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Abstract: A rooted tree is �-reconstructible if it is determined
by its multiset of rooted subtrees (with the same root) obtained
by deleting � vertices. We determine which rooted trees are �-
reconstructible for � ≤ 3 and show how this can be used to study
reconstructibility of unrooted trees.
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1. Introduction

A graph is �-reconstructible if it is determined by its multiset of (unlabeled)
subgraphs obtained by deleting � vertices. The famous Reconstruction Con-
jecture of Kelly [4, 5] and Ulam [16] is that every graph with at least three
vertices is 1-reconstructible. Manvel [9, 10] refined the conjecture.

Conjecture 1.1 (Manvel [9, 10]). For � ∈ N, there exists a threshold M�

such that every graph with at least M� vertices is �-reconstructible.

The original Reconstruction Conjecture is M1 = 3. Manvel named the
generalization “Kelly’s Conjecture” in honor of the final sentence in Kelly [5],
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which suggested that one can study reconstruction from the (n − 2)-deck.
Manvel noted that Kelly maybe expected the statement for � = 2 to be false.

When discussing �-reconstructibility, the multiset of subgraphs of an n-
vertex graph G obtained by deleting � vertices is called the (n − �)-deck or
simply the deck of G, denoted Dn−�(G). We are given only the isomorphism
class of each subgraph and do not know which vertices were deleted. The
resulting

(n
�

)
subgraphs are called the cards of the deck. For an n-vertex

graph G, being �-reconstructible means that no other graph has the same
(n − �)-deck as G, or Dn−�(G) = Dn−�(H) implies G ∼= H.

The following elementary observation motivates the extension from 1-
reconstructibility to �-reconstructibility.

Observation 1.2. For any graph G, the k-deck Dk(G) determines the (k−1)-
deck Dk−1(G).

Proof. Each card in Dk−1(G) appears in exactly |V (G)| − k + 1 cards in
Dk(G).

Thus every graph that is �-reconstructible is also (� − 1)-reconstructible,
and the goal is to determine for each graph G the maximum � such that G is
�-reconstructible, which we may call its maximum reconstructibility.

Nýdl [13] proved that M� in Conjecture 1.1 grows superlinearly in �,
if it exists. For some restricted families, existence of a threshold is known.
According to Nýdl [14], Bondy and Hemminger [1] mentioned a preprint
of Giles proving that sufficiently large trees are �-reconstructible, but this
was apparently never published. Recently, Groenland, Johnston, Scott, and
Tan [3] proved that n-vertex trees are reconstructible from their k-decks when
k ≥ 8

9n + 4
9
√

8n + 5 + 1. This implies that n-vertex trees are �-reconstructible
when n ≥ 9� + 24

√
2� + o(

√
�). For k = n − 3, the general result reduces to

n-vertex trees being reconstructible from their (n − 3)-decks when n ≥ 194.
A smaller threshold for �-reconstruction of trees is conjectured. Nýdl [12]

conjectured that trees with at least 2�+1 vertices are weakly �-reconstructible,
meaning that no two such n-vertex trees have the same (n − �)-deck. Groen-
land et al. [3] found one counterexample by computer, consisting of two 13-
vertex trees with the same 7-deck. Giles [2] proved that trees with at least
six vertices are 2-reconstructible, and this is sharp (on five vertices, the tree
obtained by subdividing one edge of the star with three edges has the same
3-deck as the disjoint union of a 4-cycle and an isolated vertex).

In [7], the present authors proved that n-vertex acyclic graphs form an
�-recognizable family when n ≥ 2� + 1 (and (n, �) �= (5, 2)), meaning that
membership in the family is determined by the (n − �)-deck. (The proof
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for n ≥ 2� + 2 is simpler.) The combination of �-recognizability and weak
�-reconstructibility is �-reconstructibility, so the modification of Nýdl’s con-
jecture with the counterexample from [3] is now the following.

Conjecture 1.3. For n ≥ 2� + 1 (except (n, �) ∈ {(5, 2), (13, 6)}), every
n-vertex tree is �-reconstructible, and this threshold is sharp.

For sharpness in general, Nýdl found two trees with 2k vertices having the
same k-deck. A spider is a tree where at most one vertex has degree at least
3. Let Sa1,...,ad

denote the spider consisting of a vertex of degree d that ends
paths with lengths a1, . . . , ad; the tree has 1 +

∑d
i=1 ai vertices. Nýdl proved

that Sk−1,k−1,1 and Sk,k−2,1 with 2k vertices have the same k-deck. A short
proof of this was given by Kostochka and West [8] using the tools developed
by Spinoza and West [15] for graphs with maximum degree 2.

The threshold n ≥ 2� + 1 works for several other restricted families.
Spinoza and West [15] proved that all graphs having maximum degree at
most 2 and at least 2� + 1 vertices are �-reconstructible. Furthermore, this
is sharp, since the path P2� and the disjoint union C�+1 + P�−1 of a cycle
and a path have the same �-deck. In fact, [15] determined the maximum
reconstructibility for all graphs with maximum degree at most 2.

Also, in [7] the present authors proved that if n ≥ 2� + 1, then n-
vertex graphs having no component with more than n − � vertices are �-
reconstructible. The result is sharp, since two graphs with 2� vertices that
are disjoint unions of paths (P� + P� and P�+1 + P�−1) have the same �-deck.
This follows from the result of Spinoza and West [15] that any two graphs
with the same number of vertices and edges whose components are all cycles
with at least k + 1 vertices or paths with at least k − 1 vertices have the same
k-deck. Furthermore, as noted by Kostochka and West [8], �-reconstructibility
of graphs consisting of �−1 isolated vertices plus one component with n−�+1
vertices is equivalent to the original Reconstruction Conjecture.

Results on �-reconstructibility for small � are also known for degree lists,
connectedness, random graphs, disconnected graphs, complete multipartite
graphs, 3-regular graphs, and r-regular graphs that are not 2-connected. Kos-
tochka and West [8] surveyed these results. In addition to their general result
on trees, Groenland et al. [3] also extended some of the other earlier results.
They proved that the degree list of an n-vertex graph is reconstructible from
the k-deck when k ≥

√
2n log(2n) and that the family of connected n-vertex

graphs is �-recognizable when n ≥ 10�.
In this paper, motivated by the problem of �-reconstructibility of trees,

we study �-reconstructibility of rooted trees from rooted connected subtrees.
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Definition 1.4. A rooted tree is a tree with one vertex distinguished as a
root; other vertices are undistinguished, with no order specified among them.
The rooted pieces or r-pieces of a rooted tree are the rooted subtrees that are
the components obtained by deleting the root, with the original neighbors of
the root designated as the roots in the r-pieces. The size of an r-piece is its
number of vertices.

A rooted connected card or rc1-card of a rooted tree T with root z is a
rooted tree T ′ with root z obtained by deleting a leaf of T other than z. More
generally, the rc�-cards of a rooted tree with n vertices and root z are the
rooted subtrees with n − � vertices that have root z. The rc�-deck of a rooted
tree is the multiset of its rc�-cards; the root vertex is known in each card, but
otherwise the vertices are unlabeled.

As suggested earlier, proving reconstructibility for the graphs in a particu-
lar family G often is done in two steps. First we show that every graph having
the same deck as a graph in G is also in G; this is defined as showing that the
family is recognizable. We can then restrict our attention to reconstructions
in G to show that only one graph (in G) has this deck; this is showing that
the family is weakly reconstructible. Weakly �-reconstructible means doing this
with the (n − �)-deck.

In the context of rooted trees, “weakly �-reconstructible” acknowledges
the stipulation that the full structure is a rooted tree. However, the very
notion of rc�-deck is unclear for rooted graphs that are not rooted trees,
so the model makes sense primarily for rooted trees. Hence it would not
be confusing to use “�-reconstructible” in this context. Nevertheless, we will
maintain the precise language in stating results, saying that a rooted tree is
weakly �-reconstructible if no other rooted tree has the same rc�-deck.

Our main result is that rooted trees are weakly 3-reconstructible, with
certain exceptions, and that the exceptions can be distinguished by know-
ing certain additional information such as the number of leaves and/or the
number of copies of the spider S2,1,1.

Along the way, we need to prove the analogous results for reconstruction
from rc1-decks and rc2-decks. Giles [2] used this tool in proving that trees
with at least six vertices are 2-reconstructible. However, he did not include all
the details of the proof that rooted trees (with certain exceptions) are weakly
2-reconstructible. Since we need that result, for completeness we include a
full proof.

Our results for rooted trees are proved in the next section. In the final
two sections, we show how they apply to 3-reconstructibility of trees. We first
recognize that the deck comes only from a tree. The basic idea is then to iden-
tify a particular vertex of the tree in a subset of the cards in the deck so that
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the resulting rooted trees form the rc3-deck of the original tree when viewed
as a tree rooted at that vertex. The results on weak 3-reconstructability of
rooted trees then determine the tree.

Using this approach, we showed that trees with at least 25 vertices are
3-reconstructible. We present only a portion of the proof, showing that the
trees in a restricted class are 3-reconstructible, because the details of the
omitted cases are quite long (another 23 manuscript pages), and because the
result of Groenland et al. [3] yields 3-reconstructibility for trees with at least
194 vertices, which omits only finitely many cases. The full details of our
proof can be found at https://faculty.math.illinois.edu/~west/pubs/tree3rec.
pdf. Our aim here is to illustrate applicability of weak 3-reconstructibility of
rooted trees. It is likely that the theorem and its application generalize to
larger �, but that might require long proofs.

2. Weak reconstructibility of rooted trees

In discussing weak reconstructibility of rooted trees, we know that we have
the rc�-deck of a rooted tree. We consider only rooted trees as reconstructions
and ignore the problem of showing that the deck comes from a rooted tree.
Our proof of the first result is similar to Kelly’s original proof that trees
are reconstructible, with the r-pieces here being analogous to arms from the
centers of trees in his proof.

Theorem 2.1. Rooted trees are weakly 1-reconstructible.

Proof. We assume that we are given the rc1-cards of a rooted n-vertex tree T .
We use induction on n. When n ≤ 2, there is only one n-vertex rooted tree.
When n = 3, there are two n-vertex rooted trees, and they are distinguished
by the number of rc1-cards. For the induction step, suppose n > 3, and let z
be the root of T .

Since n ≥ 4 and z is given in each card, T has only one r-piece if and
only if every rc1-card has only one r-piece. Hence we know whether T has one
r-piece or more than one.

If T has only one r-piece, then let T ′ be the rooted tree obtained from
T − z by designating the neighbor of z in T as the root z′. The rc1-cards of
T ′ are obtained from those of T by deleting z and designating its neighbor as
the root z′. By the induction hypothesis, we can reconstruct T ′ from these,
and we reconstruct T by adding z to T ′, adjacent to z′.

Hence we may assume that T has more than one r-piece. Over all the
rc1-cards of T , the r-pieces include the r-pieces of T plus some rooted trees
that are not r-pieces of T , obtained by deleting a leaf of an r-piece of T . In

https://faculty.math.illinois.edu/~west/pubs/tree3rec.pdf
https://faculty.math.illinois.edu/~west/pubs/tree3rec.pdf
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particular, all the largest r-pieces that arise are actual r-pieces of T , since
they cannot arise from a larger r-piece by deleting a vertex.

If all r-pieces in all cards have only one vertex, then T is a star rooted at
the center. We can recognize this, so in the remaining case some r-piece of T
has more than one vertex.

Among all the largest r-pieces of the rc1-cards, let M be one that occurs
most often. Cards not having the maximum number of r-pieces isomorphic
to M arise by deleting a leaf of an r-piece isomorphic to M . Let v be a leaf
of M , and let L = M − v, with the same root. Among the rc1-cards of T
not having the maximum number of r-pieces isomorphic to M , find a card T ′

with the most r-pieces isomorphic to L. Reconstruct T by replacing an r-piece
isomorphic to L in T ′ with an r-piece isomorphic to M .

Before we discuss weak 2-reconstructibility of rooted trees, we note some
exceptions.

Example 2.2. Rooted trees with common rc2-decks. For n ≥ 3, there are
two n-vertex rooted trees having the same rc2-deck with one rc2-card. Let P̂n

denote the path Pn as a rooted tree with an endpoint as the root. The only
rc2-card of P̂n is P̂n−2. Let P̂ ′

n denote the rooted tree consisting of P̂n−2 with
two children added at its leaf. Again P̂n−2 is the only rc2-card.

For n ≥ 5, there are two n-vertex rooted trees having the same rc2-deck
with three rc2-cards. Let Q̂n be the n-vertex rooted tree obtained from P̂n−4
by appending two copies of P̂2 at the leaf. Let Q̂′

n be the n-vertex rooted tree
obtained from P̂n−4 by appending P̂1 and P̂ ′

3 at the leaf. Both Q̂n and Q̂′
n

have rc2-deck consisting of two copies of P̂n−2 and one copy of P̂ ′
n−2. These

rooted trees are shown (with others) in Figure 1.

Definition 2.3. A rooted tree is trivial if it has only one vertex. The root-
degree of a rooted tree is the degree of the root. We write a rooted tree with
r-pieces T1, . . . , Td as U(T1, . . . , Td). An rc�-card of a tree T with root degree
d∗ is j-slim if it has root-degree d∗ − j.

Theorem 2.4. Except for {P̂n, P̂ ′
n, Q̂n, Q̂′

n}, rooted n-vertex trees are weakly
2-reconstructible. Knowing also the number of leaves distinguishes the excep-
tions having the same rc2-deck.

Proof. We have the rc2-deck of an n-vertex rooted tree T , with root z specified
in each rc2-card. If n = 2, then T = P̂2. If n = 3, then T ∈ {P̂3, P̂ ′

3}.
If T has no vertices other than z and its children, then T has

(n−1
2

)
rc2-

cards, all stars, and no other n-vertex rooted tree has this many rc2-cards. If
T has exactly one vertex other than z and its children, then T has

(n−2
2

)
+ 1
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rc2-cards; again T is determined. For n = 4, this leaves only P̂4 and P̂ ′
4, which

have the same rc2-deck but different numbers of leaves. This completes the
proof for n ≤ 4; we proceed inductively with n ≥ 5.

Let d∗ = dT (z). In the remaining cases, T has at least two vertices that
are not children of z. Now d∗ is the maximum of the root-degrees in the rc2-
cards, and d∗ ≤ n − 3. The root-degree is the number of r-pieces of T , which
we now know.

If d∗ = 1, then T has only one r-piece; let z′ be the child of z. Let T ′ be the
r-piece of T (that is, T ′ = T −z with z′ as root). The rc2-cards of T ′ arise from
those of T by deleting z and are rooted at z′. By the induction hypothesis, we
can reconstruct T ′ from its rc2-deck unless T ′ ∈ {P̂n−1, P̂ ′

n−1, Q̂n−1, Q̂′
n−1},

which holds if and only if T is the corresponding member of {P̂n, P̂ ′
n, Q̂n, Q̂′

n}
(the cases T ∈ {Q̂n, Q̂′

n} do not arise when d∗ = 1 until n ≥ 6). We re-
construct T by adding z adjacent to z′ in T ′; in the exceptional cases the
number of leaves distinguishes between the two members of a pair with the
same rc2-deck.

Hence we may assume 2 ≤ d∗ ≤ n−3. When n = 5, we thus consider only
instances with d∗ = 2; they are Q̂5 and Q̂′

5 (from Example 2.2) and U(P̂1, P̂3).
Since U(P̂1, P̂3) has two rc2-cards while Q̂5 and Q̂′

5 have three, U(P̂1, P̂3) is
reconstructible, while Q̂5 and Q̂′

5 have the same rc2-deck but have different
numbers of leaves. Hence we may assume n ≥ 6.

Note that T has at least two trivial r-pieces if and only if T has an rc2-
card with root-degree d∗ − 2. In this case, we reconstruct T by adding two
trivial r-pieces to such a card.

Hence we may assume that all rc2-cards have root-degree at least d∗ − 1,
and T has at most one trivial r-piece. In the remainder of this proof we use
“slim card” to denote a 1-slim rc2-card. There are at least d∗ − 1 slim cards
when T has a trivial r-piece, with equality only when all other r-pieces are
paths with at least three vertices. When T has no trivial r-piece, the number
of slim cards is the number of r-pieces isomorphic to P̂2, which is at most d∗.
Hence we know whether T has a trivial r-piece unless the deck has d∗ − 1 or
d∗ slim cards.

Suppose first that T has exactly d∗ slim cards and has reconstructions
both with and without a trivial r-piece. The reconstruction without a trivial
r-piece is U(P̂2, . . . , P̂2), in which no rc2-card has an r-piece of size at least
3. This also requires n = 2d∗ + 1, which yields d∗ ≥ 3 since n > 5. In a
reconstruction having a trivial r-piece, having exactly d∗ slim cards requires
that d∗ − 2 r-pieces are paths with size at least 3. With d∗ ≥ 3, some rc2-card
does have an r-piece with size at least 3, which is not true for U(P̂2, . . . , P̂2).
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Hence when T has d∗ slim cards we can recognize whether T has a trivial
r-piece.

Now suppose that T has exactly d∗ − 1 slim cards. If T has a trivial r-
piece, then all other r-pieces are paths with size at least 3. Here rc2-cards
with two trivial r-pieces arise only by deleting two vertices from an r-piece
of size 3, so there are at most d∗ − 1 of them, with equality only when all
nontrivial r-pieces are copies of P̂3. If T has no trivial r-piece, then having
d∗ − 1 slim cards requires that every r-piece except one is P̂2, and the other
r-piece has size more than 2. Hence exactly

(d∗−1
2

)
rc2-cards have two trivial

r-pieces. Since
(d∗−1

2
)

> d∗ − 1 when d∗ ≥ 5, we may assume d∗ ≤ 4. If
confusion remains, then the instances with one trivial r-piece or no trivial r-
pieces are as listed below, where T̂m denotes any rooted tree with m vertices.
The possibilities require n ≥ 9 when d∗ = 3 and n ≥ 5 when d∗ = 2. In each
case, the two possibilities are distinguished by the number of rc2-cards.

one trivial r-piece #rc2-cards no trivial r-piece #rc2-cards

d∗ = 4 U(P̂1, P̂3, P̂3, P̂3) 9 U(P̂2, P̂2, P̂2, T̂4) ≥ 10
d∗ = 3 U(P̂1, P̂3, P̂n−5) 5 U(P̂2, P̂2, T̂n−5) ≥ 6
d∗ = 2 U(P̂1, P̂n−2) 2 U(P̂2, T̂n−3) ≥ 3

Therefore, the rc2-deck determines whether T has a trivial r-piece. Now
consider the case where the rc2-deck of T has a slim card. If either T has no
trivial r-piece or T has both a trivial r-piece and a slim card with a trivial
r-piece, reconstruct T from a slim card by adding P̂2 as an r-piece.

In the remaining case with a slim card, T has a trivial r-piece and the
slim cards are the rc1-cards for the rooted tree T ′ obtained by deleting the
trivial r-piece from T . By Theorem 2.1, we can reconstruct T ′ from these and
obtain T by adding a trivial r-piece.

Hence we may assume that T has no slim cards. Thus every r-piece of T
has size at least 3, and every rc2-card has d∗ pieces. Since d∗ ≥ 2 and every
r-piece has size at least 3, every actual r-piece of T appears as an r-piece in
some rc2-card. As in Theorem 2.1, the largest r-pieces that appear in rc2-
cards are actual r-pieces of T , and we see them. Let b be the maximum size
of an r-piece of T .

Suppose first that every r-piece of T has size b. We recognize this case
from rc2-cards whose r-pieces all have size b except for one with size b − 2,
which must have lost two vertices because the others could not have lost any.
Call such rc2-cards “pure” cards. Among all the pure cards, let C be one in
which the multiplicity of some r-piece R in the list of r-pieces of size b is as
small as possible (possibly 0). Reconstruct T by replacing the small r-piece
in C with a copy of R.
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Hence we may assume that some r-piece of T has size less than b. Now an
rc2-card C ′ having a smallest r-piece over all the rc2-cards arises by deleting
two vertices from a smallest r-piece of T . In C ′ we see all r-pieces of T of size
b, with their multiplicities.

Let M be a largest r-piece of T , and let d′ be the number of r-pieces of
T isomorphic to M . Let T ′ be obtained from T by deleting the d′ r-pieces
of T isomorphic to M . The rc2-cards of T ′ are obtained from the rc2-cards
of T having d′ r-pieces isomorphic to M by deleting the copies of M . If
d′ < d∗ − 1, then T ′ has at least two r-pieces, each of size at least 3. Hence T ′

is not any of the exceptional rooted trees, and by the induction hypothesis
we can reconstruct T ′ and replace the copies of M to obtain T .

In the final case, T consists of d∗ − 1 pieces isomorphic to M and one
smaller piece R′, and we know this. Let L be a rooted tree obtained from M
by deleting one leaf; let a be the number of leaves whose deletion from M
yields L. In every rc2-card of T having d∗ − 2 r-pieces isomorphic to M and
one piece isomorphic to L, the remaining r-piece is an rc1-card of R′ (smaller
than L). Each rc1-card of R′ arises this way on exactly a(d∗ −1) cards. Hence
we obtain the rc1-deck of R′. By Theorem 2.1, we can reconstruct R′ and
thus T .

Definition 2.5. A broom is a tree obtained from a star by growing a path
from the center of the star. A rooted broom is a broom with root chosen as the
endpoint of the path grown from the center of the star. A rooted path and a
star rooted at its center are both degenerate examples of rooted brooms. A
branch vertex is a vertex with degree at least 3.

Example 2.6. In the statement of the next lemma, when � = 2 the class (b)
includes P̂n and P̂ ′

n, which are brooms, plus one rooted tree P̂ ′′
n obtained by

appending P̂1 and P̂2 at the leaf of P̂n−3. Note that P̂ ′′
n has two leaves and

two rc2-cards, while P̂n and P̂ ′
n each have only one rc2-card. All rc2-cards

for these three rooted trees are copies of P̂n−2, but the three examples are
distinguished by knowing the number of leaves and the number of rc2-cards.

Lemma 2.7. For � ≥ 2 and n ≥ � + 2, the rc�-cards of an n-vertex rooted
tree T are pairwise isomorphic if and only if (a) T is a rooted broom or (b) T
is formed by merging the leaf of P̂n−�−1 with the root of a rooted tree having
� + 2 vertices.

Proof. The rc�-cards of a rooted broom are isomorphic rooted brooms. In
class (b), every rc�-card is P̂n−�.

Let T be a rooted tree with pairwise isomorphic rc�-cards. We may assume
T �= P̂n. Let v be the branch vertex of T nearest to the root. If T is not in
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class (b), then at least � + 2 vertices lie below v in the tree. Also, the subtree
rooted at v has at least two r-pieces, since v is a branch vertex.

It suffices to prove that a rooted tree T̃ with at least two r-pieces and at
least � + 3 vertices has distinct rc�-cards if it is not a rooted star. If there
are at most � vertices below the root outside the largest piece, then there is
an rc�-card with one r-piece and an rc�-card with more than one r-piece. If
there are more than � vertices below the root outside a largest r-piece, then
iteratively deleting a leaf from a smallest remaining r-piece until � have been
removed yields an rc�-card whose list of sizes of r-pieces differs from that of
an rc�-card obtained by iteratively deleting a leaf from a largest remaining
r-piece until � have been removed.

Figure 1: Special rooted trees.

For weak 3-reconstructibility of rooted trees, more exceptions arise.

Example 2.8. Rooted trees with common rc3-decks. We describe specific
rooted trees by attaching a rooted forest below the leaf of a rooted path.
Several appear in Figure 1, including P̂ ′′

n as defined in Example 2.6. With
Q̂n and Q̂′

n defined as in Example 2.2, let Q̂′′
n be the rooted tree obtained by

putting P̂1 and P̂3 below the leaf of P̂n−4. Let B̂n,t be the n-vertex rooted
broom with t leaves (thus B̂n,1 = P̂n and B̂n,2 = P̂ ′

n).
Every way of putting a rooted forest having � vertices below the leaf of

P̂n−� yields an n-vertex rooted tree whose rc�-deck has a single card, P̂n−�.
It is more helpful to describe this as putting a rooted tree with � + 1 vertices
under the leaf of P̂n−�−1. When � = 2, the resulting trees are P̂n and P̂ ′

n.
When � = 3, the tree whose root is put under the leaf of P̂n−4 is one of
{P̂4, P̂ ′

4, P̂ ′′
4 , B̂4,3}.

More generally, every way of adding � + 1 vertices in d nonempty rooted
trees under the leaf of P̂n−�−1 yields an n-vertex rooted tree whose rc�-deck
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consists of d copies of P̂n−�. For (�, d) = (3, 2) and n ≥ 5, we obtain three
trees: Q̂n, Q̂′

n, and Q̂′′
n.

For n ≥ 6, several pairs of n-vertex rooted trees obtained from P̂n−6 by
adding one of two 6-vertex rooted trees under the leaf have the same rc3-deck
as listed below. Within each pair, the two rooted trees are distinguished by
the number of leaves.

under leaf of P̂n−6 #rc3-cards rc3-deck #leaves

U(P̂1, P̂4) or U(P̂1, P̂ ′
4) 2 one P̂n−3, one P̂ ′

n−3 2 or 3
U(P̂2, P̂3) or U(P̂1, P̂ ′′

4 ) 3 two P̂n−3, one P̂ ′
n−3 2 or 3

U(P̂2, P̂ ′
3) or U(P̂1, B̂4,3) 4 three P̂n−3, one P̂ ′

n−3 3 or 4

Finally, let T̂ + denote the rooted tree obtained from a rooted tree T̂ by
adding a trivial r-piece as an extra child of the root. If T̂ and T̃ are rooted
trees that have the same rc�-deck and also have the same rc(� − 1)-deck, then
T̂ + and T̃ + also have the same rc�-deck. Their deck consists of the common
rc(� − 1)-deck of T̂ and T̃ together with the cards of their common rc�-deck
extended by adding a trivial r-piece. When � = 3, this occurs just when {T̂ , T̃}
is {P̂n−1, P̂ ′

n−1} (for n ≥ 4) or {Q̂n−1, Q̂′
n−1} (for n ≥ 6), since those are the

only pairs of (n − 1)-vertex trees having the same rc2-deck.
When � = 3, all these examples have root-degree at most 2, except for

root-degree 3 when n = 6 in the pair obtained by adding a trivial r-piece to
Q̂5 or Q̂′

5, and when n = 4 for B̂4,3 in the set {P̂4, P̂ ′
4, P̂ ′′

4 , B̂4,3}. Besides P̂ ′
3

in the pair {P̂3, P̂ ′
3} the examples with root-degree 2 are of those of the form

{T̂ +, T̃ +} in the preceding paragraph where T̂ and T̃ are exceptions with
root-degree 1 that also have the same rc2-deck.

We mention two more pairs with seven vertices and root-degree 2: these
are {U(P̂2, P̂ ′

4), U(P̂3, P̂3)} and {U(P̂2, P̂ ′′
4 ), U(P̂3, P̂ ′

3)}. The trees in the first
pair have the same rc3-deck consisting of two copies of P̂4 and two copies
of P̂ ′′

4 , and they are distinguished by the number of leaves. The trees in the
second pair have the same rc3-deck consisting of one copy of P̂4, one copy of
P̂ ′

4, and three copies of P̂ ′′
4 , but both of these rooted trees have three leaves.

Remark 2.9. Rooted trees having the same rc2-deck also have the same rc3-
deck. We showed in Theorem 2.4 that a rooted tree is determined by its
rc2-deck, except for {P̂n, P̂ ′

n, Q̂n, Q̂′
n}. If rooted trees with the same rc2-deck

are the same, then they also have the same rc3-deck. Also, as noted in Ex-
ample 2.8, P̂n and P̂ ′

n have the same rc3-deck, as do Q̂n and Q̂′
n.

Theorem 2.10. For n ≥ 4, the n-vertex rooted trees not described in Exam-
ple 2.8 are weakly 3-reconstructible. For the exceptions, it is sufficient to know
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also the number of leaves, except for the general pairs {P̂ ′
n, P̂ ′′

n } and {Q̂n, Q̂′′
n}

and the 7-vertex pair {U(P̂2, P̂ ′′
4 ), U(P̂3, P̂ ′

3)}. Within each of these pairs, the
two trees are distinguished by the number of copies of S2,1,1 as an unrooted
subtree.

Proof. The behavior of the exceptions is verified by checking all the examples
in Example 2.8. The examples having the same rc3-deck are distinguished by
their number of leaves, except for the pairs listed in this theorem statement.
For each rooted tree in (P̂ ′

n, Q̂′′
n, U(P̂3, P̂ ′

3)), there is one more copy of S2,1,1
in (P̂ ′′

n , Q̂n, U(P̂2, P̂ ′′
4 )), respectively.

Hence we may assume that we are given the rc3-deck of an n-vertex rooted
tree T not in the list of exclusions. Let z be the root of T , specified in each
rc3-card. Let d∗ = dT (z). We use induction on n.

Case 1: n ≤ 6 or d∗ ≥ n−3 or d∗ = 1. For n ≤ 4, all trees are exceptional.
Consider n = 5. The trees with d∗ = 1 are in {P̂5, P̂ ′

5, P̂ ′′
5 , B̂5,3}, all ex-

ceptional. Those with d∗ = 2 are in {Q̂5, Q̂′
5, Q̂′′

5}, all exceptional. The only
tree with d∗ = 3 is U(P̂1, P̂1, P̂2), whose rc3-deck is three copies of P̂2, and
the only one with d∗ = 4 is U(P̂1, P̂1, P̂1, P̂1), whose rc3-deck is four copies of
P̂2. These decks differ from those of the rooted trees in Example 2.8. Hence
we may proceed inductively with n ≥ 6.

Let s be the number of vertices of T other than z and its children. If
s ≤ 3, then T has a rooted star with n − 4 leaves as an rc3-card, while if
s ≥ 4 there is no such card. Furthermore, if s = 3, then there is exactly one
such card, while if s < 3 there is more than one such card. Hence we can
distinguish the cases s < 3, s = 3, and s > 3.

If s = 0, then T = B̂n,n−1 and T has
(n−1

3
)

rc3-cards (all stars). If s = 1,
then T has n − 3 trivial r-pieces and one 2-vertex r-piece, producing

(n−2
3

)
+

(n − 3) rc3-cards. If s = 2, then the r-pieces of T are trivial except for two
copies of P̂2, or one copy of P̂3, or one copy of P̂ ′

3. In these three cases the
numbers of rc3-cards are

(n−3
3

)
+ 2(n − 4), or

(n−3
3

)
+ (n − 4) + 1, or

(n−2
3

)
+ 1,

respectively. These numbers and the count when s = 1 are distinct, except
that

(3
3
)

+ 4 =
(4

3
)

+ 1 when n = 6, which occurs for the listed exceptions Q̂+
5

and Q̂′ +
5 . Hence the number of rc3-cards distinguishes all the nonexceptional

rooted trees with s ≤ 2, which corresponds to d∗ ≥ n − 3.
In the remaining cases, T has at least three vertices other than z and its

children. Now d∗ is the largest root-degree among the rc3-cards, and d∗ ≤
n − 4. We now know d∗, which is the number of r-pieces of T .

If d∗ = 1, then T has only one r-piece; let z′ be the child of z. Let T ′

be the r-piece of T , namely T − z with z′ as root. The rc3-cards of T ′ are



3-reconstructibility of rooted trees 13

obtained from those of T by deleting z and naming z′ as the root. By the
induction hypothesis, we can reconstruct T ′ from its rc3-deck unless T ′ is one
of the exceptional trees on n − 1 vertices, which holds if and only if T is one
of the exceptional trees on n vertices. Outside the exceptional cases, we apply
the induction hypothesis to T ′ and then reconstruct T by adding z above the
root of T ′.

Hence we may assume 2 ≤ d∗ ≤ n − 4. When n = 6, this leaves only
instances with d∗ = 2. There are six such rooted trees, and they occur in
three pairs of two rooted trees having the same rc3-deck, as listed in Exam-
ple 2.8: {U(P̂1, P̂4), U(P̂1, P̂ ′

4)} (same as {P̂ +
5 , P̂ ′ +

5 }), {U(P̂2, P̂3), U(P̂1, P̂ ′′
4 )},

and {U(P̂2, P̂ ′
3), U(P̂1, B̂4,3)}. Within each pair, the trees are distinguished by

the number of leaves.
Hence in all other cases n ≥ 7 and 2 ≤ d∗ ≤ n − 4, and we know d∗.

Case 2: At least three trivial r-pieces. Note that T has at least three
trivial r-pieces if and only if T has an rc3-card with root-degree d∗ − 3. In
this case, we reconstruct T by adding three trivial r-pieces to such a card.
Otherwise, all rc3-cards have root-degree at least d∗ − 2, and T has at most
two trivial r-pieces.

Case 3: Two trivial r-pieces. A 2-slim card can arise by deleting two
trivial r-pieces and a third vertex or by deleting one trivial r-piece and one
r-piece of size 2; there are no 2-slim cards when T has no trivial r-pieces.
There are at least d∗ − 2 2-slim cards when T has two trivial r-pieces, with
equality only when all other pieces are paths of size at least 3. There are at
most d∗ − 1 2-slim cards when T has exactly one trivial r-piece, with equality
if and only if all other pieces are P̂2. Hence the number of trivial r-pieces is
known unless the number of 2-slim cards is d∗ − 2 or d∗ − 1.

Suppose first that T has exactly d∗ − 1 2-slim cards. If T has only one
trivial r-piece, then T = U(P̂1, P̂2, . . . , P̂2) and n = 2d∗. Since n > 6, we have
d∗ ≥ 4. No rc3-card has an r-piece of size at least 3. On the other hand, in a
reconstruction with two trivial r-pieces and n = 2d∗, some r-piece must have
size at least 3, and with d∗ ≥ 4 we can see such a piece in some rc3-card.
Hence in this case we either reconstruct T or know that every reconstruction
has two trivial r-pieces.

Now suppose T has exactly d∗ − 2 2-slim cards. Say that T has Type A
or Type B depending on whether it has one or two trivial r-pieces. If there
is only one (Type A), then T = U(P̂1, P̂2, . . . , P̂2, T̂ ′), where T̂ ′ has at least
three vertices. If T has exactly two trivial r-pieces (Type B), then all the
nontrivial r-pieces are paths of size at least 3.
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In Type A, each 2-slim card has d∗ − 3 pieces that are P̂2, plus one piece
that is T̂ ′, and T̂ ′ must be a path since all pieces in Type B are paths. To
obtain such a 2-slim card in Type B, we must delete the two trivial pieces
and can reduce at most one piece to P̂2. Since there must be d∗ − 2 such
2-slim cards, in Type B the nontrivial pieces must all be P̂3. Since also the
2-slim cards can only leave one piece with size 3, in Type B we have T =
U(P̂1, P̂1, P̂3, P̂3), and in Type A we have T = U(P̂1, P̂2, P̂2, P̂3). All rc3-cards
with three trivial r-pieces are U(P̂1, P̂1, P̂1, P̂2); in Type A there are three
of these, but in Type B there are only two. Hence Type A and Type B are
distinguished by the rc3-deck, and we know how many trivial r-pieces T has.

Hence we can recognize whether T has exactly two trivial r-pieces. If so,
then the 2-slim rc3-cards are the rc1-cards of the tree T ′ obtained by deleting
the trivial r-pieces of T . By Theorem 2.1, we can reconstruct T ′, and we add
two trivial r-pieces to obtain T .

Case 4: One trivial r-piece. In all remaining cases, T has at most one
trivial piece. If T has a 2-slim rc3-card, then T has a trivial piece and a piece
of size 2; reconstruct T from a 2-slim card by replacing these pieces.

When the rc3-deck has no 2-slim card, suppose that there exist both a
reconstruction T with a trivial piece and a reconstruction T ◦ with no trivial
piece; we seek a contradiction.

We first eliminate the possibility d∗ = 2. If n ≥ 8, then T ◦ has an rc3-card
with two pieces of size at least 2, but T does not. This leaves n = 7. Since
d∗ = 2, rc3-cards can only be P̂4, P̂ ′

4, or P̂ ′′
4 . Let p and q be the numbers

of rc3-cards in the deck isomorphic to P̂ ′
4 or P̂ ′′

4 , respectively. Note that q
is the number of vertices at distance 2 from the root in the full tree; in T
this is the root-degree of the nontrivial r-piece. In T ◦ each r-piece has such
a vertex, so q ≥ 2. If q = 4, then T = U(P̂1, B̂5,4), with p = 6, while
T ◦ ∈ {U(P̂ ′

3, P̂ ′
3), U(P̂2, B̂4,3)}, with p ≤ 3. If q = 3, then T arises from

U(P̂1, B̂4,3) by adding one leaf at distance 3 from the root and yields p = 3,
while T ◦ ∈ {U(P̂3, P̂ ′

3), U(P̂2, P̂ ′′
4 )} with p = 1. Finally, if q = 2, then the

nontrivial r-piece of T has root-degree 2 and each r-piece of T ◦ has root-
degree 1, so T yields p = 1 while T ◦ yields p = 0. Hence T and T ◦ cannot
have the same rc3-deck, and we may assume d∗ ≥ 3.

Since there is no 2-slim card, r-pieces of T other than the trivial piece have
size at least 3. The number of 1-slim cards with a trivial r-piece is then 2p,
where p is the number of r-pieces of T having size 3, since we can delete such
a piece or delete two of its vertices (in only one way) and the trivial piece. In
the rc3-deck of T ◦, to form a 1-slim card with a trivial piece it is necessary to
eliminate one r-piece and reduce another to a single vertex; since each r-piece
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has at least two vertices, this requires q ≥ 2, where q is the number of r-pieces
of T ◦ having size 2. Hence the number of 1-slim cards with a trivial piece is
q(q − 1), by deleting both vertices from one piece of size 2 and one vertex
from another. Hence 2p = q(q − 1).

Now consider 1-slim cards with no trivial piece. From T , we must delete
the trivial piece, so such a card has at most two r-pieces of size 2. From T ◦,
we must delete one r-piece of size 2 or 3 and not create a trivial r-piece, so any
such card will have at least q − 1 r-pieces of size 2. Thus q − 1 ≤ 2. These two
computations reduce the possibilities to (p, q) ∈ {(3, 3), (0, 1), (0, 0), (1, 2)}.

First consider (p, q) = (3, 3). Each of T and T ◦ has six 1-slim cards with
a trival piece. In each such card of T , the remaining pieces all have size at
least 3. However, each such card of T ◦ has a piece of size 2. Hence T and T ◦

cannot both be reconstructions in this case.
Now consider p = 0. In this paragraph and the next, “card” means “0-slim

rc3-card”. Let s and t be the sizes of the second smallest r-pieces in T and
T ◦, respectively. First consider (p, q) = (0, 1). Note that p = 0 implies s ≥ 4,
so no cards of T have two r-pieces of size 2. With q = 1 and d∗ ≥ 3, from T ◦

there is such a card if t ≤ 5, so we may assume t ≥ 6. The minimum size of
the second smallest r-piece in a card of T ◦ having a trivial r-piece is t − 2. In
a card of T it is s − 3. Hence s − 3 = t − 2, or s = t + 1 ≥ 7. The minimum
size of the second smallest r-piece in a card of T ◦ having an r-piece of size 2
is t − 3. Since s = t + 1, there is no such card of T .

Next consider (p, q) = (0, 0). Since T has a trivial piece, the rc3-deck
has 1-slim rc3-cards. Since q = 0, every 1-slim rc3-card of T ◦ is obtained
by deleting an r-piece of size 3. Hence the lists of sizes of r-pieces in 1-slim
rc3-cards are all the same. However, T has two pieces of size at least 4 (since
d∗ ≥ 3) and generates two 1-slim rc3-cards with different lists of sizes of pieces
by deleting the trivial piece and either two vertices from one other piece or
one from each of two pieces.

Now consider (p, q) = (1, 2), and recall that d∗ ≥ 3. In both T and T ◦,
the two smallest pieces together have four vertices. The two 1-slim cards with
a trivial r-piece arise by deleting three of those four vertices. Those cards
must be the same in both rc3-decks, so T and T ◦ agree except for the two
smallest r-pieces; let Y be the rooted tree obtained from either by deleting
the two smallest r-pieces. Since p = 1 the smallest r-piece in Y has at least
four vertices, so Y has at least five vertices. Let yj be the number of rcj-
cards of Y . The two smallest pieces of T or T ◦ may be {P̂1, P̂3}, {P̂1, P̂ ′

3}, or
{P̂2, P̂2}, In these three cases, the number of rc3-cards of the resulting full
tree is 2y0 + 2y1 + 2y2 + y3, or 2y0 + 3y1 + 3y2 + y3, or 2y0 + 3y1 + 2y2 + y3,
respectively, where the coefficient of yj is the number of ways of deleting 3−j
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vertices from the two smallest r-pieces in forming cards. Since Y has at least
five vertices, y1 and y2 are positive, so the numbers of rc3-cards differ in the
three cases.

Hence we can recognize from the rc3-deck that we are in Case 4 and T
has exactly one trivial r-piece. We already reconstructed T in the case that
T has a 2-slim card, so we may assume that all nontrivial r-pieces of T have
size at least 3. Let S be the set of 1-slim cards having a trivial r-piece. As
discussed earlier, |S| = 2p, where p is the number of r-pieces of T with size
3. Let Y be the rooted tree obtained from T by deleting all the r-pieces of
size 3. Any rc3-card in S shows Y and p − 1 of the 3-vertex pieces. Each such
piece appears in 2p − 2 members of S. Hence when p ≥ 2 we can determine
from S the number of pieces of size 3 that are P̂3 and the number that are P̂ ′

3,
thereby reconstructing all pieces of T . If p = 1, then as before the number of
rc3-cards is 2y0 + 2y1 + 2y2 + y1 or 2y0 + 3y1 + 3y2 + y3 depending on whether
the r-piece of T with size 3 is P̂3 or P̂ ′

3. Hence we learn what that r-piece is
to complete the reconstruction.

Hence we may assume p = 0; all r-pieces of T other than the one trivial
piece have size at least 4. Let Y be the rooted tree obtained by deleting the
trivial piece. The 1-slim cards of T are precisely the rc2-cards of Y . If Y is
determined by its rc2-deck, then T arises by adding a trivial piece to Y . If
an alternative reconstruction Ỹ from the rc2-deck of Y exists, then Y and
Ỹ also have the same rc3-deck, as observed in Remark 2.9. Now T and T̃
have the same rc3-deck, where T̃ arises from Ỹ by adding a trivial piece. The
resulting T and T̃ are now Y + and Ỹ +, occuring as exceptions in Example 2.8.
Otherwise Y is determined by its rc2-deck, which determines T .

Case 5: T has no trivial r-piece but has an r-piece of size 2. The only
way to obtain a 1-slim rc3-card with a trivial r-piece when T has no trivial
r-piece is to have two (or more) r-pieces of size 2 and delete both vertices from
one of them and one from another. Hence if T has a 1-slim rc3-card with a
trivial r-piece, then we reconstruct T from it by replacing the trivial r-piece
with two copies of P̂2.

Hence we may assume that T has no 1-slim rc3-card with a trivial r-piece.
Knowing that T has no trivial r-piece, we need to recognize that T has a piece
of size 2. Suppose that the rc3-deck also has a reconstruction T ◦ with no r-
piece of size at most 2. A 1-slim rc3-card of T ◦ arises only by deleting an
r-piece of size 3 and hence has no r-piece of size 2. If T has an r-piece of size
3, then T has a 1-slim card with an r-piece of size 2. Hence in T every r-piece
other than one of size 2 has size at least 4. Now a 1-slim rc3-card of T has
at most one r-piece of size 3. This means that T ◦ has at most two r-pieces of
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size 3 and therefore at most two 1-slim rc3-cards. Hence T has at most two
leaves outside the r-piece of size 2.

If there is only one 1-slim card, then T = U(P̂2, P̂n−3), and there are only
three rc3-cards. However, there are at least four ways to delete at most three
vertices from the r-piece of size 3 in T ◦ (whether it is P̂3 or P̂ ′

3), all leading
to rc3-cards. Hence we may assume that there are two 1-slim cards, meaning
that T has exactly two leaves outside the smallest piece. Now T has at most
nine rc3-cards. If d∗ = 3, then two r-pieces of size 3 and an additional piece of
size at least 4 give T ◦ more than nine rc3-cards. If d∗ = 2, then T ◦ (and hence
also T ) has exactly seven vertices. Here T ∈ {U(P̂2, P̂ ′

4), U(P̂2, P̂ ′′
4 ) and T ◦ ∈

{U(P̂3, P̂3}, U(P̂3, P̂ ′
3), U(P̂ ′

3, P̂ ′
3)}. The possibilities for T have four or five rc3-

cards, respectively, while those for T ◦ have four, five, or six, respectively. This
yields the pairs {U(P̂2, P̂ ′

4), U(P̂3, P̂3)} and {U(P̂2, P̂ ′′
4 ), U(P̂3, P̂ ′

3)} which are
exceptions having the same rc3-deck, as described in Example 2.8. In each
pair the trees are distinguished by the number of unrooted copies of S2,1,1.

Hence we recognize being in Case 5: T has one r-piece of size 2 (and no
trivial r-piece). Say that a 1-slim card having an r-piece of size 2 is defective.
If T has no defective card, then all pieces other than the one of size 2 have
size at least 4, and the 1-slim rc3-cards of T are the rc1-cards of the rooted
tree T ′ obtained by deleting the smallest r-piece from T . By Theorem 2.1, we
can reconstruct T ′ and add an r-piece of size 2 to obtain T .

If T has a defective card, then T has a piece of size 3. A defective card
contains as r-pieces all the r-pieces of T having size at least 4. It remains to
determine the r-pieces of size 3; let there be p that are copies of P̂3 and q that
are copies of P̂ ′

3. Defective cards arise by deleting an r-piece of size 3 or by
deleting the r-piece of size 2 and one leaf from an r-piece of size 3. Thus each
copy of P̂3 loses at least one vertex in two defective cards, while each copy of
P̂ ′

3 is diminished in three defective cards. This yields t = 2p + 3q, where t is
the total number of defective cards. On the other hand s = p + q − 1, where
s is the number of pieces of size 3 in each defective card. Since we see s and
t from the rc3-deck, we compute p and q.

Case 6: Every r-piece of T has at least three vertices. Note the exceptions
U(P̂3, P̂3) and U(P̂3, P̂ ′

3), which share rc3-decks with U(P̂2, P̂ ′
4) and U(P̂2, P̂ ′′

4 ),
respectively, as discussed in Case 5. If the rc3-deck of T is not from one of
these exceptions, then in the remaining case we have determined that all
r-pieces of T have size at least 3.

Since d∗ ≥ 2 and every r-piece has size at least 3, every r-piece of T
appears as an r-piece of some rc3-card of T . Let b be the maximum size
among all r-pieces in rc3-cards of T , and let c be the minimum such size,
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setting c = 0 if T has a 1-slim card. The smallest r-piece(s) of T have size
c+3. Every card having an r-piece of size c (or 1-slim card if c = 0) has d∗ −1
r-pieces that are all the r-pieces of T except one of size c + 3. Call these trim
cards. (Note that b ≥ c + 3, with equality possible.)

For every trim card, there is one r-piece of T with size c + 3 that does
not appear. If some trim card has an r-piece of size c + 3, then T has more
than one r-piece of size c+3, and over all the trim cards we see all the pieces,
in particular all the r-pieces of size c + 3. Choose a trim card C in which an
r-piece R of size c+3 appears fewer than the maximum number of times, and
reconstruct T from C by replacing the smallest r-piece with a copy of R (or
adding R as an r-piece if c = 0).

In the remaining case, T has exactly one r-piece R of size c + 3. Each
trim card gives us the other r-pieces, with their multiplicities (hence we also
know b). The set consisting of the smallest r-piece in each trim card is the
rc3-deck of R. Now we can reconstruct R by the induction hypothesis and
hence reconstruct T unless R is in the set of exceptions.

Let M be an r-piece of T with b vertices, and let d′ be the number of
r-pieces of T isomorphic to M . Obtain T ′ from T by deleting the r-pieces
isomorphic to M . The rc3-cards of T ′ are obtained from the rc3-cards of T
with d′ r-pieces isomorphic to M by deleting the copies of M . If d′ < d∗ − 1,
then T ′ has at least two pieces, one of which is the exception R and the
others of which have at least four vertices. No exceptions in Example 2.8 fit
this description, so by the induction hypothesis T ′ is reconstructible from its
rc3-deck, which we have obtained. After reconstructing T ′, we add the copies
of M to obtain T .

Hence we may assume that T consists of d∗ − 1 r-pieces isomorphic to
M and one smaller piece R with s vertices (here s = c + 3). We know M ,
s, and b. First suppose that s ≤ b − 3. Let L be an rc2-card of M , and let
a be the number of copies of L as an rc2-card of M . In every rc3-card of T
having d∗ − 2 r-pieces isomorphic to M and one piece isomorphic to L, the
remaining r-piece is an rc1-card of R (smaller than L). Each rc1-card of R
arises this way on exactly a(d∗ −1) cards. Hence we obtain the rc1-deck of R.
By Theorem 2.1, we can reconstruct R and thus reconstruct T . If s = b − 2
and d∗ ≥ 3, then we can similarly use an rc1-card L′ of M and obtain the rc1-
deck of R from cards with d∗ − 3 r-pieces isomorphic to M and two r-pieces
isomorphic to L.

Next suppose s = b − 2 and d∗ = 2. Let L be an rc1-card of M , and
let a be the number of copies of L as an rc1-card of M . In every rc3-card
of T having an r-piece isomorphic to L, the other r-piece is an rc2-card of
R (smaller than L). Each rc2-card of R arises this way on exactly a cards.
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Hence we obtain the rc2-deck of R. By Theorem 2.4, we can reconstruct R
and hence T unless we have the common rc2-deck of P̂s and P̂ ′

s or of Q̂s and
Q̂′

s. To distinguish these, note that an rc3-card of T having pieces of sizes
b − 3 and b − 2 arises by deleting three vertices from M (in which case the
other piece is R) or by deleting two vertices from M and one vertex from R.
Hence the number of these cards is ij + j′, where i is the number of leaves of
R, j is the number of rc2-cards of M , and j′ is the number of rc3-cards of M .
Since we know M , we know j and j′ and can compute i. This distinguishes
between P̂s and P̂ ′

s and between Q̂s and Q̂′
s for R.

In the final case, s = b − 1. Since we know M , we know the rc1-deck
L1, . . . , Lm of M , where m is the number of leaves of M . Let S be the multiset
of rc3-cards of T in which one piece has b − 3 vertices, one has b − 1 vertices,
and the rest are isomorphic to M . Such cards arise by deleting three vertices
from one copy of M or by deleting one vertex from a copy of M and two
vertices from R. If for some member of S the piece with b − 1 vertices is not
in the rc1-deck of M , then that piece is R and we complete the reconstruction.

Otherwise, R is an rc1-card of M . Let p be the number of rc3-cards of
M , and let q be the number of rc2-cards of R; at present q is unknown. Let
k be the multiplicity of a given rc1-card L of M . If L �= R, then the number
of members of S in which the piece with b − 1 vertices is L is (d∗ − 1)kq. If
L = R, then that number is (d∗ − 1)(kq + p). Since we know |S| from the
deck, and the multiplicities of the various rc1-cards of M sum to m, we can
compute q = |S|−(d∗−1)p

(d∗−1)m . Since we know the multiplicity of each rc1-card of
M , we can now determine which one occurs too often as a piece of a member
of S, and that is R.

In applying Theorem 2.10 to 3-reconstructibility of tree, knowing the
number of leaves of a tree and the number of copies of S2,1,1 distinguishes the
exceptions when a rooted tree is not weakly 3-reconstructible. Fortunately, we
will be able to determine these quantities. In the unrooted setting, we proved
in [6] that when n ≥ 7, the (n − 3)-deck of an n-vertex graph determines its
degree list. Also, the number of copies of S2,1,1 is determined by the (n − 3)-
deck when n ≥ 8, by Observation 1.2.

3. Trees with cost at most (n − 4)/2

In this section, we use Theorem 2.10 to show that trees in a large class are
3-reconstructible. We consider a “cost” parameter related to the notion of
centroids in trees. The term “centroid” has been used in various ways in the
literature, but this definition seems most common.
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Definition 3.1. The cost of a vertex v in a tree T is the maximum number
of vertices in a component of T − v. A centroid of a tree is a vertex with
smallest cost. The cost of T , which we write as c(T ), is the minimum cost
among the vertices of T , that is, the cost of a centroid of T .

It is well known that a tree has a unique centroid or has two adjacent
centroids, yielding unicentroidal or bicentroidal trees, respectively. We need
this fact in a stronger form. Myrvold [11] heavily used centroids and a more
detailed version of this lemma in proving that trees with at least five ver-
tices are 1-reconstructible from only three cards; that is, every such tree has
“reconstruction number” 3.

Lemma 3.2. Every n-vertex tree has either a unique centroid, with cost less
than n/2, or two adjacent centroids, with cost exactly n/2.

Proof. If a vertex v in a tree T has cost greater than n/2, then its neighbor in
the large component of T − v has smaller cost. Hence a vertex with smallest
cost has cost at most n/2. For such a vertex v and any neighbor u, the forest
T −u has a component consisting of v plus all the other components of T −v,
thereby yielding cost at least n/2. Furthermore, if v has cost less than n/2,
then u has cost more than n/2. Moving further away from v increases the
cost more.

Hence there are at most two centroids, and the cost is at most n/2. Fur-
thermore, we have also shown that if the cost is less than n/2, then the
centroid is unique.

Definition 3.3. The pieces of a unicentroidal tree T having centroid z are
the components of T − z; when we know T and z, the neighbors of z in the
pieces are the roots of the pieces. In a bicentroidal tree, the two subtrees
obtained by deleting the edge joining the centroids are the branches of the
tree, and the roots of the branches are the centroids. The size of a piece or
branch is the number of vertices.

We begin with a short self-contained argument that we can recognize the
(n − 3)-decks of trees.

Lemma 3.4. If T is an n-vertex tree with n ≥ 7, then every graph having
the same (n − 3)-deck as T is a tree.

Proof. The (n−3)-deck provides the 2-deck, so every reconstruction has n−1
edges. All cards are acyclic, so reconstructions have no cycles of length at most
n−3. Therefore, a non-tree reconstruction G must be Cn−1 +P1 or Cn−2 +P2
or the graph C ′ consisting of Cn−2 plus a pendant edge and an isolated vertex.
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The numbers of copies of Pn−3 and K1,3 in these alternatives are (n−1, 0)
or (n − 2, 0) or (n, 1), respectively; we know these values, since n − 3 ≥ 4. If
T is a path, then its (n − 3)-deck has only four copies of Pn−3, but 4 < n − 2.
Hence we may assume that T has a branch vertex, which puts a copy of
K1,3 into the 4-deck and requires G = C ′. However, a tree with only one
copy of K1,3 contains at most five copies of Pn−3 (achieved by Sn−3,1,1), and
5 < n.

In studying connected cards in the (n − �)-deck of an n-vertex tree, it
is helpful to know which vertices of the original tree can be centroids of the
card. When � is fixed, the centroid of a connected card cannot be very far
from the original centroid. Our primary interest will be in the two largest
pieces of a tree. The remaining vertices form appendages from the centroid,
so we use a botanical term describing appendages on trees.

Definition 3.5. A j-burl in a tree T is a vertex v such that there are exactly
j vertices in T − v outside the two largest components. The burl of the tree T
is the set of these outside vertices when v is the centroid of T . Recall that c(T )
denotes the cost of T , which is the number of vertices in a largest component
of the forest obtained by deleting a centroid of T .

Lemma 3.6. Let z be a centroid of an n-vertex tree T . Let u be a centroid
of a connected card C in the (n − �)-deck of T . If n > 2�, then z ∈ V (C). If
c(T ) ≤ (n − � + 1)/2, then u is z or a neighbor of z. If c(T ) = (n − � + 2)/2,
then u can have distance 2 from z only if their common neighbor has degree 2
in T . If c(T ) = n/2, then u can be outside the neighborhoods of the centroids
of T only if the closer centroid is a j-burl with j ≤ (� − 4)/2.

Proof. Omitting z from a connected card requires the vertices of the card to
lie in one piece of T , which requires (n − �) ≤ c(T ) ≤ n/2 and hence cannot
happen when n > 2�.

Every component of T − z has at most c(T ) vertices. Therefore, if u is a
vertex outside the closed neighborhood of z, in T −u there is a component with
at least n−c(T )+1 vertices. In order to make u a centroid of C, this component
must be cut down to at most (n − �)/2 vertices. Hence n − c(T ) + 1 − � ≤
(n − �)/2, which simplifies to c(T ) ≥ (n − � + 2)/2.

When this inequality fails, there is no such centroid. When equality holds,
T − u has a component with n − c(T ) + 1 vertices, so u and z have a common
neighbor with degree 2.

Suppose that T is bicentroidal and the centroid u of C has distance at
least 2 from the closer centroid z of T , and let z be a j-burl in T . To become
a piece of C − u, the component of T − u containing z must be trimmed to
at most (n − �)/2 vertices. That component of T − u contains z, the large
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component of T − z, the j-burl at z, and at least one vertex between u and
z, so it has at least 2 + j + n/2 vertices and can only lose � in the card C.
Hence 2 + j + n/2 − � ≤ (n − �)/2, which simplifies to j ≤ (� − 4)/2.

Corollary 3.7. Let T be an n-vertex tree. If c(T ) �= (n − 1)/2, then every
centroid in every connected (n − 3)-card C of T is or has a neighbor that
is a centroid of T . If c(T ) = (n − 1)/2 and C has a centroid u that is not
a neighbor of the centroid z of T , then C is bicentroidal and the common
neighbor of u and z has degree 2 in T and is the other centroid of C.

Proof. Let z be a centroid of T , and set � = 3 in Lemma 3.6. Now c(T ) ≤
(n−2)/2 keeps the centroid of C within distance 1 of z, while c(T ) = (n−1)/2
allows it to move one step farther when the common neighbor has degree 2
(the card is then bicentroidal).

When T is bicentroidal, there is no j-burl when j is negative, so the
centroid of C must be a neighbor of a centroid of T .

Our arguments for reconstruction of a tree T from the (n − 3)-deck are
based on the value of the cost c(T ). Therefore, we need lemmas that enable
us to recognize this value from the deck. For a deck D, let c(D) denote the
maximum cost among connected cards in D.

Lemma 3.8. The (n − �)-deck D of an n-vertex tree T with n > 2� satisfies

c(D) =
{

c(T ) if c(T ) ≤ (n − �)/2,

�(n − �)/2	 if c(T ) > (n − �)/2.

Also, if c(T ) ≤ (n − �)/2, then the centroid of T is a centroid in every con-
nected card.

Proof. Let z be a centroid of T , and let X be a largest piece of T . By
Lemma 3.6, z appears in every connected card in D. For any connected card
C, components of C −z are contained in components of T −z and hence have
at most c(T ) vertices. Thus c(C) ≤ c(T ).

First suppose c(T ) ≤ (n − �)/2. For any connected card C, components
of C − z have at most |V (C)| /2 vertices, so z is a centroid of C. Since
|V (X)| = c(T ) ≤ (n − �)/2, we can produce a particular connected card C ′

by deleting � vertices outside X. Since z is a centroid of C ′, it follows that X
is a piece of C ′, so c(C ′) = |V (X)| = c(T ). Hence c(D) = c(T ).

Now suppose c(T ) > (n − �)/2. Every connected card C satisfies c(C) ≤
(n − �)/2, so it suffices to construct a card C with cost �(n − �)/2	. Delete
successive leaves of X until exactly �(n − �)/2	 vertices of X remain. Com-
plete the card by successively deleting other leaves outside X. The number of
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vertices remaining outside X is 
(n − �)/2�, since the card has n − � vertices.
Thus z is the unique centroid if n − � is odd, while both z and its neigh-
bor x in X are centroids if n − � is even. Hence c(C) = �(n − �)/2	, and
c(D) = �(n − �)/2	.

Theorem 3.9. For n ≥ 7, trees with n vertices and cost at most (n − 5)/2
are 3-reconstructible.

Proof. Let D be the (n−3)-deck of such a tree T . By Lemma 3.8, we recognize
that T is in this family: every connected card has cost at most (n − 5)/2.
Lemma 3.8 also implies that every connected card has the centroid z of T as its
unique centroid. With z distinguished in each connected card, the connected
cards form the rc3-deck of T as a rooted tree with root z. In addition, c(T ) ≤
(n−5)/2 requires dT (z) ≥ 3. The rooted trees in Example 2.8 that have root-
degree 3 and are not reconstructible from their rc3-decks have six vertices.
Hence, by Theorem 2.10, we can reconstruct T from the deck.

For general �, Lemma 3.8 will lead to �-reconstructibility of n-vertex trees
having cost less than �(n − �)/2	 if rooted trees are proved to be weakly �-
reconstructible, since the centroid of T can be determined in every connected
card and used as a root. This also needs a suitable threshold for n and avoiding
the exceptions to reconstruction of rooted trees.

Recognition of trees with cost at most (n − 5)/2 means that we can also
recognize trees with cost at least (n − 4)/2. Our approach is to successively
recognize a subfamily of the remaining family of trees and show that the sub-
family is weakly reconstructible. For trees with cost (n−4)/2, the reconstruc-
tion is similar to Theorem 3.9 once we prove that the family is recognizable.
We will consider not only the size of the largest piece, but also that of the
next largest piece. We also consider special cards with two components.

Definition 3.10. For a unicentroidal tree T , let c′(T ) denote the size of the
second largest piece in T , which may equal c(T ); we call c′(T ) the subcost of
T . An

(
n−a

2 , n−b
2

)
-card is a connected card such that for a centroid u the two

largest components of T −u have (n−a)/2 and (n−b)/2 vertices, with a ≤ b.
For a deck D, let c′(D) denote the maximum subcost among the connected
cards with maximum cost.

A card in the (n − �)-deck of an n-vertex graph is balanced if it consists
of two components having 
(n − �)/2� and �(n − �)/2	 vertices, respectively.

When discussing a unicentroidal tree T , we let z denote the centroid, with
neighbor x in a largest piece X and neighbor x′ in a second largest piece X ′.

By Lemma 3.8, the cost of a tree T is determined by the cost of its (n−�)-
deck when c(T ) < �(n − �)/2	. When � = 3 and n is even, c(D) = (n − 4)/2
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for c(T ) ∈ {(n − 4)/2, (n − 2)/2, n/2}. Our next task is to recognize when
c(T ) = (n − 4)/2.

Lemma 3.11. If D is the (n−3)-deck of an n-vertex tree T , where n is even
and n ≥ 20, then c(T ) = (n − 4)/2 if and only if

(a) c(D) = (n − 4)/2,
(b) D has no balanced cards, and
(c1) some connected card has cost (n − 10)/2, or
(c2) c′(D) = (n−2j)/2 for some j ∈ {2, 3, 4}, and T has an

(
n−2j

2 , n−10
2

)
-

card. Also, when j = 4 there is an
(

n−6
2 , n−8

2
)
-card, and when j = 3 there is

an
(

n−6
2 , n−6

2
)
-card and an

(
n−8

2 , n−8
2

)
-card.

Proof. By Lemma 3.8, we may assume c(T ) ∈ {(n − 4)/2, (n − 2)/2, n/2}. In
each case c(D) = (n − 4)/2, by Lemma 3.8.

Case 1: c(T ) = (n − 4)/2. Any balanced card has components with (n −
2)/2 and (n−4)/2 vertices, since n−3 is odd. Thus deleting any single vertex
from T leaves a component with at least (n − 2)/2 vertices, contradicting
c(T ) = (n − 4)/2. Hence (b) holds.

Define j by c′(T ) = (n − 2j)/2; note that j ≥ 2. Every piece of T has
at most (n − 4)/2 vertices. By Lemma 3.8, the centroid of every connected
card is z, the centroid of T . In any connected card obtained by deleting three
vertices of X, there remain (n − 10)/2 vertices of X and the entire second
largest piece X ′. If j ≥ 5, then such a card has cost (n − 10)/2.

Hence we may assume j ∈ {2, 3, 4}. The card described is an
(

n−2j
2 , n−10

2

)
-

card unless besides X and X ′ there is another piece in T with at least (n−8)/2
vertices. This requires n ≥ 1+ n−4

2 + n−2j
2 + n−8

2 , which simplifies to 2j ≥ n−10.
Since 2j ≤ 8, we obtain the

(
n−2j

2 , n−10
2

)
-card unless n ≤ 18. (When n = 18,

for example, the spider S7,5,5 has cost (n − 4)/2, no connected card with cost
4 for (c1), and no

(
n−8

2 , n−10
2

)
-card for (c2).)

For c′(D) = (n − 2j)/2, we need an
(

n−4
2 , n−2j

2

)
-card. We keep the two

largest pieces to make such a card by deleting three vertices from the burl.
These are available, since there are 1 + n−2j

2 + n−4
2 vertices outside the burl,

leaving j + 1 vertices in the burl. Also c′(D) ≤ c′(T ) when each connected
card has centroid z, so c′(D) = c′(T ) = (n − 2j)/2.

Deleting one vertex of X and two of the burl now yields an
(

n−6
2 , n−2j

2

)
-

card. When j = 3, deleting two from X and one from X ′ yields an
(

n−8
2 , n−8

2
)
-

card.

Case 2: c(T ) = (n − 2)/2. Assume (a), (b), and (c). If c′(T ) ≥ (n − 4)/2,
then T has a balanced card, contradicting (b). Hence c′(T ) ≤ (n − 6)/2.
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Deleting � vertices reduces the cost by at most �. Thus no card of T has
cost at most (n−10)/2, and (c1) fails. Hence (c2) holds, so c′(D) = (n−2j)/2
for some j ∈ {2, 3, 4}, and with (a) there is an

(
n−4

2 , n−2j
2

)
-card C.

The centroid of C is in {x, z, x′}, by Corollary 3.7. It cannot be x′, since
the component of T − x′ containing z has at least (n + 6)/2 vertices, which
cannot be cut to (n−4)/2 by deleting three vertices. If the centroid is z, then
the second largest piece in T has at least (n−2j)/2 vertices. Since the largest
piece in T has (n − 2)/2 vertices, forming an

(
n−2j

2 , n−10
2

)
-card with centroid

z requires deleting at least four vertices.
Hence the centroid of C is x. The component of T − x containing z has

(n + 2)/2 vertices. Since C is an
(

n−4
2 , n−2j

2

)
-card, C must arise by deleting

three vertices from that component of T − x. Thus X contains a piece Y of
C with (n − 2j)/2 vertices.

Now consider the required
(

n−6
2 , n−2j

2

)
-card C ′ if j ∈ {3, 4}. The centroid

of C ′ cannot be x, since the two biggest components of T − x would together
have to lose at least four vertices. Hence the centroid of C ′ is z. Now, as
earlier when we studied C, there must be pieces as large as (n − 6)/2 and
(n − 2j)/2 in T , so again c′(T ) ≥ (n − 2j)/2. Again we must delete at least
four vertices from the two largest pieces of T to obtain an

(
n−2j

2 , n−10
2

)
-card.

Hence j = 2, and C is an
(

n−4
2 , n−4

2
)
-card. We have shown that the

centroid of C is x, with a piece Y contained in X. Since Y uses all of X
except the one vertex x, we have dT (x) = 2. Now deleting x and two vertices
from X ′ yields a balanced card, contradicting (b).

Case 3: c(T ) = n/2. Here T is bicentroidal, with centroids z and z′. Let
X be a second largest component of T − z, with x its neighbor of z; similarly
define X ′ and x′ from T −z′. By (b), T has no balanced cards, which requires
dT (z), dT (z′) ≥ 3 and |V (X)| , |V (X ′)| ≤ (n − 6)/2, so c′(T ) ≤ (n − 6)/2.
Since c(T ) = n/2, every connected card has cost at least (n − 6)/2, so again
(c1) cannot hold. Also, there is no

(
n−8

2 , n−10
2

)
-card and no

(
n−8

2 , n−8
2

)
-card,

which are required when j in (c2) is 4 or 3, respectively. Hence j = 2 and
c′(D) = (n − 4)/2.

Thus we have an
(

n−4
2 , n−4

2
)
-card C. Since c′(T ) ≤ (n−6)/2, moving away

from z or z′ to a vertex w allows only the component of T − w containing z
and z′ to have more than (n − 6)/2 vertices. Hence C cannot exist.

Theorem 3.12. For even n with n ≥ 20, trees with n vertices and cost
(n − 4)/2 are 3-reconstructible.

Proof. Let D be the (n − 3)-deck of such a tree T . By Lemmas 3.8 and 3.11,
we recognize from D that T is in this family. Lemma 3.8 also implies that
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every connected card has the centroid z of T as its unique centroid (n − 3 is
odd). Hence again the connected cards form the rc3-deck of T with root z, and
again dT (z) ≥ 3. By the same proof as in Theorem 3.9, we can reconstruct T
from the deck.

A tree T with higher cost may have connected cards whose centroids
are not the centroid of T . Nevertheless, often we can find a subset of the
connected cards whose centroids are identified as a particular vertex of T ,
such that appropriate subtrees in these cards form the rc3-deck of a fixed
rooted subtree of T . We can then apply the technique used above.

Lemma 3.13. Let T be an n-vertex tree, and let D be the (n − 3)-deck of
T . If a vertex v in T and a subset D′ of D can be identified such that D′

is the multiset of connected cards arising by deleting three vertices from one
component H of T − v, and in each card of D′ we know v and which neighbor
of v is in H, then T is 3-reconstructible.

Proof. In each card in D′ we recognize the subgraph T − V (H) by deleting
the piece containing the neighbor of v in H. Over all cards in D′, the vertices
lying in H provide the rc3-deck of H rooted at its vertex neighboring v.

Since we know the number of leaves of T and the number of leaves of T
outside H, we know the number of leaves of T in H. Hence Theorem 2.10
allows us to reconstruct H unless H ∈ {P̂ ′

k, P̂ ′′
k , Q̂k, Q̂′′

k}, where k = |V (H)|.
By Observation 1.2, we know the number of copies of S2,1,1 in T , and from the
cards in D′ we know the number of copies of S2,1,1 using at least one vertex
outside H. We therefore know the number of copies of S2,1,1 contained in H.
As noted in Theorem 2.10, we can reconstruct H and T .

Lemma 3.13 is the workhorse in proving the analogue of Theorem 3.12
for trees with higher cost. Most of the reconstruction arguments depend on
knowing the cost and sometimes also the subcost of the reconstructions, so
we must first recognize these families, which we do successively for increasing
cost (sometimes also by subcost), ending with bicentroidal trees. Each step
assumes that the earlier families are recognizable (and n ≥ 20 suffices for all).
Details are at https://faculty.math.illinois.edu/~west/pubs/tree3rec.pdf.

The next section presents two pieces of the argument. These are relatively
self-contained 3-reconstructibility arguments for high-cost trees under certain
structural conditions. The second relies on the first and on Lemma 3.13.

4. High-cost trees with special structure

Here we consider two structural conditions that permit 3-reconstructibility.
They hold in n-vertex trees only when the cost is at least (n − 2)/2.

https://faculty.math.illinois.edu/~west/pubs/tree3rec.pdf
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Definition 4.1. A j-vertex or j+-vertex is a vertex with degree j or at least
j, respectively. Similarly, a j-neighbor or j+-neighbor is a neighbor that is a
j-vertex or j+-vertex, respectively. A full vertex is a 3+-vertex that is not a
1-burl. A caterpillar is a tree having a single path incident with all edges;
equivalently, it is a tree not containing S2,2,2 as a subgraph.

Theorem 4.2. For n ≥ 10, every n-vertex caterpillar having maximum de-
gree at most 3 is 3-reconstructible.

Proof. Let D be the (n − 3)-deck of such an n-vertex tree. When n ≥ 2� + 1,
acyclic graphs are �-recognizable ([7]), and the number of edges is known
from the 2-deck, so all reconstructions are trees. Also we know the degree
list, since n−� ≥ 5 and these trees have no 4+-vertex. Finally, since n−� ≥ 7
we see that a tree with the given deck has no copy of S2,2,2, and hence it is a
caterpillar. Thus this family of n-vertex graphs is �-recognizable.

Let T be a reconstruction of D. We know the number s of 3-vertices in T
and hence the number of vertices in a longest path in T ; it is just n − s. Let
the end-distance of a 3-vertex be its minimum distance from an endpoint of
a longest path.

The short argument we give below handles all cases with s ≥ 5. This
argument is not valid when s ≥ 4. However, those cases can also be handled
by ad hoc arguments. We omit the details of those arguments.

Assume s ≥ 5. Let D′ be the set of connected cards having a path with
n − s vertices; such cards arise by deleting leaf neighbors of three distinct
3-vertices. Let v and w be the 3-vertices closest to the two ends of a longest
path in T . The cards in D′ having 3-vertices farthest apart have v and w as
3-vertices, telling us their end-distances. If they have distinct end-distances,
then the various cards in D′ having a 3-vertex closest to an endpoint of the
path P with n − s vertices give us the positions of all the other 3-vertices,
reconstructing T .

If v and w have the same end-distance r, then consider the cards in D′

where all 3-vertices have end-distance more than r. These arise by deleting
the leaf neighbors of v, w, and one other 3-vertex; still at least two 3-vertices
remain. Among these, the cards having 3-vertices farthest apart fix the end-
distances of the second 3-vertex from each end.

Let q be the minimum end-distance among these two 3-vertices. If they
both have end-distance q, then look at one card in D′ having one 3-vertex
with end-distance q and no 3-vertex with end-distance r. This shows us the
remaining 3-vertices, and we know exactly where to add the three missing
leaves. If only one of these two has end-distance q, then consider the cards
in D′ where the least end-distance of 3-vertices is q. Such cards are missing
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the leaf neighbors of v, w, and one other 3-vertex not having end-distance q.
Since s ≥ 5, over all such cards we obtain the positions of the other 3-vertices,
since the 3-vertex with end-distance q distinguishes the two ends of P .

Note that the caterpillars in Theorem 4.2 and n-vertex trees having no
full vertex as a centroid all have cost at least (n − 2)/2.

Theorem 4.3. Let D be the (n − 3)-deck of an n-vertex tree T . If T is uni-
centroidal with no unicentroidal card having a full vertex as centroid, or if T
is bicentroidal with both centroids having degree 2, then T is 3-reconstructible,
without knowing in advance the cost or subcost.

Proof. Let T be a tree in this family, with (n − 3)-deck D. If T has no full
vertex at all, then T is a caterpillar with maximum degree at most 3, which
by Theorem 4.2 is reconstructible from D. Hence we may assume that T has
a full vertex.

Any centroid z of T is a centroid with degree dT (z) in some connected
card. Hence z must be a 1-burl or a 2-vertex. Thus T is an

(
n−2

2 , n−2
2

)
-tree, an(

n−1
2 , n−3

2
)
-tree, an

(
n−1

2 , n−1
2

)
-tree, or a bicentroidal tree (with no full vertex

as centroid).
We consider first which vertices can be centroids of cards of T . When T

is unicentroidal, label z, x, X, x′, X ′ as usual. In an
(

n−2
2 , n−2

2
)
-tree, deleting

one leaf from each nontrivial piece plus any leaf from what remains yields
an

(
n−4

2 , n−6
2

)
-card or an

(
n−4

2 , n−4
2

)
-card with z as centroid. Deleting three

vertices outside one of the nontrivial pieces yields a card with the root of that
piece (x or x′) as the centroid.

In an
(

n−1
2 , n−1

2
)
-tree, deleting two vertices from one piece and one from

the other yields a bicentroidal card with z as a centroid. Deleting three out-
side X yields a unicentroidal card with centroid x or, if x is a 2-vertex, a
bicentroidal tree with centroids x and its neighbor in X (symmetrically for
X ′). Similarly for an

(
n−1

2 , n−3
2

)
-tree, except that deleting one vertex from

X ′ and two from X yields an
(

n−5
2 , n−5

2
)
-tree with centroid z, while deleting

three vertices outside X ′ yields a bicentroidal tree with centroids z and x′.
Consider a bicentroidal tree with centroids z and z′ as the roots of branches

Y and Y ′, and 〈x, z, z′, x′〉 being a path of nonleaf vertices. By symmetry, we
describe only the cards where a majority of the deleted vertices are outside Y ,
since we are assuming dT (z) = dT (z′) = 2. Deleting three vertices outside Y
yields a card with centroid x, while deleting one vertex of Y and two outside
Y yields an

(
n−4

2 , n−4
2

)
-card with centroid z.

Let v be a full vertex in T . In a card having v as a full vertex, we compute
the distance from v to the centroid(s), taking the average of the two distances



3-reconstructibility of rooted trees 29

when the card is bicentroidal. In all types of trees above, this distance is
minimized when all three deleted vertices are outside the piece or branch
containing v. Otherwise, this distance is larger.

Let an optimal card be a connected card minimizing r, where in a unicen-
troidal tree r is the distance from the centroid to a closest full vertex, and in
a bicentroidal card r is the minimum average distance from the two centroids
to a single full vertex.

If no piece (or branch) occurs in all optimal cards, then each nontrivial
piece of T has a full vertex at the same distance from the centroid in T . If
these are v and v′, then some optimal cards have v as the closest full vertex
(distance r) from their centroid, while other cards have v′ as this vertex (no
card has both). Each optimal card contains one of the two resulting pieces,
so over all optimal cards we obtain both. In each optimal card we see the
centroid(s) of T and whether they have leaf neighbors, and in all cases we can
determine T .

If in all optimal cards the piece containing a full vertex closest to the
centroid is the same, then either it arises from the one full vertex in T or from
two different full vertices in T . In the latter case, the non-constant pieces of
the optimal cards provide two copies of the rc3-deck of the constant piece. In
the former case, they give the rc3-deck of the piece of T not containing the
constant piece, and we reconstruct by Lemma 3.13.

When the neighbor x of a centroid z is the centroid in the optimal cards,
the rc3-deck of the non-constant piece tells us whether z is a 1-burl or a
2-vertex, which distinguishes between

(
n−2

2 , n−2
2

)
-trees and bicentroidal trees

in this family. The same notion distinguishes between
(

n−1
2 , n−3

2
)
-trees and(

n−1
2 , n−1

2
)
-trees in this family.
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