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1. Introduction

In this note, we offer a new proof of the following result:

THEOREM 1.1. — For every n > 2, there exist only finitely many maximal
arithmetic reflection groups I' C Isom(H").

Nikulin proved in [Nik80] that there were at most finitely many maximal arithmetic
reflection groups in each dimension n where the degree of the adjoint trace field is
fixed. Therefore Theorem 1.1 follows from bounding the degree of the number field
and our main contribution is to give a new proof of the following:

THEOREM 1.2. — For every n > 2, there exists d,, > 0, such that if " is arithmetic
reflection group in H", then degree of the adjoint trace field of I' over Q is at most d,,.

The fact that Theorem 1.1 implies finiteness of all maximal arithmetic reflection
groups can be deduced in a variety of ways from prior work of Nikulin, Prokhorov
and Vinberg, see the introduction to [ABSWO08] or the survey [Bell6]. We note here
that we do not use that the reflection group is maximal in our proof of Theorem 1.2.

We briefly discuss the prior history of finiteness of maximal arithmetic reflec-
tion groups, referring the reader to Belolipetsky’s excellent survey for more details
on this and other related points [Bell6]. In [LMRO6], Long, Maclachlan and Reid
prove finiteness of arithmetic surfaces of genus zero, which implies the desired result.
Shortly afterwards, Agol proved finiteness of maximal arithmetic Kleinian reflec-
tion groups in [Ago06]. Following that work there were two independent proofs
of finiteness in higher dimensions, one by Nikulin and one by Agol, Belolipetsky,
Storm and Whyte [ABSWO08, Nik07]. Roughly [ABSWO08|] generalizes the proofs
of [Ago06, LMRO6] to higher dimensions using some new inputs, while [Nik07] uses
older reflection group technology from Nikulin’s prior work on finiteness to prove the
case of general dimension by induction where the base case depends on the results
in dimension 2 and 3. In either case, the proofs relies in the end in a central way
on deep results in the theory of automorphic forms that provide an absolute lower
bound on the first eigenvalue of the Laplacian on the relevant orbifolds. Our main
motivation in writing this note is to give a proof that is independent of the spectral
bounds and the theory of automorphic forms.

Our main tool will be the following:

LEMMA 1.3 (Arithmetic Margulis Lemma). — For every n > 0, there exists €,
such that if I' C Isom(H") is an arithmetic group whose trace field has degree d over
Q, then for every x € H", the group:

[, :={y el |dug(yz,z) < e,d})
is virtually solvable.

This lemma is proven in [MHR22] using Breuillard’s height gap theorem from [Brell].
Breuillard’s proof of the height gap theorem is also far from elementary, but a recent
elementary proof was obtained by the second author with Chen and Lee [CHL21]. In
particular, our proof of Theorem 1.1 does not rely on heavy machinery from number
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theory or representation theory in any way. We thank Ian Agol for suggesting that
it might be interesting to find such a proof.

We mention briefly here that once Theorem 1.2 was known, further work has
been done on explicitly computing d,. For a fairly up to date account of these
developments see [Bell6, Section 5|. Only dy has been computed exactly in more
recent work of Linowitz [Lin18]. To achieve anything in this direction by our methods
would require an effective version of Lemma 1.3 and so an effective version of the
height gap theorem. This seems quite difficult in general, but could perhaps be easier
in the explicit settings required for the study of hyperbolic reflection groups.

We finish this introduction by giving an outline of the Proof of Theorem 1.2 in the
case n = 2. Assume I is an arithmetic reflection group generated by reflections in
the sides of an acute-angled polygon P in H2. Let £ = {ey, e, ..., €} be the edges
of P and consider the collection of balls B = { By, By, ..., By} of radius % centered
at the midpoints of the edges of P, where €5 is the constant in Lemma 1.3 and d is
the degree of the trace field of T'.

If a ball B; € B intersects three edges (or intersect two other balls in B), the group
generated by reflections in these three sides will be typically a non-virtually solvable
group™, therefore if d is sufficiently large, Lemma 1.3 implies the balls in B typically
cannot have triple intersections and intersect at most two edges of P. To illustrate
the argument, assume there are no triple intersections of balls of B and that each
ball in B intersects only one edge, and so half of each ball is contained in P. This
implies that the area of P has to be greater than £Vol(Bpz(exd)), but elementary
hyperbolic geometry shows that P has volume at most (k — 2)w. If d is sufficiently
large both inequalities are not possible. In the case n > 3, we will apply a similar
argument to a two-dimensional face of P, in this case we will also need to make use
of the simplicity of such polyhedra due to Vinberg and a theorem of Andreev.

Remark. — Very shortly after we shared a draft of this paper, Jean Raimbault
replied with an even shorter proof of Theorem 1.1. Raimbault’s proof uses [MHR22,
Theorem D] and a remarkable new result: for any reflection hyperbolic manifold in
dimension n, the thin part has at least a fixed proportion of the volume [Rai22].
Since [MHR22, Theorem D] uses the trace formula, we remark here that it is also
possible to produce a proof of Theorem 1.1 using [MHR22, Theorem C], Raimbault’s
lower bound on the volume of the thin part, and Nikulin’s results from [Nik80]. While
Raimbault’s proof is shorter and more conceptual than ours, it seems interesting to
publish our approach as the proof is more elementary and the ideas might prove
useful for a variety of problems concerning real and complex hyperbolic lattices
generated by torsion elements.

(D ynless the three edges are adjacent and meet at right angles, a problematic case that requires
further considerations
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2. Proof of Theorem 1.2

DEFINITION 2.1. — For a hyperplane H in H", let Iy be the involution in H"
with respect to H. Let us define Fix(H) to be the set of fixed points of Iy in the
boundary OH".

Let P be the acute-angled hyperbolic polytope defining I'; and so there exists a col-
lection of oriented hyperplanes { H,}ae 1, such that P =N H} and ' = ({Ig, }ac1)-
We will argue by contradiction and suppose that I' is defined over a number field
of degree d > d,,, where d, is the smallest positive integer such that the ball B of
radius d,€,/4 in H? satisfies:

(2.1) Volggz (Bae,/a) = 127

where €, is the constant in the Arithmetic Margulis Lemma 1.3.

For now, we work with any acute angled polyhedron P, where the associated
group I' is not necessarily arithmetic or even cofinite volume. Our other main tool,
Lemma 2.6, holds in this generality.

We will make use of the following results of Andreev [And71] and Vinberg about
the polyhedron P.

THEOREM 2.2 (Vinberg [Vin85, Cor. Thm 3.1]). — Let P be an acute-angled
polytope in H". Then P is simple, meaning that for every k, each face of codimension
k is contained in exactly k codimension-one faces.

We note for clarity that the polytope here is contained in H" and so face in this
statement does not include vertices at infinity. In [Vin85], Vinberg proves this result
for the polygon before defining vertices at infinity and never claims the analogous
result for vertices at infinity. The statement is not true for vertices at infinity. This
is easily seen by considering the all right dodecahedron in dimension 3 where some
vertices at infinity have links that are squares not triangles or the all right 24-cell
in dimension four which has vertices at infinity with links that are cubes and not
simplices.

THEOREM 2.3 (Andreev). — Let P be an acute-angled polyhedron and suppose
{F;} is a (finite or countable) collection of codimension one faces of P and {H,} is
the corresponding collection of hyperplanes in H". Then

Here the closures occurring in the statement occur in H™ and we assume a point in
the boundary of H" has dimension —1 and that the empty set has dimension —oo.
One can read Andreev’s theorem as saying that the faces of the polygon do not have
“extra” intersections not already occurring in P.

We will use repetitively the following elementary facts:

PROPOSITION 2.4. — If T is a virtually solvable discrete subgroup of Isom(H"),
then there exists x € H" U OH" such that |T'z| < 2. Moreover if T is not finite, then
xr € OH".
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Proof. — If I is finite then I" fixes a point in H", so assume I" is infinite. Let ['y < T°
be a finite index solvable subgroup which we can choose to be a normal subgroup.
Then I'y < P a parabolic subgroup of Isom(H"), as can be seen, for example, by
considering its Zariski closure. By definition P is the stabilizer of a point x in OH"
and I'g fixes this point. Either I" also fixes x or I'y has more than one fixed point. It
is easy to see that the later case only occurs when Iy is the stabilizer of a geodesic
and that in this case it fixes exactly two points in OH" which are permuted by I'. [

PROPOSITION 2.5. — Suppose H, and H, are two hyperplanes in H", and suppose
that Hy N Hy # 0, then if x ¢ Fix(H,) UFix(Hs) and T := (Iy,, In,) is the subgroup
generated by reflections in Hy, Hy, then |l'z| > 3.

Proof. — The hypotheses imply that H" \ Fix(H;) UFix(H,) has four components.
If one picks z in any of those four components, then I'x is easily seen to visit all four
components. ]

We begin the proof of Theorem 1.2. Choose a 2-dimensional face F' of P, and
cyclically enumerate its collection of edges eqg,eq, ..., €, in such a way that e; is
adjacent to e;11. By the simplicity of P we have that F' is contained in exactly
H,, H,, ..., H, 5 hyperplanes determining faces of P and so F = (ﬂ?:_ij) NP,
and for each edge e; there exists a unique hyperplane H,, such that e; = F'N H,,.

Our main technical tool in the proof is:

LEMMA 2.6. — Let e;,¢;, e, be three different edges of F', let

o= {In, In, In Iy o Tu, )
then at least one of the following holds:

(1) Ty is not virtually solvable.
(2) The edges e;, e, ), are all adjacent, and so up to reordering j = i+1,k = i+2.
Moreover the angles at e; N e;y1, and e;11 N e;42 are both 7.

Proof. — Observe that T’y is not finite, otherwise I'y has a fixed point in the
interior that must be in the intersection of Hj, ... H, o, H.;,H.;, He,, but that
would contradict the simplicity of P (Theorem 2.2).

We will show that if item 2) does not hold then I'y is not virtually solvable. By
Proposition 2.4 we have to show that if x € 9H", we must have |T'gz| > 3

Let

P8

H? := HiNHy--- N H, s
and consider the following cases:

Case 1: Suppose x ¢ H?, and so up to reordering suppose that Iy, _,(z) # z. If
either Iy, (), 1 He, (), I, () are different than x, as H,,_» intersect the hyperplanes
He,, He;, H.,, then we can apply 2.5 to show |I'gz| > 3. Therefore Iy, (z) = Ip, (z) =
Iy, (v) = x, moreover as Iy, ,(x) is also not fixed by Iy, ,, the same argument shows
that both = and Iy, ,(z) are fixed by In,, ... In, s, In,,, In.;; In,,, but then the
line [ := x1y, ,(x) must be fixed by Ip,, ... In, 4 Iu,,, I, In,, and by Andreev’s
Theorem we must have that [ contains a one dimensional face e of P, contradicting
the simplicity of P at e.
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Case 2: Suppose x € H?. If Iy, (z) ¢ H?, then I, (x) is not fixed by some
Iy, and as H., intersects H;, Lemma 2.5 implies that |['o(x)| > 3. Similarly we
can assume that Ip,, (), In,, () € H?. Let I;, 1,1y be the lines containing e;, e;, e
respectively.

Suppose x ¢ Fix(H,,) U Fix(H,,) U Fix(Hy) and |[[oz| = 2, then the line
l:=xal H., () must be orthogonal to all three of H,,, H.;, H, and each of them con-
tains a codimension one face of P, and this contradicts the convexity of P. Therefore
we can assume that Iy, (v) = 2. If [; (similarly [;) intersects /; and the angle at the
intersection is not 7, it follows that all x, Iy, () and Iy, In, () are all distinct and
we are done. Therefore we have (up to renaming) that either:

Case 2a: The line [; intersects [ at angle 7 but /; does not intersect [; (in the
interior of H?). In this case the set {z, Ip,, (), Iy, (x), In,, (Im,, (x))} contains at
least three different points and so |I'g(z)| = 3.

Case 2b: The line /; does not intersect ; U lj, in the interior of H2. By Andreev’s
theorem 2.3 again, if /; intersects either [; or [; at infinity, it does so in a vertex at
infinity of P and then by convexity only one of the two intersections can occur at x.
In this case, we can suppose that Iy, (z) # x, and we have that Iy, () is not fixed
by Ip,, therefore x, Iy, (), In,, In,. (z) are all distinct. We remark that this case is
not actually needed for the proof of our main results, since non-compact arithmetic
reflection groups all have trace field Q.

Case 2c: The line [; intersects both /; and [, perpendicular. In this case Andreev’s
Theorem 2.3 implies that e;, e;, e, are adjacent and perpendicular as in item 2) and
we are done. U

To illustrate Lemma 2.6 and for ease of use, we state the following easy corollary.

COROLLARY 2.7. — Let & ={e;,, ..., e;. } be a set of k different edges of F, let

o= (L s Ty Tos s T )

If k > 3 then I'¢ is not virtually solvable. Moreover if k = 3 and F' has finite volume
and three sides, then I'¢ is also not virtually solvable.

Proof. — If k > 4, we can simply pick three non-adjacent edges in &£, and apply
Lemma 2.6, noting that the second conclusion cannot hold. If k = 4, then if I'¢ is
virtually solvable so is the group generated by omitting any edge from £. This implies
that each triple of edges is adjacent with all angles right angles. In other words F
has four sides with all right angles, which is impossible in hyperbolic geometry.
The last statement is just the fact that hyperbolic triangle groups are not virtually
solvable. This can be deduced from Lemma 2.6, since the configuration in the second
conclusion of that lemma cannot be a hyperbolic triangle even with the last vertex
at infinity, since the angle sum is at least . ([l

We now restrict our attention to polygons P for which I' is an arithmetic lattice.

DEFINITION 2.8. — We say that an edge e; of F' is small (or large) if the hyperbolic
length I(e;) < < (I(e;) > <), where € is the constant in the Arithmetic Margulis
Lemma 1.3.

PROPOSITION 2.9. — There are no two consecutive small edges e;,e;+1 in F'.
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Proof. — Let’s argue by contradiction, suppose that ¢« = 2 and that e,, e3 are small,
and assume that F’ has at least four edges. Let

[y := <[H61 ) IH&Q’ [H6371H64’IH1’ T IH"*2> ’

By the arithmetic Margulis lemma I'y applied to the vertex e; Nes, I'y is virtually
solvable, but then this contradicts Corollary 2.7. For the case of F' having 3 sides, the
argument is similar and simpler. One considers the vertex where the two consecutive
short edges meet and notices that this vertex is close to all hyperplanes in F'. The
Margulis Lemma then implies that the group generated by the reflections giving all
faces of F' is virtually solvable and this is impossible by Corollary 2.7. U

So from now on we can assume that there are no two small consecutive edges in
F, and so at least m/2 among ey, ey, ..., e, are large.

PROPOSITION 2.10. — If e; is large, there exists q; € e; such that the ball B;
in the plane containing F' with center q; and radius ed/4 satisfies that half of B; is
contained in F', more precisely Vol(B; N F) = %VOI(BZ').

Proof. — Consider a closed ball B; of radius ed/4 centered at the midpoint p; of
s;. We will slide the ball B; along s; (moving the center p; in the edge e;) until half
of B; is totally contained in F' as follows:

Let x;,y; be the vertices of e;. If B; does not intersect another edge of F' we are
done. Suppose that B; intersects another edge e; # e;, we start moving B; as follows:

Case 1: If ¢; is adjacent to e;, say e; = e;_1, we slide B; towards y;, until either
the interior of half of B; is totally contained in F' and we are done, or until at some
point B; intersects three different edges including e;_;(tangencies count), so we have
that B; intersects e;,e; 1 and e, k # i,7 — 1, and moreover the angle at x; is less
than 90 degrees. By the Arithmetic Margulis Lemma applied to the center of B;, we
have that I'o := (Iu,,, In,, ,Iu.,, Imys - - In, ) is virtually solvable, contradicting
Lemma 2.6, and so this triple intersection is not allowed.

Case 2: The idea is the same. If ¢; is not adjacent to e;, we slide B; towards
x; until half of B; is totally contained in F', or until half of B; intersects another
edge e;. By the Arithmetic Margulis Lemma applied to the center of B;, we have
that I'o := (In,,, In.,, I, Iy, - - - Iu,_,) is virtually solvable, and so by Lemma 2.6
ej, ek, €; are consecutive and the angles at e; Ney, e Ne; are 7, we now slide B;
towards y; until half of B; is either totally contained in P or we have that B; intersects
e;,e; and another edge e; (different that ey). In this case, again by the Arithmetic
Margulis Lemma and Lemma 2.6, we have e;, ¢, ¢; are adjacent and perpendicular.
This then implies that F' has four edges and all angles 7, which is impossible. [

We can now finish the proof of Theorem 1.2 by the following volume considerations.

For every large edge e; consider the half ball B; N F', observe that by the Arithmetic
Margulis Lemma and Lemma 2.6, no four of these half balls intersect non-trivially.
If four balls did intersect non-trivially, the group generated by the reflections in the
corresponding sides would be virtually solvable by the Arithmetic Margulis Lemma,
which easily contradicts Lemma 2.6 or Corollary 2.7. Now recalling that F' has m
edges and at least m /2 large edges, we have:

TOME 6 (2023)



158

D. Fisher & S. Hurtado

m Vol(B)

3Vol(F) = Y Vol(B;NF) > 5 5

ilarge

Subdividing F' into triangles, elementary hyperbolic geometry shows (m — 2)w
> VoI(F'), which implies that 127 > vol(B;) and contradicts that d > d,, by equa-
tion (2.1).
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