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Abstract: Mathematical modelling is endorsed as both a means and an end to learning
mathematics. Despite its utility and inclusion as a curricular objective, one of many questions
remaining about learners’ modelling regards how modelers choose relevant situational attributes
and express mathematical relationships in terms of them. Research on quantitative reasoning has
informed the field on how individuals quantify attributes and conceive of covariational
relationships among them. However, this research has not often attended to modelers’
mathematization in open modelling tasks, an endeavour that invites further attention to
theoretical and methodological details. To this end, we offer a synthesis of existing theories to
present a cognitive constructivist account of mathematical model construction through a
quantity-oriented lens. Second, we use empirical data to illustrate why it is productive for
theories of modelling to attend to and account for students’ quantitative reasoning during
modelling activity. Finally, we identify remaining theoretical and methodological challenges to
reconciling theories of model construction with a cognitive constructivist view of quantity.

Keywords: mathematical modelling, modelling process, quantitative reasoning, post-
secondary students, qualitative research

1 Introduction

Mathematical modelling is a foundational skill for students to learn, regardless of age or career
aspiration. The value of mathematical modelling experiences lies in their potential to develop
students’ capacity for more knowledgeable participation in society and their mathematical
conceptual knowledge (Julie & Mudaly, 2007). For this reason, it enjoys prominence as a named
learning objective in curricular documents around the world (Kaiser, 2017). Thus, research on
mathematical modelling is typically conducted with an eye to promoting it within classrooms,
improving its instruction, task design, and ultimately, fostering students’ capacity to create
models of real-world scenarios (Cai et al., 2014).

Researchers have distinguished between modelers’ overall capacity to create models
(competence) and the skills and abilities needed to address a modelling problem (competencies)
(Blomhgj & Jensen, 2003). Modelling competencies include forming an understanding of a real-
world scenario, simplifying, mathematizing (producing a representation), solving, interpreting,
and validating (MaaB, 2006). Students at all mathematical levels struggle to carry out these
competencies. The competencies associated with model construction—simplifying and
mathematizing—are known to be especially challenging (Galbraith & Stillman, 2006; Stillman et
al., 2010). Over the years, research has pointed to many sources of students’ cognitive
difficulties, including problematic transfer of knowledge (Carraher et al., 1985), preservation of
real-world complexities (Czocher, 2019), naive explanations for real-world phenomena (Posner
et al., 1982), and the disparate domains of knowledge required (Stillman, 2000).

Despite progress the field has made in articulating reasons for why students struggle to
carry out modelling competencies (and develop overall competence), “no worldwide accepted



research evidence exists on the effects of short- and long-term mathematical modelling examples
and courses in school and higher education on the development of modelling competencies”
(Cevikbas et al., 2021, p. 206). In their comprehensive review of published literature on
modelling competencies, Cevikbas et al. (2021) argued that fostering and assessing modelling
competencies depend on how those competencies are conceptualized and further claimed that the
field’s existing strategies were too uniform. They called for more innovative approaches to
studying modelling competencies, encouraging both theoretical and empirical studies to
strengthen the epistemologies of modelling.

Our study responds to this call by operationalizing the simplifying (specifying) and
mathematizing competencies in terms of constructs from theories of quantitative reasoning.
Theoretically and methodologically bridging modelling and quantitative reasoning lines of
inquiry is promising. From one side, model construction is often characterized as beginning with
identifying (ir)relevant variables, an account that could be enriched by attending to how those
variables are cognitively constituted. From the other, scholars of quantitative reasoning have
long characterized modelling as establishing quantitative structures expressed through
mathematical representations (Larson, 2013; O'Bryan; Sherin, 2001; Stroup, 2002; Thompson,
2011), a theory-building move that does not yet have an empirical counterpart in research
settings where mathematical model construction (rather than quantitative reasoning) is the
subject of inquiry. Establishing empirical compatibility of the two lines of inquiry would offer
explanatory mechanisms for successful, and especially, unsuccessful attempts at model
construction that are based in students’ prior mathematical constructions. A deeper account of
model construction would be valuable to facilitators seeking to elicit and extend students’
reasoning during model modelling.

In this paper, we address an important aspect of mathematical modelling: modelers’
expression of mathematical relationships in terms of their choice of relevant quantities. Our
study bridges research on modelling to scholarship of quantitative reasoning through a post-hoc
analysis of three students’ quantitative reasoning during an open-ended modelling task. Our
contribution is three-fold. First, we synthesize perspectives on model construction and
quantitative reasoning to present a cognitive constructivist account of mathematical modelling.
Second, we illustrate with empirical data compelling reasons why it is productive to account for
individuals’ quantitative reasoning when studying model construction and making
recommendations for fostering students’ capacity for modelling. Finally, we identify challenges
to operationalizing mathematical model construction through the lens of quantitative reasoning.

2 Literature Review

2.1 Mathematical model construction from a cognitive perspective

Our study falls within the larger agenda of building cognitive models to explain how
individuals construct mathematical models. By mathematical model, we mean a conceptual
system expressed using a variety of representations (e.g., concrete materials, written symbols,
spoken language) “for constructing, describing, explaining, manipulating, predicting or
controlling systems that occur in the world” (Lesh et al., 2003, p. 213). We focus on the process
of modelling which is typically conceptualized as an iterative cycle consisting of a series of
phases and cognitive or behavioral actions connecting those stages. Visualizations of the process,
called modelling cycles (MCs) (e.g., Blum & LeiB3, 2007; Zbiek & Conner, 2006), are used as
research lenses and each enumerates, nominalizes, and defines the phases differently. We are
concerned primarily with model construction, which roughly corresponds with the upper arc of



many MC’s. It begins when the modeler identifies a real-world problem to solve' and terminates
with a mathematical representation.

We adopt Zbiek and Connor’s (2006) decomposition of model construction. In their MC,
specifying comprises identifying conditions and assumptions of the real-world scenario to
prioritize. It includes identifying variables, parameters, their interdependencies, as well as any
restrictions or conditions that could be placed upon the modelling products. It includes de-
prioritizing or ignoring information the modeler deems irrelevant to solving the problem. Not all
assumptions effectively simplify the problem; some preserve complexity (Czocher, 2019). Next
is mathematizing, which “creates or acknowledges mathematical properties and parameters that
correspond to the situational conditions and assumptions that have been specified” (Zbiek &
Conner, 2006, p. 99). For example, in a projectile motion problem, one condition could be that
the projectile stays above ground level, corresponding to the mathematical property h > 0.
Mathematizing organizes a correspondence between among conditions, assumptions, properties,
and parameters through construction of relations as well as combining them to produce a
mathematical representation of those relations. The properties, parameters, and attendant
mathematical concepts become components of the eventual mathematical representation of the
scenario. Representations can be tables, graphs, charts, gestures, or words, when the signifying
elements are mathematical notation.

Mathematizing may happen nearly instantaneously when the modeler has established
ways of reasoning about a familiar scenario, such as when an algebra instructor immediately
conceives of the speed a steadily moving object travels in terms of time and distance, writing r =
Ax /At. In contrast, conceiving of a ratio as a model capable of answering the question “how
fast?” may be challenging for a learner (Stroup, 2002). Throughout the process, modelers
validate and verify their emergent models by reflecting on their anticipated, intermediate
outcomes (Stillman & Brown, 2014), resulting in modifications to the representation or to the
modeler’s conception of the real-world scenario (Czocher, 2018). Satisfactory (to the modeler)
model construction depends on aligning conceived real-world conditions and assumptions with
acknowledged mathematical properties and parameters (Zbiek & Conner, 2006).

2.2 Model construction — state of the field

The main goals of research from a cognitive perspective on modelling have been to
characterize individuals’ routes through the modelling process as a series of stages, difficulties
students encounter as they engage in mathematical modelling activities, or individuals’
metacognitive acts as they progress through the process (Kaiser, 2017, p. 274). A common
approach is to document the order of steps and sub- or meta-processes, such as identifying
variables, creating representations, working mathematically, or validating as they pass through an
MC (Arlebick & Bergsten, 2010; Borromeo Ferri, 2006; Czocher, 2016; Hankeln, 2020;
Hankeln et al., 2019; Sol et al., 2011). The body of work primarily supports claims about
idiosyncrasy of individuals’ modelling routes. The second theme concerns characterizing specific
cognitive obstacles resulting from students’ current ways of reasoning that lead toward or away
from normative solutions (Carreira et al., 2011; Kaiser, 2017; Stillman, 2000). Findings indicate
that knowledge acquired through lived experience is often prioritized when interpreting cues

! Traditionally, the cognitive perspective on modelling maintains a distinction between the situation-as-
perceived-in-the-world and the modeler’s mental presentation of the situation-as-conceived-by-the-modeler. For
simplicity of vocabulary, we use “real-world” to refer to either, but recognize that the modeler only models the
latter.



about problem constraints and that the nature of the knowledge activated is task-specific as well
as student-specific (Czocher, 2019; Manouchehri & Lewis, 2015; Stillman, 2000). Other work
has pointed clearly to the limitations of a mathematical knowledge-based approach to explaining
students’ modelling processes. For example, Roorda et al. (2007) studied students’ concepts of
derivative in conjunction with application of these concepts during a modelling task and
experienced difficulty applying Zandieh (1997)’s derivatives framework for explaining
transitions between the task’s real-world scenario and the requisite mathematical concepts of the
framework. That is, conceptual analyses of students’ mathematics insufficiently captured their
mathematization of the scenario. A third theme within the cognitive approach focuses on the role
of metacognitive processes in modelling (Stillman & Galbraith, 1998; Vorhélter, 2018).
Galbraith and Stillman (2006) made some progress in explaining students’ cognitive blockages in
terms of metacognitive processes and Niss (2010) argued that reflection on the idealization of the
task scenario, while anticipating the outcome, and relevant mathematical representations for the
scenario, would beget successful mathematization. Introducing such forward-looking meta-
processes encourages viewing students’ modelling work relative to the goals they set for
themselves within the task-scenario. Collectively, this body of work suggests that individuals’
modelling routes, applications of knowledge, and self-monitoring of solution strategies are
neither regular nor, across individuals, predictable.

The theoretical and methodological commitments adopted in studies from the cognitive
perspective support claims about where in the modelling process impediments to progress are
located and suggest how to remediate the impediment. For example, to remove a blockage in the
process, theory would recommend a teacher direct a student to make an assumption, ignore a
variable, correct a representation, recall prior mathematics knowledge, or reflect on
inconsistencies. These suggestions are often devised with normatively correct models for the
scenario in mind (Kaiser, 2017). Yet, deeper questions remain about student reasoning
underlying the blockages, apparent inconsistencies within students’ models, or how to extend
modelers’ thinking (c.f. Stillman, 2011, p. 174). A cognitive theory of model construction ought
to account for the ways the various conceptual, representational, and real-world systems align for
the modeler.

We emphasize that a mathematical model is a conceptual product coordinating relations
among objects and their properties with mathematical systems expressed using mathematical
conventions. Relevant to how these systems align and are represented for the modeler, Vergnaud
(1998) observed that “the relationship between signifier and signified is not usually a one-to-one
correspondence.” We infer two further consequences: there is ambiguity in representation for an
object and a signifying element (e.g., an inscription like x) signifies the modeler’s meaning for it
rather than a real-world object or a mathematical entity.

2.3 Quantitative reasoning — theory and lines of inquiry

The above synthesis intimates a need for attending to how modelers’ mathematical
conceptual systems and their expressions acquire situationally relevant meanings and how those
meanings are coordinated. To address this theoretical need, we leverage theories of quantitative
and covariational reasoning? (QRT) to conjecture sources for the meanings of variables and
correspondences underlying representations. A quantity is a measurable attribute an individual

2 The phrase “quantitative reasoning” can refer to cognitive activities, to theories involving constructs for
analyzing those activities, or entire lines of inquiry seeking to understand or develop students’ cognitive activities.
We will use QRT to indicate the theories and lines of inquiry and QR to indicate the mathematical reasoning done
by a human being.



imputes to an object or situation (Thompson, 1994a, 2011). Quantities consist of three
interdependent conceptual components: (a) an object or entity (b) an attribute or quality of the
object, and (c) a quantification. Quantification entails a conceived measurement process for a
specified attribute associated with a specified object such that “the attribute’s measure entails a
proportional relationship...with its unit” (Thompson, 2011, p. 37). Quantities are mental
constructions, existing in the mind of an individual, rather than in the world (Thompson, 1994b),
and therefore vary from person to person. Quantitative reasoning involves conceiving of
situations as consisting of quantities and establishing relationships among quantities.
Covariational reasoning entails an individual’s sustained image of two quantities’ values or
magnitudes varying simultaneously (Carlson et al., 2002; Saldanha & Thompson, 2002;
Thompson & Carlson, 2017).

Piaget (1965) characterized different types of quantification (e.g., gross and extensive),
which have been adapted by later scholars. Gross quantification entails comparative operations,
such as those permitting a determination of which of two lengths is longer. Extensive
quantification entails operations that introduce units, which supports mathematical activities like
measuring and counting (Steffe, 1991; Thompson 1994). New quantities can be established by
applying quantitative operations to extant quantities (Thompson, 2011). For example, the amount
by which the angularity of one trajectory exceeds another’s, relative to horizontal, is a
quantitative difference (new quantity) constructed through making an additive comparison
(quantitative operation).

As a line of inquiry, QRT studies explore how individuals conceive of specific types of
relationships including linear (Ellis, 2007a), quadratic (Ellis, 2007b), exponential (Castillo-
Garsow, 2013; Ellis et al., 2015), and trigonometric (Moore, 2014) functions to construct
targeted covariational relationships within specific contexts. However, the applicability of these
studies to studying model construction is limited. Because quantification processes are the focus,
the learning environments are designed to target quantities the researcher desires the participants
to engage with and abstract invariant (functional) relationships from, under the conditions laid
out in the task statement (e.g., Ellis et al., 2015; Moore, 2014). Other studies include graphing
activities with specified coordinate systems or focus on isolated single linear (or bi-linear)
relationships among two quantities being related or combined to form a third (e.g., Thompson,
1994a). In contrast, a modelling task would leave specifying to the participant, including
choosing which attributes to quantify and establish relationships for.

Despite the surface-level similarities and compatibility, we note there are few studies of
mathematical modelling — those emphasizing how mathematics is employed to solve a real-world
problem — that account for quantitative reasoning. In this vein, a recent study of undergraduate
business calculus students’ covariational reasoning as they addressed optimization problems
involving marginal revenue and marginal cost found that students’ conflation of change and rate-
of-change persist, and can be explained by attending to students’ introduction of quantities
besides those provided in the problem statement (Mkhatshwa & Doerr, 2018). Thus, examining
model construction as a process that generates and exploits such relations among quantities is a
promising way to connect scholarship in the two areas and advance the field’s understanding.
Larson (2013) addressed exactly this issue in a study of students’ development of a ranking
algorithm for a data set. She broadly characterized students’ models as systems comprised of
quantities, relationships among quantities, and operations that describe how those quantities
interact. Larson (2013) argued that the operations students chose “to invoke on quantities are
reflective of the relationships they perceive among those quantities” (p. 117). Although she



claimed that quantitative reasoning was central to the iterative refinement of real-world problems
into mathematical problems, the study was limited to examining students’ ways for combining
numerical values given in the task. In other words, numerical operations were foregrounded
rather than quantitative ones. Neither study detailed how the students’ quantities were identified
or provided indicators of students’ engagement in quantitative reasoning absent numerical
values.

The literature suggests that leveraging QRT can move studies of model construction
beyond observational descriptions of impediments to modelling processes and towards a
productive characterization of the cognitive sources (rather than content-knowledge sources) of
idiosyncrasies in students’ modelling routes. Meanwhile, our review of QRT literature suggests
realizing its potential to yield insights into model construction would require attending more
closely to quantification processes as the participant derives her model from first principles and
to the interplay among quantities, specifying and mathematizing. The purpose of this study was
to investigate the empirical feasibility and theoretical generativity of enhancing the cognitive
approach to studying mathematical model construction with theories of quantitative reasoning.
We address the following questions: How does augmenting a study of model construction from
the cognitive perspective with theories of quantitative reasoning bear out empirically? What
considerations remain for improving this approach?

3 Methodology

In our view, descriptions of model construction processes may be enhanced through
attending to students’ in-the-moment and potentially unstable quantitative meanings for their
inscriptions. When a modeler produces a normatively correct (or self-validated) mathematical
model, we would anticipate she produced suitable (to herself) consistency among attributes and
explanations of the scenario, mathematical concepts, and representations, observable as a smooth
flow through phases described by modelling cycles. Our theoretical framework attributes a
perturbation or standstill to a modeler’s recognition of inconsistency among meanings she
attributed to aspects of the emerging model. Thus, seeking cases of such misalignment in a
modelers’ work should induce an explanatory account of their modelling in terms of their
conceptions of the quantities imputed to the scenario.

3.1 Research Setting and Dataset Constitution

Data were generated as part of a larger study of the characteristics of tasks and facilitator
interventions that could elicit specific mathematical modelling competencies. The project took
place at a large university in the southern United States. Data were generated through a series of
cognitive, clinical interviews that enabled analysis to focus on generating viable explanatory
hypotheses regarding participants’ reasoning for their observable activities (Clement, 2000). The
project sample comprised 15 volunteers from a cross-section of mathematical levels (pre-algebra,
algebra, calculus, and differential equations) who worked on tasks ranging from simple word
problems to more complex modelling problems. One goal of the broader project was to explore
the feasibility and consequences of attending to quantitative reasoning during model
construction, and so we administered the Monkey Problem (below) to the three advanced
students:

A wildlife veterinarian is trying to hit a monkey in a tree with a tranquilizing dart. The monkey
and the veterinarian can change their positions. Create scenarios where the veterinarian aims
the tranquilizing dart to shoot the monkey.



Iseult’s, Safi’s, and Merik’s work on the Monkey Problem constitutes the dataset for the
present study. We selected their work not due to their demographic characteristics but rather to
showcase the interplay between their conceptions of the task and quantitative reasoning that
informed their model construction. All three were mathematics majors intending to teach
secondary mathematics, were recruited from a course on ordinary differential equations, and had
completed or were enrolled in multivariable and vector calculus, probability, statistics, analysis,
abstract and linear algebras. Their advanced mathematics backgrounds increased the likelihood
they had previous experiences deriving and using mathematical representations as models of
real-world phenomena.

The Monkey Problem presents a conceivably authentic real-world scenario couching a
familiar problem of projectile motion appearing in courses on mechanics, pre-calculus, calculus,
or differential equations. The task is open and ill-defined (see Yeo, 2007), enabling observation
of how participants conceived and structured the scenario, goals they established, and activities
they pursued. Depending on assumptions made during the specifying phase of modelling,
concepts from right-triangle trigonometry, quadratics, or differential equations can yield
satisfactory models. That is, the problem elicited specifying and quantitative reasoning. Our
participants’ work on the Monkey Problem was adequate to our purpose for the following
reasons: all three made multiple attempts at resolving the mathematical problems they identified
within the task scenario, made both implicit and explicit assumptions about the task scenario
leading to distinct formulations of the task, articulated their reasoning aloud, and created many
inscriptions documenting their work.

Participants were given unlimited time to address the task in a manner satisfying to them.
During the interview, we provisionally accepted all student productions without actively
correcting, leading, or removing ambiguity (Goldin, 2000). Our theoretical framework
necessitated we assume each modeler’s interpretation of the task scenario, meanings for
inscriptions, or mathematical knowledge brought to bear was different from our own. Follow-up
questions and interviewer interventions aimed to clarify the students’ statements or inscriptions
with the purpose of documenting nascent or in-the-moment conjectures about the participants’
thinking. Safi and Iseult received a contingent prompt requesting they develop a way to guide the
veterinarian to accurately aim and hit the monkey. The audio/video recorded interview sessions
lasted 26 minutes for Iseult, 34 for Safi, and 46 for Merik.

3.2 Data Analysis

The overarching research design was to constitute theoretical cases that “embody causal
processes operating in a microcosm.” (Walton, 1992, p. 122).” The theoretical cases we sought
were of the mutual influence of specifying and quantitative reasoning during model construction.
This approach to case-study stands in contrast to constituting a case as a complete account of an
individual’s reasoning; we do not claim that ways of reasoning were uniform across nor within
individuals. Our results are a set of carefully curated vignettes showcasing the main hypothesized
causal elements for misalignments we observed in participants’ work. To arrive at the vignettes,
we coordinated multiple sequential analyses of the a/v recordings using MaxQDA, described
below.

We first addressed specifying. According to the theoretical framework, individuals’ model
construction activity is driven by their interpretations of the task scenario. Therefore, for each
participant, we asked How is the modeler conceiving the task? We documented the imagery we



inferred was immediately available to them, goals they set, and the mathematical concepts,
procedures, and real-world explanations they appealed to.

Next, we addressed quantifying. The theoretical framework prescribes that a quantity is
an individual’s conception of a measurable attribute of an object along with a conceived
measurement process. We applied the quantification criteria framework (see Table 1) developed
by Czocher and Hardison (2021) to catalogue the attributes each participant quantified. The eight
criteria serve as indicators the participant engaged in mental operations necessary for, or
indicative of, a conceived measurement process for each situational attribute, through
considering variation, measurement, and relationships among already-quantified situational
attributes. A situational attribute is one for which we were able to infer a situational referent
within the task scenario (e.g., “the tree’s height”). Instances in which the modeler mentioned
generic attributes (e.g., “velocity is distance over time”) for which we were unable to infer
situational referents were not considered situational attributes. The criteria are generous in
inferring participants’ treatment of units. They include a quantified attribute when the participant
mentions a standard dimensional unit in the sense of Schwartz (1988) (e.g., meters) or indicates
mental operations producing units, in the sense of Steffe (1991) (e.g., iteration, partitioning,
etc.?). Three coders independently and systematically coded the interview records according to
these criteria. When a participant’s work met any of the eight criteria, we documented a
quantified attribute for that participant. For each situational attribute, we noted the inclusion
criteria that were initially satisfied by participants’ words, writing, and actions. The result was a
cumulative list of quantified attributes each modeler imputed to their image of the scenario (see
Table 3 and Table 4).

Table 1 Criteria indicating a modeler has quantified an attribute (Czocher & Hardison, 2021).
Enumeration indicates neither a chronological progression nor order of priority.

QC Description Justification for Criteria Inclusion from
QRT
Variation Criteria Quantities are conceived to have values
that can potentially vary
1 Discussing variation of a situational Quantities’ values may vary independently
attribute as their objects or attributes undergo

change. Variational reasoning refers to
how an individual conceives of changes
for a single quantity’s value or magnitude.
For example, a quantity’s value may vary
discretely or continuously (Castillo-
Garsow, 2012).

Measurement Criteria Quantities are conceived as measurable
attributes of objects

2 Substituting, assuming, or deducing a  Numerical values can be assigned to
numerical value for a symbol with a extents of an attribute (Schwartz, 1996).
situational referent

3 Although the usage of a standard unit in the sense of Schwartz (1988) does not necessarily imply mental
operations that produce units as described by Steffe (1991), our goal was to account for all potential quantified
attributes participants imputed to the scenario. Because it is possible for individuals to assimilate standard units in
terms of such mental operations, we included both kinds of units in our criteria.



QC Description

Justification for Criteria Inclusion from
QRT

3 Expressing a desire to measure a Quantification can be motivated by a
situational attribute desire to measure (Schwartz, 1988).

4 Interpreting a value in context Numerical values for magnitudes measure

attributes of objects

5 Specifying a situational reference Extensive quantification supports
object (e.g., line or point from which ~ measuring and counting relative to some
to measure; situational 0) initial position (Steffe, 1991)

6 Specifying a (potentially non- Unit-producing operations such as

standard) unit of measure for a
situational attribute

partitioning and iterating (Steffe, 1991)
are indicative of quantification;

dimensional units (Schwartz, 1988) can be
associated with such operations.
Quantitative reasoning entails conceiving
of quantities and relationships among
quantities.

Quantitative operations include comparing
or combining two quantities
multiplicatively or additively(Thompson,
1994a)

Relationship Criteria

7 Explicitly expressing a quantitative
relationship, a dependence or causal
relationship among already-introduced
quantities, describing one quantity in
terms of other quantities

8  Nominalizing an attribute via verbally
labeling, symbolically labeling, or
describing its relation to other
attributes of objects

Attributes are associated with objects

Finally, we addressed alignment of meaning with representations. We assumed that
“what we ultimately observe are the external components (representations), but these cannot be
disengaged from the conceptual systems” (Lesh & Doerr, 2003, p. 213), We operationalized
representation not as a static thing, but rather as a dynamic process shaped by individuals’
quantitative reasoning (Vergnaud, 1998). We catalogued the students’ written inscriptions by
attending to spatial and temporal organization of the students’ writing (see Czocher & Hardison,
2019 for details on this process). Through coordinating participants’ utterances and gestures
with their inscriptions, we inferred the quantitative meanings ascribed to the inscriptions. Our
approach enabled examination of the interplay among the modelers’ conceptions of the task
scenario, the attributes they quantified, and the consequences of both on model construction.

3.3 Sample Data Analysis

Table 2 contains an excerpt of the first 3 minutes of Merik’s interview, where he produced
an illustration reflecting his conception of the scenario and imposed a right triangle upon it
(Figure 1). Figure 2 shows a snapshot of MaxQDA coding for the excerpt. Because coding relied
primarily on video, including speech, writing, gesture, documentation of which inscriptions
Merik’s attention was on, and our own experiences conducting the interviews, we style the
excerpt as rows of transcript enriched with descriptive field notes and justifications for applying
quantification criteria from Table 1.



Time Merik’s Speech Researcher Description Criteria & Justification

0:45 Let’s pretend we have a Merik sketched a As he assimilated the task
tree. This one, I really monkey and a vetin a scenarios he created, Merik
wanna draw this one. And hat. A straight line passed set a mathematical problem-
you got some sort of through his stick hands to  solving goal to identify the
monkey coming out, just  a small dot, indicating angle at which the vet should
hanging out in that tree where the tip of the rifle ~ shoot the dart to hit the
and usually, something would be. monkey.
like this

1:10  And you got a The dot signified the Neither dot was coded as
veterinarian. He has his initial position of the indicating a quantity, since
gun, so I can set this like  dart. A small dot “right at no quantification criteria
this. Triangle. We’ll take  the heart of the monkey”  were met. The triangle’s
it from shooting, it’s indicated the dart’s final ~ hypotenuse was not coded as
gonna aim right at the position. He drew the a quantity (until 4:40) since
heart of the monkey. And  straight line connecting he did not indicate an object,
you get the tranquilizer the two dots, dropped a attribute, nor unit associated
stuff, flows around, so vertical line to the same with it in this exchange.
that you can make the horizontal level as the
triangle here. gun-dot and connected

the gun-dot to the foot of
that vertical line, forming
a horizontal segment “so
you can make the triangle
here.”

2:19 He just wants to make a He assigned symbols to The immediacy of the
straight shot, uh, that represent the vet’s sketching, imposing, and
won’t work out cause distance from the tree labeling after reading the
gravity is a real thing. measured from the vetto  prompt suggest that the right-
Hmm. It’s weird ... the base of the tree (x), angle configuration, the three

the monkey’s height in quantities, and their labels
the tree, as measured were available to him upon
from the base of the tree  assimilation of the task
(y), and the angle formed scenario. All three quantified
by the gun to the ground  attributes met QC#S.
as measured from the
path emanating from the
gun-dot relative to the
horizontal (8).

2:33  Okay. I don’t really like Below the tree diagram,  Merik acknowledged that the

this model cause it’s not
gonna fly in that path, it’s
gonna make more of a arc
with destination. Cause
you’re gonna have some
initial velocity which is

he sketched a curved arc
connecting two dots, one
corresponding to the gun-
dot and one
corresponding to the
monkey-dot.

dart would travel along a
curved path, rather than a
straight one, as a
consequence of gravity being
“a real thing.” We did not
credit Merik with conceiving




Time Merik’s Speech

Researcher Description

Criteria & Justification

just distance over time.
Yeah.

of gravity as a quantity in
this instance since he gave
evidence only of its effect on
the dart’s path (object,
attribute). Similarly, we did
not credit Merik as
quantifying either initial
velocity or time because
there was no clear, dedicated
situational referent. He used
the words “initial velocity”
but then described with the
mantra “distance over time.”
We marked both “initial
velocity” and “time” in black
codeline (Figure 2) but did
not associate a quantification
criterion with them.

3:03

Taking away gravity
which is 9.8 meters per,
squared, this is just in
terms of nearest per
second and then, how
would that flight path
really work? Cause it
doesn’t really matter how
tall the, you can just take
where it’s leaving from is
the zero. Cause, like an
origin, just work from
there, trying to hit the
monkey or whatever,
whatever height he is at
and the distance.

Below the curved arc, he
wrote v — 9.8.
subsequently writing in
the units “m/s” and
“m/s?” next to the
inscriptions v and 9.8.

Referring to the
configuration of objects
represented in the tree
diagram, Merik evidenced he
was able to conceptualize the
monkey’s position and the
vet’s position as free to move
but constrained to the
vertical (tree) and horizontal
(along the ground) legs of
the triangle, respectively.
This indicated variation of
the positions relative to their
respective zeros (base of the
tree, starting position of
dart). QC#2 for both
distances was indicated.

Merik referenced units for
gravity and assigned a
numerical value, meeting
QC#2 and QCH#6.




Table 2 Excerpt of the first 3 minutes of Merik's interview. Column 2 indicates the time that
speech started, which does not always coincide with timing of writing or gestures.

Figure 1 Merik's written work. Cumulative inscriptions on his tree diagram (left) and his
trajectory diagram (right)
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Figure 2 Screenshot from MaxQDA analysis of Merik's work. Black codeline corresponds to
potential quantity imputed, brown codeline corresponds to quantification criteria met, other color
codelines correspond to distinct inscriptions Merik’s attention is on.

4 Results

We first provide a brief overview of the modelers’ initial conceptions and progress. We elaborate
on the quantified attributes we inferred they imputed to their scenarios and contrast
quantifications of particular situational attributes. We then discuss misalignments rooted in the
modelers’ quantitative reasoning that influenced their model construction.

4.1 Modelers’ initial conceptions

All three participants spontaneously considered two scenarios: one without gravitational
force and one with. In the first scenario, each modeler sketched a straight path from the vet to the
tree (see Figure 3). They attended to base angle determined by the horizontal distance from the
vet to the tree, the vertical height of the monkey in the tree, and distance between the monkey
and the vet. The modelers indicated relationships among the lengths and angle given by the
Pythagorean Theorem and (inverse) trigonometric formulae. All three asserted that the distance
between the monkey and the vet could be determined given the other lengths. Merik and Safi
explained that the inverse trigonometric formulae would yield the angle the gun should be fired
at, presuming a straight path, even when the veterinarian and the monkey were positioned
arbitrarily. In contrast, Iseult concluded that the veterinarian should aim 45° above horizontal if
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he and the monkey were each 10 feet from the base of the tree. She maintained these fixed values
throughout the interview.

Figure 3 Safi's (left) and Iseult's (right) tree diagrams, considering straight trajectories

For their second scenario, all three modelers inscribed curved paths beginning at the vet’s
position and passing through the monkey at their apexes, each implicitly assuming that the
monkey and the maximum height of the dart coincided (see Figure 4). Each modeler observed
that the path traveled by the dart would be influenced by its initial velocity. Although each made
progress, toward providing a mathematical model of their chosen scenarios, none succeeded
(from their perspectives nor ours).

Figure 4 Safi's (left) and Iseult’s (right) parabolic trajectories

4.2 Catalogue of quantified attributes

After analyzing each interview according to the indicators in Table 1 we inferred that
Merik, Safi, and Iseult quantified 14, 9, and 10 attributes, respectively, during their specifying
activity (see Table 3 and Table 4). We recorded the quantity using the same notation (e.g.,
ANGstr) if we inferred that the participants were indicating the same attribute of the same object
from our perspective, even if their quantifications or nominalization differed. For example,
ANGstr denotes the object gun and attribute angle of ascension relative to horizontal, regardless
of the measurement process or units used by a specific participant. Of the 19 unique quantified
attributes, only 6 were imputed by all three participants: ANGstr, ANGpar, DISTVET/TREE,
DISTvermvky , HTmky/cun IVELpart. When considering a scenario without gravitational force,
each modeler inscribed a right triangle and considered four quantities: ANGstr, DISTVET/TREE,
DISTverMKY , and HTMkyY/GuN. Each modeler observed that, subject to gravity, the curved path
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traveled by the dart would be influenced in some way by the dart’s initial velocity (IVELparr).
We further analyze distinctions in quantifications in the next section.

Table 3 Collective list of quantified attributes imputed by the modelers.

Quantified Type Description

Attribute

ANGsTR Angle Measure of angle gun is aimed relative to the horizontal, for straight
path

ANGprar Angle Measure of angle gun is aimed relative to the horizontal, for parabolic
path

ANGvVET3D Angle Measure of the plane angle formed by a designated axis and the line
through the tree & veterinarian in 3-space.

FORGunmpart  Force Force the gun applies to the dart

DISTvertree  Length  Horizontal distance from vet to the tree/under the monkey.

HTTrREE/GRD Length  Height of the tree

DISTvermky Length  Length of the straight path from the vet’s gun to the monkey.

HTcun/Grp Length  Height of gun (or vet) relative to ground.

HTwmky/Gun Length  Height of the monkey relative to the vet’s gun.

DISTpArT Length  Distance traveled by the dart

HTparr Length  Height of the dart

TALLpatH Length  Tallness (vertex height) of the parabolic path

VELparT Rate Velocity of the dart

SPDpaRT Rate Speed of the dart

IVELDART Rate Initial linear velocity of the dart.

VVELbpart1  Rate Initial vertical velocity of the dart

HVELpart1  Rate Initial horizontal velocity of the dart

ACCparT Rate (Vertical) acceleration of dart due to gravity

TIME Time Elapsed (figurative) time

Table 4 Time of first evidence of the quantified attribute, along with criteria observed, for each

modeler

Quantified Safi Iseult Merik
Attribute

Criteria Time Criteria Time Criteria Time
ANGsTR 2,8 5:28 8 2:08
ANGpar 7,8 10:30 1 7:12 1 6:04
ANGVET3D 5,7,8 24:38
FORGuN/DART 3,8 11:05
DISTver/ree | 5,7,8 10:50 2,5,6,8 3:20 8,6 2:09
HTTREE/GRD 3,8 24:08 2,5,6 4:13
DISTvermky | 7 14:48 8 3:35 8 4:37
HTgun/GrD 2 3:36
HTwmky/Gun 2,5,6,8 3:30 8 2:10
DISTparT 7,8 30:50
HTpart 1 15:35
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Quantified Safi Iseult Merik
Attribute

Criteria Time Criteria Time Criteria Time
TALLpaTH 1 5:04
VELDART 1,3,7.8 18:12
SPDpaARrT 7,8 10:42 8 4:59
IVELbART 8,1 33:07 7 20:35 8 3:02
VVELDARTI 8 40:23
HVELparT1 8 25:42
ACCparT 2,6,8 12:50 2,6 3:06
TIME 8 27:30 8 16:08

4.3 Participants’ quantifications of attributes differed

Table 3 and Table 4 show that the modelers imputed distinct quantities into their scenarios and
prioritized them differently, often exhibiting differing sets of criteria. Distinct attributes were
sometimes associated with the same object (e.g., height of the dart, speed of the dart), and we
also found evidence the modelers conceived of quantities in subtly different ways (e.g., time).
Some situational features were attended-to across modelers (e.g., gravity), but not all modelers
treated the feature in a way that met at least one quantification indicator. We discuss examples
below.

Safi treated gravity as an actor generating effects within the scenario; her work did not
reveal evidence meeting any quantification criteria for gravity. She claimed that the dart would
eventually “start to curve” even if shot straight due to “the law of gravity” but indicated that
gravity’s effect would be mitigated by the dart’s speed. She argued that a faster (slower) dart
would have less (more) time for gravity to affect its path, a mental action indicative of directional
covariational reasoning (Carlson et al., 2002). In contrast, Merik and Iseult indicated gravity as a
quantified attribute. For example, Merik noted that the dart would “make more like an arc to its
destination” due to gravity and wrote v — 9.8m/s?. Because Merik chose a magnitude and a
dimensional unit for ACCparr, and he incorporated it arithmetically, we credited him with
quantifying ACCparr. Though the expression’s units were not consistent, we view his
representation as an instance of the symbolic form m — m (Sherin, 2001), which Merik employed
to represent the impact of gravity on the dart’s velocity.

In the modelers’ treatment of TIME, we were able to infer non-equivalent quantifications.
Iseult did not indicate imputing TIME as a quantity during the interview; she conceived the
scenario as static. Safi and Merik both evidenced conceiving of time elapsed since the dart was
fired as a quantity. Safi considered the speed of the dart and the total amount of time the dart
would be airborne, evidencing at least gross quantification of TIME because she evidenced
directional covariation of time and speed. Merik explained his meaning for a Cartesian graph, “as
time moves this [path] is just tracking the [dart’s] height.” We infer Merik had an image of time
passing continuously, though we were unable to infer whether it entailed the rhythmic
segmentation characteristic of operative conceptual time (Thompson & Carlson, 2017).
Therefore, we consider Merik to have indicated imputing at least elapsed figurative time to the
scenario. Additionally, Merik substituted a particular value (1 second) for time while conducting
dimensional analysis of a quadratic equation. When asked whether knowing the time at which
the bullet hit the monkey might help him solve the rest of the problem, Merik replied, “No, I
don’t think that time is what I need to be concerning myself with cause...the distances are the
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variables.” Although Merik considered when the dart was in the gun and when the dart reached
the monkey, and that time elapsed as the dart traveled from one location to the other, we were
unable to infer that Merik considered specific instantiations of TIME between these two
instantiations®. In each case, the modeler’s conception of TIME may have constrained the
models generated. We further analyze the role of TIME in Merik’s model construction below.

4.4 Quantitative reasoning may be necessary, but does not guarantee model construction

In this section, we examine the interplay between the quantified attributes and the
modelers’ progress constructing a mathematical model satisfactory to them. Safi’s vignette
demonstrates that despite attending to quantities, and specifying their interdependencies, she did
not produce a representation inclusive of arithmetic operations. Merik’s vignette demonstrates
how attending to quantities occasioned reflection on the meanings of the arithmetic
representations he produced.
4.4.1 Directional covariation without algebraic representations

Safi conceived the path of the dart as an object and associated its tallness as an attribute
that could vary. First, she hypothesized conditions to achieve contact between the dart and the
monkey. She stated: “the highest point is where the dart is at the monkey,” but she indicated
TALLrara and HTmky/cun were distinct quantities. She observed that the vet would be a “certain
distance away from the tree, and based on that, he must angle the tranquilizer in such a way such
that at the highest point of the dart[‘s path, it] would curve.” Second, she explained that were
there no monkey, the dart would continue through to complete a parabola. Safi set the goal of
determining the angle to aim such that the apex of the curve coincided with the monkey. The
interviewer prompted her to explicitly consider how the parabola’s shape might depend on the
angle at which the vet aimed. Safi introduced a right triangle with base angle ANGstr and
indicated she would need to know magnitudes of HTtree/Grp and DISTver/TrREE. She
acknowledged that the dart’s initial velocity would impact the shape of the parabola because it
would influence the time needed to reach apex, and in turn would be influenced by gravity. For
Safi, the quantities she conceived could vary and were interdependent. However, gross
quantification and recognition of directional covariation among subsets of quantities were not
sufficient to support her in producing or populating a template to serve as a mathematical
representation of the dart’s trajectory.
4.4.2 Model validation can be occasioned by conflicting quantitative meanings

Approximately nine minutes into the session, Merik established the goal to seek a
quadratic equation because “that is the path [the dart] is going to follow.” He wrote f(x) =
Ax? + Bx + C, which we interpret as a template (Sherin, 2001). Merik hinted at situational
referents such as when he treated Ax? as a placeholder for the effects of gravity and Bx as a
placeholder for the effects of velocity of the dart. However, he referred to C directly as the y-
intercept of the graph of the expression and the image of 0 as being 0 + C without clearly
imbuing a quantitative referent from the scenario. Merik’s equation included the symbol x,
which lacked a dedicated situational referent. For Merik, the symbol x at times explicitly
represented the horizonal position of the dart (implicitly at a given moment in conceptual time)
while at other times he used it to represent elapsed time (at one or the other of the two locations
for the dart). The ambiguity of referents for x was not initially observably problematic for Merik.

4 Substituting 1s involved enactment of numerical operations that were not situationally quantitative.
Specifically, Merik did not link the 1s to the bullet’s position or time traveled. Thus, considering a unit of TIME (1s)
did not constitute sufficient evidence an extensive conception of TIME
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In fact, the shifting interpretations were not realized by Merik until the interviewer prompted him
to share what 4, B, C, x, and f (x) represented. Merik responded that A was the rate of change in
velocity and that x would be time. Consequently, he realized that substituting 30 for x and 40 for
y (specific values he selected for triangle leg lengths) was not compatible with this interpretation
of the quadratic expression.

Figure 5 Merik's coordinate axes, support to and evidence of his reasoning about the monkey
and vetrinarian in 3-space.

4.4.3 Quantitative reasoning coincides with aspects of modelling sub-processes

Around 23 minutes, Merik set the goal of finding ANGrar and introduced a 3-axis
coordinate system to record his work. The system aligned the tree with the vertical axis, located
the monkey at (0,0, m), and the veterinarian “somewhere” in the x, y-plane. He assumed the
location would be “sort of radius distance away and angle from” arriving at (r, 8, 0), with a
parabolic path between the two points. He conveyed the new quantity m to his quadratic
equation, writing m + 100x — 10x? and setting parameters values —10m/s? for gravity and
100m/s for initial velocity. He crossed out the expression because it combined m, a vertically
oriented distance, with x, a horizontally oriented distance. Merik worked for several minutes to
convert his rectilinear coordinates to polar ones before asserting that “the monkey is somewhere
up and down the z-axis and the veterinarian is along the x, y-plane and so no matter where they
move...it doesn’t really matter.” He explained his conclusion in terms of quantities he previously
treated as varying but which he could instead assume to be constant: the tree would stay the same
height, the monkey’s height would be measured “straight down” regardless of which side of the
tree he hung from, and the veterinarian’s distance would always “be the r in this particular
situation” because “wherever he goes around will just be another 6.” Throughout this vignette,
Merik made assumptions, introduced variables, specified conditions and assumptions, and
converted those to properties and parameters. Thus, attending to Merik’s spontaneous
quantitative reasoning still affords insights into his model construction activity.

5 Discussion

According to our theoretical approach, quantities are measurable attributes of objects
conceived by individuals. The relevant objects and attributes are a consequence of how modelers
assimilate a scenario and the goals they formulate. Thus, theory predicts that modelers would
identify differing (across modelers) and multiple (within modelers) quantities to associate with
the same objects or with the same attributes. The prediction held empirically in the context of
addressing an open modelling task. The participants imputed non-equivalent sets of quantified
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attributes and those attributes held in common were not necessarily quantified in the same way
(i.e., through the same implied measurement processes).

We observed similar figures (e.g., right-triangles, parabolas) and mathematical
representations (e.g., trigonometry, quadratic formula) across modelers. The initial task prompt,
being the same for all modelers, still occasioned differing mathematical activities across the
modelers. In particular, the modelers’ quantitative meanings for representations and their
interpretations of relations among relevant quantities varied substantively. The participants
reasoned differently about and with their models because the meanings of the models differed in
terms of the situationally-relevant quantities imputed. There are two implications of this finding.

First, we argue that dichotomously evaluating students’ work regarding the presence or
absence of variables during an open modelling task has limited diagnostic value for a facilitator.
Our quantification criteria operationalize a researcher’s attribution of a quantity to an individual,
which we generously applied to give credit to potentially quantified attributes. Our analysis
revealed that some attributes clearly met (or failed to meet) our criteria for quantity, that some
attributes entailed at least gross variation (or covariation with other attributes) absent indications
of extensive quantifications, and that other attributes may have been quantified in students’
previous experiences but lacked observable indicators of situational referents during the
interviews. If analyzing the data from a modelling cycles perspective, a codebook would
indicate giving credit to Safi for mentioning gravity (a parameter). However, when considering
quantitative meanings Safi indicated in her work, she had not quantified ACCparr and we did not
observe a place for it in her representations; instead, for Safi, gravity determined only the shape
of the dart’s trajectory. Similarly, the +C in Merik’s quadratic expression would have received
credit as a parameter from a modelling perspective, but it did not carry situationally relevant
quantitative meaning since it indicated only the y-intercept on a coordinate plane. Future
research should acknowledge that modelers can introduce symbols or qualities during model
construction that may not carry situationally relevant quantitative meanings.

Second, these distinctions among modelers’ quantifications for situationally relevant
attributes imply they may respond differently to facilitator prompts and interventions. Thus, it is
important to carefully formulate scaffolds for students’ reasoning during model construction. For
example, when we asked Iseult to consider TIME, she dismissed the suggestion because it was not
relevant to her conception of the scenario as a completed trajectory. In comparison, TIME was, in
a way, relevant for Merik in that he indicated quantifying it, though it varied only implicitly for
him (a complication identified by Mkhatshwa and Doerr (2018)). In both cases, drawing the
modelers’ attention to TIME was insufficient for scaffolding their progress towards suitable (to
them) models; instead, conceiving of time operationally might have supported both modelers in
mathematically characterizing the motion of the dart. For example, a more productive approach
for Merik may have been to encourage him to parameterize displacement of the dart at arbitrary,
intermediate moments of elapsed time between the instant when the dart left the gun and the
instant the dart struck the monkey. Quantifying DISTparr through parametrization by and
covariation with TIME may have resolved tension he experienced as he attempted to relate his
two (spatial and temporal) interpretations of the quadratic expression. Further strengthening our
inference is its compatibility with recent studies of student sense-making arguing that the
efficacy of instructional actions is not uniform across students (Cengiz et al., 2011). That is,
naming an omitted quantity may be productive for some students, but attending to how a modeler
has quantified an attribute may be necessary to others.
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When facilitating modelling or word problems, it is common to observe a student “lose
track” of the situational referent signified by a symbol in an equation. According to Radford et al.
(2011), meaning is ever-evolving as an individual engages in goal-oriented activity and the
quantitative reasoning perspective offers deeper insight into this phenomenon in the context of
modelling. It is possible for modelers to (implicitly) hold an instance of symbol Z to represent
quantity W and another instance of Z to represent quantity U. Sometimes this simultaneity of
meaning is productive, such as when y can represent both a length (distance above ground) and a
magnitude (number of units above a horizontal axis). However, a single instantiation of the same
symbol may signify incompatible quantitative referents at the same time for a modeler. In
Merik’s work, we infer that his quadratic template held a mix of situationally-relevant
quantitative referents associated with objects and their attributes in the scenario and situation-
general quantitative referents (Moore et al., 2019) that were associated with his conception of
quadratics, equations, graphs, and coordinates upon Cartesian planes.

When considering two complementary (or competing) theories of modelers’ reasoning —
in this case, descriptive modelling cycles and quantitative reasoning -- we must reflect on both
the extent to which they overlap and the extent to which they diverge in their accounts. On the
one hand, there is some overlap in our definition of quantities and the model construction phase
specifying (simplifying) because both treat the core aspect of identifying variables to be used in
subsequent modelling activity. For example, we reported that Merik introduced and removed
quantities when working in his 3-D representation. These same instances would be identified by
a codebook derived from a process-based view of modelling. Thus, imputing a situationally-
relevant quantity (QRT) can be viewed as identifying a (ir)relevant variable (modelling
perspective). On the other hand, the converse does not seem to be true. Our analysis revealed
cases where nominalizing an important factor, object, or attribute (e.g., time or gravity) did not
provide sufficient evidence that an individual had conceived of it as a quantity with attendant
quantitative operations. That is, naming something often considered a variable according to MC
codebooks may not be sufficient evidence to claim that a student has meaningfully engaged in
specifying (simplifying) activities.

With regards to mathematizing, the data support Thompson’s (2011) position that
quantitative reasoning should be the basis of mathematical modelling. However, we found that
some kinds of quantitative reasoning may not be sufticient for successful mathematization — and
so something more than quantitative or covariational reasoning is needed for successful
mathematization. Analysis with the quantification criteria permitted a close examination of the
spontaneous quantitative and covariational reasoning occasioned by the Monkey Task. We found
evidence of modelers leveraging gross quantification or directional covariation, consistent with
prior research (Carlson et al., 2002; Piaget, 1965). This finding foregrounds the salience of gross
quantity and covariation from the student perspective. For example, Safi coordinated quantities
and attended to variant and invariant relationships among quantities, seeking to represent those
relationships. Yet, she primarily evidenced gross quantification of relevant quantities and
indicated conceiving directional covariation. We maintain that conceiving of quantities in terms
of measurable attributes with units is critical, ultimately, since gross quantification and
directional covariation were insufficient for determining the angle the veterinarian should aim.
When addressing open modelling tasks absent numerical values, these intermediate kinds of
quantification and covariation are likely important for associating how modelers envision the
task scenario with mathematical representations. However, it is premature to claim that students
will conceive a direct correspondence between a pair of covarying quantities and the arithmetic
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operations that are the building blocks of equations. Thus, it is yet an open question how to
scaffold students towards formally representing the covariational relationships they conceive
among quantified attributes. We conjecture such scaffolding to move modelers from conceiving
coordination of quantities to articulating arithmetic operations among them would involve aiding
the student in conceiving a quantitative relation between quantities.

6 Limitations

One limitation of our retrospective analysis is that interviewer probes did not systematically
explore (a) whether for particular attributes, the participants were limited to gross quantification
or covariation nor (b) whether superseding ways of reasoning about quantity and covariation
might have mitigated cognitive obstacles students encountered during model construction.
Thompson remarked, “persons limited to gross quantification are blocked from conceiving”
scenarios in ways amenable to mathematization (Thompson, 1994a, p. 185). Nevertheless, that
gross quantification and covariation were salient in participants’ work necessitates that
researchers anticipate such conceptions in modelling tasks and consider ways of interacting with
students that acknowledge the affordances of these ways of reasoning (Stroup, 2002).

A limitation to the overall approach is the extent to which a facilitator is able to apply
QRT in-the-moment during model construction. In particular, the retrospective methods we used
here are intensive and may complicate data collection (or classroom instruction). First, the
quantities students spontaneously impute to a scenario portrayed through a given prompt are a
priori unknown. Neither is it possible to predict what operations particular quantities will permit
for modelers, nor therefore, what quantitative relationships might be conceived among them.
Future studies might investigate task-specific clusters of quantities students tend to impute;
however, open modelling contexts are legion. Thus, we advocate work to develop epistemic
students, meaning well-articulated, commonly occurring, quantifications students may conceive,
which may be attribute-specific (e.g., distinct ways of conceiving of time or angularity). Thus,
we recommend shifting focus from task- or context-specific attributes and towards the the
operations permitted by quantities in order to support mathematization. Some work, of course,
has already been completed in QRT studies which could be tested in open modelling contexts.
However, the manner facilitators might gain insight into students’ in-the-moment reasoning
raises a second methodological issue: how can a facilitator grok students’ quantitative and
covariational reasoning without interrupting their modelling process? We view a trade-off
between the kind of probing that supports strong inferences about the ways students think about
particular quantities and the constraints that probing may place on students’ autonomous model
construction. Future work should attend to which distinctions in quantitative reasoning,
established at which grain-sizes of analyses, are most crucial for facilitators wishing to
understand and support students’ modelling activities in-the-moment.

7  Conclusions

Our study demonstrates that applying theories of quantitative and covariational reasoning
through analysis of attendant constructs does enrich cognitive accounts of mathematical
modelling, with potential to move the latter genre forward in understanding how individuals
construct mathematical models. We found evidence supporting the claim that the complexities of
quantification and quantitative reasoning influence individuals’ model construction through the
meanings they attribute to and express in mathematical representations. We argue that attending
to quantitative reasoning during model construction, specifically, allows glimpses into “the gap
between the way learners intuitively think about a phenomenon and the formalisms used to
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represent it in expert practice” (Quintana et al., 2004, p. 345). Further, attending to the
quantitative meanings students ascribe to representations within the context of open modelling
problems would add to the growing body of scholarship making parallel claims about the role of
quantities in development of mathematical reasoning (Bishop et al., 2014; Leslie, 2013; Moore et
al., 2019; Moore & Thompson, 2015). Finally, we have identified two directions for future work.
First, future research can undertake the question of whether mathematization is productively
viewed as representing quantitative relationships via symbolic arithmetic operations. Second, we
raised questions about how quantitative reasoning theories can be parlayed into scaffolding for
mathematization, since doing so may entail modelers’ gross quantitative reasoning and
directional covariation among some variables while other variables may need to be constituted
by extensive quantitative operations (e.g., segmenting, iterating, recursion).
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