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A Kernel Learning Method for Backward SDE
Filter

Richard Archibald*, Feng Bact

Abstract

In this paper, we develop a kernel learning backward SDE filter 
method to estimate the state of a stochastic dynamical system based on 
its partial noisy observations. A system of forward backward stochas­
tic differential equations is used to propagate the state of the target 
dynamical model, and Bayesian inference is applied to incorporate the 
observational information. To characterize the dynamical model in the 
entire state space, we introduce a kernel learning method to learn a 
continuous global approximation for the conditional probability den­
sity function of the target state by using discrete approximated density 
values as training data. Numerical experiments demonstrate that the 
kernel learning backward SDE is highly effective and highly efficient.

Keywords: Nonlinear filtering problem, backward stochastic differen­
tial equations, kernel learning, stochastic optimization

1 Introduction

One of the key missions in data assimilation is to obtain the best estimate 
for the state of a stochastic dynamical system based on its observations. 
The mathematical tool that achieves this mission is the optimal filtering. 
An optimal filtering problem is usually composed of a stochastic differential 
equation (SDE) called the state equation, which describes the the state of 
the dynamical system, and an observation equation that provides partial
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noisy observational data. The best estimate that we want to obtain in 
the optimal filtering problem is the conditional expectation of the target 
state, which is conditioned on the observational information. When both 
the dynamical system and the observations are linear, the Kalman filter 
provides an analytical expression for the solution of the optimal filtering 
problem through Bayesian inference [23]. However, in most situations, we 
do not have the linearity condition, hence numerical methods for solving 
nonlinear filtering problems are needed.

The main theme of nonlinear filtering methods is to derive approxima­
tions for the conditional probability density function (PDF) of the target 
state, which is also called the “filtering density”. An important pioneer ap­
proach to solve the nonlinear filtering problem is the Zakai filter. In the 
Zakai filter, the filtering density is formulated as the solution of a parabolic 
type stochastic partial differential equation (SPDE) called the Zakai equa­
tion [36]. Although the Zakai filter provides a mathematical equation that 
analytically solves the nonlinear filtering problem, obtaining numerical solu­
tions for SPDEs is a challenging task [20, 16]. Especially, when the dimen­
sion of the problem is high, numerical methods for SPDEs suffer from the 
“curse of dimensionality”, and the computational cost for solving the Zakai 
equation increases exponentially as the dimension of the problem increases 
[37, 6].

The standard approach to solve the nonlinear filtering problem in prac­
tice is the Bayes filter. Well-known Bayes filter methods include the Kalman 
type filters and the particle filter. The Kalman type filters [33, 21, 15] for 
the nonlinear filtering problem usually linearize the nonlinear systems, and 
then use the Kalman filter method to solve the corresponding linearized 
problem. The main drawback of the Kalman type filters is that when the 
nonlinear systems are highly nonlinear, the linearized problem does not pro­
vide a good approximation for the original problem, hence the Kalman type 
filters often fail [34]. The central idea of the particle filter method is to use 
a set of sequentially generated samples (called “particles”) to construct an 
empirical distribution as a predicted filtering density. To incorporate the 
observational information, the particle filter applies Bayesian inference to 
assign a likelihood value to each particle as its weight, and use the weighted 
particles to describe the updated filtering density [18]. However, since the 
particles are generated from a stochastic dynamical system, they diffuse in 
long term simulations. Therefore, the particle filter has the so-called “de­
generacy problem”, i.e., when estimating the target state for several steps, 
only a few particles stay in high probability regions of the filtering density, 
and the others lie in probabilistically insignificant regions. This makes the
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effective particle-size decrease dramatically. To address the degeneracy of 
particles, a resampling procedure is introduced to re-generate particles in 
high probability regions [30, 12, 1, 35, 26, 3, 24]. But when solving highly 
nonlinear or high dimensional problems, the existing resampling techniques 
are either less effective or very difficulty to implement [32].

In a recent study, we developed a backward doubly stochastic differential 
equation (BDSDE) approach to solve the nonlinear filtering problem, in 
which we use a BDSDE system to model the filtering density [5, 7, 9, 4], 
and a “doubly stochastic integral” term is introduced to incorporate the 
observations. In this way, the BDSDE approach is similar to the Zakai filter 
in the sense that it also provides a mathematical equation to formulate the 
analytical solution of the nonlinear filtering problem [28, 14]. However, in 
order to solve BDSDEs, a type of two-sided Ito formula is needed to deal 
with the doubly stochastic integral term [28, 8, 10, 2], which makes the 
BDSDE approach quite complicated.

In this work, we simplify the BDSDE approach and introduce a forward 
backward stochastic differential equations (FBSDEs) system to generate the 
predicted filtering density under the Bayes filter framework without using the 
doubly stochastic integral term. Then, we apply Bayesian inference to incor­
porate the observational information and update the filtering density. We 
call the general approach that involves backward SDEs (or backward dou­
bly SDEs) in solving the nonlinear filtering problem as the “backward SDE 
filter”. The numerical implementation of the backward SDE filter aims to 
approximate the filtering density on adaptively selected spatial points in 
the state space, and the adaptive spatial points are chosen as the random 
samples that follow the filtering density. Although the idea of using random 
spatial sample points is similar to the particle filter, which utilizes parti­
cles to build an empirical distribution, we also approximate filtering density 
values on sample points in the backward SDE filter. Therefore, the spatial 
samples, together with the filtering density values on those samples, carry 
more information than just the particle positions in the particle filter.

On the other hand, an approximation for the entire filtering density as a 
continuous PDF can provide a complete description for the state of the target 
dynamics. This is even more advantageous in high dimensional problems 
since finite spatial samples tend to be very sparse in high dimensional state 
spaces.

The novel methodology that we want to develop in this work is to treat 
the approximated filtering density values obtained by the backward SDE 
filter on discrete spatial sample points as “training data samples” and then 
derive a continuous approximation for the filtering density by using machine
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learning methods. In this way, the information of filtering density on scat­
tered spatial samples is effectively combined as a smooth distribution for the 
target state in the entire state space. The machine learning model that we 
choose in this paper is the kernel learning method [19, 17], and we name this 
approach the kernel learning backward SDE filter. Since the filtering density 
is a probability distribution, we use Gaussian kernels to construct the filter­
ing density function. The centers of Gaussian kernels are chosen as spatial 
samples with high density values, so that the kernels can effectively cover 
high probability regions of the state. To make the kernel learning backward 
SDE filter more efficient, we introduce an implicit iterative scheme to solve 
backward SDEs, and we apply the stochastic approximation method [31] to 
reduce the computational cost of simulating the conditional expectation in 
our iterative scheme .

We want to mention that our adaptive spatial sample points are gener­
ated through the state dynamical model - just like the particle generation 
in the particle filter. To avoid sample degeneracy, we introduce a resam­
pling procedure to resample the spatial points from the filtering density. 
Note that the kernel learned filtering density is a combination of Gaussian 
kernels, hence the resampling procedure mainly samples Gaussian variables, 
which can be implemented accurately and efficiently.

The rest of this paper is organized as follows. In Section 2, we provide 
some preliminaries for the nonlinear filtering problem, the Bayes filter ap­
proach, and the mathematical framework of the backward SDE filter. In 
Section 3, we introduce numerical algorithms for the kernel learning back­
ward SDE filter. Several numerical experiments will be carried out in Sec­
tion 4 to demonstrate the effectiveness and efficiency of the kernel learning 
backward SDE filter. Some concluding remarks will be given in Section 5.

2 Preliminaries

In this section, we provide the necessary preliminary knowledge for the kernel 
learning backward SDE filter. Specifically, we first provide a brief introduc­
tion to the nonlinear filtering problem. Then, we discuss the state-of-the-art 
approach, i.e., the Bayes filter for solving the nonlinear filtering problem. 
Finally, we introduce the mathematical formulation of the backward SDE 
filter.

The nonlinear filtering problem.

We consider the following state-space model of the nonlinear filtering
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problem in a complete probability space (Q, F, P):

dSt = b(St)dt + atdWt, (State) (1a)
dMt = h(St)dt + dVt, (Observation) (1b)

where St G Rd describes the state of a stochastic dynamical system driven 
by the nonlinear function b : Rd ^ Rd, and we assume that the initial state 
So follows a given distribution p0. The process W := {Wt}t>0 is a standard 
d-dimensional Brownian motion with the coefficient at G Rdxd, and the Ito 
integral term brings noises that perturb the dynamical model, and we use 
FtW := <r(Ws, 0 < s < t) to denote the ^-algebra generated by W. The 
r-dimensional stochastic process Mt (1b) gives partial noisy observations on 
St through the nonlinear observation function h : Rd ^ Rr, and the obser­
vational data are also perturbed by noises generated by an r-dimensional 
Brownian motion V, which is independent of W. We call the equation (1a) 
the “state equation” and the equation (1b) the “observation equation”. The 
goal of the nonlinear filtering problem is to obtain the “best” estimate for the 
state S given the observational information Mt := a(Ms, 0 < s < t), which 
is the ^-algebra generated by the observation equation. More generally, we 
want to determine the so-called “optimal filter” 0(St) for a test function 
^ representing the quantity of interest. Mathematically, the optimal filter 
0(St) is given by the conditional expectation of #(St) given Mt, i.e.

§(St)= E[^(St)|Mtj. (2)

In this work, we focus on the Bayes filter approach, which is carried 
out by recursive Bayesian estimations. Instead of trying to estimate the 
optimal filter $ as a conditional expectation directly, the Bayes filter aims 
to approximate the conditional probability density function (PDF) of the 
target state, which is also called the “filtering density”.
Recursive Bayesian estimations.

In the Bayes filter, we estimate the target state on a sequence of dis­
crete time instants 0 = t0 < ti < t2 < ••• < tn < ■■■ tNt = T over 
the time interval [0, T], where NT G N is the total number of time steps. 
The main theme of recursive Bayesian estimati|ons is to obtain the filter-

Bayesian inferences. Then, the optimal filter $(Stn+1) can be calculated 
as $(Stn+i) = / $(Stn+i)p(Stn+i |Mt^+i)dSt^+i. The general framework of
recursive Bayesian estimations is composed of two steps: a prediction step 
and an update step.
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In the prediction step, assuming that the filtering density p(Stn |Mtn) is 
available at the time instant tn, we use the Chapman-Kolmogorov formula 
to propagate the dynamical model in the state equation as follows

p(Stn + 1 |Mtn ) = j p(Stn + 1 | Stn )p(Stn |Mtn ) dStn , (3)

where p(Stn+1 |Stn) is the transition probability of the state equation (1a), 
and the predicted filtering density p(Stn+1 |Mtn), which is the prior distri­
bution in the Bayesian inference, describes the state S at the time instant 
tn+1 before receiving the new observational data Mtn+1.

In the update step, we use the following Bayesian inference formula to 
to incorporate the observational data into the state estimation:

p(Stn + 1 |Mtn+1 )
P(Mt„ +1 | Stn + 1 )p>(Stn + 1 |Mtn )

p(Mtn +1 \ Mtn )
(4)

where p(Mtn+1 |Stn+1) is the likelihood function, and the denominator p(Mtn+1 |Mtn) 
is a normalization factor.

Then, by implementing the prediction step (3) and the update step (4) 
numerically, one can develop computational methods for solving the non­
linear filtering problem. In what follows, we introduce the backward SDE 
filter as the theoretical preparation for our kernel learning method.
The backward SDE filter.

The backward SDE filter adopts the recursive Bayesian estimations frame­
work. The central idea of the backward SDE filter is to use a system of 
(time-inverse) forward backward stochastic differential equations to propa­
gate the filtering density, and we also use Bayesian inference to incorporate 
the observational information into the predicted filtering density.

To proceed, we first introduce the forward backward stochastic differen­
tial equations (FBSDEs) corresponding to the nonlinear filtering problem 
(1), and we consider the following FBSDEs system

St

Yo

So + f b(Ss)ds +
J o

Yt — f ZsdWs, 
o

^ &sdWs,
o

Yt = $(St),
(5)

where the first equation coincides the state equation in the nonlinear filtering 
problem, which is a standard forward SDE, and the second equation is a 
backward SDE. The solution of the above FBSDEs system is the pair (Y, Z),
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which is adapted to the Brownian motion W, i.e., Yt, Zt G FtW, and the 
solution Z is the martingale representation of Y with respect to W [29]. 
Note that the side condition of the backward SDE, i.e., Yt = $(St), is given 
at the time instant t, and the solution pair (Y, Z) propagates backwards 
from t to 0.

For a fixed initial state S0 = x G Rd, we take the conditional expectation 
E[-|S0 = x] on both sides of the backward SDE in (5) and obtain Y0(x) = 
E[$(St)|S0 = x], which is a simplified version of the Feynman-Kac formula. 
Here, we note that the value of Y0 is determined by the value of the state 
S0. In addition, the solution Y of (5) is equivalent to the solution of the 
Kolmogorov backward equation. In other words, for the following backward 
parabolic type partial differential equation (PDE),

dus
ds

d <—> d
V dus 1

b— , 2
i=1 i,j=1

+ 2 E (asvJ) d 2 Us
s^s )i,j dxidx, Ut(x) = $(x), (6)

where bi is the i-th component of the vector function b in the state equation 
(1a), we have Y0(S0 = x) = uo(x) [27].

In the nonlinear filtering problem, we need to propagate the filtering 
density forward. The PDE that propagates the PDF of the state S driven 
by (1a) is the following Fokker-Planck equation:

dpt
dt

dbiPt 1 , T. d2pt
dxi 2 dxidxji=1 i,j=1 J

(7)

where the initial condition p0 is the distribution of the state S0. We can see 
that (7) is the adjoint equation of the Kolmogorov backward equation, hence 
the Fokker-Planck equation is also called the Kolmogorov forward equation.

Following the analysis in [27] that establishes the equivalence between 
the FBSDEs (5) and the Kolmogorov backward equation (6), one can derive 
that the solution pt of the above Fokker-Planck equation is equivalent to the 
solution Y of the following FBSDEs:

X0 = Xt — f b(Xs)ds + / CTsdf—s,
00

Yt = Y) ^(Xs)^ds ^'Zsdl-s
d0 dxi ./0

where the integral /J ■df-s is a backward Ito integral, which is an Ito integral 
integrated backwards [28]. We can see that the first equation in (8) is a

(8a)

Y0 = P0, (8b)
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“backward SDE” since it propagates backwards from t to 0, and the second 
equation is a “forward SDE” since its side condition is given at the time 
instant 0. On the other hand, the propagation direction of (8a) is the same 
as the integration direction of the backward Ito integral. At the same time, 
the equation (8b) propagates forwards given the side condition Y0 = p0 
with a backward Ito integral. In this way, the equations in (8) compose a 
time-inverse FBSDEs system.

Due to the equivalence Yt = pt, we know that the solution Yt also prop­
agates the PDF of the state St forward. In this connection, we use the 
time-inverse FBSDEs system (8) to predict the filtering density in the non­
linear filtering problem. Specifically, we assume that we have the filtering 
density p(Stn |Mtn) at the time step tn. By solving the following time-inverse 
FBSDEs system

Xt

Y
tn + 1

Xtn+1

ftn + 1 ftn + 1 j
Xt„ + 1 — / b(Xs)ds + <JsdW s,

J tn J tn

Yf" — T'+1 E # (X,)Y"-n ds tn+1

dxi
ZM"" s,

Stn+1 YtM"" = p(St" |Mt"),

t

(9a)

(9b)

we obtain the solution Y„+„ , which is the predicted filtering density, i.e.,

Yt"+" = p(Stn+1 |Mtn). In other words, the time-inverse FBSDEs system (9) 
provides a mechanism to carry out the the Chapman-Kolmogorov formula
(3) in the prediction step of the Bayes filter approach. Here, we use the 
superscript Mtn in Yt"+" to emphasize that the solution Y depends on the 
observational information Mtn.

Then, we substitute the prior distribution in the Bayesian inference
(4) by the solution Y^" obtained in (9) to get the posterior distribution
p(Stn+1 |^Mtn+1), i.e.

p(Stn+1 |Mtn+1)
p(M,„tl|S,„tl

p(Mtn+1 |Mt„)
(10)

which is the updated filtering density at time step tn+1 that will be used for 
the next recursive stage.

From the above discussion, we can see that the central idea of the back­
ward SDE filter is to use the time-inverse FBSDEs system to predict the 
filtering density, and then use Bayesian inference to update the predicted fil­
tering density. As a method that carries out recursive Bayesian estimations,
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the backward SDE filter is also composed of a prediction step and an up­
date step. In most practical situations, FBSDEs are not explicitly solvable. 
Therefore, numerical solutions for FBSDEs are needed. In the following sec­
tion, we introduce a numerical algorithm to implement the above backward 
SDE filter framework and develop our efficient kernel learning method for 
the backward SDE filter.

3 Numerical algorithms for kernel learning back­
ward SDE filter

We first provide numerical schemes to solve the time-inverse FBSDEs system 
(9) and then give Bayesian inference based on the numerical solution of the 
FBSDEs system in Subsection 3.1. In order to approximate the entire fil­
tering density that carries the information contained in the state dynamical 
model and the observational data, in Subsection 3.2 we introduce a kernel 
learning method to “learn” the filtering density from discrete density values. 
In Subsection 3.3 we summarize our kernel learning backward SDE filter.

3.1 Numerical schemes for time-inverse FBSDEs

Since the equation (9a) is essentially an SDE with inverse propagation di­
rection, we apply the Euler-Maruyama scheme [25] and get

Xt„ = Xt„+1 — b(Xt„+1 )Atn + Jt„+1 AWt„ + ^,

where Atn := tn+1 — tn, AWt„ := Wt„+1 — Wt„, and := b(Xt„+1 )Atn —
/tt„+1 b(Xs)ds is the approximation error. By dropping the error term , 
we obtain the following numerical scheme for (9a):

Xn — Xn+1 b(Xn+1)Atn + Jt„+1 AWt„ , (11)

where Xn is the numerical approximation for Xt„, and Xn+1 is a represen­
tation for the state variable St„+1.

To solve the backward SDE (9b), we take conditional expectation E^+J-] :— 
E[-|Xt„+1, Mt„] on both sides of the equation and obtain

E X+1[YM„ ] = EX+1 Kf*„ ] —
rt„+1

EX
n+1 EE (X.)Y.M-

i=1
ds,

t
(12)

where the backward Ito integral /^+1 ZsdWs is eliminated due to the mar­
tingale property of Ito integrals. For the left hand side of the above equation,
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we have Y^f = EX+1[YtMt" ] YtHTt" is adapted to X,+1 and is Mt„
measurable. In this work, we approximate the deterministic integral on the 
right hand side of (12) by using the right-point formula and get

Y„„ — E.X+1[Y„„'„ ] — Ain V 86i (X
(Xt„ +1

i=1
+ RY, (13)

dswhere R^ :— Atn.Ed=1 #(Xt„+1 )%%„ +1 E^+^ Ed=1 #(Xs)^

is the approximation error for the integral, and we have used the fact
dbi (X )yMt„ = ex r d dbi (X )yMt„2^i=1 dz, (Xt„+1 1 +1 = En+^Yi=1 dz, (Xt„+1 / +1 .

Then, we drop the approximation error term Rn in (13) and obtain the
following approximation scheme for YtMt : t +1 :

yn+! = EX . [Y Mt„-^n+1 ] — Atn
A db

dxi=1
%r(Xt„+1 )Yn+T, (14)

where YnM+t1 is the approx|imated solution and YnMt is an approximation of 
the filtering density p(St„ |Mt„) that we obtained in the previous recursive 
step. We can see that the above approximation scheme is an implicit scheme. 
In order to calculate YnM+t1 , we introduce the following fixed-point iteration 
procedure:

Y Mt „ ,1+1Yn+1 EX+1KMt” ] — Atn ■ £  ̂(X,„+1 )r„1+t1„J, l — 0,1,2,... , L — 1,
i=1 dxi

(15)
and we let the approximated solution be Y-f+T — Yh+l",L, where L is a 
number that satisfies certain stopping criteria for the iterations, and we let 
the initial guess for the solution Y^+f be Yh+T ,0 — Y-^"

From the equivalence yt„t„ — p(St„+1 |Mt„), the approximated solution

Y^+f gives an approximation for the predicted filtering density. Hence the 
iterative scheme (15) accomplishes the prediction step in Bayesian estima­
tion. To incorporate the observational information, we carry out the update 
step through Bayesian inference as follows

p(S"+1 |Mt„+1) —
p(Mt„+1 |s,„+1 )YMt,

+1 )Yn+1
C

(16)

where C is a normalization factor, and the prior distribution is replaced by 
the approximation of the predicted filtering density YnM+t1 . As a result, we

i
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obtain the approximated filtering density p(St„+1 |Mt„+1) as desired in the 
backward SDE filter.

The numerical schemes (15)-(16) compose a general computational frame­
work for the backward SDE filter, which provides a recursive prediction- 
update mechanism that formulates the temporal propagation of the filtering 
density. On the other hand, the filtering density is a function that connects 
state positions to the probability density values at those positions. There­
fore, spatial dimension approximation for the filtering density function with 
respect to the state variable is needed. In the following subsection, we intro­
duce a kernel learning method to generate a continuous global approximation 
for the filtering density over the state space.

3.2 Efficient kernel learning in the backward SDE filter

To derive an efficient kernel learning method that approximates the filtering 
density in the backward SDE filter, we re-consider the temporal prediction- 
update schemes (15)-(16). We can see that in the scheme (15), the condi­
tional expectation E^+^yn^" ] needs to be evaluated in order to calculate 
the predicted filtering density YnM+t1 . In what follows, we first discuss our 
approximation method for En+1 [Y^" ] given that Xt„+1 — x. 

Approximating the conditional expectation

In most practical nonlinear filtering problems, the target state is a high 
dimensional variable, and Monte Carlo simulation is usually applied to eval­
uate high dimensional expectations. Specifically, for a given point x G Rd in 
the state space, we let Xn+1 — x in the scheme (11). Then, the conditional 
expectation in (15) is approximated by

EX
n+1 [YM'T ] = E WYM'n ]:

v^M Y Mt„
/Cm=1 Yn

M
(XnZ'm)

(17)

where M is the total number of Monte Carlo samples that we use to approx­
imate the conditional expectation. The random variable Xn,m in the above 
approximation is a Monte Carlo sample simulated by using the scheme (11) 
as follows:

Xn,m — x — b(x)Atn + at"+1 yAtnwm, (18)

where is a sample drawn from the d-dimensional standard Gaussian 
distribution, and \/Atnwm is the m-th realization of A Wt„. However, when 
the dimension of the state variable is high, the number M of Monte Carlo 
samples needs to be very large, hence evaluating the conditional expectation

11



En+1[YnMt„ ] by using the Monte Carlo simulation (17) is a computationally 
expensive task.

In this work, inspired by the stochastic approximation method and its 
application in stochastic optimization [31, 11], we treat the large number of 
Monte Carlo samples that we use to approximate the conditional expecta­
tion En+1[YnMt„] as a “large data set”. Then, we adopt the methodology 
of stochastic approximation and use a single-sample (or a small batch of 
samples) to represent conditional expectations. Specifically, in each fixed- 
point iteration step (15), instead of using the fully-calculated Monte Carlo 
simulation (17) to compute the conditional expectation, one may use one 
realization of the simulated sample X^’1 to represent the entire set of Monte 
Carlo samples {Xn’™}^^ at each iteration step, where X-’1 is also simulated 
through (18) indexed by the iteration step l. In this way, the fixed-point 
iteration scheme for the approximated solution 1—+-" at the spatial point 
Xn+1 — x can be carried out as follows:

Y Mt„ ,f+1
Yn+1 (x)—En+1 ]—Atn -E dxi (x)^+1

i=1
l — 0,1 2, • • • , L — 1

(19)
where the conditional expectation En+JY-^4" ] is represented by a single­
sample of Y-^4" corresponding to X-1, and we have

En+1[^t„ ]—(-Xn1). (20)

As a result, in each fixed-point iteration step, we only need to generate one 
sample of Xn and evaluate the function value of the previous filtering density 
Y-^" at the spatial point X-’1. In this way, we transfer the cost of simulat­
ing a large number of Monte Carlo samples to carrying out fixed-point itera­
tions. Although the single-sample representation does not provide accurate 
approximation for the conditional expectation, every simulated sample X-’1 
is effectively used to improve the estimate of the desired predicted filtering 
density (x), which makes the overall fixed-point iteration procedure
more efficient.

In order to use the simulated samples more effectively and to make the 
approximation for the conditional expectation more accurate, we modify the 
single-sample representation (20) and use the batch of samples {Y^" (X-’1 )})=)1 
to approximate the expectation. Precisely, we let the approximated expec­
tation in (19) at each iteration step be

EX’Z
n+1 [YM4 ]

zl=1 Yf'- (Xn
l (21)
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In this way, all the samples previously generated are used to evaluate the 
expectation. Note that the expectation E-+1 [Y-^" ] in the fixed-point iter­
ation is independent of the estimation for the solution Y-+t1„. Hence using 
more samples to approximate the expectation at each iteration step only 
makes the iterative scheme more accurate.

Approximating the filtering density on random spatial sample 
points

By using the iterative scheme (19), we can calculate the predicted filter­
ing density Y-+t1„ on the state point x. Then, through the Bayesian inference 
scheme (16), we can obtain an approximation for the updated filtering den­
sity p(St"+1 — x|Mtn+1) at the time step t-+1.

In order to provide a complete description for the filtering density, we 
need to approximate the conditional PDF of the target state as a mapping 
from the state variable to PDF values. Standard function approximation 
methods use tensor-product grid points, on which we approximate function 
values, and then use polynomial interpolation to construct an interpolatory 
approximation for the entire function. If the dimension of the problem is 
moderately high, sparse-grid methods are often adopted as efficient alterna­
tives to tensor-product grid interpolations. However, even advanced adap­
tive sparse-grid methods suffer from the “curse of dimensionality” problem. 
When the dimension of the problem is higher, i.e., d > 10, the cost of im­
plementing sparse-grid approximation becomes extremely high. In many 
practical nonlinear filtering problems, the state dimensions are very high. 
Hence, applying traditional grid-based function approximation methods for 
filtering density is infeasible in solving high dimensional real-world problems.

An advantage of the backward SDE filter is that it allows us to approxi­
mate the filtering density on any point x in the state space. In this way, we 
don’t have to solve the problem on pre-determined meshes. Instead, in this 
work we use randomly generated state samples as our spatial points, and 
we generate spatial sample points so that they adaptively follow the condi­
tional distribution of the target state. Specifically, assuming that we have 
a set of spatial points {xn}N=1 that follow the previous approximated filter­
ing density p(St„ |Mt„), where N is the total number of spatial points, we 
propagate those spatial samples through the state dynamics (1a) by using 
the following Euler-Maruyama scheme:

x-+1 — x- + 6(x-)At- + at- V^At-w", i — 1,2, - - - , N, (22)

where {wi}N=1 is a sequence of i.i.d. standard d-dimensional Gaussian ran­
dom variables. As a result, the sample set {xn+1}N=1 forms an empirical
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distribution for the prior distribution p(St„+1 |Mt„). Then, we solve the 
time-inverse FBSDEs (9) on those spatial sample points through the scheme 
(19) to get {!—+!(xn+1)}f=1. When the new observational data Mt„+1 is 
available, we use Bayesian inference to update the predicted filtering density 
and get {p(St„+1 — x-+1 |Mt„+1 )}N=1 as our approximations for the updated 
filtering density. In this way, the approximations on the scattered sample 
points {xn+1}f=1 provide a partial description for the desired filtering den­
sity.

On the other hand, in our iterative scheme (19) we need the function
a"+Vvalue of on the spatial point Xn which is calculated from the

„ + 1 I 
i ’ •scheme (18) by choosing x — x-+1. Apparently, ’ is unlikely to be

one of the existing sample points, on which we have approximated the func­
tion values for Y-^". Therefore, we need to derive an approximation for 
the filtering density over the entire state space. Since the filtering density 
is approximated on random spatial points, meshfree methods are needed. 
Although traditional meshfree interpolation methods, such like the moving 
least square method and the radial basis function interpolation method, 
could compute interpolatory approximation based on density function val­
ues at nearby spatial points, calculating the filtering density at each point 
separately is computationally expensive. Especially, when the dimension of 
the problem is high, we have to approximate the filtering density on a very 
large number of spatial points, which makes local approximation methods 
very difficult to implement.

In what follows, we introduce a kernel learning method to “learn” a 
global approximation for the entire filtering density .

Kernel learning for the filtering density

The kernel machine utilizes the combination of a set of pre-chosen ker­
nels to represent a model [19]. For a target model in the form of a func­
tion F, the kernel learning method approximates the function as F(x) % 
g( K=1 (x) + , x E where {^&}j(L1 is a set of K kernels, g is an
optional nonlinearity, {ak}K=1 are weights of kernels, and 0 is a bias param­
eter. In this work, we apply the kernel learning method to approximate the 
filtering density under the backward SDE filter framework. Since our tar­
get function in the nonlinear filtering problem is a probability distribution, 
which is nonnegative and often bell-shaped, we drop the nonlinear function 
g and the bias 0 in the kernel learning model, and we choose Gaussian type 
functions as our kernels. Specifically, at the time step tn+1, we use the fol­
lowing kernel learning scheme to formulate a global approximation for the

14



filtering density p(Stn+i |Mtn+i):

K
Pn+i(x):= ^ a%+1^n+1(x), x ERd, (23)

k= 1

where pra+1 is the kernel learned filtering density eit the time step tra+1, the 
Gaussian type kernel is chosen as ^^+1(x) = exp ( — (x^^1 — x)2/(An+1)2) 
with center x^^1 and covariance A^1, and the coefficient a^^1 > 0 is the 
weight of the k-th Gaussian kernel ^n+1- We can see from the scheme (23) 
that the features of the kernel learned density pra+1 depend on the choice of 
kernel centers {x^1}^ and the parameters (ara+1, Ara+1), where an+l := 
(an+1,an+1, ,aK+1)T and An+1 := (An+1,A^+1, -- , AK+1)T denote all 
the weights and covariances of kernels.

Since the state sample points that we generate through the scheme (22) 
adaptively follow the filtering density, which provide a good representation 
for the target PDF, we choose the kernel centers as a subset of the state 
samples {x™+1}N=1. Note that we have the value of the approximated filter­
ing density p(Stn+1 |Mtn+1) on each sample point Stn+1 = x™+1. Therefore, 
we can choose state samples with high density values as kernel centers. To 
avoid using too many samples in the mode of the distribution and to capture 
more features of the filtering density, we use importance sampling to choose 
{x]J+1}K=1 [18] instead of only using samples with highest density values.

To determine the parameters of the kernels in kernel learning, we use 
the approximated filtering density values {p(Stn+1 = xn+1|Mtn+1)}N=1 as 
simulated “training data”, and we aim to find kernel parameters so that 
the kernel learned filtering density pn+1 matches the training data. To this 
end, we implement stochastic gradient descent optimization to determine 
the parameters an+1 and Ara+1. Specifically, we define the loss function to 
be minimized as

Fn^1 :=E

=E

(pn+1 (Stn+1 ) p(St„+1 |Mtn+1 ))

K
(Ean+1^n+1(Stn+1) — P(Stn+1 |Mtn+1 ^ ^

k=1

Since the state Stn+1 is represented by spatial samples {xn+1}N=1, the fully 
calculated Monte Carlo simulation for the above loss function is given as

Fn.i^1 i
N

N
^ (Pn+1(Stn+1 = xn+1) — ^(Stn+1 xn+1|Mtn+1
i=1

))!
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Then, for pre-chosen initial estimates an+1 (0) and An+1(0), we carry out the
following stochastic gradient descent iteration to search for the parameters 
an+1 and An+1:

j = 0,1,2, • • • , J — 1,

(24a)

j = 0,1,2, • • • ,J — 1, 

(24b)

where pa and p3x are learning rates for the parameters a and A, respec­
tively, and J is the total number of iterations corresponding to a stopping 
criteria. The gradients V«F"'^+1L _ and VaF"'^+1L _ of the cost

function F™!1 are single-sample representations of the gradients VaF™!1 
and V^Fn+1 by choosing a specific state sample xj for the state variable 
Stn+1, where the sample xj is picked among the sample set {x™+1}n=1. As a 
result, we improve the estimates for an+1 and An+1 gradually by comparing 
the kernel learned filtering density pn+1 with approximated filtering density 
values on samples {x™+1}n=1 .

In order to use the approximated filtering density values more effectively,
instead of picking samples uniformly from the sample set, we use importance 
sampling to choose samples according to their density values. In this way, 
it is more likely to consider higher filtering density values in the optimiza­
tion procedure, which makes the stochastic gradient descent procedure more 
efficient. In this work, we let the covariance matrices for Gaussian type ker­
nels be diagonal to reduce the dimension of optimization, and note that the 
scattered kernel centers also provide covariant features of the target filtering 
density.

Resampling random spatial points

In the nonlinear filtering problem, the state equation is a diffusion pro­
cess. Thus the random spatial samples propagated through the scheme (22) 
diffuse after several estimation steps. As a result, fewer and fewer spatial 
samples will remain in high probability regions of the filtering density as 
we estimate the target state step-by-step. To rejuvenate the spatial sam­
ples and to make them better represent the filtering density, we carry out a 
resampling procedure in the kernel learning backward SDE filter.

To be specific, we use the kernel learned updated filtering density pn+1 to 
generate a set of new spatial samples, denoted by {x™+1}n=1, to replace the 
samples {x™+1}n=1, which follow the predicted filtering density. We want

an+1(j+i) = an+1(j)—j Va F:r
I Stn+i =j

An+1 (j+i) = An+1(j)—p^F:!1
Stn+1 =Xj '
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to point out that the kernel learned filtering density provides the condi­
tional PDF for the target state over the entire state space. Therefore, our 
resampling procedure also allows us to consider probabilistically insignifi­
cant regions. On the other hand, the filtering density pn+1 is essentially a 
combination of Gaussian kernels. Hence drawing samples from pn+1 is very 
efficient. For example, to generate the sample x"+1, we first use importance 
sampling to pick a kernel ^n+1 based on weights of kernels. Since ^n+1 is 
a Gaussian kernel, we can simply draw the sample x"+1 from the Gaussian 
distribution N(x^1, A^1).

3.3 Summary of the algorithm

In Table 1, we summarize our kernel learning backward SDE filter as a
pseudo-algorithm.

One may notice that the state spatial samples that we use in the back­
ward SDE filter have similar behavior to the particles in the particle filter 
method, which roughly characterize the filtering density in the nonlinear 
filtering problem. We want to emphasize that the backward SDE filter can 
also approximate the filtering density values on spatial samples. On the 
other hand, the particle filter only utilizes particle positions to construct an 
empirical distribution for the target state. Therefore, each spatial sample 
in the backward SDE filter carries more information about the state dis­
tribution than a particle in the particle filter. Moreover, since the kernel 
learned filtering density is a global continuous approximation for the state 
distribution, it covers wide range in the state space, which can provide more 
robust/stable performance for the backward SDE filter.

4 Numerical experiments

In this section, we use three numerical examples to demonstrate the per­
formance of our kernel learning backward SDE filter method (BSDEF). In 
the first example, we focus on the BSDEF, and we use a synthetic nonlin­
ear filtering problem to show mathematical behaviors of the BSDEF. In the 
second example, we solve the Lennard-Jones potential tracking problem, in 
which a target atom is moved by the intermolecular force generated by the 
Lennard-Jones potential. This is a benchmark problem in microphysics, and 
it has wide applications in material sciences. To demonstrate the effective­
ness of the BSDEF, we compare the estimation performance of the BSDEF 
with the auxiliary particle filter (APF) [30] and the ensemble Kalman filter
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Table 1:
Algorithm: Kernel learning backward SDE filter

Initialize the spatial sample cloud {x0}N=1 ~ p0, the number of ker­
nels K, the learning rates pa and p^, the number of iterations 
L, J G N, the total number of time steps NT.

while n = 0,1, 2, • • • , NT — 1, do

- Propagate samples {x™}n=1 through the scheme (22) to get
{x“+1}'=1.

- Let Y^^ = pn be the previous kernel learned filtering den­
sity. Solve the time-inverse FBSDEs system (9) for Y^f 
on spatial samples {x™+1}n=1 through the iterative scheme
(19). Yn+t11 is the approximation for the predicted filtering
density p(Stn+i |Mtn)-

- Incorporate the observational information through Bayesian in­
ference to get the updated filtering density p(Stn+1 |Mtn+1) 
on the spatial samples {x™+1}n=1.

- Select kernel centers from the spatial samples {x™+1}n=1 by using
the updated filtering density values on those samples.

- Consider the approximated filtering density values {p)(Stn+1 =
x™+1 |Mtn+1 Vj-i=1 as training data. Use the optimization
procedure (24) to obtain the kernel learned filtering density 
Pn+1 introduced in (23);

- Carry out the resampling procedure to generate new samples
{x™+1}n=1 that follow the kernel learned filtering density

pn+1;

end while

(EnKF) [15], which are both state-of-the-art Bayes filter methods. In the
third example, we solve a Lorenz-96 tracking problem. The Lorenz-96 model
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forms the fundamental mathematical element for atmospheric data assimi­
lation. It is well-known that the dynamical system driven by the Lorenz-96 
dynamics is chaotic, and it’s difficult to estimate the state of a Lorenz-96 
model - especially in high dimensional spaces. In this Lorenz-96 tracking 
example, we conduct systematic comparison studies, and we will show that 
the BSDEF is more accurate and more efficient compared with the APF and 
the EnKF.

The CPU that we use to implement all the numerical experiments is a 
2.5 GHz Dual-Core Intel Core i7 processor with 16 GB 2133 MHz LPDDR3 
memory.

4.1 A synthetic example

In the first numerical example, we consider the following dynamical system:

dSt =b(St)dt + adWt, (25)

where the target state S := (X1, X2)T is a two dimensional vector driven by 
the dynamics b, which is defined as follows:

b(S) = a(srn(X2) + 1 ' cos(X1) + T+X) '

The observational data that we collect to estimate the state S are direct ob­
servations, which are perturbed by Gaussian noises with standard deviation
R.

In figure 1, we present the performance of the BSDEF method in tracking
the target state S over the time period [0,2] with time step-size At = 0.1, 
i.e., Nt = 20, and we let a = 2, a = 0.212, and R = 0.0512 in the nonlinear 
filtering problem. The FBSDEs system is solved on 500 spatial sample 
points, and we use 4 Gaussian kernels to describe the filtering density. The 
fixed-point iterative scheme for solving the backward SDE is carried out 
with 10 iteration steps, and the stochastic gradient descent optimization 
procedure for kernel learning is carried out with 100 iteration steps. The 
initial guess for kernel weights is 0.5 for each kernel, the initial guess for 
covariances is 212 for each Gaussian kernel, and the learning rate is set to 
be 10-2. In Figure 1 (a), we present the state estimation performance. We 
can see from this subplot that our BSDEF gives very accurate estimates for 
the true target state trajectory. In Figure 1 (b), we plot the locations of 
Gaussian kernel centers at time steps t = 0.5,1,1.5, and 1.8 by using blue, 
black, green and cyan circles, respectively, and the real target states at time 
steps t = 0.5,1,1.5,1.8 are given by red crosses. From this subplot, we can
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Figure 1: Performance of BSDEF in solving the synthetic example

see that the kernel centers always surround the true state of the target, which 
guarantees that the high probability regions of the filtering density cover 
the target state. To show more detailed behavior of the filtering density 
obtained by the BSDEF, we plot 95% marginal confidence bands of the 
filtering density for X\ and in subplots Figure f (c) and Figure f (d), 
respectively, where the confidence bands are plotted by green dashed curves. 
From these subplots, we can see that the true target state is always within 
the 95%) confidence bands of the filtering density obtained by our BSDEF 
method.
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An important concept in the backward SDE approach for nonlinear fil­
tering problems is to use backward SDEs to generate filtering density values 
on scattered spatial sample points, and then use the locations of those sam­
ples together with their filtering density values to describe the conditional 
PDF of the target state. Therefore, the number of spatial sample points has 
strong influence to the accuracy of the BSDEF method. To demonstrate the 
convergence performance of BSDEF with respect to the number of spatial 
samples, we solve the nonlinear filtering problem (25) repeatedly fOO times 
by using different random seeds to generate samples of random variables. 
In Figure 2, we plot the root mean square errors (RMSEs) between the true

-A— 10 spatial samples 
-©— 20 spatial samples 
-x— 50 spatial samples 
H— 100 spatial samples 
-|>— 200 spatial samples 

500 spatial samples

Figure 2: Convergence of BSDEF estimates with respect to spatial samples.

state and our estimated state with respect to time by using 10, 20, 50, 100, 
200, and 500 spatial samples in the spatial approximation for the BSDEF, 
where the horizontal axis is the time axis and the vertical axis shows the 
natural logarithms of RMSEs. From this figure, we can see clearly that the 
BSDEF gives more and more accurate estimates for the target state as the 
number of spatial samples increases.

4.2 The Lennard-Jones potential tracking problem

In this example, we track a target atom driven by the Lennard-Jones po­
tential Vlj, which is an important intermolecular potential model that has 
been most extensively studied and applied. It is considered as the archetype 
model for intermolecular interactions. The task of tracking the trajectory of
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an atom driven by the Lennard-Jones potential through direct observations 
received by scanning transmission electron microscopy is also one of the key 
mathematical challenges in a recently developed novel technique called the 
“atomic forge”, which aims to design and assemble materials atom-by-atom
[22, 13].

The mathematical model of the Lennard-Jones potential in its AB form
is given by VLJ = — B6, where A, B are two energy parameters that

determine the physical properties of the intermolecular potential and r is the 
distance between two atoms. In this work, we track a freely moving target 
atom and fix the location of the other one, which is called the platform 
atom in this example. The force between these two atoms is the gradient 
of VLj, i.e. VVLJ. When these two atoms are at moderate distance from 
each other, the intermolecular force VVLJ appears attractive and it drags 
the target atom towards the fixed platform atom. On the other hand, when 
these two atoms get too close, the atomic force VVLJ becomes repulsive 
quickly, which pushes the moving target atom away from the fixed platform 
atom. The state equation that describes the moving target atom is given by

dSt = —VVLJ (St)dt + adWt, (26)

where S := (x, y)T is the 2D location of the target atom on a material sur­
face, the stochastic noise term adWt models random movements of the target 
atom. When the moving target atom is close to the fixed platform atom, a 
random movement towards the fixed atom may result a very large repulsive 
force, which pushes the target atom away. Since such an intermolecular 
force is unpredictable, and it could dramatically change the location of the 
target atom, the Lennard-Jones potential problem is a challenging bench­
mark experiment to examine performances of different nonlinear filtering 
methods.

In our numerical experiment, we track the location of the target atom 
over the time period [0,30] with observational gap At = 0.3, i.e. NT = 100. 
The observational data we collect are target positions, which are perturbed 
by Gaussian noises with standard deviation R = 0.0112. We let the fixed 
platform atom be at the origin of the xy-plan, A = 16, B = 4 and a = 0.0212 
in the dynamical model (26), and the initial position of the target atom is 
given at (1.8,2.2)T.

In Figure 3, we present the comparison of estimation performances be­
tween our BSDEF, the auxiliary particle filter (APF) and the Ensemble 
Kalman filter (EnKF), where the subplot (a) shows the estimation perfor­
mances in tracking the x-component of S, and the subplot (b) shows the
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Figure 3: Comparison of estimation performances

estimation performances in tracking the ^/-component of S. To carry out 
the BSDEF, we use 200 spatial sample points and 4 Gaussian kernels to 
learn the filtering density. For the APF, we use 500 particles to describe 
the filtering density with 40 auxiliary Monte Carlo samples, and the EnKF 
is implemented by using an ensemble of 4000 realizations of Kalman filter 
samples. The true target atom (the magenta curve marked by pluses) moves 
towards the fixed atom at the origin, and it was pushed away by the inter- 
molecular force twice after the time instants t = 20 and t = 25. Throughout 
of the tracking period, the BSDEF estimation (the blue curve marked by 
crosses) always accurately captures the true locations of the target atom. 
On the other hand, the APF (the red curve marked by circles) fails after 
the first (unpredicted) swift location change due to highly nonlinear behav­
iors of the target atom and the degeneracy of the particles, and the EnKF 
(the black curve marked by triangles) loses the target after swift location 
changes as well. From this experiment, we can see that our BSDEF method 
has more robust performance in atom tracking compared with the APF and 
the EnKF.

4.3 The Lorenz-96 tracking problem

In the third numerical example, we carry out comprehensive comparisons 
between the BSDEF, the APF and the EnKF. The state equation that we
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consider in this example is driven by the Lorenz-96 dynamics, i.e.,

dSt = b (St)dt + adWt, (27)

where S = (x\,x2, • • • , xd) is a d-dimensional state vector. The Lorenz-96 
dynamics b(S) = (b1(S), b2(S), • • • , bd(S))T is defined by

bi(S) — (xi+1 xi—2)xi— 1 xi + F, ^ — 1, 2, • • • , d,

where x—1 = xd—1, x0 = xd and xd+1 = x1. It is well-known that when the 
forcing constant F = 8, the state dynamics (27) has chaotic behaviors, hence 
tracking the state of Lorenz-96 model is a challenging benchmark nonlinear 
filtering problem. In addition, the dimension of the Lorenz-96 dynamics can 
be arbitrarily chosen (d > 4), which makes the Lorenz-96 tracking problem 
an ideal example to test the high dimensional estimation performance of 
nonlinear filtering methods.

In this Lorenz-96 tracking problem, we use the BSDEF, the APF, and 
the EnKF to estimate the state of S over the time period [0,1] with time 
step At = 0.02, i.e. NT = 50, and we let a = 0.1Id. The initial true state S0 
is chosen as 2 + 4y, where 7 is a standard d-dimensional Gaussian random 
variable. The initial guess for the state is S0 with a noisy perturbation, and 
we let the noise be generated by a Gaussian random variable with standard 
deviation 0.5Id.

In the first numerical experiment, we let the dimension of the Lorenz- 
96 model be d = 10 and assume that direct observations are available, 
i.e. Mtn = Stn + £, where £ is a standard Gaussian random variable with 
standard deviation 0.1Id, which represents the observational error, and £ is 
independent of the Brownian motion W in (27). To carry out this compar­
ison experiment, we select 800 spatial samples in the BSDEF, and we use 
10 Gaussian kernels to learn the filtering density. The fixed-point iterative 
scheme for solving the backward SDE is carried out with 10 iteration steps, 
and the stochastic gradient descent optimization procedure for kernel learn­
ing is carried out with 100 iteration steps. The initial guess for the kernel 
weight is 1 for each kernel, the initial guess for the covariance is Id for each 
kernel, and the learning rate is set to be 10—2. For the APF, we use 2000 
particles to describe the distribution of the target state with 10 auxiliary 
Monte Carlo samples, and we use 3000 realizations of Kalman filter samples 
in the EnKF. In Figure 4, we present performances of the BSDEF, the APF 
and the EnKF in estimating the target state in spatial dimensions x3, x6 
and x9. We can see from this figure that all three methods work very well 
in this experiment.
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Figure 4: Estimation performance with linear observations

However, in the following experiment, we replace the direct linear obser­
vation function by the cubic root observation function, i.e. Mtn = (Stn) 3 +£, 
and we keep all the other parameters unchanged (both for the nonlinear fil­
tering problem and for the filtering methods) as in the previous experiment. 
In Figure 5, we present performances of all the three methods in estimat­
ing X3, xe, and xg, where the true state trajectories in three subplots are 
magenta curves marked by pluses, the BSDEF estimates are blue curves 
marked by crosses, the APE estimates are red curves marked by circles, and 
the EnKF estimates are black curves marked by triangles. With nonlin­
ear observations in this experiment, although the true state has exactly the 
same trajectory as presented in Figure 4, the EnKF can not provide accurate 
estimates for the target state. The APE gives accurate estimates at begin­
ning. However, as we tracking the target for more steps, the particle filter 
starts to suffer from the degeneracy problem, which may also be caused by 
indirect observations, and the estimation performance deteriorates quickly. 
On the other hand, our BSDEF method is always on track and it accurately
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Figure 5: Estimation performance with cubic observations

captures the true state of the target.
To further demonstrate the estimation performance, we repeat the above 

nonlinear observation experiment 50 times by using different seeds to gen­
erate random numbers for the random variables in the nonlinear filtering 
problem and calculate the RMSEs with respect to tracking time. The ac­
curacy of three methods is presented in Figure 6, where the black curve 
marked by triangles shows the RMSEs of the EnKF, the red curve marked 
by circles shows the RMSEs of the APF, and the blue curve marked by 
crosses is the RMSEs of the BSDEF. We can see from this figure that the 
BSDEF has the lowest errors among all three methods, and it has the most 
stable performance with respect to the tracking time. The APF has com­
parable performance with the BSDEF at beginning. But the RMSEs of the 
APF start to grow near the time instant t = 0.6. Therefore, the long term 
performance of the APF is not as good as the BSDEF. On the other hand, 
the EnKF has the highest RMSEs. The average CPU time to implement 
the BSDEF in this experiment is 5.71 seconds. The average CPU time to
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Figure 6: Comparison of RMSEs for d = 10

implement the APE is 14.43 seconds, and the average CPU time to imple­
ment the EnKF is 6.67 seconds. For this 10 dimensional experiment, we can 
see that the BSDEF outperforms the APF and the EnKF in both accuracy 
and efficiency.

In order to make the advantageous performance of our kernel learning 
backward SDK filter more convincing, we carry out the above RMSEs com­
parison experiment on higher dimensional Lorenz-96 tracking problems, i.e. 
d = 15 and d = 20. For the d = 15 case, we use 1000 spatial samples in 
the BSDEF with 15 Gaussian kernels, 4000 particles in the APF, and 5000 
realizations of Kalman filter samples in the EnKF. For the d = 20 case, 
we use 1500 spatial samples for the BSDEF with 20 Gaussian kernels, 6000 
particles in the APF, and 10,000 realizations of Kalman filter samples in 
the EnKF. The RMSEs are presented in Figure 7. We can see from this 
figure, as well as the 10-dimensional comparison result, that the BSDEF 
has the lowest and the most stable RMSEs. The APF always has compa­
rable performances with the BSDEF at beginning, and its RMSEs grows 
as more and more estimation steps are carried out. In all the three RMSE 
experiments, the EnKF has high errors. However, we notice that both the 
BSDEF and the EnKF maintain their estimation accuracy when the dimen­
sion of the problem increases. On the other hand, the RMSEs of the APF 
increase as the dimension of the problem increases. In the 20-dimensional 
experiment, the APF starts to produce higher RMSEs compared with EnKF 
from the time instant t = 0.8. This shows that the particle filter has poor 
performance for high dimensional problems and for long term estimations.

In Table 2, we summarize the RMSE experiments for d = 10, d = 15 and
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Figure 7: Comparison of RMSEs for d = 15 and d = 20 

d = 20. The results presented in this table again verifies that the BSDEF is

Table 2: Summary of numerical comparison in the Lorenz-96 model tracking.

d = fO d = 15 d = 20
Samples Time RMSEs Samples Time RMSEs Samples Time RMSEs

BSDEF 800 5.71 3.92 1,000 9.74 4.77 1,500 18.57 5.40
APF 2,000 14.43 7.79 3,000 24.12 15.17 6,000 56.34 23.51

EnKF 3,000 6.67 21.21 5,000 12.31 23.13 10,000 27.14 25.20
* The unit for CPU Time is second. RMSEs are accumulated RMSEs over the tracking period.

most accurate and most efficient among all three state-of-the-art methods.

5 Conclusions

In this paper, we introduced a kernel learning backward SDE filter to solve 
the nonlinear filtering problem. The main theme of our kernel learning 
approach is to treat the discrete filtering density values obtained by the 
backward SDE filter as simulation data, and then we use kernel learning to 
learn a continuous global approximation for the entire filtering density from 
the simulation data. The primary advantage of the kernel learned filtering 
density is that it provides a comprehensive description for the filtering den­
sity in the entire state space, which makes the kernel learning backward SDE 
filter more accurate and more stable in estimating the target state. Numeri­
cal experiments are presented to demonstrate the effectiveness and efficiency
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of kernel learning backward SDE filter in solving a synthetic problem and 
two benchmark application problems.

References.
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