of the cocycle to A : G× E → E to s ∈ G is

continuous, then the map

µ 7→ λ+(s, µ,A)

is upper-semicontinuous on the set of all s-invariant Borel probability measures

equipped with the weak-∗ topology.

We recall the following standard fact, which is crucial in our later averag-

ing arguments. Given an amenable subgroup H ⊂ G, a bounded measurable

set F ⊂ H of positive Haar measure, and a probability measure µ on X, denote

by F ∗ µ the probability measure defined as follows: for a Borel B ⊂ X, let

(F ∗ µ)(B) =
1

|F |

∫
F

µ(s−1 ·B) ds,

where |F | is the volume of the set F induced by the (left-)Haar measure on H.

For x ∈ X, we write

νFx = F ∗ δx.
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Lemma 4.2. Let A : G × E → E be a bounded, continuous linear cocycle.

Let s ∈ G, and let µ be an s-invariant, Borel probability measure on X . Let

H ⊂ G be an amenable subgroup contained in the centralizer of s in G. Let

Fm be a Følner sequence of precompact sets in H , and let µ′ be a Borel proba-

bility measure that is a weak-∗ subsequential limit of the sequence of measures

{Fm ∗ µ}. Then

(a) µ′ is s-invariant and H-invariant ;

(b) λ+(s, µ′,A) ≥ λ+(s, µ,A).

Proof. (a) follows as each {Fm∗µ} is s-invariant and s-invariance is closed

under weak-∗ convergence.

For (b), first note that as A is assumed bounded, it follows from the

cocycle relation that λ+(s, Fm ∗ µ,A) = λ+(s, µ,A) for every m. Indeed, for

any t ∈ H, let Ct = supx∈X log ‖A(t±1, x)‖, and let Cm = supt∈Fm Ct. For

x ∈M and t ∈ Fm, the cocycle property and subadditivity of norms yields

log ‖A(sn, tx)‖ ≤ Ct + log ‖A(snt, x)‖
= Ct + log ‖A(tsn, x)‖
≤ 2Ct + log ‖A(sn, x)‖
≤ 2Cm + log ‖A(sn, x)‖.

Similarly, we can prove that log ‖A(sn, tx)‖ ≥ log ‖A(sn, x)‖ − 2Cm.

Thus,∫
log ‖A(sn, x)‖ d(Fm ∗ µ)(x)

=
1

|Fm|

∫
Fm

∫
log ‖A(sn, x)‖ dt ∗ µ(x)

=
1

|Fm|

∫
Fm

∫
log ‖A(sn, tx)‖ dtdµ(x)

≤ 1

|Fm|

∫
Fm

Å
2Cm +

∫
log ‖A(sn, x)‖ dµ(x)

ã
dt

≤ 2Cm +

∫
log ‖A(sn, x)‖dµ(x).

Dividing by n yields λ+(s, Fm ∗ µ,A) ≤ λ+(s, µ,A). The reverse inequality is

similar. Conclusion (b) follows from the upper semicontinuity in Claim 4.1. �

Consider an abelian subgroup A ⊂ G isomorphic to Rk. Equip A ∼= Rk
with any norm | · |. Consider an A-invariant, A-ergodic probability measure

µ on X. For a bounded measurable linear cocycle A : A × X → GL(d,R),

we have the following consequence of the higher-rank Oseledec’s multiplicative

ergodic theorem (cf. [8, Th. 2.4]).
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Proposition 4.3. There are

(1) an α-invariant subset Λ0 ⊂ X with µ(Λ0) = 1;

(2) linear functionals λi : Rk → R for 1 ≤ i ≤ p;

(3) and splittings Rd =
⊕p

i=1Eλi(x) into families of mutually transverse,

µ-measurable subbundles Eλi(x) ⊂ Rd defined for x ∈ Λ0

such that

(a) A(s, x)Eλi(x) = Eλi(s · x) and

(b) lim
|s|→∞

log |A(s, x)(v)| − λi(s)
|s|

= 0

for all x ∈ Λ0 and all v ∈ Eλi(x) r {0}.

Note that (b) implies for v ∈ Eλi(x) the weaker result that for s ∈ A,

lim
k→±∞

1
k log |A(sk, x)(v)| = λi(s).

We also remark that if µ is an A-invariant, A-ergodic measure, then for

any s ∈ A the average top Lyapunov exponent is given as

(3) λ+(s, µ,A) = max
i
λi(s).

In the case that µ is A-invariant but not A-ergodic, Proposition 4.3 holds

on each A-ergodic component of µ. Even more is true: the number of Lyapunov

exponents is determined by an integer valued measurable function 1 ≤ p(x) ≤ k
constant on ergodic components and all the data arising from Proposition 4.3,

including the linear functionals and the subspaces, varies measurably in X; see

[1, §3.6.1]. In this case we have the following construction, which will be used

later to avoid passing to ergodic components.

Lemma 4.4. If µ is an A-invariant Borel probability measure on X , then

for any s′ ∈ A, there is a linear functional λ+,s′,µ : A→ R so that

(1) λ+,s′,µ(ts′) = λ+(ts′, µ,A) for any t ≥ 0;

(2) λ+(s, µ,A) ≥ λ+,s′,µ(s) for all s ∈ A.

Proof. We first pass to an ergodic decomposition of the A-action on (X,µ).

See, for instance, [20, Th. 2.19]. This gives a Borel map ζ : X → Ω, where Ω

is the space of ergodic components of the A-action and a Borel map ξ : Ω →
Prob(X) where the target is the space of probability measures on X, such that

µ =

∫
Ω

ξ(ω)dζ∗µ.

See, for example, [20] for more details. Since the function p mentioned in the

paragraph preceding this lemma is constant on ergodic components, we can

view it as a function on Ω.
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By the dominated convergence theorem, one checks that

λ+(s, µ,A) =

∫
Ω

λ+(s, ξ(ω),A) dζ∗µ.

From this and (3), one verifies that λ+(ts, µ,A) = tλ+(s, µ,A) for any positive

real number t. This can also be proven directly from properties of λ+(s, µ,A).

Once we construct a linear functional λ+,s′,µ, this immediately implies the first

claim of the lemma.

Let Lω = {λi,ω, 1 ≤ i ≤ p(ω)} be the collection of Lyapunov exponents for

the cocycle A and the measure ξ(ω). Let χ : ω 7→ λ+,s′,ω ∈ Lω be a measurable,

A-invariant assignment satisfying

λ+,s′,ω(s′) = max
i
λi,ω(s′).

We briefly defer justifying the existence of χ. Take λ+,s′,µ : A→ R to be

λ+,s′,µ(s) =

∫
λ+,s′,ω(s) dζ∗µ.

The integral is defined since λ+,s′,ω(s) is bounded, and one verifies that λ+,s′(s)

satisfies the properties of the lemma.

To justify the existence of the measurable map χ one can use the mea-

surable selection theorem (see, e.g., [20, Th. 2.3]), but one can also give a

simpler argument. We construct this map from a map χX from X that factors

through Ω. Since we can partition X into finitely many disjoint measurable

subsets where p(x) is constant, we assume p = p(x) is constant. Let Xp be the

union of p disjoint copies of X, and let E∗ be the dual bundle to E . There is a

measurable map χp : Xp → E∗ sending x to the set Lζ(x). Choosing s′ ∈ A, we

can define a subset of Xmax and a restriction χmax : Xmax → E∗ where Xmax

consists of those linear functional in Lζ(x) such that λi,ω(s′) = maxi λi,ω(s′).

We can partition X into finitely many measurable sets Xi where Xmax is i

disjoint copies of X for i ≤ p. On each Xi we can make a choice of one copy

of Xi that chooses the linear functional that is the image of χ on Xi. This

assignment is clearly measurable on Xi. �

4.3. Subexponential growth of fiberwise derivatives. We return to the set-

ting introduced in Section 4.1. With π : Mα → G/Γ the projection, let

F = ker(Dπ) denote the fiberwise tangent bundle of Mα.

We say the induced action of G on Mα has uniform subexponential growth

of fiberwise derivatives if for all ε > 0, there is a C such that

‖Dg|F ‖ ≤ Ceεd(e,g),

where ‖Dg|F ‖ = supx∈Mα ‖Dg(x)|F (x)‖. As Γ is cocompact, there is a clear

relation between the growth of the fiberwise derivatives for the G-action and

the growth of derivatives of the Γ-action.
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Claim 4.5. The action α of Γ on M has uniform subexponential growth

of derivatives if and only if the induced action of G on Mα has uniform subex-

ponential growth of fiberwise derivatives.

4.4. Proof of Theorem 2.3. We let A denote the fiberwise derivative co-

cycle for the action of G on Mα; that is, A(g, x) = Dxg|F . Let A = exp a ⊂ G
be a maximal split Cartan subgroup. Given s ∈ A and an s-invariant Borel

probability measure µ, we write

λF+(s, µ) := λ+(s, µ,A) = inf
n→∞

1

n

∫
log ‖Dx(sn)|F ‖ dµ(x)

for the average top fiberwise Lyapunov exponent of s with respect to µ.

The proof of Theorem 2.3 is by contradiction. Assuming Theorem 2.3

fails, from Claim 4.5 we first establish the following.

Proposition 4.6. Suppose the induced action of G on Mα fails to have

uniform subexponential growth of fiberwise derivatives. Then there are an s ∈
A and an A-invariant Borel probability measure µ with λF+(s, µ) > 0.

As discussed above, Theorem 2.3 holds trivially in the case where G has

rank-1 factors. To complete the proof of Theorem 2.3 we may thus assume

that all non-compact, almost-simple factors of G are of higher-rank. The proof

of the following proposition contains the major technical innovations in this

paper.

Proposition 4.7. Let G be a connected, semisimple Lie group with finite

center, all of whose non-compact, almost-simple factors are of real-rank at

least 2. Let Γ ⊂ G be a cocompact lattice, and let α : Γ → Diff1+β(M) be an

action. Suppose that either

(1) dim(M) < r(G), or

(2) dim(M) = r(G) and α preserves a smooth volume,

and that there are an s ∈ A and an A-invariant Borel probability measure µ on

Mα with λF+(s, µ) > 0. Then there are a G-invariant Borel probability measure

µ′ and s′ ∈ A with λF+(s′, µ′) > 0.

From Proposition 4.7 we immediately obtain a contradiction with Zim-

mer’s cocycle superrigidity theorem and the fact that there are no non-trivial

linear representations of G into GL(r(G),R) [60]. Theorem 2.3 follows imme-

diately from Propositions 4.6, 4.7 and Claim 4.5.

5. Proof of Proposition 4.6

To establish Proposition 4.6, suppose the induced action of G on Mα fails

to have uniform subexponential growth of fiberwise derivatives. Then there

exist ε > 0, a sequence of elements gn in G with d(e, gn) → ∞, a sequence of
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base points xn ∈Mα, and a sequence of unit vectors vn ∈ F (xn) := TxnM
α∩F

tangent to the fibers of Mα satisfying

‖Dxngn(vn)‖ ≥ e3εd(e,gn).

Let G = KAK be the Cartan decomposition of G (cf. [26, Th. 7.39]).

For each gn, write gn = knank
′
n where kn, k

′
n ∈ K and an ∈ A. Note that

an →∞ as n→∞. As K is compact, the fiberwise derivative supk∈K ‖Dk|F ‖
is bounded above and thus

‖Dxnan(vn)‖ ≥ e2εd(an,e)

for all sufficiently large n.

Recall that the Lie exponential exp: g→ G restricts to a diffeomorphism

from a to A; moreover, exp: a → A is an isometry. Write an = exp(tnun),

where un is a unit vector in a and tn = d(an, e). Given t ∈ R, let [t] denote

the integer part of t. Then for sufficiently large n, we have

‖Dxn exp([tn]un)(vn)‖ ≥ eε[tn].

Passing to a subsequence, we assume un converges to a unit vector u ∈ a. The

element s = exp(u) ∈ A will be the element satisfying the conclusion of the

proposition.

Recall that F = ker(Dπ) denotes the fiberwise tangent bundle of Mα. Let

UF denote the associated unit-sphere bundle; that is, the quotient of F under

the equivalence relation of positive proportionality in each fiber F (x) of F . We

represent elements of UF by pairs of elements (x, v), where x ∈Mα and v is a

unit vector in the fiber F (x). The derivative of the G-action on Mα induces a

G-action on F by fiber-bundle automorphisms; the map intertwining fibers is

denoted by Dxg : F (x)→ F (gx). The G-action of F induces a G-action on UF ;

we denote the map intertwining fibers of UF by UDxg : UF (x)→ UF (gx).

For each n, we define a Borel probability measure νn on UF as follows:

Given a continuous φ : UF → R, let∫
φ dνn :=

1

[tn]

[tn]−1∑
m=0

φ
(

exp(mun) · (x), UDx exp(mun)(vn)
)
.

Given g ∈ G and a probability measure ν on UF , consider the expression

ψ(g, ν) =

∫
UF

log

Å‖Dxg(v)‖gx
‖v‖x

ã
dν(x, v).

From the definition of νn we have for every n that

(4) ψ(exp(un), νn) ≥ ε.

Consider any weak-∗ accumulation point ν of the sequence of probability

measures {νn} on UF . We have that ν is invariant under s := exp(u). Indeed,
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let f : UF → R be a continuous function. Then∫
UF

f ◦ s− f dνn =

∫
UF

f ◦ exp(u)− f ◦ exp(un) dνn

+

∫
UF

f ◦ exp(un)− f dνn.

The first integral converges to zero as the functions f ◦exp(u)−f ◦exp(un)

converge uniformly to zero in n. The second integral clearly converges to zero

by compactness and the definition of νn. Taking n→∞,∫
UF

f ◦ s dν =

∫
UTMα

f dν.

From uniform convergence and (4) we have

ψ(s, ν) = lim
n→∞

ψ(exp(un), νn) ≥ ε.(5)

Replacing ν with an ergodic component of ν satisfying (5) we can suppose ν

is s-ergodic.

Let p denote the natural projection of UF onto Mα, and let µ′ = p∗ν.

Clearly µ′ is s-invariant and ergodic. We show that λF+(s, µ′), the average top

fiberwise Lyapunov exponent, is positive. Indeed for ν-almost every (x0, v0) in

UF , it follows from the pointwise ergodic theorem and the chain rule that

ε ≤
∫
UF

log

Å‖Dxs(v)‖
‖v‖

ã
dν(x, v)

= lim
N→∞

1

N

N−1∑
k=0

log

Å‖Dsk·xs(UDx0s
kv0)‖

‖UDx0s
kv0‖

ã
= lim

N→∞

1

N
log
Ä
‖Dx0s

N (v0)‖
ä
.

As infN→∞
1
N log

(
‖Dx0s

N |F ‖
)
≥ ε for µ′-a.e. x0, it follows that λF+(s, µ′) ≥ ε.

Finally, averaging µ′ against a Følner sequence in A and passing to a

subsequential limit µ, from Lemma 4.2 we have that µ is A-invariant and

λF+(s, µ) ≥ λF+(s, µ′) > 0. This completes the proof of Proposition 4.6.

6. Proof of Proposition 4.7

To prove Proposition 4.7 we apply an averaging argument to improve

certain invariance properties of the A-invariant measure on Mα with positive

exponents produced in Proposition 4.6. Using measure rigidity results from

homogeneous dynamics, the projection of the averaged measure µ̂ to G/Γ will

be the Haar measure. Using the key technical proposition of [11] and the

algebraic results in Section 3.2, we deduce that µ̂ is in fact G-invariant. We

first recall some facts from homogeneous dynamics, particularly a number of

results related to Ratner’s measure classification theorem, and then describe
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the averaging arguments in the proof. To illustrate the general argument, the

averaging argument is explained for the special case of SL(n,R) in Section 6.2.

6.1. Facts from homogeneous dynamics. Let G be a connected, semisimple

Lie group, and let Γ ⊂ G be a lattice. Recall that a nilpotent subgroup U ⊂ G
is called unipotent if ad(u) − Id is a nilpotent for every element u ∈ U . Let

U = exp u ⊂ G be a unipotent subgroup. Let {b1, . . . , bk} be a regular basis

for u (see [47]) and for m = (m1, . . . ,mk) ∈ [0,∞)k, let

Fm = {exp(t1b1) · · · · · exp(tkbk) : 0 ≤ tj ≤ mj} ⊂ U.
Let |Fm| denote the Haar measure of Fm in U . Recall for x ∈ G/Γ we write

νFm
x = Fm ∗ δx. Also recall that a measure ν is called homogeneous if there is

a closed subgroup L < G such ν is Haar measure on a closed L orbit in G/Γ.

Theorem 6.1 (Ratner, Shah). Let X = G/Γ, and let U be a unipotent

subgroup. The following hold :

(a) Every ergodic, U -invariant measure is homogeneous [41, Th. 1].

(b) The orbit closure Ox := {u · x : u ∈ U} is homogeneous for every x ∈ G/Γ
[41, Th. 3].

(c) The orbit Fm · x equidistributes in Ox; that is, νFm
x converges to the Haar

measure on Ox as m1 →∞, . . . ,mk →∞ [47, Cor. 1.3].

(d) Let A = exp a be a maximal split Cartan subgroup, let β be a restricted root

of g relative to a, and let µ be a G[β]-invariant Borel probability measure

on X. If µ is A-invariant, then µ is G[−β]-invariant.

Note that (d) follows from [41, Th. 9] and the structure of sl(2,R)-triples.

Given x ∈ G/Γ, let mU
x denote the Haar measure on the homogeneous

manifold Ox in Theorem 6.1(b). Given a measure µ on G/Γ, let

U ∗ µ =

∫
mU
x dµ(x).

Proposition 6.2. Let A = exp a be a maximal split Cartan subgroup,

and let U = exp u be a unipotent subgroup normalized by A. Let µ be a Borel

probability measure on G/Γ. Then
(a) Fm ∗ µ→ U ∗ µ for any m1 →∞, . . . ,mk →∞;

(b) if µ is A-invariant, then U ∗ µ is AU -invariant ;

(c) if µ is A-invariant and A-ergodic, then U ∗ µ is A-ergodic.

Proof. For x ∈ G/Γ, we have that

νFm
x := Fm ∗ δx

converges to the Haar measure mU
x on the orbit closure Ox of U · x. By

dominated convergence we have

Fm ∗ µ =

∫
νFm
x dµ(x)→

∫
mU
x dµ(x) = U ∗ µ,

and (a) follows.
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For (b), note that if s ∈ A and if {Fm} is a Følner sequence as above,

then {sFms
−1} is also a Følner sequence as above. From the s-invariance of µ

and equidistribution in Theorem 6.1(c), we have that

s∗(U ∗ µ) = s∗

Å
lim

∫
νFm
x dµ(x)

ã
= lim s∗

Å∫
νFm
x dµ(x)

ã
= lim

∫
νsFms−1

s·x dµ(x)

= lim

∫
νsFms−1

x dµ(x)

=

∫
mU
x dµ(x).

For (c), first write EU for the ergodic decomposition of U ∗µ for the action

of U . By definition, EU coincides with the (U ∗ µ)-measurable hull of the

partition of X into U -orbits. Let {µEUx } denote a family of conditional measures

for this partition. The Følner sequence {Fm} satisfies a pointwise ergodic

theorem as m → ∞. Since each homogeneous measure mU
x is U -ergodic, it

follows for µ-a.e. x′ and µE
U

x′ -a.e. x that

µE
U

x = mU
x′ .

Let φ be a bounded, A-invariant Borel function. Using that U = exp u is

unipotent and normalized by A, we may select s0 ∈ A such that U is contracted

by s0; that is, u ⊂
⊕

β(s0)<0 g
β . By the pointwise ergodic theorem (for the

action of s0), φ coincides modulo U ∗ µ with a U -invariant function. This

follows from the density of uniformly continuous functions in L1(U ∗ µ). In

particular, the partition into level sets of φ is coarser (mod U ∗ µ) than EU . It

follows for µ-a.e. x′ ∈ X and µE
U

x′ -a.e. x ∈ X that

φ(x) =

∫
φ dµE

U

x =

∫
φ dmU

x′ .

In particular, for (U ∗ µ)-a.e. x ∈ X, there is x′ such that φ(x) =
∫
φ dmU

x′ .

Consider the function Φ: X → R,

Φ(x′) =

∫
φ dmU

x′ .

We have that Φ is µ-measurable and, since U ∗ µ is A-invariant, Φ is also A-

invariant. From the A-ergodicity of µ, Φ is constant µ-a.e., which implies φ is

constant (U ∗ µ)-a.e. �
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Remark 6.3. In the averaging arguments below, we frequently encounter

non-ergodic invariant measures µ on the fiber bundle Mα that project to mea-

sures in G/Γ with certain desired properties. To overcome non-ergodicity in

our arguments, one may use either Proposition 6.2(c) or Lemma 4.4. In the

arguments appearing below, we use Lemma 4.4 and we never actually use

Proposition 6.2(c). The approach using Proposition 6.2(c) appears in other

versions of the averaging procedure; see, for example, [6].

6.2. Averaging argument for G = SL(n,R). We explain the first step of

the proof of Proposition 4.7 in the case G = SL(n,R), n ≥ 3. Taking the

Cartan involution θ : sl(n,R)→ sl(n,R) to be θ(X) = −Xt we have

A = {diag(et1 , et2 , . . . , etn)} =


Ü

et1

et2
. . .

etn

ê ,

where t1 + t2 + · · ·+ tn = 0. Also, c = {0}, C is the finite group with ±1 along

the diagonals, K = SO(n) and (relative to the standard base)

N =



à
1 ∗ ∗ . . . ∗

1 ∗ . . . ∗
. . .

...

1 ∗
1

í .

For i 6= j ∈ {1, . . . n− 1}, let βi,j : A→ R be the linear functional

βi,j(diag(et1 , et2 , . . . , etn)) = ti − tj .

These are the roots of sl(n,R), and the standard base for Σ(sl(n,R)) is

Π = {α1 = β1,2, α2 = β2,3, . . . , αn−1 = βn−1,n}.

To prove Proposition 4.7 it is enough to find an A-invariant measure µ′

on Mα with a non-zero fiberwise Lyapunov exponent projecting to the Haar

measure onG/Γ. By Proposition 3.5 and Proposition 6.9 below, such a measure

will automatically be G-invariant.

By the hypotheses of Proposition 4.7, we have an ergodic, A-invariant

measure µ with a non-zero fiberwise Lyapunov exponent λFµ : A → R. Note

that µ need not project to the Haar measure on G/Γ. Our goal will be to

average µ over various subgroups of G in order to obtain a new A-invariant

measure µ′ projecting to the Haar measure. The subtlety of the argument is to

choose the subgroups so that the fiberwise Lyapunov exponents do not vanish

after averaging.

Recall that λFµ : A → R and each βi,j : A → R are non-zero linear func-

tionals. Consider the linear span V of {α2, . . . , αn−1} in a∗. It may be that
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λFµ ∈ V . However, given a permutation matrix (that is, an element of the Weyl

group) P ∈ SL(n,R), let

P (λFµ )(s) = λFµ (P−1sP ).

One may check (as the Weyl group acts irreducibly on a∗) that P (λFµ ) /∈ V

for some P . Thus, up to conjugating G by a permutation matrix, without

loss of generality we may assume λFµ : A → R is not in the linear span of

{α2, . . . , αn−1}.
Let U be the unipotent subgroup

U =



â
1 0 0 · · · 0

1 ∗ · · · ∗
. . .

...

1 ∗
1

ì
and let

s1 = diag

Å
1

6n−1
, 6, · · · , 6

ã
∈ A.

Note that s1 commutes with every element of U and since λFµ is not in the

linear span of {α2, . . . , αn−1},

λFµ (s1) 6= 0.

Replacing s1 with s−1
1 , we may assume λFµ (s1) > 0.

Take a Følner sequence along U as in Proposition 6.2, average the mea-

sure µ, and pass to a subsequential limit µ1. From Proposition 6.2, we have

that µ1 projects to an AU -invariant measure µ̂1 in G/Γ. Note, however, that

µ1 may not be AU -invariant. From Lemma 4.2 however, µ1 is s1-invariant,

U -invariant and λF+(s1, µ1) > 0. Averaging µ1 along a Følner sequence in A

and taking a subsequential limit µ2, we have that µ2 is A-invariant (and in fact

(AU)-invariant) and λF+(s1, µ2) > 0. Moreover, as the projection µ̂1 of µ1 is an

AU -invariant measure, µ2 and µ1 project to the same AU -invariant measure

µ̂1 = µ̂2 in G/Γ. From Theorem 6.1(d), it follows that µ̂1 = µ̂2 is G′-invariant

where

G′ =



â
∗ 0 0 · · · 0

0 ∗ ∗ · · · ∗
0 ∗ ∗ ∗
...

...
. . .

...

0 ∗ ∗ ∗ ∗

ì
.

Let λ+,s1,µ2 : A → R be the linear functional as in Lemma 4.4. Consider

the two roots
α1 = β1,2 : A→ R, δ = β1,n : A→ R

(the simple root α1 and the highest root δ). Note that λ+,s1,µ2 is proportional

to at most one of α1 or δ.
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Assume that λ+,s1,µ2 is not proportional to α1. Let

U ′ =



â
1 ∗ 0 · · · 0

1 0 0
. . .

...

1 0
1

ì
,

and select any s2 ∈ kerα1 r kerλ+,s1,µ2 .

Replacing s2 with s−1
2 if necessary, we have λF+(s2, µ2) ≥ λ+,s1,µ2(s2) > 0.

Average µ2 along the one-parameter subgroup U ′ and pass to a subsequential

limit µ3. The measure µ3 projects to an AU ′-invariant measure µ̂3 in G/Γ.

Average µ3 along A and pass again to a subsequential limit µ4. We then have

(1) µ4 is A-invariant;

(2) λF+(s2, µ4) > 0;

(3) µ4 projects to an AU ′-invariant measure µ̂4 = µ̂3 on G/Γ.

We note that U ′ commutes with the subgroup H ⊂ G′,

H =



â
1 0 0 · · · 0
0 1 0 0
0 ∗ ∗ ∗
...

. . .
...

0 ∗ ∗ ∗ ∗

ì
,

whence µ̂3 = µ̂4 is also invariant under H and A. From Theorem 6.1(d), it

follows that the projection µ̂4 = µ̂3 in G/Γ is invariant under the groups



â
∗ ∗ 0 · · · 0

∗ ∗ 0 0
0 0 1 0
...

. . .
...

0 0 0 · · · 1

ì
,



â
1 0 0 · · · 0

0 ∗ ∗ ∗
0 ∗ ∗ ∗
...

. . .
...

0 ∗ ∗ ∗ ∗

ì
.

Since these generate G, the projection µ̂4 is the Haar measure on G/Γ. Taking

an appropriate A-ergodic component µ′ of µ4 we have

(1) µ′ is A-invariant and A-ergodic;

(2) µ′ projects to the Haar measure on G/Γ;

(3) λF+(s2, µ
′) > 0, whence µ′ has a non-zero fiberwise Lyapunov exponent.
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Above we assumed λ+,s1,µ2 was not proportional to α1. If λ+,s1,µ2 is

proportional to α1, then it is not proportional to δ and we may take

U ′ =



â
1 0 0 · · · ∗

1 0 0
. . .

...

1 0

1

ì
and select any s2 ∈ ker δ r kerλ+,s1,µ2 . We may repeat the above arguments

(which are now slightly simpler as U ′ and U commute) to obtain µ4 and µ′

with the same properties as before.

6.3. Averaging argument on G/Γ. We present in this and the next sub-

section the generalization of the averaging procedure described in Section 6.2

for general Lie groups. Here, we describe what happens to the projection of

the measure to G/Γ as we average the measure on Mα over various subgroups

of G.

Let g be a semisimple Lie algebra. Let g′ be a simple ideal of g with

rank ` ≥ 2, and let G′ ⊂ G be the corresponding analytic subgroup. Let Σ

be the set of restricted roots of g′, and let Π be a choice of base generating a

system of positive roots Σ+. Let Π = {α1, α2, . . . , α`} be enumerated such that

α1 is the left-most element in the corresponding Dynkin diagram as drawn in

Appendix A.

Proposition 6.4. With respect to Π, let β̂ be either

(a) β̂ = δ, the highest root, if g′ is of type A`, B`, D`, E6, or E7;

(b) β̂ = δ′, the second highest root, if g′ is of type C`, (BC)`, E8, F4, or G2.

Let u be the Lie subalgebra generated by {gα2 , . . . , gα`}, and let U = exp u.

Let u′ denote either the Lie subalgebra gα1 or the Lie subalgebra gβ̂ , and let

U ′ = exp u′.

Let Γ ⊂ G be a lattice, and let µ be an A-invariant measure on G/Γ. Then

U ′ ∗ (U ∗ µ)

is G′-invariant.

Remark 6.5. The choice of β̂ as the highest root δ or second highest root

δ′ in Proposition 6.4 ensures the following two properties hold:

(1) the root subgroups U β̂ and Uαj commute for each 2 ≤ j ≤ `;
(2) there is a string of roots

β0 = α1, β2, β3, . . . , βp = β̂

such that βk = βk−1 + αji for some 2 ≤ ji ≤ ` for each 1 ≤ i ≤ p.
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If g′ is of type C`, (BC)`, E8, F4, or G2, the first property holds for the

highest root β̂ = δ but the second property fails as α1 has a coefficient of

2 in δ. (See Table 1 in Appendix A.) The second property is used below to

obtain G′-invariance after two steps of averaging by obtaining invariance under

root subgroups that generate G′; i.e. we first pick a G′′ and average to obtain

a G′′-invariant measure and then make a careful choice of another group to

average over to allow us to obtain a G′-invariant measure.

Note also in the case that Σ(g′) is of type (BC)` that neither β̂ = δ′ nor

β̂ = α1 is positively proportional to any other root. In particular, u′ = gβ̂ is,

in fact, a Lie subalgebra.

Proof of Proposition 6.4. Note that U ∗ µ is U -invariant. Let ν denote

U ′ ∗ (U ∗ µ).

Consider first the case that u′ = gβ̂ . From the choice of β̂, gβ̂ commutes

with each of gαj for every 2 ≤ j ≤ `. From Lemma 4.2(a), ν is U -invariant.

From Proposition 6.2(b), the measure ν is also A-invariant. It follows from

Theorem 6.1(d) that ν is exp(g−αj )-invariant for 2 ≤ j ≤ `. From the choice

of β̂ and examining tables of positive roots, there is a sequence of roots α1 =

β0, β1, . . . , βp = β̂ where βk−1 = βk + (−αj) for some 2 ≤ j ≤ ` and every

1 ≤ k ≤ p. It follows that ν is exp(gα1)-invariant. It then follows that ν is

G′-invariant.

In the case that u′ = gα1 we first observe that, as U ∗ µ is U -invariant,

U ∗ µ is exp(g−αj)-invariant for every 2 ≤ j ≤ `. Since gα1 commutes with

g−αj for every 2 ≤ j ≤ `, it follows that ν is exp(g−αj)-invariant for every

2 ≤ j ≤ `. As ν is A-invariant, it follows that ν is U -invariant and, as above,

ν is G′-invariant. �

6.4. Averaging argument on Mα. Recall that by Remark 2.2 we may as-

sume thatG is a connected, semisimple Lie group with finite center, no compact

factors, and all almost-simple factors of real-rank at least 2. Recall that the

G-action on X = Mα preserves the fiberwise tangent bundle F = kerDπ. Let

A = exp a ⊂ G be our fixed maximal split Cartan subgroup.

We assume as in Proposition 4.7 that there are an s ∈ A and anA-invariant

Borel probability measure µ on Mα with λF+(s, µ) > 0. Let g =
⊕p

k=1 g
′
k be the

decomposition of g into ideals. For each g′k, let G′k ⊂ G be the corresponding

analytic subgroup. To complete the proof of Proposition 4.7, we show the

following.

Lemma 6.6. For 1 ≤ j ≤ p, if the projection of µ to G/Γ is G′k-invariant

for all 1 ≤ k ≤ j − 1 < p, then there are an s ∈ A and an A-invariant Borel

probability measure µ′ on Mα with λF+(s, µ′) > 0 such that the projection of µ′

to G/Γ is G′k-invariant for all 1 ≤ k ≤ j ≤ p.
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Proof. Fix such G′j with Lie algebra g′j and note that G′j has rank at

least 2. Let U,U ′ be as in Proposition 6.4, where the choice of base Π and β̂

determining U and U ′ will be made explicit in the proof of Claim 6.7 below.

Let Fi, F
′
i , F

′′
i be Følner sequences along the nilpotent subgroups U,U ′, and

A, respectively, of the type discussed in Section 6.1. With µ0 = µ, passing

to subsequential limits, we may assume we have the following sequences of

measures converging in the weak-∗ topology on Mα:

(1) Fik ∗ µ0 → µ1;

(2) F ′′i′k
∗ µ1 → µ2;

(3) F ′i′′k
∗ µ2 → µ3;

(4) F ′′i′′′k
∗ µ3 → µ4.

Note that µ2 and µ4 are A-invariant. Let µ′ = µ4. We have the following

claim.

Claim 6.7. There are a choice of base Π ⊂ Σ(g) and a choice of β̂ in

Proposition 6.4 such that for U and U ′ as in Proposition 6.4, Følner sequences

Fj , F
′
j , F

′′
j as above, and µ′ as above,

(a) µ′ projects to a measure on G/Γ that is G′k-invariant for all 1 ≤ k ≤ j;
(b) λF+(s′, µ′) > 0 for some s′ ∈ A.

Lemma 6.6 follows immediately from the above claim. �

We finish the proof of Lemma 6.6 with the proof of Claim 6.7.

Proof of Claim 6.7. For any choice of Π and choice of β̂, let µ̂i denote

the image of µi in G/Γ. We have that µ̂0 is A-invariant. We have that µ̂1 =

U ∗ µ̂0 is AU -invariant whence µ̂2 = µ̂1. From Proposition 6.4 we have that

µ̂3 = U ′ ∗ (U ∗ µ̂0) is G′j-invariant. As U ⊂ G′j and U ′ ⊂ G′j and as G′k and

G′k′ commute for k 6= k′, it follows from Lemma 4.2(a) that µ̂3 is G′k-invariant

for all 1 ≤ k ≤ j − 1. Then clearly µ̂4 is G′k-invariant for all 1 ≤ k ≤ j.

Conclusion (a) follows.

For (b) recall that we assume λF+(s, µ0) > 0 for some s ∈ A. Recall the

linear functional λ+,s,µ0 : A→ R with λ+,s,µ0(s) = λF+(s, µ0). Also, recall that

restricted roots β : A→ R are linear functionals on A.

We claim there is a choice base Π = {α1, . . . , α`} so that λ+,s,µ0 is not

in the linear span of {α2, . . . , α`}. Indeed, the Weyl group of Σ(g′j) acts ir-

reducibly on (a ∩ g′j)
∗ and simply transitively on bases Π of Σ(g′j). More-

over the Weyl group preserves angles and lengths so if Π = {α1, . . . , α`} is

a base of Σ(g′j) and Π′ = {α′1, . . . , α′`} = {w(α1), . . . , w(α`)} is the image of

Π under an element w in the Weyl group, then the vertices {α′1, . . . , α′`} and

{α1, . . . , α`} generate the same Dynkin diagram with the same ordering on the

vertices. For a fixed Π′ = {α′1, . . . , α′`}, there is an element w of the Weyl group
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such that w(λ+,s,µ0) is not in the linear span of {α′2, . . . , α′`}. Then, letting

Π = {α1, . . . , α`} map to Π′ under w, we have that λ+,s,µ0 is not in the linear

span of {α2, . . . , α`}.
We fix this choice of Π = {α1, . . . , α`} for the remainder.

Let U be as in Proposition 6.4 for the above choice of Π. Fix s1 ∈ A r
kerλ+,s,µ0 such that αj(s1) = 0 for all 2 ≤ j ≤ `. Replacing s1 with s−1

1 if

needed, we have

(1) U commutes with s1;

(2) λF+(s1, µ0) ≥ λ+,s,µ0(s1) > 0.

It then follows from Lemma 4.2 that

(1) µ1 is s1-invariant;

(2) λF+(s1, µ1) ≥ λF+(s1, µ0) > 0;

(3) λF+(s1, µ2) ≥ λF+(s1, µ1) > 0.

As µ2 is an A-invariant measure on Mα, there is a linear functional

λ+,s1,µ2 : A → R with λ+,s1,µ2(s1) = λF+(s1, µ2) > 0. Let β̂ be as in Propo-

sition 6.4 (relative to the choice of Π above). Note that β̂ and α1 are not

proportional. In particular, λ+,s1,µ2 is proportional to at most one of {β̂, α1}.
Let β′ ∈ {β̂, α1} be such that β′ 6= cλ+,s1,µ2 for any c ∈ R, and take u′ in Propo-

sition 6.4 to be u′ = gβ
′
. Fix s2 ∈ A with β′(s2) = 0 and λ+,s1,µ2(s2) > 0.

From Lemma 4.2 we have that

(1) µ3 is s2-invariant;

(2) λF+(s2, µ3) ≥ λF+(s2, µ2) ≥ λ+,s1,µ2(s2) > 0;

(3) λF+(s2, µ4) ≥ λF+(s2, µ3) > 0.

Taking s′ = s2 completes the proof of the claim. �

6.5. Proof of Proposition 4.7. From Lemma 6.6 it follows that there ex-

ist an s ∈ A and an A-invariant Borel probability measure µ′ on Mα with

λF+(s, µ′) > 0 such that the projection of µ′ to G/Γ is G-invariant. In particu-

lar, µ′ projects to the Haar measure on G/Γ.

Let C denote the centralizer of A in K, and µ′′ = C∗µ′. Since C commutes

with A, we have that

(1) µ′′ is (CA)-invariant;

(2) λF+(s, µ′′) ≥ λF+(s, µ′) > 0;

(3) µ′′ projects to the Haar measure on G/Γ.

Consider a (CA)-ergodic component µ̄ of µ′′. As the Haar measure on G/Γ

is (CA)-ergodic by Moore’s ergodicity theorem, it follows that any such µ̄

projects to the Haar measure on G/Γ. With s as above, we may select µ̄ so

that λF+(s, µ̄) > 0.



928 A. BROWN, D. FISHER, and S. HURTADO

Definition 6.8. Given an A-invariant, A-ergodic measure µ on Mα, let

LF = {λFj } denote the Lyapunov exponent functionals for the fiberwise deriv-

ative cocycle for the measure µ. We say a restricted root β ∈ Σ(g) is resonant

with the fiberwise exponents of µ if there are λFi ∈ LF and c > 0 with

β = cλFi .

If there are no such λFi and c, we say β is non-resonant.

Note that resonance and non-resonance descend to coarse equivalence

classes of restricted roots [β] ∈ Σ̂(g).

We recall the following key observation from [11].

Proposition 6.9 ([11, Prop. 5.1]). Let µ̄ be an A-invariant Borel prob-

ability measure on Mα projecting to the Haar measure on G/Γ. Let µ be an

A-invariant, A-ergodic component of µ̄. Then, given a coarse restricted root

[β] ∈ Σ̂ that is non-resonant with the fiberwise Lyapunov exponents of µ, the

measure µ is G[β]-invariant.

Note that the group C acts ergodically (in fact transitively) on the set

of A-ergodic components of µ̄. Moreover, as C commutes with A, the group

C preserves the Lyapunov exponents for the A-action with respect to distinct

A-ergodic components of µ̄. In particular, the set of roots of g that are non-

resonant with the fiberwise exponents is constant for almost every (in fact

every) A-ergodic component of µ̄. Let ΣNR,µ̄ denote the almost surely constant

collection of restricted roots of g that are non-resonant with the fiberwise

exponents (of ergodic components of µ̄.)

Let h ⊂ g be the Lie subalgebra generated by

c⊕ a⊕
⊕

β∈ΣNR,µ̄

g[β].

As there are at most dim(M) fiberwise Lyapunov exponents, it follows that

there are at most dim(M) resonant coarse restricted roots. It follows that h

has resonant codimension at most dim(M). As we assume dim(M) ≤ r(g), it

follows from Proposition 3.5 that h is parabolic.

Let H ⊂ G be the analytic subgroup with Lie algebra h. Proposition 6.9

guarantees that µ̄ is H-invariant. We claim H = G. Indeed if dim(M) < r(G),

then g = h follows immediately from the minimality of r(G). If dim(M) = r(g)

and H 6= G then, as h is parabolic, we have

h = c⊕ a⊕
⊕

β∈ΣNR,µ̄

g[β].

It follows that every fiberwise Lyapunov exponent is positively proportional

with some restricted root β with g[β] ∩ h = 0. In particular, there is an s ∈ A
such that λFi (s) < 0 for every fiberwise Lyapunov exponent λFi ∈ LF . However,
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in case that the G-action preserves a smooth volume in the fibers, the sum of

all fiberwise exponents is zero, contradicting the existence of such an s. It thus

follows under the hypotheses of Proposition 4.7(2) that µ̄ is G-invariant. This

completes the proof of the proposition.

Remark 6.10. If one wants to obtain a weaker bound in Theorem 2.1, one

can replace the argument above using [11, Prop. 5.1] with an easier argument

using work of Ledrappier and Young [31]. This was discovered while this paper

was under review and is explained in [14, §8.3]; see also [7, Props. 3 and 4].

This approach gives similar looking dimension bounds on actions, but with the

real rank of G replacing r(G), which is worse in all cases except SL(n,R).

7. Finding smooth metrics

In this section we prove Theorem 2.4. In particular, we establish the exis-

tence of an invariant Riemannian metric from uniform subexponential growth

of derivatives in conjunction with the strong property (T) of Lafforgue.

7.1. Lafforgue’s strong property (T). We recall basic facts about strong

property (T). The reader only interested in the case of C∞ actions may consider

only representations into Hilbert spaces and ignore the class of Banach spaces

E10 introduced in [28]. This in fact suffices to prove theorems for actions by

Ck diffeomorphisms on a manifold M when k = dim(M)
2 + 2.

Definition 7.1. Let Γ be a group with a length function l, X a Banach

space, and π : Γ → B(X). Given ε > 0, we say π has ε-subexponential norm

growth if there exists a constant L such that ‖π(γ)‖ ≤ Leεl(γ) for all γ ∈ Γ. We

say π has subexponential norm growth if it has ε-subexponential norm growth

for all ε > 0.

Given a group Γ and a generating set S, let l be the word length on Γ.

Here we say a group Γ has strong property (T) if it has strong property (T) on

Banach spaces for Banach spaces of class E10 in the quantitative sense of [28,

§6]. In what follows X will denote a Banach space and B(X) will denote the

bounded operators on X. We will always be considering the operator norm

topology on B(X), and we will always mean the operator norm when we write

‖T‖ for T ∈ B(X).

Definition 7.2. A group Γ has strong property (T) if there exist a sequence

of probability measures µn in Γ supported in the balls B(n)={γ ∈ Γ | l(γ)≤n}
such that for every Banach space X ∈ E10, there exists a constant t > 0 such

that for any representation π : Γ→ B(X) with t-subexponential norm growth,

the operators π(µn) converge exponentially quickly to a projection onto the

space of invariant vectors. That is, there exist 0 < λ < 1 (independent of π),

a projection P ∈ B(X) onto the space of Γ-invariant vectors, and an n0 ∈ N
such that ‖π(µn)− P‖ < λn for all n ≥ n0.
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We recall the following results obtained from combining results in [30], [28].

Theorem 7.3. Let G be a connected semisimple Lie group with all simple

factors of higher-rank and Γ < G a cocompact lattice. Then G and Γ have

strong property (T).

Proof. For the connected Lie group, this is proven explicitly in [28, §6].

For the cocompact lattices, this follows from that fact using the proof of [30,

Prop. 4.3]. In particular, the µn for Γ are constructed there explicitly from µ′n
for G, and the properties we desire all follow immediately from this definition

since the function f is chosen in CC(G). A priori, this produces a sequence of

measures µn with support in B(Dn) for some fixed number D, but by rein-

dexing one can take measures µn supported in B(n). This is not particularly

relevant to applications. �

We summarize here some history of strong property (T) and some drift

in the definitions of strong property (T). Lafforgue’s original definition only

concluded the existence of a self-adjoint projection onto the invariant vectors

[30]. In that paper, Lafforgue introduced strong property (T) and proved that

the groups SL(3, F ) for F any local field have strong property (T) for repre-

sentations on Hilbert spaces. He also noted that this implied strong property

(T) on Hilbert spaces for any Lie group containing SL(3,R) and for cocom-

pact lattice in all such groups. In subsequent papers, de la Salle and de Laat

modified the definition to explicitly include that the projection was a limit of

averaging operators defined by measures, but they did not assume that the

convergence to the limit was exponential [44, 28]. In [44], de la Salle proved

strong property (T) for a much wider class of Banach spaces for SL(3,R), and

in [28] de Laat and de la Salle proved strong property (T) for both SL(3,R)

and Sp(4,R) and its universal cover for an even wider class of Banach spaces.

These results combined with existing arguments imply strong property (T)

for all higher rank simple Lie groups and for their cocompact lattices. More

recently de la Salle has shown that the definition in [30] and the definition in

[44], [28] are equivalent if one does not necessarily assume that the measures

in question are positive [45]. It does, however, follow from the proof of [45,

Th. 3.9] that if one has positive measures converging to the projection, then

there are positive measures converging exponentially quickly to the projection,

namely the convolution powers of any measure close enough to the projection.

All existing proofs of strong property (T) explicitly construct sequences of

positive measures converging exponentially fast to a projection [30], [44], [28].

While it is not explicitly relevant here, we remark that this is also true of the

proof by Liao of strong Banach property (T) for higher rank simple algebraic

groups over totally disconnected local fields [32]. We also remark that while

many of these results extend the class to of Banach spaces satisfying strong
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property (T) to include some quite exotic Banach spaces, for our purposes it

is enough to know the property holds for θ-Hilbertian spaces.

7.2. Sobolev spaces of inner products. To prove Theorem 2.4 from Theo-

rem 7.3, we need to realize various spaces of k-jets of metrics on M as Banach

spaces acted on by Γ. What follows is a special case of the discussion in [19, §4]

and we refer the reader there for more details and justifications. Any result

stated in this subsection without a reference can be found there.

We will consider the bundle of symmetric two forms on M written as

S2(TM∗)→M . The k-jets of sections of S2(TM∗) are

Jk(S2(TM∗)) ∼=
k⊕
i=0

Si(TM∗)⊗S2(TM∗).

A background Riemannian metric on M defines Riemannian metrics on all

associated tensor bundles and hence on Jk(S2(TM∗)). There is a natural

inclusion

Ck(M,S2(TM∗)) ⊂ C0(M,Jk(S2(TM∗)))

as a closed subspace, but we note that not every section of Jk(S2(TM∗))→M

is the k-jet of a section of S2(TM∗). Given a fixed volume form ω, we denote

by Lp(M,ω, Jk(S2(TM))) the space of Lp sections of this bundle equipped

with norm defined by

‖σ‖pp =

∫
M

‖σ(m)‖pdω(m).

Here the norm inside the integral is defined by the inner product on S2(TM∗)m
induced by a fixed background Riemannian metric g on M . Note that, as M

is compact, changing the smooth volume ω or Riemannian metric g gives an

isomorphic Lp space and the identity map between any pair of such spaces is

bounded. The set of smooth sections of S2(TM∗) → M is naturally included

in Lp(M,ω, Jk(S2(TM∗)). Let W p,k(M,ω, S2(TM∗)) be the completion of the

set of smooth sections with respect to this norm, which we denote ‖·‖p,k. Thus

W p,k(M,ω, S2(TM∗)) ⊂ Lp(M,ω, Jk(S2(TM∗)))

is a closed subspace.

The following lemma verifies that all the Sobolev spaces discussed above

are in the class E10. The reader only interested in C∞ actions should consider

the case p = 2 in which all spaces discussed above are Hilbert.

Lemma 7.4. The Sobolev spaces W p,k(M,ω, S2(TM∗)) are in the class E10.

Proof. We use only three facts about E10: that it contains Hilbert spaces,

that the complex interpolation of a space in E10 with any other space is in E10,

and that E10 is closed under taking subspaces. This is equivalent to saying
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that E10 contains all θ-Hilbertian spaces. Given any complex finite dimen-

sional Hilbert space V , the space Lp(M,ω, V ) is an interpolation space of

L2(M,ω, V ) with Lp
′
(M,ω, V ) for any p′ > p and therefore in E10. Taking the

complexification of Jk(S2(TM∗)) and then passing back to the closed subspace

of real valued sections, we see that Lp(M,ω, Jk(S2(TM∗))) is in E10. As the

class E10 is closed under taking closed subspaces, W p,k(M,ω, S2(TM∗)) is also

in E10. �

Denote by Ck(M,S2(TM∗)) the space of Ck sections of S2(TM∗). In

the case that k is not integral, with l = bkc and λ = k − l, elements of

Ck(M,S2(TM∗)) = C l,λ(M,S2(TM∗)) are sections of S2(TM∗) that are l-

times differentiable and whose order-l derivatives are λ-Hölder. We will need

the following special case of the Sobolev embedding theorems.

Theorem 7.5. There is a bounded inclusion W p,l(M,ω, S2(TM∗)) ⊂
Cs(M,S2(TM∗)) where s = l − n

p .

As explained in [19, §4], this is an easy consequence of the corresponding

embedding theorem for domains in Rn and the existence of partitions of unity.

We remark that the spaces W p,l(M,ω, S2(TM∗)) are defined relative to a fixed

volume form and metric. The background volume form and metric need not

be preserved. In our arguments below, the fact that the volume form and

metric are not preserved is controlled by the uniform subexponential growth

of derivatives.

7.3. Proof of Theorem 2.4. To construct a Γ-invariant metric, we first

check that the induced action of Γ on appropriate Sobolev spaces has subex-

ponential norm growth. Note that Ck actions preserve the class of Ck−1 Riem-

manian metrics, since metrics are defined on the tangent bundle.

Lemma 7.6. Suppose that the action α : Γ→ Diffk(M) is an action with

uniform subexponential growth of derivatives. Then the induced representation

π on W p,k−1(M,S2(TM)) has uniform subexponential norm growth.

To prove Lemma 7.6, the key is to see that subexponential growth of the

first derivative implies subexponential growth of all derivatives. While this

is already observed in [25], we include a proof for completeness. We recall a

special case of [19, Lemma 6.4]. Here given a diffeomorphism φ : M →M , we

write ‖φ‖k for the norm of φ as an operator on Ck vector fields or equivalently

‖φ‖k = supx∈M ‖Jkφ(x)‖ where Jkφ is the k-jet of φ or the induced map on

Jk(TM) ∼= ⊕ki=0S
i(TM∗).

Lemma 7.7 ([19, Lemma 6.4]). Consider φ1, . . . , φn∈Diffk(M). Let Nk=

max1≤i≤n ‖φi‖k and N1 = max1≤i≤n ‖φi‖1. Then there exists a polynomial Q

depending only on the dimension of M and k such that for every n ∈ N,

‖φ1◦· · ·◦φn‖k ≤ Nkn
1 Q(nNk).
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From this we deduce the following corollary on subexponential growth of

higher derivatives.

Corollary 7.8. 6 If Γ is a finitely generated group, M is a compact

manifold and α : Γ→Diffk(M) has subexponential growth of derivatives, then

α also has subexponential growth of higher derivatives. More precisely, subex-

ponential growth of derivatives for α implies that for all ε > 0, there exists

Lε,k such that

‖α(γ)‖k ≤ Lε,keεl(γ)

for all γ ∈ Γ.

Proof of Corolary 7.8. We first remark that exponential growth of deriva-

tives is clearly equivalent to the fact that for all ε > 0, there exists an n0

such that ‖α(γ)‖1 ≤ eεl(γ) for all γ with l(γ) ≥ n0. Applying Lemma 7.7 to

words in Γ of length ln0 for l ∈ N, we see that we have for such words that

‖α(γ)‖k ≤ Le(k+1)εl(γ), where the L and the k + 1 instead of k are to absorb

the polynomial growth into the exponential. Letting L′ = supl(γ)<n0
‖α(γ)‖k,

by writing all words as products of l words of length n0 and a word of length

less than n0, we see that ‖α(γ)‖k ≤ LL′e(k+1)εl(γ) for all γ ∈ Γ. �

Proof of Lemma 7.6. From Corollary 7.8, we have that for every ε, there

is an L such that ‖α(γ)‖k < Leεl(γ). Up to relabelling ε and L to account

for the action on S2(TM∗), this implies that for σ ∈ Jk(M,S2(TM∗)), we

have a pointwise bound ‖(α(γ)∗σ)(x)‖ < ‖σ(α(γ)−1x)‖Leεl(γ). This yields the

integral bound∫
M

‖(α(γ)∗σ)(x)‖p dω(x) ≤ Lpepεl(γ)

∫
M

‖σ(α(γ)−1(x)‖p dω(x).

Write Λα(γ) for the Jacobian of derivative of α(γ). Uniform subexponen-

tial growth of derivatives implies that for every ε > 0, there is an F > 1 such

that 1
F e
−nεl(γ) ≤ Λα(γ)(x) ≤ Fenεl(γ) for every x ∈ M , where n = dim(M).

By change of variable,∫
M

‖σ(α(γ)−1(x)‖p dω(x) =

∫
M

‖σ(x)‖pΛα(γ)(x) dω(x)

so we have ∫
M

‖(α(γ)∗σ)(x)‖p dω(x) ≤ FLe(p+n)εl(γ)‖σ‖pp,k.

As ε > 0 was arbitrary, this completes the proof. �

Proof of Theorem 2.4. Fix an initial smooth metric g. From Theorem 7.3

and Lemma 7.6, there exist measures µn supported on B(n) in Γ such that

gn = π(µn)g converges to an invariant, possibly degenerate, metric gfin ∈
W p,k−1(M,S2(TM∗)). In other words gfin is a non-negative, symmetric, 2-form
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at each point, but Theorem 7.3 does not rule out that gfin is zero on some vector

at some point. Note that each gn is a linear averages of g under the measure

µn on Γ and, in particular, does not depend on p or k. Further note that

‖gn − gfin‖p,k ≤ Cnp,k for some O < Cp,k < 1 and all n sufficiently large. Ap-

plying Theorem 7.5, it follows that gfin is in C
k−1−dim(M)

p for all choices of p

and is thus Ck−1−β for all β > 0. If the action is by C∞ diffeomorphisms, this

proves gfin is C∞. If the action is C2, the metric gfin is only Hölder.

It remains to check that gfin is not degenerate. This follows as the av-

eraged metrics gn degenerate subexponentially while the convergence to gfin

is exponentially fast. To see this explicitly, we check that gfin(v, v) > 0 for

any unit vector v in TMm. The Sobolev embedding theorems imply that

‖gn − gfin‖0 < KCn for some 0 < C < 1, K > 0, and all sufficiently large n.

Choose ε > 0 with Ceε < 1. Uniform subexponential growth of derivatives

implies that there is a constant L > 0 such that

‖g(Dα(γ)(v), Dα(γ)(v))‖ ≥ Le−εl(γ).

This implies that

gn(v, v) ≥ Le−εn‖v‖2.

If gfin(v, v) = 0, then it would follow that gn(v, v) ≤ Cn whence Le−εn < KCn

for all sufficiently large n. But then

L

K
≤ (Ceε)n

for all sufficiently large n, a contradiction. �

Appendix A. Table of root data

Table 1 on page 940 includes Dynkin diagrams of all irreducible root sys-

tems and an enumeration of the simple roots relative to a choice of base Π.

We also include the highest and second highest roots δ and δ′ relative to the

base Π and the resonant codimension of all maximal parabolic subalgebras

qj := qΠr{αj}.
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Dynkin diagram and Highest root δ and second-highest root δ′;

simple roots resonant codimension r̄(qj) where qj = qΠr{αj}

A` α1 α2 α`−1 α`

δ = α1 + · · ·+ α`

r̄(qj) = 1
2

(
(`+ 1)2 − j2 − (`+ 1− j)2

)
B` α1 α2 α`−1 α`

δ = α1 + 2α2 + · · ·+ 2α`

r̄(qj) = 1
2

(
`(2`+ 1)− j2 − (`− j)(2(`− j) + 1)

)
C` α1 α2 α`−1 α`

δ = 2α1 + 2α2 + · · ·+ 2α`−1 + α`
δ′ = α1 + 2α2 + · · ·+ 2α`−1 + α`

r̄(qj) = 1
2

(
`(2`+ 1)− j2 − (`− j)(2(`− j) + 1)

)
BC` α1 α2 α`−1 α`

δ = 2α1 + 2α2 + · · ·+ 2α`−1 + 2α`
δ′ = α1 + 2α2 + · · ·+ 2α`−1 + 2α`

D`
α1 α2 α`−2

α`−1

α`

δ = α1 + 2α2 + · · ·+ 2α`−2 + α`−1 + α`

r̄(qj) = 1
2

(
`(2`− 1)− j2 − (`− j)(2(`− j)− 1)

)
for 1 ≤ j ≤ `− 2

r̄(qj) = 1
2

(
`(2`− 1)− `2

)
for `− 1 ≤ j ≤ `

E6

α1 α3

α6

α4 α5

δ = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6

r̄(q1) = 16 r̄(q2) = 25 r̄(q3) = 29

r̄(q4) = 26 r̄(q5) = 16 r̄(q6) = 21

E7

α1 α4

α7

α5 α6

δ = α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + 2α7

r̄(q1) = 27 r̄(q2) = 42 r̄(q3) = 50

r̄(q4) = 53 r̄(q5) = 47 r̄(q6) = 33

r̄(q7) = 42

E8

α1 α5

α8

α6 α7

δ = 2α1 + 3α2 + 4α3 + 5α4 + 6α5+

4α6 + 2α7 + 3α8

δ′ = α1 + 3α2 + 4α3 + 5α4 + 6α5+

4α6 + 2α7 + 3α8

r̄(q1) = 57 r̄(q2) = 83 r̄(q3) = 97

r̄(q4) = 105 r̄(q5) = 106 r̄(q6) = 98

r̄(q7) = 78 r̄(q8) = 92

F4 α1 α2 α3 α4

δ = 2α1 + 3α2 + 4α3 + 2α4

δ′ = α1 + 3α2 + 4α3 + 2α4

r̄(q1) = 15 r̄(q2) = 20 r̄(q3) = 20 r̄(q4) = 15

G2 α1 α2

δ = 2α1 + 3α2 δ′ = α1 + 3α2

r̄(q1) = 5 r̄(q2) = 5

Table 1. Roots systems, highest and 2nd highest roots, and

resonant codimension of maximal parabolic subalgebras
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