
Authors Jennifer A. Czocher 
Hamilton L. Hardison 
Sindura Subanemy Kandasamy 

Title A Bridging Study Analyzing Mathematical Model Construction 
through a Quantities-Oriented Lens 

Affiliation Texas State University, (Mathematics), San Marcos, (Texas), USA 
Contact Jennifer Czocher 

Czocher.1@txstate.edu 
+1 512 245 3414

Funding This material is based upon work supported by the National 
Science Foundation under Grant No. 1750813. 

mailto:Czocher.1@txstate.edu


A Bridging Study Analyzing Mathematical Model Construction through a Quantities-
Oriented Lens 

 
Jennifer A. Czocher Hamilton L. Hardison Sindura S. Kandasamy 

Texas State University Texas State University Texas State University 
Czocher.1@txstate.edu hhardison@txstate.edu s_k252@txstate.edu 

 
Abstract: Mathematical modelling is endorsed as both a means and an end to learning 

mathematics. Despite its utility and inclusion as a curricular objective, one of many questions 
remaining about learners’ modelling regards how modelers choose relevant situational attributes 
and express mathematical relationships in terms of them. Research on quantitative reasoning has 
informed the field on how individuals quantify attributes and conceive of covariational 
relationships among them. However, this research has not often attended to modelers’ 
mathematization in open modelling tasks, an endeavour that invites further attention to 
theoretical and methodological details. To this end, we offer a synthesis of existing theories to 
present a cognitive constructivist account of mathematical model construction through a 
quantity-oriented lens. Second, we use empirical data to illustrate why it is productive for 
theories of modelling to attend to and account for students’ quantitative reasoning during 
modelling activity. Finally, we identify remaining theoretical and methodological challenges to 
reconciling theories of model construction with a cognitive constructivist view of quantity. 
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1 Introduction 
Mathematical modelling is a foundational skill for students to learn, regardless of age or career 
aspiration. The value of mathematical modelling experiences lies in their potential to develop 
students’ capacity for more knowledgeable participation in society and their mathematical 
conceptual knowledge (Julie & Mudaly, 2007). For this reason, it enjoys prominence as a named 
learning objective in curricular documents around the world (Kaiser, 2017). Thus, research on 
mathematical modelling is typically conducted with an eye to promoting it within classrooms, 
improving its instruction, task design, and ultimately, fostering students’ capacity to create 
models of real-world scenarios (Cai et al., 2014).  
 Researchers have distinguished between modelers’ overall capacity to create models 
(competence) and the skills and abilities needed to address a modelling problem (competencies)  
(Blomhøj & Jensen, 2003). Modelling competencies include forming an understanding of a real-
world scenario, simplifying, mathematizing (producing a representation), solving, interpreting, 
and validating (Maaß, 2006). Students at all mathematical levels struggle to carry out these 
competencies. The competencies associated with model construction—simplifying and 
mathematizing—are known to be especially challenging (Galbraith & Stillman, 2006; Stillman et 
al., 2010). Over the years, research has pointed to many sources of students’ cognitive 
difficulties, including problematic transfer of knowledge (Carraher et al., 1985), preservation of 
real-world complexities (Czocher, 2019), naïve explanations for real-world phenomena (Posner 
et al., 1982), and the disparate domains of knowledge required (Stillman, 2000).  
 Despite progress the field has made in articulating reasons for why students struggle to 
carry out modelling competencies (and develop overall competence), “no worldwide accepted 



research evidence exists on the effects of short- and long-term mathematical modelling examples 
and courses in school and higher education on the development of modelling competencies” 
(Cevikbas et al., 2021, p. 206). In their comprehensive review of published literature on 
modelling competencies, Cevikbas et al. (2021) argued that fostering and assessing modelling 
competencies depend on how those competencies are conceptualized and further claimed that the 
field’s existing strategies were too uniform. They called for more innovative approaches to 
studying modelling competencies, encouraging both theoretical and empirical studies to 
strengthen the epistemologies of modelling.  
 Our study responds to this call by operationalizing the simplifying (specifying) and 
mathematizing competencies in terms of constructs from theories of quantitative reasoning. 
Theoretically and methodologically bridging modelling and quantitative reasoning lines of 
inquiry is promising. From one side, model construction is often characterized as beginning with 
identifying (ir)relevant variables, an account that could be enriched by attending to how those 
variables are cognitively constituted. From the other, scholars of quantitative reasoning have 
long characterized modelling as establishing quantitative structures expressed through 
mathematical representations (Larson, 2013; O'Bryan; Sherin, 2001; Stroup, 2002; Thompson, 
2011), a theory-building move that does not yet have an empirical counterpart in research 
settings where mathematical model construction (rather than quantitative reasoning) is the 
subject of inquiry. Establishing empirical compatibility of the two lines of inquiry would offer 
explanatory mechanisms for successful, and especially, unsuccessful attempts at model 
construction that are based in students’ prior mathematical constructions. A deeper account of 
model construction would be valuable to facilitators seeking to elicit and extend students’ 
reasoning during model modelling. 
 In this paper, we address an important aspect of mathematical modelling: modelers’ 
expression of mathematical relationships in terms of their choice of relevant quantities. Our 
study bridges research on modelling to scholarship of quantitative reasoning through a post-hoc 
analysis of three students’ quantitative reasoning during an open-ended modelling task. Our 
contribution is three-fold. First, we synthesize perspectives on model construction and 
quantitative reasoning to present a cognitive constructivist account of mathematical modelling. 
Second, we illustrate with empirical data compelling reasons why it is productive to account for 
individuals’ quantitative reasoning when studying model construction and making 
recommendations for fostering students’ capacity for modelling. Finally, we identify challenges 
to operationalizing mathematical model construction through the lens of quantitative reasoning. 

2 Literature Review 
2.1 Mathematical model construction from a cognitive perspective 

Our study falls within the larger agenda of building cognitive models to explain how 
individuals construct mathematical models. By mathematical model, we mean a conceptual 
system expressed using a variety of representations (e.g., concrete materials, written symbols, 
spoken language) “for constructing, describing, explaining, manipulating, predicting or 
controlling systems that occur in the world” (Lesh et al., 2003, p. 213). We focus on the process 
of modelling which is typically conceptualized as an iterative cycle consisting of a series of 
phases and cognitive or behavioral actions connecting those stages. Visualizations of the process, 
called modelling cycles (MCs) (e.g., Blum & Leiß, 2007; Zbiek & Conner, 2006), are used as 
research lenses and each enumerates, nominalizes, and defines the phases differently. We are 
concerned primarily with model construction, which roughly corresponds with the upper arc of 



many MC’s. It begins when the modeler identifies a real-world problem to solve1 and terminates 
with a mathematical representation.  

We adopt Zbiek and Connor’s (2006) decomposition of model construction. In their MC, 
specifying comprises identifying conditions and assumptions of the real-world scenario to 
prioritize. It includes identifying variables, parameters, their interdependencies, as well as any 
restrictions or conditions that could be placed upon the modelling products. It includes de-
prioritizing or ignoring information the modeler deems irrelevant to solving the problem. Not all 
assumptions effectively simplify the problem; some preserve complexity (Czocher, 2019). Next 
is mathematizing, which “creates or acknowledges mathematical properties and parameters that 
correspond to the situational conditions and assumptions that have been specified” (Zbiek & 
Conner, 2006, p. 99). For example, in a projectile motion problem, one condition could be that 
the projectile stays above ground level, corresponding to the mathematical property ℎ > 0. 
Mathematizing organizes a correspondence between among conditions, assumptions, properties, 
and parameters through construction of relations as well as combining them to produce a 
mathematical representation of those relations. The properties, parameters, and attendant 
mathematical concepts become components of the eventual mathematical representation of the 
scenario.  Representations can be tables, graphs, charts, gestures, or words, when the signifying 
elements are mathematical notation.  
 Mathematizing may happen nearly instantaneously when the modeler has established 
ways of reasoning about a familiar scenario, such as when an algebra instructor immediately 
conceives of the speed a steadily moving object travels in terms of time and distance, writing 𝑟𝑟 =
Δ𝑥𝑥/Δ𝑡𝑡. In contrast, conceiving of a ratio as a model capable of answering the question “how 
fast?” may be challenging for a learner (Stroup, 2002). Throughout the process, modelers 
validate and verify their emergent models by reflecting on their anticipated, intermediate 
outcomes (Stillman & Brown, 2014), resulting in modifications to the representation or to the 
modeler’s conception of the real-world scenario (Czocher, 2018). Satisfactory (to the modeler) 
model construction depends on aligning conceived real-world conditions and assumptions with 
acknowledged mathematical properties and parameters (Zbiek & Conner, 2006).   
  
2.2 Model construction – state of the field 

The main goals of research from a cognitive perspective on modelling have been to 
characterize individuals’ routes through the modelling process as a series of stages, difficulties 
students encounter as they engage in mathematical modelling activities, or individuals’ 
metacognitive acts as they progress through the process (Kaiser, 2017, p. 274).  A common 
approach is to document the order of steps and sub- or meta-processes, such as identifying 
variables, creating representations, working mathematically, or validating as they pass through an 
MC (Ärlebäck & Bergsten, 2010; Borromeo Ferri, 2006; Czocher, 2016; Hankeln, 2020; 
Hankeln et al., 2019; Sol et al., 2011). The body of work primarily supports claims about 
idiosyncrasy of individuals’ modelling routes. The second theme concerns characterizing specific 
cognitive obstacles resulting from students’ current ways of reasoning that lead toward or away 
from normative solutions (Carreira et al., 2011; Kaiser, 2017; Stillman, 2000).  Findings indicate 
that knowledge acquired through lived experience is often prioritized when interpreting cues 

 
1 Traditionally, the cognitive perspective on modelling maintains a distinction between the situation-as-

perceived-in-the-world and the modeler’s mental presentation of the situation-as-conceived-by-the-modeler. For 
simplicity of vocabulary, we use “real-world” to refer to either, but recognize that the modeler only models the 
latter. 



about problem constraints and that the nature of the knowledge activated is task-specific as well 
as student-specific (Czocher, 2019; Manouchehri & Lewis, 2015; Stillman, 2000). Other work 
has pointed clearly to the limitations of a mathematical knowledge-based approach to explaining 
students’ modelling processes. For example, Roorda et al. (2007) studied students’ concepts of 
derivative in conjunction with application of these concepts during a modelling task and 
experienced difficulty applying Zandieh (1997)’s derivatives framework for explaining 
transitions between the task’s real-world scenario and the requisite mathematical concepts of the 
framework. That is, conceptual analyses of students’ mathematics insufficiently captured their 
mathematization of the scenario. A third theme within the cognitive approach focuses on the role 
of metacognitive processes in modelling (Stillman & Galbraith, 1998; Vorhölter, 2018). 
Galbraith and Stillman (2006) made some progress in explaining students’ cognitive blockages in 
terms of metacognitive processes and Niss (2010) argued that reflection on the idealization of the 
task scenario, while anticipating the outcome, and relevant mathematical representations for the 
scenario, would beget successful mathematization. Introducing such forward-looking meta-
processes encourages viewing students’ modelling work relative to the goals they set for 
themselves within the task-scenario. Collectively, this body of work suggests that individuals’ 
modelling routes, applications of knowledge, and self-monitoring of solution strategies are 
neither regular nor, across individuals, predictable. 

The theoretical and methodological commitments adopted in studies from the cognitive 
perspective support claims about where in the modelling process impediments to progress are 
located and suggest how to remediate the impediment. For example, to remove a blockage in the 
process, theory would recommend a teacher direct a student to make an assumption, ignore a 
variable, correct a representation, recall prior mathematics knowledge, or reflect on 
inconsistencies. These suggestions are often devised with normatively correct models for the 
scenario in mind (Kaiser, 2017).  Yet, deeper questions remain about student reasoning 
underlying the blockages, apparent inconsistencies within students’ models, or how to extend 
modelers’ thinking (c.f. Stillman, 2011, p. 174). A cognitive theory of model construction ought 
to account for the ways the various conceptual, representational, and real-world systems align for 
the modeler.  

We emphasize that a mathematical model is a conceptual product coordinating relations 
among objects and their properties with mathematical systems expressed using mathematical 
conventions. Relevant to how these systems align and are represented for the modeler, Vergnaud 
(1998) observed that “the relationship between signifier and signified is not usually a one-to-one 
correspondence.” We infer two further consequences: there is ambiguity in representation for an 
object and a signifying element (e.g., an inscription like 𝑥𝑥) signifies the modeler’s meaning for it 
rather than a real-world object or a mathematical entity.  
2.3 Quantitative reasoning – theory and lines of inquiry 

The above synthesis intimates a need for attending to how modelers’ mathematical 
conceptual systems and their expressions acquire situationally relevant meanings and how those 
meanings are coordinated. To address this theoretical need, we leverage theories of quantitative 
and covariational reasoning2 (QRT) to conjecture sources for the meanings of variables and 
correspondences underlying representations. A quantity is a measurable attribute an individual 

 
2 The phrase “quantitative reasoning” can refer to cognitive activities, to theories involving constructs for 

analyzing those activities, or entire lines of inquiry seeking to understand or develop students’ cognitive activities. 
We will use QRT to indicate the theories and lines of inquiry and QR to indicate the mathematical reasoning done 
by a human being. 



imputes to an object or situation (Thompson, 1994a, 2011). Quantities consist of three 
interdependent conceptual components: (a) an object or entity (b) an attribute or quality of the 
object, and (c) a quantification. Quantification entails a conceived measurement process for a 
specified attribute associated with a specified object such that “the attribute’s measure entails a 
proportional relationship…with its unit” (Thompson, 2011, p. 37). Quantities are mental 
constructions, existing in the mind of an individual, rather than in the world (Thompson, 1994b), 
and therefore vary from person to person. Quantitative reasoning involves conceiving of 
situations as consisting of quantities and establishing relationships among quantities. 
Covariational reasoning entails an individual’s sustained image of two quantities’ values or 
magnitudes varying simultaneously (Carlson et al., 2002; Saldanha & Thompson, 2002; 
Thompson & Carlson, 2017).   

Piaget (1965) characterized different types of quantification (e.g., gross and extensive), 
which have been adapted by later scholars. Gross quantification entails comparative operations, 
such as those permitting a determination of which of two lengths is longer. Extensive 
quantification entails operations that introduce units, which supports mathematical activities like 
measuring and counting (Steffe, 1991; Thompson 1994). New quantities can be established by 
applying quantitative operations to extant quantities (Thompson, 2011). For example, the amount 
by which the angularity of one trajectory exceeds another’s, relative to horizontal, is a 
quantitative difference (new quantity) constructed through making an additive comparison 
(quantitative operation).  

As a line of inquiry, QRT studies explore how individuals conceive of specific types of 
relationships including linear (Ellis, 2007a), quadratic (Ellis, 2007b), exponential (Castillo-
Garsow, 2013; Ellis et al., 2015), and trigonometric (Moore, 2014) functions to construct 
targeted covariational relationships within specific contexts. However, the applicability of these 
studies to studying model construction is limited. Because quantification processes are the focus, 
the learning environments are designed to target quantities the researcher desires the participants 
to engage with and abstract invariant (functional) relationships from, under the conditions laid 
out in the task statement (e.g., Ellis et al., 2015; Moore, 2014). Other studies include graphing 
activities with specified coordinate systems or focus on isolated single linear (or bi-linear) 
relationships among two quantities being related or combined to form a third (e.g., Thompson, 
1994a). In contrast, a modelling task would leave specifying to the participant, including 
choosing which attributes to quantify and establish relationships for. 

Despite the surface-level similarities and compatibility, we note there are few studies of 
mathematical modelling – those emphasizing how mathematics is employed to solve a real-world 
problem – that account for quantitative reasoning. In this vein, a recent study of undergraduate 
business calculus students’ covariational reasoning as they addressed optimization problems 
involving marginal revenue and marginal cost found that students’ conflation of change and rate-
of-change persist, and can be explained by attending to students’ introduction of quantities 
besides those provided in the problem statement (Mkhatshwa & Doerr, 2018). Thus, examining 
model construction as a process that generates and exploits such relations among quantities is a 
promising way to connect scholarship in the two areas and advance the field’s understanding. 
Larson (2013) addressed exactly this issue in a study of students’ development of a ranking 
algorithm for a data set. She broadly characterized students’ models as systems comprised of 
quantities, relationships among quantities, and operations that describe how those quantities 
interact. Larson (2013) argued that the operations students chose “to invoke on quantities are 
reflective of the relationships they perceive among those quantities” (p. 117). Although she 



claimed that quantitative reasoning was central to the iterative refinement of real-world problems 
into mathematical problems, the study was limited to examining students’ ways for combining 
numerical values given in the task. In other words, numerical operations were foregrounded 
rather than quantitative ones. Neither study detailed how the students’ quantities were identified 
or provided indicators of students’ engagement in quantitative reasoning absent numerical 
values.  

The literature suggests that leveraging QRT can move studies of model construction 
beyond observational descriptions of impediments to modelling processes and towards a 
productive characterization of the cognitive sources (rather than content-knowledge sources) of 
idiosyncrasies in students’ modelling routes. Meanwhile, our review of QRT literature suggests 
realizing its potential to yield insights into model construction would require attending more 
closely to quantification processes as the participant derives her model from first principles and 
to the interplay among quantities, specifying and mathematizing. The purpose of this study was 
to investigate the empirical feasibility and theoretical generativity of enhancing the cognitive 
approach to studying mathematical model construction with theories of quantitative reasoning. 
We address the following questions: How does augmenting a study of model construction from 
the cognitive perspective with theories of quantitative reasoning bear out empirically? What 
considerations remain for improving this approach? 

3 Methodology 
In our view, descriptions of model construction processes may be enhanced through 

attending to students’ in-the-moment and potentially unstable quantitative meanings for their 
inscriptions. When a modeler produces a normatively correct (or self-validated) mathematical 
model, we would anticipate she produced suitable (to herself) consistency among attributes and 
explanations of the scenario, mathematical concepts, and representations, observable as a smooth 
flow through phases described by modelling cycles. Our theoretical framework attributes a 
perturbation or standstill to a modeler’s recognition of inconsistency among meanings she 
attributed to aspects of the emerging model. Thus, seeking cases of such misalignment in a 
modelers’ work should induce an explanatory account of their modelling in terms of their 
conceptions of the quantities imputed to the scenario.   
3.1 Research Setting and Dataset Constitution 

Data were generated as part of a larger study of the characteristics of tasks and facilitator 
interventions that could elicit specific mathematical modelling competencies. The project took 
place at a large university in the southern United States. Data were generated through a series of 
cognitive, clinical interviews that enabled analysis to focus on generating viable explanatory 
hypotheses regarding participants’ reasoning for their observable activities (Clement, 2000). The 
project sample comprised 15 volunteers from a cross-section of mathematical levels (pre-algebra, 
algebra, calculus, and differential equations) who worked on tasks ranging from simple word 
problems to more complex modelling problems. One goal of the broader project was to explore 
the feasibility and consequences of attending to quantitative reasoning during model 
construction, and so we administered the Monkey Problem (below) to the three advanced 
students: 

 
A wildlife veterinarian is trying to hit a monkey in a tree with a tranquilizing dart. The monkey 
and the veterinarian can change their positions. Create scenarios where the veterinarian aims 
the tranquilizing dart to shoot the monkey. 



 
Iseult’s, Safi’s, and Merik’s work on the Monkey Problem constitutes the dataset for the 

present study. We selected their work not due to their demographic characteristics but rather to 
showcase the interplay between their conceptions of the task and quantitative reasoning that 
informed their model construction. All three were mathematics majors intending to teach 
secondary mathematics, were recruited from a course on ordinary differential equations, and had 
completed or were enrolled in multivariable and vector calculus, probability, statistics, analysis, 
abstract and linear algebras. Their advanced mathematics backgrounds increased the likelihood 
they had previous experiences deriving and using mathematical representations as models of 
real-world phenomena. 

The Monkey Problem presents a conceivably authentic real-world scenario couching a 
familiar problem of projectile motion appearing in courses on mechanics, pre-calculus, calculus, 
or differential equations. The task is open and ill-defined (see Yeo, 2007), enabling observation 
of how participants conceived and structured the scenario, goals they established, and activities 
they pursued. Depending on assumptions made during the specifying phase of modelling, 
concepts from right-triangle trigonometry, quadratics, or differential equations can yield 
satisfactory models. That is, the problem elicited specifying and quantitative reasoning. Our 
participants’ work on the Monkey Problem was adequate to our purpose for the following 
reasons: all three made multiple attempts at resolving the mathematical problems they identified 
within the task scenario, made both implicit and explicit assumptions about the task scenario 
leading to distinct formulations of the task, articulated their reasoning aloud, and created many 
inscriptions documenting their work. 

Participants were given unlimited time to address the task in a manner satisfying to them. 
During the interview, we provisionally accepted all student productions without actively 
correcting, leading, or removing ambiguity (Goldin, 2000). Our theoretical framework 
necessitated we assume each modeler’s interpretation of the task scenario, meanings for 
inscriptions, or mathematical knowledge brought to bear was different from our own. Follow-up 
questions and interviewer interventions aimed to clarify the students’ statements or inscriptions 
with the purpose of documenting nascent or in-the-moment conjectures about the participants’ 
thinking. Safi and Iseult received a contingent prompt requesting they develop a way to guide the 
veterinarian to accurately aim and hit the monkey. The audio/video recorded interview sessions 
lasted 26 minutes for Iseult, 34 for Safi, and 46 for Merik.  
3.2 Data Analysis 

The overarching research design was to constitute theoretical cases that “embody causal 
processes operating in a microcosm.” (Walton, 1992, p. 122).” The theoretical cases we sought 
were of the mutual influence of specifying and quantitative reasoning during model construction. 
This approach to case-study stands in contrast to constituting a case as a complete account of an 
individual’s reasoning; we do not claim that ways of reasoning were uniform across nor within 
individuals. Our results are a set of carefully curated vignettes showcasing the main hypothesized 
causal elements for misalignments we observed in participants’ work. To arrive at the vignettes, 
we coordinated multiple sequential analyses of the a/v recordings using MaxQDA, described 
below. 

We first addressed specifying. According to the theoretical framework, individuals’ model 
construction activity is driven by their interpretations of the task scenario. Therefore, for each 
participant, we asked How is the modeler conceiving the task? We documented the imagery we 



inferred was immediately available to them, goals they set, and the mathematical concepts, 
procedures, and real-world explanations they appealed to.  

Next, we addressed quantifying. The theoretical framework prescribes that a quantity is 
an individual’s conception of a measurable attribute of an object along with a conceived 
measurement process. We applied the quantification criteria framework (see Table 1) developed 
by Czocher and Hardison (2021) to catalogue the attributes each participant quantified. The eight 
criteria serve as indicators the participant engaged in mental operations necessary for, or 
indicative of, a conceived measurement process for each situational attribute, through 
considering variation, measurement, and relationships among already-quantified situational 
attributes. A situational attribute is one for which we were able to infer a situational referent 
within the task scenario (e.g., “the tree’s height”). Instances in which the modeler mentioned 
generic attributes (e.g., “velocity is distance over time”) for which we were unable to infer 
situational referents were not considered situational attributes. The criteria are generous in 
inferring participants’ treatment of units. They include a quantified attribute when the participant 
mentions  a standard dimensional unit in the sense of Schwartz (1988) (e.g., meters) or indicates 
mental operations producing units, in the sense of Steffe (1991) (e.g., iteration, partitioning, 
etc.3). Three coders independently and systematically coded the interview records according to 
these criteria. When a participant’s work met any of the eight criteria, we documented a 
quantified attribute for that participant. For each situational attribute, we noted the inclusion 
criteria that were initially satisfied by participants’ words, writing, and actions. The result was a 
cumulative list of quantified attributes each modeler imputed to their image of the scenario (see 
Table 3 and Table 4). 

 
Table 1 Criteria indicating a modeler has quantified an attribute (Czocher & Hardison, 2021). 
Enumeration indicates neither a chronological progression nor order of priority. 
QC Description Justification for Criteria Inclusion from  

QRT 
 Variation Criteria Quantities are conceived to have values 

that can potentially vary 
1 Discussing variation of a situational 

attribute 
Quantities’ values may vary independently 
as their objects or attributes undergo 
change.  Variational reasoning refers to 
how an individual conceives of changes 
for a single quantity’s value or magnitude. 
For example, a quantity’s value may vary 
discretely or continuously (Castillo-
Garsow, 2012). 

 Measurement Criteria Quantities are conceived as measurable 
attributes of objects 

2 Substituting, assuming, or deducing a 
numerical value for a symbol with a 
situational referent 

Numerical values can be assigned to 
extents of an attribute (Schwartz, 1996).  

 
3 Although the usage of a standard unit in the sense of Schwartz (1988) does not necessarily imply mental 

operations that produce units as described by Steffe (1991), our goal was to account for all potential quantified 
attributes participants imputed to the scenario. Because it is possible for individuals to assimilate standard units in 
terms of such mental operations, we included both kinds of units in our criteria.  



QC Description Justification for Criteria Inclusion from  
QRT 

3 Expressing a desire to measure a 
situational attribute 

Quantification can be motivated by a 
desire to measure (Schwartz, 1988). 

4 Interpreting a value in context Numerical values for magnitudes measure 
attributes of objects 

5 Specifying a situational reference 
object (e.g., line or point from which 
to measure; situational 0)  

Extensive quantification supports 
measuring and counting relative to some 
initial position (Steffe, 1991) 

6 
 

Specifying a (potentially non-
standard) unit of measure for a 
situational attribute  

Unit-producing operations such as 
partitioning and iterating (Steffe, 1991) 
are indicative of quantification; 
dimensional units (Schwartz, 1988) can be 
associated with such operations. 

 Relationship Criteria Quantitative reasoning entails conceiving 
of quantities and relationships among 
quantities. 

7 Explicitly expressing a quantitative 
relationship, a dependence or causal 
relationship among already-introduced 
quantities, describing one quantity in 
terms of other quantities 

Quantitative operations include comparing 
or combining two quantities 
multiplicatively or additively(Thompson, 
1994a)    

8 Nominalizing an attribute via verbally 
labeling, symbolically labeling, or 
describing its relation to other 
attributes of objects  

Attributes are associated with objects  

 
Finally, we addressed alignment of meaning with representations. We assumed that  

“what we ultimately observe are the external components (representations), but these cannot be 
disengaged from the conceptual systems” (Lesh & Doerr, 2003, p. 213), We operationalized 
representation not as a static thing, but rather as a dynamic process shaped by individuals’ 
quantitative reasoning (Vergnaud, 1998). We catalogued the students’ written inscriptions by 
attending to spatial and temporal organization of the students’ writing (see Czocher & Hardison, 
2019 for details on this process).  Through coordinating participants’ utterances and gestures 
with their inscriptions, we inferred the quantitative meanings ascribed to the inscriptions.  Our 
approach enabled examination of the interplay among the modelers’ conceptions of the task 
scenario, the attributes they quantified, and the consequences of both on model construction.   
3.3 Sample Data Analysis 

Table 2 contains an excerpt of the first 3 minutes of Merik’s interview, where he produced 
an illustration reflecting his conception of the scenario and imposed a right triangle upon it 
(Figure 1). Figure 2 shows a snapshot of MaxQDA coding for the excerpt. Because coding relied 
primarily on video, including speech, writing, gesture, documentation of which inscriptions 
Merik’s attention was on, and our own experiences conducting the interviews, we style the 
excerpt as rows of transcript enriched with descriptive field notes and justifications for applying 
quantification criteria from Table 1.  
 



Time Merik’s Speech Researcher Description Criteria & Justification 
0:45 Let’s pretend we have a 

tree. This one, I really 
wanna draw this one. And 
you got some sort of 
monkey coming out, just 
hanging out in that tree 
and usually, something 
like this 

Merik sketched a 
monkey and a vet in a 
hat. A straight line passed 
through his stick hands to 
a small dot, indicating 
where the tip of the rifle 
would be.  

As he assimilated the task 
scenarios he created, Merik 
set a mathematical problem-
solving goal to identify the 
angle at which the vet should 
shoot the dart to hit the 
monkey.   

1:10 And you got a 
veterinarian. He has his 
gun, so I can set this like 
this. Triangle. We’ll take 
it from shooting, it’s 
gonna aim right at the 
heart of the monkey. And 
you get the tranquilizer 
stuff, flows around, so 
that you can make the 
triangle here.  

The dot signified the 
initial position of the 
dart. A small dot “right at 
the heart of the monkey” 
indicated the dart’s final 
position. He drew the 
straight line connecting 
the two dots, dropped a 
vertical line to the same 
horizontal level as the 
gun-dot and connected 
the gun-dot to the foot of 
that vertical line, forming 
a horizontal segment “so 
you can make the triangle 
here.” 

Neither dot was coded as 
indicating a quantity, since 
no quantification criteria 
were met. The triangle’s 
hypotenuse was not coded as 
a quantity (until 4:40) since 
he did not indicate an object, 
attribute, nor unit associated 
with it in this exchange. 

2:19 He just wants to make a 
straight shot, uh, that 
won’t work out cause 
gravity is a real thing. 
Hmm. It’s weird … 

He assigned symbols to 
represent the vet’s 
distance from the tree 
measured from the vet to 
the base of the tree (x), 
the monkey’s height in 
the tree, as measured 
from the base of the tree 
(y), and the angle formed 
by the gun to the ground 
as measured from the 
path emanating from the 
gun-dot relative to the 
horizontal (𝜃𝜃). 

The immediacy of the 
sketching, imposing, and 
labeling after reading the 
prompt suggest that the right-
angle configuration, the three 
quantities, and their labels 
were available to him upon 
assimilation of the task 
scenario. All three quantified 
attributes met QC#8. 

2:33 Okay. I don’t really like 
this model cause it’s not 
gonna fly in that path, it’s 
gonna make more of a arc 
with destination. Cause 
you’re gonna have some 
initial velocity which is 

Below the tree diagram, 
he sketched a curved arc 
connecting two dots, one 
corresponding to the gun-
dot and one 
corresponding to the 
monkey-dot. 

Merik acknowledged that the 
dart would travel along a 
curved path, rather than a 
straight one, as a 
consequence of gravity being 
“a real thing.” We did not 
credit Merik with conceiving 



Time Merik’s Speech Researcher Description Criteria & Justification 
just distance over time. 
Yeah. 

of gravity as a quantity in 
this instance since he gave 
evidence only of its effect on 
the dart’s path (object, 
attribute). Similarly, we did 
not credit Merik as 
quantifying either initial 
velocity or time because 
there was no clear, dedicated 
situational referent. He used 
the words “initial velocity” 
but then described with the 
mantra “distance over time.” 
We marked both “initial 
velocity” and “time” in black 
codeline (Figure 2) but did 
not associate a quantification 
criterion with them. 

3:03 Taking away gravity 
which is 9.8 meters per, 
squared, this is just in 
terms of nearest per 
second and then, how 
would that flight path 
really work? Cause it 
doesn’t really matter how 
tall the, you can just take 
where it’s leaving from is 
the zero. Cause, like an 
origin, just work from 
there, trying to hit the 
monkey or whatever, 
whatever height he is at 
and the distance. 

Below the curved arc, he 
wrote 𝑣𝑣 − 9.8. 
subsequently writing in 
the units “m/s” and 
“m/s2” next to the 
inscriptions 𝑣𝑣 and 9.8. 

Referring to the 
configuration of objects 
represented in the tree 
diagram, Merik evidenced he 
was able to conceptualize the 
monkey’s position and the 
vet’s position as free to move 
but constrained to the 
vertical (tree) and horizontal 
(along the ground) legs of 
the triangle, respectively. 
This indicated variation of 
the positions relative to their 
respective zeros (base of the 
tree, starting position of 
dart). QC#2 for both 
distances was indicated. 
 
Merik referenced units for 
gravity and assigned a 
numerical value, meeting 
QC#2 and QC#6.  
 



Table 2 Excerpt of the first 3 minutes of Merik's interview. Column 2 indicates the time that 
speech started, which does not always coincide with timing of writing or gestures. 

 
 

Figure 1 Merik's written work. Cumulative inscriptions on his tree diagram (left) and his 
trajectory diagram (right)



 

4 Results 
We first provide a brief overview of the modelers’ initial conceptions and progress. We elaborate 
on the quantified attributes we inferred they imputed to their scenarios and contrast 
quantifications of particular situational attributes. We then discuss misalignments rooted in the 
modelers’ quantitative reasoning that influenced their model construction. 
4.1 Modelers’ initial conceptions 

All three participants spontaneously considered two scenarios: one without gravitational 
force and one with. In the first scenario, each modeler sketched a straight path from the vet to the 
tree (see Figure 3). They attended to base angle determined by the horizontal distance from the 
vet to the tree, the vertical height of the monkey in the tree, and distance between the monkey 
and the vet. The modelers indicated relationships among the lengths and angle given by the 
Pythagorean Theorem and (inverse) trigonometric formulae. All three asserted that the distance 
between the monkey and the vet could be determined given the other lengths. Merik and Safi 
explained that the inverse trigonometric formulae would yield the angle the gun should be fired 
at, presuming a straight path, even when the veterinarian and the monkey were positioned 
arbitrarily. In contrast, Iseult concluded that the veterinarian should aim 45° above horizontal if 

Figure 2 Screenshot from MaxQDA analysis of Merik's work. Black codeline corresponds to 
potential quantity imputed, brown codeline corresponds to quantification criteria met, other color 
codelines correspond to distinct inscriptions Merik’s attention is on. 
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he and the monkey were each 10 feet from the base of the tree. She maintained these fixed values 
throughout the interview. 

 

 

Figure 3 Safi's (left) and Iseult's (right) tree diagrams, considering straight trajectories 

For their second scenario, all three modelers inscribed curved paths beginning at the vet’s 
position and passing through the monkey at their apexes, each implicitly assuming that the 
monkey and the maximum height of the dart coincided (see Figure 4). Each modeler observed 
that the path traveled by the dart would be influenced by its initial velocity. Although each made 
progress, toward providing a mathematical model of their chosen scenarios, none succeeded 
(from their perspectives nor ours).  
 

 

 

Figure 4 Safi's (left) and Iseult’s (right) parabolic trajectories 

4.2 Catalogue of quantified attributes 
After analyzing each interview according to the indicators in Table 1 we inferred that 

Merik, Safi, and Iseult quantified 14, 9, and 10 attributes, respectively, during their specifying 
activity (see Table 3 and Table 4). We recorded the quantity using the same notation (e.g., 
ANGSTR) if we inferred that the participants were indicating the same attribute of the same object 
from our perspective, even if their quantifications or nominalization differed. For example, 
ANGSTR denotes the object gun and attribute angle of ascension relative to horizontal, regardless 
of the measurement process or units used by a specific participant.  Of the 19 unique quantified 
attributes, only 6 were imputed by all three participants: ANGSTR, ANGPAR, DISTVET/TREE, 
DISTVET/MKY , HTMKY/GUN IVELDART. When considering a scenario without gravitational force, 
each modeler inscribed a right triangle and considered four quantities: ANGSTR, DISTVET/TREE, 
DISTVET/MKY , and HTMKY/GUN. Each modeler observed that, subject to gravity, the curved path 
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traveled by the dart would be influenced in some way by the dart’s initial velocity (IVELDART). 
We further analyze distinctions in quantifications in the next section. 
 
Table 3 Collective list of quantified attributes imputed by the modelers.   
Quantified 
Attribute 

Type Description 

ANGSTR Angle Measure of angle gun is aimed relative to the horizontal, for straight 
path 

ANGPAR Angle Measure of angle gun is aimed relative to the horizontal, for parabolic 
path 

ANGVET,3D Angle Measure of the plane angle formed by a designated axis and the line 
through the tree & veterinarian in 3-space. 

FORGUN/DART Force Force the gun applies to the dart 
DISTVET/TREE Length Horizontal distance from vet to the tree/under the monkey.  
HTTREE/GRD Length Height of the tree 
DISTVET/MKY Length Length of the straight path from the vet’s gun to the monkey. 
HTGUN/GRD Length Height of gun (or vet) relative to ground. 
HTMKY/GUN Length Height of the monkey relative to the vet’s gun. 
DISTDART Length Distance traveled by the dart 
HTDART Length Height of the dart 
TALLPATH Length Tallness (vertex height) of the parabolic path 
VELDART Rate Velocity of the dart 
SPDDART Rate Speed of the dart 
IVELDART Rate Initial linear velocity of the dart. 
VVELDART-I Rate Initial vertical velocity of the dart 
HVELDART-I Rate Initial horizontal velocity of the dart 
ACCDART Rate (Vertical) acceleration of dart due to gravity 
TIME Time Elapsed (figurative) time 

 
 
Table 4 Time of first evidence of the quantified attribute, along with criteria observed, for each 
modeler 
Quantified 
Attribute 

Safi Iseult Merik 

 Criteria Time Criteria Time Criteria Time 
ANGSTR   2,8 5:28 8 2:08 
ANGPAR 7,8 10:30 1 7:12 1 6:04 
ANGVET,3D     5,7,8 24:38 
FORGUN/DART   3,8 11:05   
DISTVET/TREE 5,7,8 10:50 2,5,6,8 3:20 8, 6 2:09 
HTTREE/GRD 3,8 24:08   2,5,6 4:13 
DISTVET/MKY 7 14:48 8 3:35 8 4:37 
HTGUN/GRD     2 3:36 
HTMKY/GUN   2,5,6,8 3:30 8 2:10 
DISTDART 7,8 30:50     
HTDART     1 15:35 
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Quantified 
Attribute 

Safi Iseult Merik 

 Criteria Time Criteria Time Criteria Time 
TALLPATH 1 5:04     
VELDART   1,3,7,8 18:12   
SPDDART 7,8 10:42 8 4:59   
IVELDART 8,1 33:07 7 20:35 8 3:02 
VVELDART-I     8 40:23 
HVELDART-I     8 25:42 
ACCDART   2,6,8 12:50 2,6 3:06 
TIME 8 27:30   8 16:08 

 
4.3 Participants’ quantifications of attributes differed 
Table 3 and Table 4 show that the modelers imputed distinct quantities into their scenarios and 
prioritized them differently, often exhibiting differing sets of criteria.  Distinct attributes were 
sometimes associated with the same object (e.g., height of the dart, speed of the dart), and we 
also found evidence the modelers conceived of quantities in subtly different ways (e.g., time). 
Some situational features were attended-to across modelers (e.g., gravity), but not all modelers 
treated the feature in a way that met at least one quantification indicator.  We discuss examples 
below.  

Safi treated gravity as an actor generating effects within the scenario; her work did not 
reveal evidence meeting any quantification criteria for gravity. She claimed that the dart would 
eventually “start to curve” even if shot straight due to “the law of gravity” but indicated that 
gravity’s effect would be mitigated by the dart’s speed. She argued that a faster (slower) dart 
would have less (more) time for gravity to affect its path, a mental action indicative of directional 
covariational reasoning (Carlson et al., 2002). In contrast, Merik and Iseult indicated gravity as a 
quantified attribute. For example, Merik noted that the dart would “make more like an arc to its 
destination” due to gravity and wrote 𝑣𝑣 − 9.8m/s2. Because Merik chose a magnitude and a 
dimensional unit for ACCDART, and he incorporated it arithmetically, we credited him with 
quantifying ACCDART. Though the expression’s units were not consistent, we view his 
representation as an instance of the symbolic form ∎−∎ (Sherin, 2001), which Merik employed 
to represent the impact of gravity on the dart’s velocity. 

In the modelers’ treatment of TIME, we were able to infer non-equivalent quantifications. 
Iseult did not indicate imputing TIME as a quantity during the interview; she conceived the 
scenario as static. Safi and Merik both evidenced conceiving of time elapsed since the dart was 
fired as a quantity. Safi considered the speed of the dart and the total amount of time the dart 
would be airborne, evidencing at least gross quantification of TIME because she evidenced 
directional covariation of time and speed. Merik explained his meaning for a Cartesian graph, “as 
time moves this [path] is just tracking the [dart’s] height.”  We infer Merik had an image of time 
passing continuously, though we were unable to infer whether it entailed the rhythmic 
segmentation characteristic of operative conceptual time (Thompson & Carlson, 2017). 
Therefore, we consider Merik to have indicated imputing at least elapsed figurative time to the 
scenario. Additionally, Merik substituted a particular value (1 second) for time while conducting 
dimensional analysis of a quadratic equation. When asked whether knowing the time at which 
the bullet hit the monkey might help him solve the rest of the problem, Merik replied, “No, I 
don’t think that time is what I need to be concerning myself with cause…the distances are the 
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variables.” Although Merik considered when the dart was in the gun and when the dart reached 
the monkey, and that time elapsed as the dart traveled from one location to the other, we were 
unable to infer that Merik considered specific instantiations of TIME between these two 
instantiations4. In each case, the modeler’s conception of TIME may have constrained the 
models generated. We further analyze the role of TIME in Merik’s model construction below. 
4.4 Quantitative reasoning may be necessary, but does not guarantee model construction  

In this section, we examine the interplay between the quantified attributes and the 
modelers’ progress constructing a mathematical model satisfactory to them. Safi’s vignette 
demonstrates that despite attending to quantities, and specifying their interdependencies, she did 
not produce a representation inclusive of arithmetic operations. Merik’s vignette demonstrates 
how attending to quantities occasioned reflection on the meanings of the arithmetic 
representations he produced. 
4.4.1 Directional covariation without algebraic representations 

Safi conceived the path of the dart as an object and associated its tallness as an attribute 
that could vary. First, she hypothesized conditions to achieve contact between the dart and the 
monkey. She stated: “the highest point is where the dart is at the monkey,” but she indicated 
TALLPATH and HTMKY/GUN were distinct quantities. She observed that the vet would be a “certain 
distance away from the tree, and based on that, he must angle the tranquilizer in such a way such 
that at the highest point of the dart[‘s path, it] would curve.” Second, she explained that were 
there no monkey, the dart would continue through to complete a parabola. Safi set the goal of 
determining the angle to aim such that the apex of the curve coincided with the monkey. The 
interviewer prompted her to explicitly consider how the parabola’s shape might depend on the 
angle at which the vet aimed. Safi introduced a right triangle with base angle ANGSTR and 
indicated she would need to know magnitudes of HTTREE/GRD and DISTVET/TREE. She 
acknowledged that the dart’s initial velocity would impact the shape of the parabola because it 
would influence the time needed to reach apex, and in turn would be influenced by gravity. For 
Safi, the quantities she conceived could vary and were interdependent. However, gross 
quantification and recognition of directional covariation among subsets of quantities were not 
sufficient to support her in producing or populating a template to serve as a mathematical 
representation of the dart’s trajectory. 
4.4.2 Model validation can be occasioned by conflicting quantitative meanings 

Approximately nine minutes into the session, Merik established the goal to seek a 
quadratic equation because “that is the path [the dart] is going to follow.” He wrote 𝑓𝑓(𝑥𝑥) =
𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶, which we interpret as a template (Sherin, 2001). Merik hinted at situational 
referents such as when he treated 𝐴𝐴𝑥𝑥2 as a placeholder for the effects of gravity and 𝐵𝐵𝐵𝐵 as a 
placeholder for the effects of velocity of the dart. However, he referred to 𝐶𝐶 directly as the 𝑦𝑦-
intercept of the graph of the expression and the image of 0 as being 0 + 𝐶𝐶 without clearly 
imbuing a quantitative referent from the scenario. Merik’s equation included the symbol 𝑥𝑥, 
which lacked a dedicated situational referent. For Merik, the symbol 𝑥𝑥 at times explicitly 
represented the horizonal position of the dart (implicitly at a given moment in conceptual time) 
while at other times he used it to represent elapsed time (at one or the other of the two locations 
for the dart). The ambiguity of referents for 𝑥𝑥 was not initially observably problematic for Merik. 

 
4 Substituting 1s involved enactment of numerical operations that were not situationally quantitative. 

Specifically, Merik did not link the 1s to the bullet’s position or time traveled. Thus, considering a unit of TIME (1s) 
did not constitute sufficient evidence an extensive conception of TIME  
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In fact, the shifting interpretations were not realized by Merik until the interviewer prompted him 
to share what 𝐴𝐴,𝐵𝐵,𝐶𝐶, 𝑥𝑥, and 𝑓𝑓(𝑥𝑥) represented. Merik responded that 𝐴𝐴 was the rate of change in 
velocity and that 𝑥𝑥 would be time. Consequently, he realized that substituting 30 for 𝑥𝑥 and 40 for 
𝑦𝑦 (specific values he selected for triangle leg lengths) was not compatible with this interpretation 
of the quadratic expression.  

4.4.3 Quantitative reasoning coincides with aspects of modelling sub-processes 
Around 23 minutes, Merik set the goal of finding ANGPAR and introduced a 3-axis 

coordinate system to record his work. The system aligned the tree with the vertical axis, located 
the monkey at (0,0,𝑚𝑚), and the veterinarian “somewhere” in the 𝑥𝑥, 𝑦𝑦-plane. He assumed the 
location would be “sort of radius distance away and angle from” arriving at (𝑟𝑟,𝜃𝜃, 0), with a 
parabolic path between the two points. He conveyed the new quantity 𝑚𝑚 to his quadratic 
equation, writing 𝑚𝑚 + 100𝑥𝑥 − 10𝑥𝑥2 and setting parameters values −10m/s2 for gravity and 
100m/s for initial velocity. He crossed out the expression because it combined 𝑚𝑚, a vertically 
oriented distance, with 𝑥𝑥, a horizontally oriented distance. Merik worked for several minutes to 
convert his rectilinear coordinates to polar ones before asserting that “the monkey is somewhere 
up and down the 𝑧𝑧-axis and the veterinarian is along the 𝑥𝑥,𝑦𝑦-plane and so no matter where they 
move…it doesn’t really matter.” He explained his conclusion in terms of quantities he previously 
treated as varying but which he could instead assume to be constant: the tree would stay the same 
height, the monkey’s height would be measured “straight down” regardless of which side of the 
tree he hung from, and the veterinarian’s distance would always “be the 𝑟𝑟 in this particular 
situation” because “wherever he goes around will just be another 𝜃𝜃.” Throughout this vignette, 
Merik made assumptions, introduced variables, specified conditions and assumptions, and 
converted those to properties and parameters. Thus, attending to Merik’s spontaneous 
quantitative reasoning still affords insights into his model construction activity. 

5 Discussion 
According to our theoretical approach, quantities are measurable attributes of objects 

conceived by individuals. The relevant objects and attributes are a consequence of how modelers 
assimilate a scenario and the goals they formulate. Thus, theory predicts that modelers would 
identify differing (across modelers) and multiple (within modelers) quantities to associate with 
the same objects or with the same attributes. The prediction held empirically in the context of 
addressing an open modelling task. The participants imputed non-equivalent sets of quantified 

Figure 5 Merik's coordinate axes, support to and evidence of his reasoning about the monkey 
and vetrinarian in 3-space. 
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attributes and those attributes held in common were not necessarily quantified in the same way 
(i.e., through the same implied measurement processes). 

We observed similar figures (e.g., right-triangles, parabolas) and mathematical 
representations (e.g., trigonometry, quadratic formula) across modelers. The initial task prompt, 
being the same for all modelers, still occasioned differing mathematical activities across the 
modelers. In particular, the modelers’ quantitative meanings for representations and their 
interpretations of relations among relevant quantities varied substantively. The participants 
reasoned differently about and with their models because the meanings of the models differed in 
terms of the situationally-relevant quantities imputed. There are two implications of this finding.  

First, we argue that dichotomously evaluating students’ work regarding the presence or 
absence of variables during an open modelling task has limited diagnostic value for a facilitator. 
Our quantification criteria operationalize a researcher’s attribution of a quantity to an individual, 
which we generously applied to give credit to potentially quantified attributes. Our analysis 
revealed that some attributes clearly met (or failed to meet) our criteria for quantity, that some 
attributes entailed at least gross variation (or covariation with other attributes) absent indications 
of extensive quantifications, and that other attributes may have been quantified in students’ 
previous experiences but lacked observable indicators of situational referents during the 
interviews.  If analyzing the data from a modelling cycles perspective, a codebook would 
indicate giving credit to Safi for mentioning gravity (a parameter). However, when considering 
quantitative meanings Safi indicated in her work, she had not quantified ACCDART and we did not 
observe a place for it in her representations; instead, for Safi, gravity determined only the shape 
of the dart’s trajectory. Similarly, the +𝐶𝐶 in Merik’s quadratic expression would have received 
credit as a parameter from a modelling perspective, but it did not carry situationally relevant 
quantitative meaning since it indicated only the 𝑦𝑦-intercept on a coordinate plane. Future 
research should acknowledge that modelers can introduce symbols or qualities during model 
construction that may not carry situationally relevant quantitative meanings. 

Second, these distinctions among modelers’ quantifications for situationally relevant 
attributes imply they may respond differently to facilitator prompts and interventions. Thus, it is 
important to carefully formulate scaffolds for students’ reasoning during model construction. For 
example, when we asked Iseult to consider TIME, she dismissed the suggestion because it was not 
relevant to her conception of the scenario as a completed trajectory. In comparison, TIME was, in 
a way, relevant for Merik in that he indicated quantifying it, though it varied only implicitly for 
him (a complication identified by Mkhatshwa and Doerr (2018)). In both cases, drawing the 
modelers’ attention to TIME was insufficient for scaffolding their progress towards suitable (to 
them) models; instead, conceiving of time operationally might have supported both modelers in 
mathematically characterizing the motion of the dart. For example, a more productive approach 
for Merik may have been to encourage him to parameterize displacement of the dart at arbitrary, 
intermediate moments of elapsed time between the instant when the dart left the gun and the 
instant the dart struck the monkey. Quantifying DISTDART through parametrization by and 
covariation with TIME may have resolved tension he experienced as he attempted to relate his 
two (spatial and temporal) interpretations of the quadratic expression. Further strengthening our 
inference is its compatibility with recent studies of student sense-making arguing that the 
efficacy of instructional actions is not uniform across students (Cengiz et al., 2011). That is, 
naming an omitted quantity may be productive for some students, but attending to how a modeler 
has quantified an attribute may be necessary to others.  
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When facilitating modelling or word problems, it is common to observe a student “lose 
track” of the situational referent signified by a symbol in an equation. According to Radford et al. 
(2011), meaning is ever-evolving as an individual engages in goal-oriented activity and the 
quantitative reasoning perspective offers deeper insight into this phenomenon in the context of 
modelling. It is possible for modelers to (implicitly) hold an instance of symbol Z to represent 
quantity W and another instance of Z to represent quantity U. Sometimes this simultaneity of 
meaning is productive, such as when 𝑦𝑦 can represent both a length (distance above ground) and a 
magnitude (number of units above a horizontal axis). However, a single instantiation of the same 
symbol may signify incompatible quantitative referents at the same time for a modeler. In 
Merik’s work, we infer that his quadratic template held a mix of situationally-relevant 
quantitative referents associated with objects and their attributes in the scenario and situation-
general quantitative referents (Moore et al., 2019) that were associated with his conception of 
quadratics, equations, graphs, and coordinates upon Cartesian planes.  

When considering two complementary (or competing) theories of modelers’ reasoning – 
in this case, descriptive modelling cycles and quantitative reasoning -- we must reflect on both 
the extent to which they overlap and the extent to which they diverge in their accounts. On the 
one hand, there is some overlap in our definition of quantities and the model construction phase 
specifying (simplifying) because both treat the core aspect of identifying variables to be used in 
subsequent modelling activity. For example, we reported that Merik introduced and removed 
quantities when working in his 3-D representation. These same instances would be identified by 
a codebook derived from a process-based view of modelling. Thus, imputing a situationally-
relevant quantity (QRT) can be viewed as identifying a (ir)relevant variable (modelling 
perspective). On the other hand, the converse does not seem to be true. Our analysis revealed 
cases where nominalizing an important factor, object, or attribute (e.g., time or gravity) did not 
provide sufficient evidence that an individual had conceived of it as a quantity with attendant 
quantitative operations. That is, naming something often considered a variable according to MC 
codebooks may not be sufficient evidence to claim that a student has meaningfully engaged in 
specifying (simplifying) activities. 

With regards to mathematizing, the data support Thompson’s (2011) position that 
quantitative reasoning should be the basis of mathematical modelling. However, we found that 
some kinds of quantitative reasoning may not be sufficient for successful mathematization – and 
so something more than quantitative or covariational reasoning is needed for successful 
mathematization. Analysis with the quantification criteria permitted a close examination of the 
spontaneous quantitative and covariational reasoning occasioned by the Monkey Task. We found 
evidence of modelers leveraging gross quantification or directional covariation, consistent with 
prior research (Carlson et al., 2002; Piaget, 1965). This finding foregrounds the salience of gross 
quantity and covariation from the student perspective. For example, Safi coordinated quantities 
and attended to variant and invariant relationships among quantities, seeking to represent those 
relationships. Yet, she primarily evidenced gross quantification of relevant quantities and 
indicated conceiving directional covariation. We maintain that conceiving of quantities in terms 
of measurable attributes with units is critical, ultimately, since gross quantification and 
directional covariation were insufficient for determining the angle the veterinarian should aim. 
When addressing open modelling tasks absent numerical values, these intermediate kinds of 
quantification and covariation are likely important for associating how modelers envision the 
task scenario with mathematical representations. However, it is premature to claim that students 
will conceive a direct correspondence between a pair of covarying quantities and the arithmetic 
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operations that are the building blocks of equations. Thus, it is yet an open question how to 
scaffold students towards formally representing the covariational relationships they conceive 
among quantified attributes. We conjecture such scaffolding to move modelers from conceiving 
coordination of quantities to articulating arithmetic operations among them would involve aiding 
the student in conceiving a quantitative relation between quantities.  

6 Limitations 
One limitation of our retrospective analysis is that interviewer probes did not systematically 
explore (a) whether for particular attributes, the participants were limited to gross quantification 
or covariation nor (b) whether superseding ways of reasoning about quantity and covariation 
might have mitigated cognitive obstacles students encountered during model construction. 
Thompson remarked, “persons limited to gross quantification are blocked from conceiving” 
scenarios in ways amenable to mathematization (Thompson, 1994a, p. 185).  Nevertheless, that 
gross quantification and covariation were salient in participants’ work necessitates that 
researchers anticipate such conceptions in modelling tasks and consider ways of interacting with 
students that acknowledge the affordances of these ways of reasoning (Stroup, 2002). 
 A limitation to the overall approach is the extent to which a facilitator is able to apply 
QRT in-the-moment during model construction. In particular, the retrospective methods we used 
here are intensive and may complicate data collection (or classroom instruction). First, the 
quantities students spontaneously impute to a scenario portrayed through a given prompt are a 
priori unknown. Neither is it possible to predict what operations particular quantities will permit 
for modelers, nor therefore, what quantitative relationships might be conceived among them. 
Future studies might investigate task-specific clusters of quantities students tend to impute; 
however, open modelling contexts are legion. Thus, we advocate work to develop epistemic 
students, meaning well-articulated, commonly occurring, quantifications students may conceive, 
which may be attribute-specific (e.g., distinct ways of conceiving of time or angularity). Thus, 
we recommend shifting focus from task- or context-specific attributes and towards the the 
operations permitted by quantities in order to support mathematization. Some work, of course, 
has already been completed in QRT studies which could be tested in open modelling contexts. 
However, the manner facilitators might gain insight into students’ in-the-moment reasoning 
raises a second methodological issue: how can a facilitator grok students’ quantitative and 
covariational reasoning without interrupting their modelling process? We view a trade-off 
between the kind of probing that supports strong inferences about the ways students think about 
particular quantities and the constraints that probing may place on students’ autonomous model 
construction. Future work should attend to which distinctions in quantitative reasoning, 
established at which grain-sizes of analyses, are most crucial for facilitators wishing to 
understand and support students’ modelling activities in-the-moment. 

7 Conclusions 
Our study demonstrates that applying theories of quantitative and covariational reasoning 

through analysis of attendant constructs does enrich cognitive accounts of mathematical 
modelling, with potential to move the latter genre forward in understanding how individuals 
construct mathematical models. We found evidence supporting the claim that the complexities of 
quantification and quantitative reasoning influence individuals’ model construction through the 
meanings they attribute to and express in mathematical representations. We argue that attending 
to quantitative reasoning during model construction, specifically, allows glimpses into “the gap 
between the way learners intuitively think about a phenomenon and the formalisms used to 
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represent it in expert practice” (Quintana et al., 2004, p. 345). Further, attending to the 
quantitative meanings students ascribe to representations within the context of open modelling 
problems would add to the growing body of scholarship making parallel claims about the role of 
quantities in development of mathematical reasoning (Bishop et al., 2014; Leslie, 2013; Moore et 
al., 2019; Moore & Thompson, 2015). Finally, we have identified two directions for future work. 
First, future research can undertake the question of whether mathematization is productively 
viewed as representing quantitative relationships via symbolic arithmetic operations. Second, we 
raised questions about how quantitative reasoning theories can be parlayed into scaffolding for 
mathematization, since doing so may entail modelers’ gross quantitative reasoning and 
directional covariation among some variables while other variables may need to be constituted 
by extensive quantitative operations (e.g., segmenting, iterating, recursion). 
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