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Abstract—It is well-known that linear quadratic regu-
lators (LQR) enjoy guaranteed stability margins, whereas
linear quadratic Gaussian regulators (LQG) do not. In this
letter, we consider systems and compensators defined over
directed acyclic graphs. In particular, there are multiple
decision-makers, each with access to a different part of the
global state. In this setting, the optimal LQR compensator is
dynamic, similar to classical LQG. We show that when sub-
controller input costs are decoupled (but there is possible
coupling between sub-controller state costs), the decentral-
ized LQR compensator enjoys similar guaranteed stability
margins to classical LQR. However, these guarantees dis-
appear when cost coupling is introduced.

Index Terms— Decentralized control, Distributed control,
Robust control, Linear systems.

[. INTRODUCTION

ULTI-AGENT systems with communication con-
straints occur naturally in engineering applications,
including bilateral teleoperation systems in remote robotic
surgery and unmanned aerial vehicles (UAVs). For example,
a swarm of UAVs could be deployed to survey an uncharted
region or to optimize geographic coverage while combating
forest fires. Information transfer within the swarm could
be limited due to geographic constraints such as mountains
blocking line-of-sight communications between certain UAVs.
It is known that certain decentralized information-sharing
architectures lead to tractable optimal control problems [1],
[2]. One such problem is decentralized LOR where the com-
munication constraints have a poset-causal architecture [3],
[4]. Although this is a state-feedback problem, the optimal de-
centralized controller is dynamic and has an observer-regulator
structure reminiscent of output-feedback LQG regulators.
Robustness is an important aspect of controller design,
because it ensures that the controller can effectively and
reliably control a system in the presence of disturbances, plant
uncertainty, or unmodeled dynamics. In the centralized case,
LQR controllers enjoy guaranteed gain and phase margins
[5], [6]. However, linear quadratic Gaussian (output feedback)
regulators, have no robustness guarantees [7].
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The robustness properties of decentralized LQR are not
immediately apparent, since decentralized LQR shares com-
monalities with both centralized LQR (uses state feedback),
and centralized LQG (optimal controller is dynamic). To the
best of our knowledge, this is an open problem.

In this letter, we show that decentralized LQR enjoys similar
stability margins to classical LQR if the input matrix (B) and
control weighting matrix (R) are block-diagonal. We also show
via counterexample that these assumptions are necessary.

In Sections II and III we review classical stability margins
for LQR and more recent work on decentralized LQR synthe-
sis. In Section IV we present our main results, and in Sec-
tions V and VI we present our counterexample and conclude.

I[I. CLASSICAL LQR STABILITY MARGINS

Consider the continuous-time linear time-invariant (LTT)
dynamical system & = Az + Bu, where z(t) € R"™ and
u(t) € R™. The linear quadratic regulator (LQR) problem
is to find the causal state-feedback policy that minimizes the
quadratic cost

J= /oo (z(t)TQx(t) + u(t)" Ru(t)) dt. (1)
0

Proposition 1 Suppose (A, B) is stabilizable, (Q,A) is de-
tectable, and @ = 0 and R > 0. The optimal LOR policy is
u(t) = Fa(t), where F = —R™'BTX, and X = 0 is the
unique stabilizing solution to the algebraic Riccati equation
ATX + XA+Q - XBR'B'X =0.

We denote the optimal LQR gain from Proposition 1 using
the notation F' := Ric(A4, B, Q, R). The optimal LQR con-
troller is known to be inherently robust [8, §23] [9, §14.4]. In
particular, if we define the loop gain L(s) := F(sI — A)~'B,
then the Kalman inequality holds:

(I -L(jw))"R(I - L(jw)) = R forallweR. (2)

In the single-input case, L(jw) is a scalar and the Kalman
inequality reduces to |1 — L(jw)| > 1. This can be interpreted
as the open-loop Nyquist plot of —L (negative feedback) lying
outside the disk centered at (—1,0) with radius 1. This implies
that the LQR compensator has gain margin % < k < oo and
phase margin —60° < ¢ < 60°.

Alternatively, a sufficient condition for robust stability can
be expressed in terms of the perturbation itself [6].
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Fig. 1. Perturbed feedback interconnection. L(s) := F(sI— A)~'B
is the loop gain for a standard LQR feedback controller w(t) = Fx(t).

Lemma 2 Consider the setting of Proposition 1, and let
L(s) := F(sI — A)~'B be the LQR-optimal loop gain. The
interconnected system of Fig. 1 is well-posed and internally
stable for all LTI systems /A that satisfy

A(jw)*R+ RA(jw) > R for all w € R. 3)

Proof: Invert (2) and apply the matrix inversion lemma,
which yields (I + H(jw))*R(I + H(jw)) = R, where we
defined the closed-loop map H(s) := F(s[ — A— BF)~'B.
This is equivalent to ||R'/?(I + H)R™'/?||,, < 1. Then,
perform a loop-shifting transformation to Fig. 1 to obtain
Fig. 2. Apply the small gain theorem [9, Thm. 9.1] to conclude
that the interconnection is well-posed and internally stable for
all LTI systems A satisfying [|[R'/2(I — A=H)R™1/2|| <1
which is equivalent to (3). |

y
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Fig. 2. Transformation of Fig. 1. H(s) := F(sI — A — BF)"'Bis
the closed-loop map for a standard LQR feedback controller.

Lemma 2 allows us to specialize the previous gain and phase
margin results derived from the Kalman inequality to the case
where each input channel is separately perturbed.

Corollary 3 Consider the setting of Lemma 2. Partition the
input u(t) into subvectors of dimension my +---+my = m.
If we assume R and A are block-diagonal and partitioned
conformally to the partition of u(t), i.e.,

Ry 0 Aq 0

. and A= ,
0 RN 0 AN
then the interconnected system of Fig. 1 is well-posed and
internally stable for all independent LTI perturbations of the
blocks of u(t) satisfying A;(jw)*R; + R;A;(jw) = R; for
i =1,...,N and for all w € R. In particular, each input

block independently has gain margin % < k; < oo and phase
margin —60° < ¢; < 60°.

R:

In Corollary 3, the assumption that R is block-diagonal is
necessary. It is possible to construct systems where a non-
diagonal R leads to closed loops that be destabilized by
arbitrarily small perturbations in a single channel [6, Ex. 3.1].

Similar robustness results to Lemma 2 have been derived
for discrete time [10] and for the case with cross-product
cost terms [11], though these cases generally have weaker
robustness guarantees. There are also negative results; when
R is full, the independent perturbation result of Corollary 3

no longer holds [6, Ex. 3.1]. Finally, there are no guaranteed
stability margins for LQG compensators [7].

[1l. DECENTRALIZED LQR CONTROL

We consider the problem setting studied in [3], [4], which
is an LQR problem structured according to a directed acyclic
graph (DAG). Specifically, we assume the setting in Proposi-
tion 1, but we partition the state as x = [x] x| and
similarly for the input u. We also partition A and B as N x N
block matrices conforming to the partitions of x and wu.

There is an underlying DAG on the nodes 1,..., N, which
are assumed to be ordered according to the partial ordering of
the DAG. The matrices A and B have a block-sparsity pattern
that conforms to the adjacency matrix of the transitive closure
of the DAG. Consider for example the 4-node DAG in Fig. 3.
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Fig. 3. Example of a 4-node directed acyclic graph (DAG), the
adjacency matrix of its transitive closure is S, shown on the right.
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The associated dynamical system would have the structure

T1 A1 O 0 0 T1 B11 O 0 0 U1
To| _ |A21 A2 0 0 ||x2 Bo1 Baa 0 0 ||u2
i’3 - A31 0 A33 O T3 + 351 0 Bdg 0 us
T4 Ay Aso Asz Ayg] (4 B4y Byo B4z Bag] |ug

There are no assumptions on the cost matrices, so all states
and inputs may be coupled through @ and R, respectively.

Definition 4 The ancestors of node i, denoted A(i), is the set
of all nodes j for which there exists a directed path from j
to i, including node i. Similarly, the descendants of node i,
denoted D(i), is the set of all nodes j for which there exists
a directed path from i to j, including i. We also use these
sets as a matrix subscripts to indicate the submatrix formed
by selecting the corresponding block rows and columns.

For the example of Fig. 3, we have D(2) = {2,4} and
A(3) = {1, 3}, which defines the block submatrices

A22 0 BH 0
Apee) = {Am A4J and - Baw) = {331 B33]’

What makes the problem decentralized is that each u,; only
has access to the past history of the ancestors of node 7. For
the example of Fig. 3, this means the u; take the form

= Ki(x1), ug = Ka(z1, 22),

us ZIC3(Z‘1,.Z‘3), Ug =K4(ZIJ1,JC2,$3,JJ4),

where the K; are causal maps. In general, decentralized
problems with LQG assumptions need not have linear optimal
controllers [12]. However, when the plant and controller are
structured according to a DAG as above, the optimal controller
is linear [2] and finding the optimal linear controller may be
cast as a convex optimization problem [13].

Explicit closed-form solutions have been obtained for this
decentralized LQR problem using a state-space approach [3],



[14] and poset-based approach [4]. Similar explicit solutions
exist for LQG (output-feedback) versions of this problem [14]-
[17] and also with time delays [18], [19].

The optimal controller for the decentralized LQR problem
described above has the following structure [3].

Proposition 5 Consider the decentralized LOR problem. Sup-
pose (A;, B;) is stabilizable for i = 1,...,N and (Q,A)
is detectable. Let I'; := Ric(Apy, Bp(), @pa), Bp(i))- The
optimal decentralized LOR controller has closed-loop dynam-
ics and associated optimal policy given by

& = (Apay + Bpi) Fi)éi
wi= Y LipyF

JEA(D)

fori=1,...,N

where I; p(;) is the block-row of the identity matrix Ip(;
associated with node 1.

If we include zero-mean process noise in the plant dynamics
that is independent between the different nodes of the DAG,
then & = (e | wawm) = Blzpa) | zapni)s s0 &
is an estimation correction in updating the estimate of the
descendants once the current node i is included.

The optimal decentralized controller from Proposition 5 is
linear, but unlike the classical centralized case in Proposition 1,
it is also dynamic. The decentralized LQR controller bears a
resemblance to the optimal LQG controller because its states
are estimates of plant states. The main difference is that the
strict descendants of node 7 are not observable, so rather than
using an observer such as a Kalman filter, the state estimates
are formed via prediction [20, §1V.D].

IV. MAIN RESULTS

For the optimal decentralized LQR controller described in
Proposition 5, there is no large Kalman inequality of the form
(2). Instead, we have N separate Kalman inequalities

(I — Li(jw))" Rp@y (I — Li(jw)) = Rpg)
for all w e R, (4)

corresponding to the N separate centralized LQR sub-
problems that make up the optimal decentralized controller.
Consequently, there is no apparent way to leverage the small
gain theorem as in the proof of Lemma 2. Instead, we show
that if we assume B and R are block-diagonal, we can prove a
result similar to Corollary 3 for block-diagonal perturbations.

Theorem 6 Consider the decentralized LOR problem and its
optimal controller, described in Section IIl and Proposition 5,
respectively, and let Lqe. be the optimal loop gain.

Further suppose that R and B are block-diagonal with
block sizes corresponding to the partitions of x(t) and u(t).
The interconnected system of Fig. 4 is well-posed and inter-
nally stable for all independent LTI perturbations of the blocks
of u(t) satisfying the following for alli=1,... N.

A;(Jw)* R; + RiA;(jw) = R;  for all w € R. (5)

Remark 7 Theorem 6 looks similar to Corollary 3, but Lge.
is now the more complicated loop gain for the optimal
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Fig. 4. Perturbed feedback interconnection. Lye. is the loop gain for
the optimal decentralized LQR feedback controller described in Propo-
sition 5 and Agec = diag{A;} is a block-diagonal LTI perturbation.

decentralized LOR controller. Unlike Corollary 3, Theorem 6
makes the additional assumptions that B and R are block
diagonal. In Section V, we show that these assumptions are
necessary, but we argue that they are not restrictive in many
cases of practical interest.

Proof: We take an approach similar to the proof of
Lemma 2, except we use a more general version of the small
gain theorem for structured uncertainty, and additional steps
are required to combine the N separate Kalman inequalities
into something we can use. Start by rewriting the closed-
loop map of the optimal decentralized LQR controller from
Proposition 5 as:

Hgee =10 F(sI —A— BF)™'B

dec

where we defined:

1o i = [11,p0) Inpv)

A= diag{Ap;)}

F = diag{F;}
eleIBD(l)
B:= s
B
ENENDD(N)

where e; is the i-th column of the identity matrix of size n.
Since B is block-diagonal, we have B = diag{ Bp(yei}. So
we can rewrite the closed-loop map as Hgee = lgecH FE, where
we defined:

H :=diag{H;}, E:=diag{e;}, R:=diag{Rp},
H, = Fi(SI — AD(z) — B’D(i)Fi)_lBD(i)'

Note that H; is the closed-loop map for the separate LQR
problem associated with D(7) defined in Proposition 5.

Now perform the same loop-shifting transformation as in
the proof of Lemma 2 to Fig. 4 to obtain Fig. 5. Since R and
Agec are block-diagonal, the uncertainty block in Fig. 5 is also
block-diagonal. Our goal is to apply the structured small gain
theorem [9, Thm. 11.8], which is a generalization of the small
gain theorem that applies when the uncertainty is structured.

R1/2(1T
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Fig. 5. Transformation of Fig. 4. H := diag{H;} is the block-
diagonal concatenation of the closed-loop maps associated with the IV
centralized LQR sub-problems that make up the optimal decentralized
LQR controller.



To this end, we state an intermediate lemma, which relates
the structured singular value of the optimal closed-loop map
to the N separate Kalman inequalities (4).

Lemma 8 Consider the setting of Theorem 6, where H, H;,
E, and 14e. are defined as above. The following inequality
holds:

su;ﬂg JIIN (Rl/Q(chcfl(jw)E + I)R_1/2)
we

< max |R}e] (I + Hi)e:R; |,
1<i<N

where ua () denotes the structured singular value correspond-

ing to the block-diagonal structure of Agec.

Proof: Let M := RY2(1] _H(jw)E + I)R~'/2. Since
the plant and controller each have transfer functions structured
according to the adjacency matrix .S of the transitive closure
of the associated DAG, they form an algebra. Consequently,
all products, inverses, and linear fractional transformations
preserve the structure, and in particular, so does the closed-
loop map Hge.. Therefore, M has a block-sparsity structure
conforming to .S. Since the nodes are assumed to be ordered
according to the partial ordering of the DAG, S is lower-
triangular and so M is block-lower triangular.

Let A := {diag{A;} | A; € C™*™i} For any A € A,

N
det(I — MA) = ] det(I — M;;A;)
i=1

and we can simplify M;; based on the definition as
My = e] (R (1 H(jw)E + DR e;
= R2eT (1L H(jw)E + Ie;R; 2

= R!?el (H,(jw) + I)e; R 2. ()
By the definition of the structured singular value,
1
M =
M) = e AT Tdet( — MA) =0, A€ A}
1
~ min {||A]| | det(I — M;A;) = 0 for some 7}
< 1
~ min; min {||A;]| | det(I — M;;A;) = 0}
= max || My]|.
1<i<N

The last step follows from the fact that pa, (M;;) = || My
because A; is unstructured. Substituting in M;; from (6) and
taking the supremum over w € R completes the proof. ]

Inverting the Kalman inequalities in (4) and converting them
into H, norms as in the proof of Lemma 2, we obtain

|RyC, (I + Hi) R 2|

D() D(i) <1 fori=1,...,N.

Since for any matrix M € CP*9, the (spectral) norm of M is
lower-bounded by the norm of any submatrix of M, have a
similar inequality for H., norms, and together with the fact
that R is block-diagonal, we deduce that

B2l 1+ H)euR T < R (1 4+ H) R (.

The two above inequalities together with Lemma 8 imply that
sup jua (RV2 (1ol (o) B+ DR7V?) <1,
weR

We can now apply the structured small gain theorem [9,
Thm. 11.8] and conclude that the interconnection of Fig. 5
is well-posed and stable whenever Age. = diag{Ai} satisfy

|20 - aghr

Due to the block-diagonal structure of the uncertainty, this is
equivalent to

IRY*(I - A

dec

YR YA <1 fori=1,...,N

which is equivalent to (5). |

Equipped with Theorem 6, we can specialize the decen-
tralized LQR robustness result to the case where each input
channel is perturbed using either a pure gain or a pure phase
shift. This leads us to a decentralized version of Corollary 3.

Corollary 9 Consider the decentralized LOR setting of The-
orem 6. Each input u;(t) independently has gain margin
% < k; < 0o and phase margin —60° < ¢; < 60°.

V. DISCUSSION

Theorem 6 provides conditions for the robust stability of
the optimal decentralized linear quadratic regulator, under the
additional assumptions that B and R are block-diagonal and
different perturbations are applied to each input u;.

The assumption that B and R are block-diagonal is critical.
We will demonstrate using a simple numerical example that
the gain margin % < k; < oo established in Corollary 9 no
longer applies when either B or R is not block-diagonal.

Consider a two-node DAG with graph 1 — 2 and global
plant dynamics given by

x:E ?]x—i—[é ﬂu, 7

cost matrices @ = [$31] and R = [120 160 ]- We use the
perturbation Agec =[5 9] with & € R, so node 1 is perturbed
by a static scalar gain while node 2 remains unperturbed. The
perturbed closed-loop matrix is given by

1+ kFH kF}2 0
Acp == | 1+ BFM + F21 14 BF2 + FP2 0
L+ kBFN + F21 F22 — R+ kBF? 1+ Fy

where Ffj and F5, are given by

FiY R L ([L0] [10] [3 1] [100 p
F121F22_C11’61’13’p100
F, = Ric(1,1,3,100) ~ —2.0149.

The gain margin of input u; is the range of values of k£ for
which Acp is Hurwitz.

We ran two experiments. First, we assumed a diagonal R
and triangular B, so we fixed p = 0 and varied (3. Fig. 6
(top) shows a plot of the pairs (f,k) for which Acp is
Hurwitz (shaded in blue). When 5 = 0, we confirm the

result of Corollary 9; the system is stable for % < k < oo,



which corresponds to k¥ > —6dB on the plot. But when
B # 0, violating the requirement that B be block-diagonal,
we observe a severe deterioration in the gain margin.

For the second experiment, we assumed a full R but
diagonal B, so we fixed § = 0 and varied p. Fig. 6 (bottom)
shows a plot of the pairs (p, k) for which Acp is Hurwitz
(shaded in blue). As in the previous example, we confirm the
result of Corollary 9 when p = 0, but we observe deterioration
for some nonzero choices of p.

The matrices B and R are block-diagonal in many cases of
practical interest. For example, consider multi-agent systems,
such as drones flying in formation or a platoon of vehicles.
In these cases, each control input affects a separate agent, so
B is block-diagonal. Also, the total input cost is typically the
sum of input costs for each agent, with no coupling. So R is
block-diagonal as well.

30
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Fig. 6. Stability margins for the decentralized LQR example with the
dynamics of Eq. (7). The input w1 is perturbed by a factor of k. The top
panel uses p = 0 (diagonal R) and the blue region shows the (3, k)
that yield a stable closed loop, with k expressed in decibels (dB). The
bottom panel uses 8 = 0 (diagonal B) and the blue region shows
the (p, k) that yield a stable closed loop. When B and R are block-
diagonal (p = B = 0), we recover Corollary 9, which ensures a gain
margin 1 < k < oo. In other words, k > —6 dB.

VI. CONCLUSION

We studied the robustness of optimal decentralized LQR
controllers when the plant and controller are structured accord-
ing to a directed acyclic graph. Specifically, we established that
when the B and R matrices are block-diagonal and different
LTI perturbations are applied to each input, the controlled
system enjoys the same stability margins as in the classical
(centralized) LQR case. This is an interesting result because
the optimal decentralized LQR controller is dynamic, much
like an output-feedback LQG controller, yet LQG controllers
have no stability margins.

While this letter only studied the case of LTI perturbations,
our approach can be generalized to nonlinear input perturba-
tions, analogous to the results obtained in [5].
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