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Abstract

In this work, we introduce a stochastic maximum principle (SMP) approach for solving the reinforcement

learning problem with the assumption that the unknowns in the environment can be parameterized

based on physics knowledge. For the development of numerical algorithms, we apply an eective online

parameter estimation method as our exploration technique to estimate the environment parameter during

the training procedure, and the exploitation for the optimal policy is achieved by an ecient backward

action learning method for policy improvement under the SMP framework. Numerical experiments are

presented to demonstrate that the SMP approach for reinforcement learning can produce reliable

control policy, and the gradient descent type optimization in the SMP solver requires less training

episodes compared with the standard dynamic programming principle based methods.

Keywords: Reinforcement learning, optimal control, stochastic maximum principle, parameter

estimation, optimal ltering

1. Intro duction

Reinforcement learning ( R L )  is an important research area in machine learning. Dierent from

supervised learning and unsupervised learning, R L  aims to nd how to map situations (state) to actions

(control), and the goal of the R L  problem is to let an agent learn how to take actions in an environment in

order to minimize a performance cost or maximize a reward. As a major machine learning task, R L  has

been extensively studied, and it has application potentials to solve many real-life problems, e.g., robotic

automation, natural language processing, health care, image processing, and trading in nancial market. In

addition to its straightforward engineering style applications, R L  has also drawn increasing attention

from the science community. Some recent studies show that R L  techniques can be used to solve scientic

problems related to dynamic experimental design in physics and chemistry [16, 24].
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The mathematical foundation of the standard approach for solving the R L  problem is the dynamic

programming principle ( D P P )  [26], which was introduced to solve the optimal control problem. The main

idea of the D P P  approach is to consider a family of local optimal control problems with dierent initial

states and times and establish relationships among these sub-problems through the Hamilton-Jacobi-

Bellman equation [28]. An important numerical method for implementing the D P P  for solving the R L

problem is temporal dierence ( T D )  learning [22], and a major breakthrough was the development of an

o-policy T D  control algorithm known as \Q-learning" [19, 27]. The Q-Learning method can carry out

T D  learning eciently, and it can learn how to take optimal actions without requiring an environment

model. This makes Q-Learning applicable to solve many control problems in real-life. On the other hand,

T D  learning also has some limitations. For example, T D  learning methods typically use gradient-free

optimization to determine the optimal policy, hence even the Q-learning method suers from the eciency

issue due to the low convergence rate of gradient-free optimization. Another notable disadvantage of T D

learning is that it’s a bootstrap procedure that analyzes how good is a guess from another guess. Hence

the feedback in T D  Learning is delayed and heavily corrupted by noise [10, 19]. As a result, decisions made

by T D  Learning are more reliable to optimize the agent’s short-term performance. However, T D  Learning

can be misled when short-term gains disagree with the long-term goal. In this case, the agent can be

attracted by carefully designed baits that lead it towards a trap. This is especially more challenging when

using T D  Learning to solve a continuous problem since approximation of the original problem can make

predictions more complicated [13]. Such a drawback in T D  Learning is mainly due to the nature of

D P P,  which solves the optimal control problem by combining a set of local sub-problems, and the fact

that no overall physics model is considered to supervise the policy improvement in D P P.

In this work, we develop a fundamental methodology of solving the R L  problem by using the stochastic

maximum principle (SMP), which is a major alternative approach for solving the stochastic optimal

control problem besides the D P P,  and we will focus on the continuous time-space state model with

noise perturbations. An important assumption we need for our SMP approach is that the environment

is described by a physics model, and the unknown factors in the environment are characterized by

model parameters. Although the capability of training an agent how to take actions without an explicit

environment model is necessary for many R L  applications, being able to take the rst principle into

account is also important when applying R L  to solve scientic problems with well-established physics

knowledge.

As a fundamental mathematical eort, we will not discuss deep learning related deep reinforcement

learning techniques (e.g. [25]), which might be more powerful but certainly will lead to several challenges

caused by computational implementation of deep neural networks, such like the overtting issue, the

representation capability, and the reliability in training. Although we don’t consider the application of
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deep learning in this work, appropriately designed deep learning methods can also be applied to our

general computational framework and improve the eciency of our maximum principle approach.

For solving the classic stochastic optimal control problem, the SMP aims to nd the optimal control

by optimizing a stochastic system called the Hamiltonian, and a gradient process with respect to control

can be derived by applying the \Gâteaux derivative" to the adjoint process of the state dynamics in

order to carry out gradient descent optimization [20]. The SMP approach has several advantages over

the D P P  approach. For example, it allows to have random coecients in the state equation and in

the performance cost/reward, and it allows more state constraints {  especially some nite dimensional

terminal state constraints (see [28]). Moreover, the gradient process can give us a direction to improve

the policy over the performance period. This is potentially more ecient compared with the D P P

approach due to the application of gradient-based optimization. In addition, the gradient with respect

to control derived under the SMP framework is based on the understanding of the \global" environment.

In this way, the SMP designed policy can better balance between the short-term gains and the long-term

goal. Therefore, the SMP approach can be more reliable than the D P P  based methods, which typically

rely on solutions of stacked local optimization problems.

On the other hand, the SMP approach has to face two challenges when solving the R L  problem. First

of all, although the gradient process with respect to control can be derived and formulated explicitly

by using the adjoint of the state process, obtaining a numerical approximation for the adjoint state

process, which is a backward stochastic dierential equation, is a challenging task. As a result, the

optimization procedure for nding the optimal policy (i.e. the exploitation procedure) needs to evaluate

the gradient repeatedly, which makes the SMP approach computationally expensive [11]. Secondly, the

environment (i.e. the state model and the cost/reward model) in a R L  problem is not completely known.

Therefore, an environment estimation method for the purpose of exploration is needed while searching

for the optimal policy.

To  address the eciency issue in searching the optimal policy, we introduce a \backward action

learning" ( B A L )  method for eciently solving the stochastic optimal control problem. The main theme of

the B A L  method is to apply a sample-wise numerical scheme to approximate the solution of the (back-

ward) adjoint equation sample-by-sample and then adopt the methodology of stochastic approximation to

carry out a stochastic gradient descent procedure to determine the optimal policy. In this way, we can

avoid the high computational cost of solving backward stochastic dierential equations in the state space.

At the same time, the mathematical expression of the gradient process, which contains solutions of the

adjoint equation, can still be eectively utilized through the sample-wise approximator to search for the

optimal policy.

To  address the second issue and explore the environment, we assume that we have enough physics

knowledge so that the environment can be formulated as a parameterized model. Then, exploring the
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environment is equivalent to searching for the environment parameter, and therefore exploration can be

achieved via parameter estimation. In this work, we apply the direct lter, which is an accurate and

ecient online parameter estimation method [2], to estimate the environment parameter during the training

procedure. Other online parameter estimation methods may also be used under our general SMP

methodology.

Since an online parameter estimation method can dynamically provide feedbacks through training

trials and generate real-time updates to improve the understanding of the environment, the estimated

environment parameter can guide the B A L  optimal control solver to exploit the optimal policy. To

further explore the environment and balance between exploration and exploitation, we also perturb the

policy by some articial noise and adopt an \-greedy" mechanism to encourage exploration [23].

The rest of this paper is organized as follows. In Section 2, we introduce the model-based R L  problem

with parameterized environment, and we shall provide a general methodology of using the SMP to solve

the R L  problem. In Section 3, we introduce the numerical algorithms that eciently solve the R L

problem under the SMP framework. In Section 4, we present three numerical examples to demonstrate

the eectiveness of our algorithm and the necessity of using the SMP approach to solve the R L  problem in

application scenarios. Some concluding remarks that summarize our research outcomes will be given in

Section ??.

2. Problem setting and methodology

In this section, we rst introduce the formulation of model-based reinforcement learning ( R L )  with

parameterized environment. Then, we shall introduce a direct lter method for learning the environment

parameter and a stochastic maximum principle (SMP) type optimal control solver to nd the optimal

policy.

2.1. Problem setting

In this work, we consider the mode-based R L  problem under the complete ltered probability space (

; F ; F; P), on which a d-dimensional standard Brownian motion W is dened such that F  : =  fF s g s 0  is the

natural ltration of W augmented by all the P-null sets in F .  The dynamics of the agent is modeled by the

following stochastic dierential equation ( S D E )

d X a ;  =  b(t; X a;; at ; )dt +  (t; Xt  ; at ; )dWt; t 2  [0; T ]; (1)

where X a ; ,  valued in Rd , is the state of the agent, called state process; at , valued in R m ,  stands for the

agent action at time t, called control process; b : [0; T ]Rd Rm Rq !  Rd  and  : [0; T ]Rd Rm Rq !  Rdd are

suitable maps called drift and diusion, respectively; the d-dimensional standard Brownian
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motion W : =  fWt gt2[0;T ]  introduces uncertainty to the system. In the model-based R L  problem, we

use b and  to model the dynamics of the agent, and they contain the \physics knowledge" of the

environment that we already possess. Since we assume that there are also unknowns in the environment, we

introduce a parameter , valued in Rq , to represent physics-informed unknown factors that we need

to learn in the environment. In the R L  problem, the control process is also called the \policy". Denote

U[0; T ] : =      a  : [0; T ]

 !  U  R m  a  is F-progressively measurable     as the admissible control set, in

which we can choose the control actions. Under some mild conditions [28], for every choice of parameter

2  Rq  and control a  2  U[0; T ], S D E  (1) admits a unique solution X a ; .

The performance of the action a  is measured by the following cost (or reward):

J ( a )  =  E

"Z  T  

f (t; X a ; ; at )dt +  h(X a ;)

#

; (2)
0

where f  is the running cost, which may contain some unknown factors that reect the environment,

and h measures the cost at the terminal time T .

In this work, we let the \environment" in the R L  problem be mathematically formulated by b, , f  and

h. The unknowns in the environment are represented by parameter , and we want to re-emphasize that

being able to incorporate physics knowledge into a R L  task is necessary in many practical scientic machine

learning problems.

The goal of the stochastic optimal control problem is to nd the \optimal control " a  that minimizes

the cost J  1, i.e.

J ( a )  = inf J (a ) : (3)
a2U [0;T ]

In the R L  language, we aim to nd the optimal policy a  that minimizes the \penalty". Similar framework can

also search for the optimal policy that maximizes the \reward" by switching the minimization problem

to maximization problem in Eq. (3).

When parameter  is given, equations (1) - (3) formulate a classic stochastic optimal control problem.

The major dierence that distinguishes the R L  problem from the stochastic optimal control problem is

the unknown environment, which is modeled by the physics-informed unknown parameter  in this work.

As a numerical approach for solving the R L  problem, our method will consist an exploration procedure

and an exploitation procedure. Since the environment in this work is parameterized, the exploration

procedure, which aims to determine the environment during learning, is equivalent to implementing

online parameter estimation for . On the other hand, the exploitation procedure, which nds the

1 In the case of J  is a reward, we maximize the reward functional.
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optimal policy, is equivalent to solving the stochastic optimal control problem. In what follows, we shall

introduce a SMP based R L  solver with online parameter estimation for learning the environment.

2.2. A  stochastic maximum principle framework for the reinforcement learning problem

Since the major dierence between the R L  problem and the classic optimal control problem is the

exploration of the environment, nding the parameter that represents the environment while learning the

optimal policy is a key challenge. In this work, we formulate the dynamical estimation of the

environment parameter as an optimal ltering problem.

Exploration: Learning the environment by using the direct lter method

The main idea of the \optimal ltering" approach for dynamically estimating parameters is to

\project" the data of the agent state to the parameter space and use the conditional probability density

function ( P D F )  of the parameter, i.e. p(k jXk ), to calculate the estimate for  at the k-th training

episode, where -algebra X k  : =   X a l ; l  ; f l  (t; Xt ; at ); 0  t  T ; l =  0; 1;  ; k contains the informa-

tion of the state of the agent as well as the parameterized cost in the previous training episodes, and we

assume an initial guess 0 for the environment. In this work, we apply the direct lter method [2] to

estimate the environment parameter in the online manner.

To  proceed, we use a sequence of random variables fk gk 0 to represent our estimates for the

unknown parameter , where k  is the estimate corresponding to the k-th training episode. Assuming that

we have k  that follows the conditional P D F  p(k jXk ), we generate a proposal parameter random variable,

i.e. k + 1 ,  through the following pseudo-dynamics:

k + 1  =  k  +  k ; k =  0; 1; 2;  ; (4)

where k   N (0; (k )2 ) is a standard Brownian motion with pre-chosen covariance constants fk gk0 , and k

gives articial noise that allows to explore other possible values of the environment parameter.

For a given conditional P D F  p(k jXk ), which describes the estimated parameter at the k-th episode,

we apply the following Bayesian inference to obtain the posterior P D F  p( k + 1 jX k + 1 )  that \optimally"

describes the estimated parameter k + 1  corresponding to the state information of the k +  1-th episode

as follows

p( k + 1 jX k + 1 )   p(k + 1 jXk )p(X a ; ; f j k + 1 ) ; (5)

where p(k + 1 jXk )  is the prior conditional P D F  of k + 1  derived from the pseudo-dynamics (4) and the

parameter distribution p(k jXk ) at the training episode k, and p(X a ; ; f j k + 1 )  is the likelihood function that

compares the simulated agent state and its corresponding cost derived from the prior parameter variable

k + 1  with the real agent state X a ;  and the real cost f  produced by the true environment parameter .
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Exploitation: The stochastic maximum principle approach for searching the optimal policy

In the case that the complete knowledge of the environment ( or the environment parameter  is

known), and the optimal strategy a  is in the interior of U 2, we can deduce by using the Gâteaux

derivative of a  and the maximum principle that the gradient process of the cost functional J  with

respect to the control process over time interval t 2  [0; T ] has the following form [11, 28]

r J a ( a t )  =  E
h

b a (t; X a ; ; at ; )> Y a ;  +  a ( t ; X a ; ; a t ; ) > Z a ;  +  f ( t ; X a ; ; a t ) >
i

; (6)

where subscripts are used to denote partial derivatives of functions. The stochastic processes Y and Z

are adapted solutions of the following forward backward stochastic dierential equations ( F B S D E )  system

d X a ;  =  b(t; X a;; at ; )dt +  (t; X a;; at ; )dWt ; (forward S D E )
dY a ;  =  

 
     bx (t; X a ; ; at ; )> Y a ;       x ( t ; X a ; ; a t ; ) > Z a ;       f ( t ; X a ; ; a t ) > dt

+  Z a;dWt ; Y a ;  =  h x ( X a ; ) > ; ( B S D E )
(7)

where the rst equation in (7) is a standard forward stochastic dierential equation ( S D E )  with the same

expression as the state equation (1) for the agent, and the second equation is a backward stochastic

dierential equation (BSDE) ,  which is also call the \adjoint equation" of the state equation. The solution Z

of the B S D E  is the martingale representation of Y with respect to the Brownian motion W .

With gradient r J a  introduced in Eq. (6) and solutions X ,  Y , and Z  introduced in the F B S D E  system

(7), the SMP approach for solving the stochastic optimal control problem will carry out the following

gradient descent optimization procedure to solve for the optimal control, i.e. the optimal policy in R L ,

a k + 1  =  a k       k r J a ( a k ) ; k =  0; 1; 2;  ; K       1; (8)

where we have an initial guess policy a0, k  is the learning rate, K  is a pre-determined total number of

training episodes, and we let a K  be our estimated optimal policy.

The general methodology of solving the R L  problem via the SMP

In what follows, we briey discuss the general methodology about how to solve the R L  problem

under the SMP framework. At this moment, we ignore computational implementation issues, and the

numerical algorithms will be introduced in the next section.

The main theme of the SMP solver for R L  is to use the iterative scheme (8) to improve the policy

2 In many practical R L  scenarios, people often let U be the real space.
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and use the direct lter to explore the environment. Assume that with k episodes of training, we have an

estimated environment parameter k  (with its conditional P D E  p(k jXk )) and a sub-optimal policy a k

based on the understanding of the environment corresponding to k .

For the k + 1-th episode, we use scheme (4) to generate a prior conditional P D F  p(k + 1 jXk )  that char-

acterizes the proposal parameter. Then, we let the agent follow the current policy a k  and interact with the

real environment to obtain a state process X a k ; ,  which can be used to compare with simulated state

processes to generate the likelihood p(X a k ; j k + 1 ) ,  and we can obtain the posterior P D F  p( k + 1 jX k + 1 )

for the estimated parameter variable k + 1  via the Bayesian inference (5). Note that the agent trial state

process, i.e. X a k ; ,  provides the feedback from the real environment for exploration. With an updated

estimate for the environment at the learning episode k + 1, we apply the SMP method to nd the optimal

policy. Specically, we compute the solutions of the F B S D E  system (7) with the estimated policy a k  and

the environment parameter k + 1  to obtain approximations for X a k ; k + 1  , Y a
k ; k + 1      and Z a k ; k + 1  . Then, the

gradient r J a  introduced in Eq. (6) can be calculated by using the simulated solutions of the F B S D E

system (7). As a result, the approximated gradient would give us a direction to improve the current

policy, and we can obtain the improved policy a k + 1  via the gradient descent scheme (8). To

encourage exploration, we also adopt the \-greedy" method by perturbing the sub-optimal policy with

some articial noise.

3. Numerical algorithms

In this section, we derive numerical algorithms to implement the above SMP approach for the R L

problem. For convenience of presentation, we assume that the diusion coecient  in the state dynamics (1) is

a deterministic time-dependent process, denoted by t. Algorithms for more general cases can be

obtained under our methodology with more tedious derivation, and the model with the simplied diusion

coecient can already cover wide range of application problems since the physics knowledge of a stochastic

model is often incorporated into the drift term. In what follows, we shall rst discuss numerical

implementation of the direct lter method for exploration (Section 3.1), and we will provide a backward

action learning ( B A L )  method for solving the classic stochastic optimal control problem under the SMP

framework for the purpose of exploitation (Section 3.2). Then, we combine exploration with exploitation

and introduce an overarching algorithm to solve the R L  problem (Section 3.3). A  pseudo-algorithm

that summarizes our SMP approach for the R L  problem will be provided at the end of this section

(Section 3.4).

3.1. Particle implementation of the direct lter method for exploration

In this paper, we adopt the numerical recipe of the \particle lter" [6, 12], which is also known as a

\sequential Monte Carlo method", to implement the direct lter for exploring the environment in the
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R L  problem.

Assume that after k training episodes, we have a (suboptimal) policy a k  and a set of Q samples

(called \particles" in the particle lter), denoted by f(q ) gq =1 , that follow the conditional P D F  p(k jXk ) for

the estimated parameter k . To  carry out the exploration procedure in the k +  1-th episode, we rst

generate a set of particles based on the pseudo-dynamics introduced in Eq. (4) to generate a set of

proposal particles, f k + 1 gq = 1 ,  as follows:

(q)
1 =  (q )  +  (q) ; q =  1; 2;  ; Q; (9)

where (q )   k , and the particle set f(q )
1 gq =1 formulates the empirical distribution, i.e. p~(k + 1 jXk ) : =

1 Q         ( q )  ( k + 1 ),  for the prior P D F  p(k + 1 jXk ).  k + 1

To  incorporate the trial agent state at the k +  1-th training episode and learn the environment, we

update the proposal particles through Bayesian inference. Specically, for each proposal particle k + 1 ,  we

generate a simulated state trajectory X a k ; ( q )
1  : =  f X

a k ; k + 1  g0tT based on the current policy a k

and the proposal particle k + 1 .  On the other hand, the agent that follows policy a k  interacts with the real

environment, and it generates the real state trajectory X a k ;  that reects the true environment parameter

. Then, by comparing each simulated state sample trajectory X a k ; k + 1  with the real agent

state X a k ; ,  we have the following (unnormalized) likelihood for the parameter particle k + 1  as

p ( X a k ; ; f k + 1 )   exp
 
     

h Z T  

X
a k ; k + 1  dt      

Z T  

X a k ; dt2

+  
 Z T  

f
( q )

1  ( t ; X
a k ; k + 1  ; ak )dt      

Z T  

f (t; X a k ;; ak )dt2
i
=22 ;

0 0
(10)

where k  is the standard deviation of the articial noise in the pseudo parameter process that encourages

exploration.

Then, by combining the prior with the above likelihood through Bayesian inference, we have

 (q )  p~(k + 1 Xk )  p(X a k ; ; f ( q )  )
k + 1 k + 1 k + 1 C

q =  1; 2;  ; Q; (11)

where C  is a normalization factor.

Since the empirical prior distribution p~(k + 1 Xk )  is described by a set of (unweighted) prediction

particles, the weighted particle pairs f ( k + 1 ; ! k + 1 )g q = 1  obtained in Eq. (11) can describe the (weighted)

empirical distribution for p k + 1 X k + 1  , where the weight ! k + 1  : =  p(X a k ; ; f j k + 1 )=C  is the likelihood

of each parameter particle. To  improve the stability and address the degeneracy of the particles, i.e.

only a very small number of particles have signicant likelihood weights [1, 8, 17], we also introduce a
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classic bootstrap resampling procedure by using the importance sampling method [12] for the weighted

particle pairs f k + 1 ; ! k + 1 g q = 1  and obtain a set of equally weighted particles fk + 1 gq = 1 ,  which follow

the conditional P D F  p k + 1 X k + 1       as needed for the next exploration procedure in the next training

episode.

Remark 3.1. Note that the simulated state trajectories f X a k ; k + 1  gq =1 need to be calculated on discrete

temporal points with appropriate numerical schemes. Since the state of the agent coincides with the

forward S D E  in the F B S D E  system, we shall postpone our discussion on the numerical method for the

state dynamics in the next subsection when we introduce the numerical method for solving F B S D E s .

Remark 3.2. In the case that the environment parameter  is state-dependent, we let  be a vector

corresponding to agent states and carry out the direct lter method to estimate the parameter if the agent

enters the correspondent state block. Numerical experiments that demonstrate this scenario will be

presented in Section 4.

3.2. Backward action learning for exploitation

To  introduce the numerical algorithm for exploitation, which is equivalent to solving a stochastic

optimal control problem, we rst assume that we have complete knowledge of the environment, i.e. the

environment parameter  is known. Then, we shall combine the direct lter method for exploration with the

backward action learning method for exploitation in the next subsection.

The computational framework of our backward action learning method is to carry out a gradient

descent optimization procedure with iterative scheme (8) to improve the policy, and the gradient with

respect to the policy, which is introduced in Eq. (6), is derived based on the SMP with usage of

the Gâteaux derivative. Since the gradient is composed of solutions of the F B S D E  system, numerical

methods for solving F B S D E s  are needed.

Numerical solvers for both forward SDEs  and backward SDEs  have been well studied [7, 15, 31]. In

what follows, we introduce the standard numerical schemes for solving SDEs  and BSDEs.

To  proceed, we introduce a temporal partition

N T      : =  f t n  : 0 =  t0 <  t1 <   <  tn <   <  t N T      =  T g;

and we consider the following F B S D E  system (7) over the time interval [tn ; tn+1 ] with a policy a k  and

a given environment parameter , which needs to be estimated by the direct lter based exploration

10
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procedure in the R L  problem,

X a k ;  =  X a k ;  +  
Z t n + 1  

b(t; X a k ;; ak ; )dt +  
Z t n + 1  

tdWt;

Y a
k ;  =  Y a

k ;  +  
Z

t
t n + 1  

b x (t ; X a k ; ; ak ; )> Y a
k ;  +  f ( t ; X a k ; ; a k ) > dt  

t 

     
Z t n + 1

Z a k ;dWt :
t n

(forward S D E )

(12)

( B S D E )

For a random variable X a k ;  that represents the solution of the forward S D E  at time tn, we can

approximate X t n + 1      by using the following standard Euler-Maruyama scheme

X a k ;   X a k ;  +  b(tn ; X a k ; ; ak  ; )tn +  t n  Wt n  ; (13)

where tn : =  tn + 1       tn and Wt n  : =  W t n + 1       Wt n  .

To  solve the B S D E  and obtain a numerical solution for Y , we take conditional expectation E n  
k  

[] : =

E[ jX a k ; ]  on both sides of the B S D E  in Eq. (12). Since the B S D E  is the adjoint equation of the forward

state equation, which is backward in time, we assume that a random variable Y t n + 1        representing the

solution of the B S D E  at time tn + 1  is given, and we use the right-point formula to approximate the

deterministic integral on the right hand side of the B S D E.  Then, we obtain the following approximation

scheme for Y

Y a
k ;   E X k  

Y a
k ;  +  E X k  

h
b x ( t n + 1 ; X a k ; ; a t n + 1  ; )> Y a

k ;  +  f ( t n + 1 ; X a k ; ; a t n + 1  )
>

i
t n ; (14)

where we have used the martingale property of Itô type stochastic integrals to get E X k  
hR t n + 1  Z a k ; dW t

i  
=

0, and note that Y a
k ;  =  E X k  

[Y a
k ; ]  due to the adaptedness of Y with respect to X .

By using approximation equations (13)-(14) as a guideline, we introduce the following (temporal-

discretized) scheme for solving the F B S D E  system (see [4, 29]):

X n + 1  = X a k ;  +  b(tn ; X a k ; ; ak  ; )tn +  t n  Wt n  ;

Y a
k ;  = E X k  

Y a
k ;  +  E X k       

bx (tn+1 ; Y a
k ; ; a t n + 1  ; ) > X a k ;  +  f ( t n + 1 ; X a k ; ; a t n + 1  )

>  tn; (15)

where X a k ;  and Y a
k ;  are approximations for X a k ;  and Y a

k ;  with an estimated policy a k  and an

environment parameter . The side condition of the B S D E  is Y a
k ;  =  hx , where h is the terminal

cost (i.e. penalty), and X  is initialized with the initial state of the agent. With scheme (15), we use

numerical solutions X a k ;  and Y a
k ;  to approximate X  and Y in the gradient process and get the

11
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following approximation scheme for r J a :

r J a ( a k  )   r J a ( a k  )  =  E
h

b a (tn ; X a k ; ; a k  ; )> Y a
k ;  +  f ( t n ; X a k ; ; a k  ) >

i
;  n =  0; 1;  ; NT       1: (16)

Then, the iterative scheme for nding the optimal control, i.e. the optimal policy in the R L  problem,

becomes

a k + 1  =  a t n       k r J a ( a t n  ); n =  0; 1; 2;  ; NT       1: (17)

To  implement the gradient descent iteration (17) with the gradient fully calculated by the approx-

imation scheme (16), one needs to evaluate the expectation E[] in Eq. (16) as well as the conditional

expectation E n  
k  

[] in scheme (15), which is needed to approximate the numerical solutions X n + 1      and

Y a
k ; .  The standard approach to evaluate an expectation (especially in high-dimensional spaces) is the

Monte Carlo method, in which we use simulated Monte Carlo samples to represent the random variables

and use the average of Monte Carlo samples as an approximation to the desired expected value. How-

ever, when utilizing the Monte Carlo method in gradient descent optimization with numerical solution

Y a
k ;  of the adjoint B S D E ,  in addition to simulating the expectation for the expected gradient r J a  with

Monte Carlo samples, one also needs to generate a large number of state samples for X  at each

time step tn in order to evaluate the conditional expectation E n  
k      

in the numerical scheme (15) for the

calculation of Y a
k ; .  Since Y a ;  is a random variable whose value is corresponding to the state X a ; ,

which is also a random variable that continuously takes values in the state space Rd , a Monte Carlo type

representation of Y with a set of random samples requires numerical approximation for Y in the entire

state space. This would cause a very challenging computational task of high-dimensional approximation

when the state dimension d is large, which is often computationally prohibitive due to the so-called

\curse of dimensionality". Moreover, the numerical approximation for expectation E  and conditional

expectation E n  
k  

needs to be calculated repeatedly over the gradient descent iteration procedure, which

will make the full calculation of the gradient descent optimization procedure infeasible in practice.

In our backward action learning approach for the stochastic optimal control problem, we use a single

realization of Monte Carlo sample (or a mini-batch of samples) in the Monte Carlo approximation to

represent the entire state of the random variable in an expectation. Specically, at each iteration stage

k we use the Euler-Maruyama scheme to generate one sample-path f X n + 1  gn = 1  for the state process as

follows

~
n + 1  =  X a k ;  +  b(tn ; Xn

k ; ; a t n  ; )tn +  t n  

p
t n n ; n =  0; 1; 2;  ; NT       1; (18)

where n  is a random sample drawn from the standard Gaussian distribution, and X 0  
k ;  =  X 0  is the

initial state of the agent at time t =  0. Note that the single-realization representation of the state process

12
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coincides with an agent trial in the training procedure under the R L  framework.

When solving the B S D E ,  we use the single-realization of the state sample f X n + 1  gn = 1  generated by

(18) to represent the state process in the F B S D E  system. In this way, we rewrite the numerical scheme

for the B S D E  and obtain the following sample-wise approximation for the adjoint process Y

Y a
k ;  =  Y a

k ;  +  b x ( t n + 1 ; X a k ; ; a t n + 1  ; ) >  ~ a k ;  +  f ( t n + 1 ; X a k ; ; a t n + 1  )
> tn ; n =  N T       1;  ; 0;

(19)

where Y a k ;  and Y a k ;  are approximations for Y a k ;  and Y a k ;  corresponding to the state samples X a k ;

and X n + 1  , respectively, i.e. Y a
k ;  =  Y a

k ; ( X a k ; )  and Yn + 1      =  Yn + 1  ( X n + 1  ), and we have used stochastic

approximation to approximate conditional expectations in Eq. (15) as follows:

Yn + 1  ( X n + 1  )   E n  
k  
Yn + 1

and
b x ( t n + 1 ; X a k ; ; a t n + 1  ; )> Y a

k ;  +  f ( t n + 1 ; X n + 1  ; a t n + 1  )
>

     E n  
k       

b x ( t n + 1 ; X a k ; ; a t n + 1  ; )> Y a
k ;  +  f ( t n + 1 ; X a k ; ; a t n + 1  )

>  :

Then, we use sample-wise approximations introduced in (18) and (19) to represent the stochastic

processes X  and Y in the gradient r J a  and get the following sample-wise approximation for the gradient

r J a ( a k  )  =  b a (t n ; X a k ; ; a k  ; )> Y a
k ;  +  f a  ( t n ; X n

k  
; ak  ; )> : (20)

As a result, the fully calculated gradient descent scheme (17) becomes the following stochastic gra-

dient descent scheme

a k + 1  =  a t n       k r J a ( a t n  ); n =  0; 1; 2;  ; NT       1; k =  0; 1; 2;  ; K       1: (21)

Although the sample-wise approximator fY a
k ; g n = 1  cannot provide a comprehensive representation for

the adjoint process fY a
k ; g n = 1  in the entire state space since the conditional expectations are only

approximated by single-realization of state samples, it’s important to point out that Y only appears in

the gradient process under expectation, and the primary contribution of Y is to incorporate the

dierential dynamics of the adjoint process into the gradient and guide the search of the optimal control (i.e.

policy). Therefore, our sample-wise approximation for Y can already embed information of the

dierential dynamics into the gradient process, and the rationale of applying stochastic approximation in

stochastic gradient descent can be used to justify the sample-wise solver for the F B S D E  system.

In this work, we name the sample-wise numerical solver introduced by schemes (18) - (21) the

\backward action learning ( B A L ) "  method for solving the stochastic optimal control problem, and such

13
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a B A L  framework constitutes the key mechanism of our SMP type approach for policy improvement in

reinforcement learning.

3.3. Combine direct lter with backward action learning for solving the reinforcement learning problem

Now, we combine the direct lter based exploration method with the B A L  based exploitation method

and construct a numerical algorithm to solve the R L  problem. Since the key of the numerical recipe of our

SMP approach for solving the R L  problem is the B A L  method for the stochastic optimal control

problem, in the rest of this paper we will also call our SMP based R L  solver \the B A L  method" for

convenience of presentation.

To  proceed, we assume that we can instantly receive the state of the agent during the training

procedure. With online reception of the agent state, instead of applying the direct lter to estimate the

environment parameter after each training episode to update our understanding of the environment with

the information of the entire agent trial trajectory (as we introduced in Section 3.1), in the B A L

algorithm for solving the R L  problem we implement the direct lter dynamically at each time step in

each training episode. This time-step parameter estimation implementation will allow us to better

utilize the state information of the agent. As a result, we can more frequently update the environment

information and therefore more suciently explore the environment.

Specically, we let f k + 1 ; t 0  
gq =1 : =  fk

q ) gq =1  be the initial parameter particles at the beginning of the k

+  1-th training episode, where f ( q ) gq =1 formulates an empirical distribution for the conditional

P D F  p(k jXk )  of the environment parameter  after the k-th training episode. Assuming that we have a

set of (equally-weighted) parameter particles f k + 1 ; t n  
gq =1 at time step tn under the temporal partition N T  ,

we use the following zero-dynamics scheme, which is similar (9), to generate a set of predicted

parameter particles f k + 1 ; t n + 1  
gq =1 for time step tn + 1  in the k +  1-th training episode

(q ) (q ) (q )
k + 1 ; t n + 1 k + 1 ; t n k + 1 ; t n

q =  1; 2;  ; Q: (22)

Then, we discretize the state equation at time step tn corresponding to the parameter particles as

follows

X
a k ; k + 1 ; t n + 1  =  X

a k ;
k

+ 1 ; t n  +  b ( t n ; X
a k ;

k

+ 1 ; t n  ; a t n  ; k + 1 ; t n + 1  
)tn +  t n  

p
t

 
(q) ; q =  1; 2;  ; Q: (23)

Note that the Gaussian random samples f k + 1 ; t n  
gq =1 add articial noise to the parameter particles

f k + 1 ; t n + 1  
gq=1 , and it can provide a natural mechanism that encourages the agent to explore the envi-

ronment. Then, we use X a k ;  to denote the trajectory of the k +  1-th agent trial, which interacts with k
( q )

the real environment, and we compare the simulated state-parameter samples X n + 1 k

+ 1 ; t n + 1      (generated

14
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by Eq. (23)) with the real agent state X t n + 1       at time tn + 1  to derive the following likelihood value for

each predicted parameter particle k + 1 ; t n + 1

p ( X a k ; ; f ( t n + 1 ; X a k ; ; a k ) k + 1 ; t n + 1  
)

( q ) ( q )

X a  ;      X n + 1 k

+ 1 ; t n + 1 +  f ( t n + 1 ; X a  ; ; ak )      f  k + 1 ; t n + 1  ( t n + 1 ; X n + 1
k + 1 ; t n + 1  ; ak )

2 2 +  (t  t)2

(24)

where the likelihood p ( X t n + 1  ; f ( t n + 1 ; X t n + 1  ; a k ) k + 1 ; t n + 1  
)  focuses on the comparison of the agent state at

time tn +1 , which plays the same role as the likelihood for the entire agent trajectory introduced in Eq.

(10). As a result, the particle-weight pairs f k + 1 ; t n + 1  
; ! k + 1 ; t n + 1  

gq=1 , where the weight value is assigned

as

! k + 1 ; t n + 1  
=  p (X a k ; ; ; f ( t n + 1 ; X a k ; ; a k ) k + 1 ; t n + 1  

)=C

with an appropriate normalization factor C ,  form a weighted empirical distribution for the poste-rior

distribution of the parameter at time instant tn + 1  in the k +  1-th training episode. To  avoid the

degeneracy issue of the particle lter, we resample all the particles based on the weighted pairs

f k + 1 ; t n + 1  
; ! k + 1 ; t n + 1  

gq =1 and generate a set of equally-weighted particles f k + 1 ; t n + 1  
gq =1 for the next

time step.

In this way, at the terminal time T we have carried out N T   1 times parameter estimation procedure,

which can eectively incorporate the information of the agent state at each time instant in the k +  1-th

training episode, and the particle set f k + 1 g q = 1  : =  f k + 1 ; t N T  
gq =1 provides our \best" understanding of

the environment after considering the state of the k +  1-th agent trial. Then, we use the mean of the

parameter particles fk + 1 gq = 1 ,  denoted by k + 1 ,  as our estimate for the environment parameter in the k

+  1-th training episode.

With the updated estimate k + 1  for the environment parameter, we follow the B A L  algorithm dis-

cussed in Section 3.2 to improve the policy in the exploitation procedure. Recall that the main theme

of the B A L  method is to use a single-realization of the state trajectory as a stochastic approximation to

the state process when approximating expectations. Since the real agent trajectory X a k ;  that follows

policy a k  already provides a path of the agent state, we can use the real agent trial state at the temporal

partition points, i.e. f X a k ; g n = 1 ,  to replace the single-realization simulated state trajectory f X a k ; g n = 1

(introduced in Eq. (18)) for the B A L  optimal control solver. On the other hand, the adjoint equation,

i.e., the B S D E,  is still driven by the current estimated parameter k + 1  except that the forward process is

replaced by the real agent state. In this way, we introduce the following sample-wise solution for the
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adjoint B S D E  in the k +  1-th training episode:

Y a
k ;

k
+ 1  = Y  a

k ;
k

+ 1  +  b x ( t n + 1 ; X a k ; ; a t n + 1  ; k + 1 ) > Y  a
k ;

k

+ 1

+  f k
+ 1  ( t n + 1 ; X a k ; ; a t n + 1  )

> tn ; n =  N T       1;  ; 0:
(25)

Note that we have used k + 1  as our estimated environment parameter in b and f  when  is explicitly

needed in the numerical scheme for the B S D E,  and the single-realization representation of the forward

S D E  is given by the real agent trial trajectory f X a k ; g n = 1 .

Then, we derive the sample-wise approximation for the gradient as follows

r J a ( a k  )  =  b a (t n ; X a k ; ; a k  ; k + 1 ) > Y  a
k ;

k
+ 1  +  f a k

+ 1  ( t n ; X a k ; ; a k  ) > ; (26)

and we carry out the following stochastic gradient descent iteration to improve the policy

a k + 1  =  a t n       k r J a ( a t n  ); n =  0; 1; 2;  ; NT       1: (27)

Dierent from the classic stochastic optimal control problem, which aims to nd the optimal control with

an explicitly given environment, the agent in the R L  problem needs to explore the environment

corresponding to the state space. In the above B A L  approach for solving the R L  problem, the exploration is

implemented through the parameter estimation procedure, and the articial noise added to the pseudo

parameter dynamics (as described in Eq. (22)) allows the agent to explore. In order to explore more

actively and detect other possibilities, we adopt the -greedy type exploration algorithm and provide a

mechanism for the agent to randomly explore the environment.

Specically, for the suboptimal policy a k  that we obtained in the k-th training episode, we let the

updated policy for the k +  1-th training episode as follows

<  k + 1

a k + 1  = n

k + 1  +  n

with probability 1       
; n =  0; 1; 2;  ; NT       1; (28)

with probability

where n   N (0; ) is a user dened noise level that brings random perturbations to the policy with the size of a

pre-determined covariance , and 0   <  1 is the probability of implementing the enhanced policy

exploration.

It’s important to point out that the estimated optimal policy a K  obtained through the above explo-

rative stochastic gradient descent optimization procedure only gives a deterministic policy process, which

is based on the initial state X t 0  =  X0 .  In this way, only the policy at time t0 =  0, i.e. a t 0  =  a t 0  ( X t 0  ),

is a time/state-dependent action that reects the actual state-to-action map, and the policy process
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beyond time t0 only gives an estimate based on the expected future behavior of the agent. In order

to let the agent take optimal actions based on its current state beyond the initial time t0 as desired in

the R L  problem, we need to screen the state space and calculate the optimal policy corresponding to

the state at any time instant tn. In what follows, we shall modify the B A L  method to generate a

time/state-dependent optimal policy process.

Note that the state of the agent at time tn + 1  only depends on the previous states and actions.

Therefore, we don’t need to search the optimal policy in the entire state space. At the initial time t0,

assume that we have calculated the policy process f a t n  gn = 0  
1 through schemes (25) - (28) based on the

estimated environment parameter obtained by the direct lter method. With the initial state X 0  and

the optimal action at time t0, i.e. a t 0  =  a t 0  ( X t 0  ), we carry out the following Euler-Maruyama scheme

to generate M samples for X a K ;

X a k ; ; ( m )  =  X t 0  +  b(tn ; Xt 0  ; at 0  ( X t 0  ); )t0 +  t 0  

p
t 0

( m ) ; m =  1; 2;  ; M; (29)

where f ( m ) g m = 1  are M samples drawn from the standard Gaussian distribution, and the state samples

f X a k ; ; ( m ) g m = 1  characterize the state variable X a K ;  in the state space. Then, we let D t 1  be the region in

the state space that covers all the state samples f X a k ; ; ( m ) g m = 1 .  Apparently, if we run Eq.(29) with a large

enough number M, the simulated samples f X a k ; ; ( m ) g m = 1  would provide very reliable predictions for the

future state X a K ; ,  and the corresponding region D t 1  would be large enough to cover the agent

state at time t1 if the agent takes the optimal action at time t0. In this way, actions corresponding to

state points in the region D t 1      at time t1 are needed. To  proceed, we introduce a set of state points,

denoted by X t 1  , as a spatial discretization for the state region D t 1  . Then, we carry out the same B A L

algorithm (25) - (28) from initial time t1 to terminal time t N T  , and the initial state is chosen among the

state points in X t 1  , i.e. X a K ;  =  x  2  X t 1  . As a result, we obtain a set of state-dependent optimal actions

f a t 1  ( x ) g x 2 X t 1  
at time instant t1, and we use f a t 1  ( x ) g x 2 X t 1  

as our policy variable (or the policy table) to

guide the agent at time t1. Similarly, following the above procedure, if we start from state points in X t n

with their optimal actions f a t n  ( x ) g x 2 X t n  , we can determine the state region D t n + 1  and the state points

X t n + 1      at time tn+1 . Then, we can compute the optimal policy f a t n + 1  ( x ) g x 2 X t n + 1      
corresponding to the

state points in X t n + 1      by using the B A L  method. As a result, we can adaptively calculate the optimal

policy over the state space along the temporal partition N T  .

We also want to point out that indeed the training procedure for the optimal policy needs to be

repeated carried out step-by-step in time, the direct lter based exploration can provide good under-

standing of the environment through the exploration procedure even at the rst time instant t0 since the

agent trial trajectories already explored the environment with a well-designed deterministic policy.

Although the uncertainty in the state model may lead the agent to dierent possible paths in the future,

17



t t

t

the deterministic optimal policy can be close to the stochastic optimal policy. The training procedure for

the optimal policy after time instant t0 mainly incorporates stochasticity to the policy process so that

the agent can take appropriate actions corresponding to the random state due to the uncertainty

generated by the Brownian motion W in the state dynamics. In other words, we can get better and

more complete estimate for the environment parameter as the time step increases. This makes the R L

problem that we consider in this work become more and more like a classic stochastic optimal control

problem except that we allow the agent to test the B A L  designed policy as trials.

3.4. Summary of the algorithm

To  summarize our B A L  algorithm for solving the R L  problem, we provide a pseudo algorithm in

Table 1.

4. Numerical experiments

In this section, we use three numerical examples to demonstrate the performance of our B A L  method

for solving the R L  problem.

4.1. Example1: Classic linear-quadratic control with a hidden environment parameter.

In the rst example, we solve a classic linear-quadratic stochastic optimal control problem, in which the

state model contains a hidden parameter that represents the unknown in the environment. The main

purpose of demonstrating a linear-quadratic control example is that the optimal control can be explicitly

derived, hence we can use this example to present the accuracy of our B A L  method by comparing with the

analytically derived solution. On the other hand, the unknown parameter in the state model requires an

exploration procedure to determine the environment, which also makes the control problem in this

example an R L  problem.

To  proceed, we consider an agent, whose state is formulated by the following 2-dimensional linear

stochastic dynamical system:

d X a ;  =  ( A ( t ) X a ;  +  B at )dt +  dWt; (30)

where X a ;  2  R2  is the state of the agent; A(t)  =  [sin t; 0; 0; cos t] is the drift coecient for state X ,  which

contains an unknown parameter , and we choose  =  2 in our numerical experiments in this example;

B  =  (0:5; 0:5)> is a 2-dimensional constant vector as the coecient of the scalar policy term at ;  =

[0:1; 0; 0; 0:1] is the diusion coecient for the stochastic integral driven by the 2-dimensional Brownian

motion W . The cost functional, which is equivalent to the penalty in the R L  problem, is in
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Table 1: Summary of the algorithm

Algorithm: Backward action learning method for reinforcement learning

Set up the initial state X 0 ,  environment guess particles f0
q ) gq =1 for 0, initial guess a0 for the policy,

and choose the user dened constants: K ,  Q, M, fk gk = 1 ,  and .

for n =  0; 1; 2;  ; NT       1

Let X t n       =  x  2  X t n      be the initial state at time tn, and obtain the optimal policy a t n  (x )  for each
x  2  X t n  as follows:

while k =  0; 1; 2;  ; K ,  do

 Implement p olicy a t n : N T   1 and obtain the agent trial state tra jectory X t n : N T  
.

 Implement the direct lter method to explore:

 Let f k + 1 ; t n  
gq =1 =  fk

q ) gq =1  be the particles for the estimated environment parameter for

l =  n; n +  1;  ; NT       1

- Generate a set of Q predicted parameter particles f k + 1 ; t gq =1 through the pseudo
parameter dynamics Eq. (22);

- Generate Q versions of the state samples f X
a k ; k + 1 ; t l + 1  gq =1 from the approximation

scheme Eq. (23) for the next state stage;
- Calculate likelihood values for f k + 1 ; t l + 1  

gq =1 as particle weights f ! k + 1 ; t l + 1  
gq =1 by com-

(q )

paring f X l + 1  
k + 1 ; t l + 1  gQ  

1 with the real agent state X a
+

;  through Eq. (24);

- Resample the particle-weight pairs f k + 1 ; t l + 1  
; ! k + 1 ; t l + 1  

gq =1 to generate a set of equally

weighted particles f k + 1 ; t l + 1  
gq=1 .

end for

 Set f k + 1 g q = 1      =  f k + 1 ; t N T  
gq =1 to initialize the next training episode, and let k + 1      =  1

q = 1  k + 1  be the estimated environment parameter in the training episode k +  1.

 Implement the B A L  method to exploit:

- Solve the adjoint B S D E  through the numerical B S D E  scheme Eq. (25) by using the
agent state trajectory X t n : N T      

and the estimated environment parameter k + 1 ;

- Calculate the sample-wise approximator r J a  for the gradient introduced in Eq. (26);

- Carry out stochastic gradient descent scheme (27), to get the improved policy a k + 1 .

 Use -greedy method (28) to enhance exploration and obtain a k + 1 .

end while

Generate the next state region D t n + 1  from the state points X t n  and the policy table f a K ( x ) g x 2 X t n      at
time tn through scheme (29). Discretize D t n + 1  and create state points X t n + 1  .

end for
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the following quadratic form

J ( a )  =  E
h

2 

Z

0

T 

hQX a ; ; X a ; i  +  hRat ; at idt +  
2

hF X T  ; X T  i
i
;

where Q =  I2  and F  =  I2  are given constant matrices, and we let R  =  1. In the numerical experiments,

we introduce a temporal partition over [0; 1] with the uniform step-size t =  0:01, i.e. N T  =  100.

We rst show the performance of our direct lter parameter estimation method for the purpose of

exploration in the R L  task, and we use Q =  100 particles to describe the empirical distribution for the

unknown parameter . The initial state of the agent is chosen as X a ;  =  (6;  2)> ,  and we assume that

the initial guess for the environment parameter is  2. In Figure 1, we present the estimated parameter

2

1

0

-1
Estimated parameter

-2
True parameter value

0  0.5 1

Time

Figure 1: Example 1. Parameter estimation with respect to time in the rst episode.

with respect to time in the rst training episode, where the solid black line shows the true environment

parameter value  =  2 while the blue dashed curve marked by plus signs gives our estimated parameter

values corresponding to time in the training episode k =  1. We can see from this gure that the direct

lter method can quickly capture the true parameter even in the rst training episode in this 1-dimensional

state-independent parameter estimation case. In Example 2 and Example 3, we will consider more

complicated situations with state-dependent environment parameters, which can be challenging for

standard reinforcement learning techniques.

With the accurately estimated environment, we present the performance of policy estimation with

respect to the number of training episodes in Figure 2. In subplots (a), (b), (c), and (d) we compare the

B A L  method estimated optimal policy (the black dashed curves marked by circles) with the analytical

optimal policy (the black dashed curves), which is given by

a t  =   R  1 B T  P (t )X a ; ; (31)

where X t  is the agent state, and P (t) is the unique solution of the following so-called Riccati equation
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Figure 2: Example 1. Comparison between the estimated optimal policy (actions) and the analytical optimal control.

corresponding to the state equation (30)

dP (t) 
=   P (t)A(t)      A T  (t)P (t) +  P ( t ) B R  1 B T  P (t)      Q; P (T ) =  F :

From this gure, we can see that as we increase the number of training episodes, i.e. K  =  50, K  =  100, K  =

500, and K  =  1; 000 in (a), (b), (c), and (d), respectively, we obtain better and better policy estimation

results. When carrying out K  =  1; 000 training episodes, the estimated optimal policy is almost

perfectly aligned with the analytical optimal policy. The convergence analysis for the B A L  method

in the linear case has been discussed in [3]. However, for nonlinear problems, it’s hard to guarrantee

the global convergence to the optimal control (policy). We also refer to [3] for the general

convergence study of the B A L  method.

Finally, in Figure 3 we show the accuracy of our policy estimation with dierent initial states X a ;  =

(4; 5)> , X a ;  =  (4; 1)> , and X a ;  =  (6;  2)> .  We can see that the B A L  method constantly provides

accurate policy estimation results.

4.2. Example 2: Reinforcement learning for atomic level manufacture.

In the second example, we solve a mathematically modied material science problem that motivated

us to develop such an SMP approach to solve the R L  problem with parameterized environment. We want

to use this problem as an example to show that there are application problems which require physics
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Figure 3: Example 1. Policy accuracy with dierent initial state.

knowledge to be incorporated into the R L  model, and there are needs to parameterize the environment

in scientic machine learning practices.

The scientic background of the R L  problem that we consider in this example is known as the \atomic

forge", which is a technique to control and design materials at the nano scale [14]. A  new nano-phase

fabrication approach has been developed to utilize a scanning transmission electron microscope (STEM)  to

assemble and manipulate matter atom-by-atom [9, 18]. Although many practical challenges still need to

be addressed to achieve the atomic forge technique from the physics aspect, in this work we focus on the

mathematical problem about how to automatically control atoms and formulate an R L  method to design

an eective policy to move a target atom to a pre-designated location on a 2-dimensional material surface,

where two-atom potential models can be applied 3.

The motion of a target atom, which is the agent in the R L  problem, is mainly driven by atomic

forces derived from intermolecular potentials. One of the most important intermolecular potentials is

the Lennard-Jones ( L J )  potential, which models soft repulsive and attractive interactions between two

atoms. In this work, we consider the following A B  form of the L J  potential

V L J ( r )  : =   
r12   

r6     ;

where r  is the distance between two interacting atoms,  is the depth of the potential-well (usually

referred to as \dispersion energy"), and A, B  are constant values referred to as \size of the atom". In this

work, we let A  =  B  =  0:5 be pre-chosen constants, and the depth of the potential-well  is an unknown

value to be determined. Since we try to move a target atom on a material surface, the value of  may vary

depending on the type of the xed background atom, which is interacting with the moving

3Moving atoms in the 3-dimensional space would be similar from the mathematical aspect. However, it could be more
challenging in physics.
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target atom in the environment.

The atomic force between atoms is in the form of the gradient of the potential r V L J .  In Figure 4, we

present a demonstration for the eld of the atomic force generated by the L J  potential V L J  corresponding to

two types of altogether 9 background atoms with depth parameters deep =  30 and shal low =  1. We

Figure 4: Example 2. The atomic force on the material surface.

can see from the gure that corresponding to the deep potential parameter, i.e. deep =  30, both the

repulsive and attractive forces are large, while on the other hand the intermolecular force is generally

much small near the atoms with the shallow potential parameter, i.e. shal low =  1. Also, the moving

target atom cannot get too close to the xed background atom due to the exponentially increased

repulsive force, and the target atom can be trapped by one of the background atoms with deep potential

well due to the large attractive force applied to the target atom.

With the assumed intermolecular potential V L J  and a background atomic structure as the environ-

ment, the trajectory of the target atom can be formulated as

d X a ;  =  (  r V L J ( r )  +  at )dt +  tdWt; (32)

where r V L J  is the gradient of the L J  potential V L J ,  which is determined by the depth parameter

of the potential-well, and r  =  k X a ;    Atombackgroundk2 is the distance between the target atom

and it’s closest background atom, i.e. Atombackground . The policy a t  is the control actions that we

apply to drive the target atom and guide it to the pre-designated location. More specically, we let a t  : =

( f t  cos t ; ft sin t )> , where f t  is the amount of external force that we apply to counter-eect the background

atomic force caused by the L J  potentials, and t  is the steering angle that determines the
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direction of the external force.

To  demonstrate how an R L  algorithm can be applied to the atomic forge technique, we design a

background atomic structure in Figure 5, where the blue dots show the locations of the background

atoms that can generate shallow potential wells, the yellow dots show the locations of the background

atoms that can generate deep potential wells, and the color bar on the right hand side shows the mapping

from color to L J  potential values. In this example, we consider the moving target atom as the agent in
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Figure 5: Example 2. The true potential parameters on the material surface.

the R L  problem, and we choose a pre-designated destination Xd e s t i n a t i o n  =  (2; 8)> to be arrived at the

terminal time T =  10. The initial state of the agent is chosen as X 0  =  (4:75; 0:75)>, which is near a

background atom that generates shallow potential well. The cost for the R L  problem is dened by

J ( a )  =  E

"Z  T  

jft jdt +  F k X a ;       Xdest inat ion k2

#

; (33)
0

where F  =  50 is the amount of penalty for not being able to arrive at the destination at the terminal time

T , and 
R

0 jft jdt is the running cost that measures how much eort (or energy) that we make to move

the agent. The R L  problem is to nd an optimal policy a  that minimizes the cost J (a ) .  It’s worthy

to point out that such an R L  problem is quite challenging since once the target atom is \captured" by

one of the deep potential-well atoms, it needs very large force to drive it out of the potential-well.

We rst use the standard Q-Learning method with -greed exploration (see [21, 27]) to solve the R L

problem described by Eq. (32)-(33). To  discretize the original continuous problem, we introduce a

temporal partition with step-size t =  0:2, i.e. N T  =  50, and we introduce a uniform spatial partition with

step-size x  =  0:1 in the state space to generate the q-table. The policy approximation for the

q-table is chose as f  =  0:2 for discretizing the external force f  and  =  8 for discretizing the steering

direction .
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In Figure 6, we show 5 agent performance trajectories following the policy determined by the trained

q-table with 103, 104, 105, and 106 training episodes in subplots (a), (b), (c), and (d), respectively. We
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Atomic trajectories
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(a) 103 training episodes in Q-Learning (b) 104 training episodes in Q-Learning
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(c) 105 training episodes in Q-Learning (d) 106 training episodes in Q-Learning

Figure 6: Example 2. Performance of Q-Learning.

can see from this Q-Learning performance experiment that with 103 training episodes in the Q-Learning

method, the agent could avoid the shallow potential \trap atoms" on the left side, which looks more

promising at beginning but has some deep potential-well atoms as the \barrier" towards the destination

atom (marked by the red diamond). However, with only 103 episodes, the Q-Learning method cannot

generate a suciently trained q-table that guides the agent towards the nal destination. We can also

observe from Figure 6 that with longer and longer training procedures, the agent performance becomes

better and better. With 106 training episodes, one of those 5 agents can nally arrive at Xde s t i n a t i o n ,  and

the other 4 agents also get close to the destination.

To  show the advantageous performance of our algorithm, we also solve the R L  problem for the
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atomic-forge technique by using our B A L  method. To  compare with the Q-Learning method, we use the

same temporal partition, and we introduce the same uniform spatial partition with step-size x  =  0:1 to

approximate the state region D t n      at each time tn. Therefore, we approximate the continuous R L

problem Eq. (32)-(33) with the same level of discretization accuracy as the Q-Learning method when

using the B A L  method. To  explore the environment, we use Q =  100 particles in the direct lter to

estimate the environment parameter, and we carry out K  =  103 episodes in the training procedure. The

initial guess for the potential depth parameter of each atom is chosen as guess =  1. We rst present
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Figure 7: Example 2. The estimated potential parameters on the material surface.

the performance of direct lter based exploration in Figure 7, where we also use the same color bar as we

used in Figure 5 to demonstrate the estimated potential depth parameter values corresponding to

dierent background atoms. By comparing the estimated environment in Figure 7 with the true atomic

environment in Figure 5, we can see that the environment learned in the B A L  method is very similar to

the true environment except for the left-bottom corner. Note that the agent (i.e. the target atom) tries to

move around the atoms with shallow potential-well (blue atoms) to save energy, and the agent does not

have much experience near the left-bottom corner, which makes the left-bottom corner insuciently

explored.

In Figure 8, we present 5 performance trajectories of the agent guided by the trained policy, which

is obtained by the B A L  method with 103 training episodes. From this gure, we can see that all 5

agents arrived at the designated target location at the terminal time. We also want to mention that due

to the exploration mechanism in the B A L  approach for R L ,  the agent has good understanding of the

potential-well depths for the atoms near its route towards the destination. On the other hand, since the

agent does not need to move around near the atoms at the left-bottom in the graph, it cannot learn the

potential-well depth parameters very well for those atoms.
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Figure 8: Example 2. Performance of B A L .
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Figure 9: Example 2. Comparison of average distance to the destination.

To  further demonstrate the performance comparison between the Q-Learning method and the B A L

method, we calculate the average distance to the destination by letting the agent repeatedly run 100

trajectories, and we present the average distance in Figure 9. We can see from this gure that the B A L

method with 103 training episodes outperforms the Q-Learning method with 103, 104, and 105 training

episodes in terms of the average distance to the destination, and it slightly outperforms the Q-Learning

method with 106 training episodes with a very small margin. The main reason that the B A L  would

outperform the temporal-dierence type R L  with fewer training episodes is that the gradient process

(with respect to policy) can give us a direction to improve the policy. Therefore, the policy improvement in

the B A L  method is more eective.

On the other hand, the criteria for the general performance of the agent is not only the distance

to the designated destination. The consumption of energy for moving the agent, i.e. the running cost
R

0 jft jdt, should also count for the performance. In Figure 10, we present the average running cost of
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Figure 10: Example 2. Comparison of average running costs.

each implementation with respect to time. We can see from this gure that the B A L  requires much lower

energy consumption compared with all the Q-Learning implementations {  regardless of the distance to

the destination.

4.3. Example 3: Reinforcement learning for continuous maneuvering of a robot in a maze.

In this example, we solve an R L  problem for continuous maneuvering of a robot in a 2-dimensional

maze, which is a continuous version of the maze solver problem [5, 30]. We want to use this example to

show the major advantage of the SMP approach over the D P P  approach. As an SMP type approach, the

B A L  method treats the entire control procedure as a whole task, which allows the R L  algorithm to design

the control policy based on the predicted future trajectories of the agent. On the other hand, the D P P

based methods, such like Q-learning, typically balance between the short-term optimal performance and

the possible ultimate goal of the control task, and the design of the policy in the Q-Learning method

does not rely on the comprehensive understanding of the entire environment. As a result, the Q-Learning

designed policy could make the agent stuck in a local dilemma.

To  proceed, we consider the following stochastic dynamics that describe the agent state

dX ( 1 )  = v  cos()dt +  dW (1);

dX ( 2 )  = v  sin()dt +  dW (2);
(34)

where X t  =  ( X ( 1 ) ; X ( 2 ) ) >  is the 2-dimensional location of a robot, the policy term a  =  (v; ) controls

the velocity v and the steering action . The goal of the R L  task in this example is to let the robot, i.e.

the agent, learn how to arrive at a pre-designated destination X T  at the given terminal time T with the

lowest cost, and the cost function that we aim to minimize during the learning procedure is

Z T

J ( a )  =  E[  
0      

x k X t       X0 k2 dt +  F k X T       X T  k2]; (35)

where F  =  20 is a terminal cost constant that denes the amount of penalty for not being able to arrive
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at the destination X  at the terminal time T , and 
R

0 x k X t    X0 k2 dt is the running cost term with an

unknown parameter x . Dierent from the R L  problem for the atomic forge technique, in which we

try to learn environment parameters that determine the state dynamics. In this work, as a R L  problem

for maze solver, the parameters that represent the unknowns in the environment are in the cost function

J ( a )  dened in Eq. (35). Moreover, the R L  problem that we try to solve in this example is dierent from a

standard maze solver R L  problem, in which the environment contains discrete obstacles (that add constant

penalties to the cost if the agent touches them) and barriers (that stop the robot from getting through). In

the R L  problem Eq. (34) - (35), we introduce a space-dependent cost parameter x , which does not stop the

agent from getting through, and the cost parameter x  will continuously add dierent levels of cost as the

agent moving in the environment. Therefore, stepping into a small region with high cost parameter may

not bring very high cost to the overall cost function J (a ) .  On the other hand, if the agent moves in a

region with a xed cost parameter, the faster the agent moves (or the farther the agent travels in a unit

time) the more cost will be generated due to the accumulated running cost with respect to the distance

that the agent traveled, i.e. k X t       X 0 k2  in Eq. (35).

To  carry out numerical experiments, we introduce a temporal partition over time interval [0; T ] with

T =  20, and we choose the time step-size t =  0:2, i.e. N T  =  100. The diusion coecient in Eq. (34)

is chosen as  =  0:05, which can bring relatively large amount of uncertainty to the state process given

the length of the time interval and the time step-size. Also, we introduce a spatial partition to the

environment by letting the x-dimension step-size x  =  0:2 and y-dimension step-size y =  0:25, and we

introduce a small base running cost base =  0:02 everywhere in the state-space. The initial state of the

agent is chosen as X 0  =  (5; 4)> , and the destination location is X  =  (5; 25)> .

We rst solve the above maze problem by using the Q-Learning method. Apparently, if the parameter x

remains as the small invariant base cost base over the entire state space, the Q-Learning method would

quickly converge and provide a policy that guides the agent to arrive at the destination directly. However,

when an unknown high cost obstacle region appears, the maze problem could be more challenging. In

the rst Q-Learning experiment, we put a rectangle region [4:8; 5:4]  [7; 11] in the environment and let the

running cost coecient in the region be x  =  20. Then, we train the q-table for 5  105 episodes and

present 30 testing agent trajectories using the trained q-table in Figure 11, where the red diamond

shows the location of the destination X T  , and the background mesh reects the spatial partition for the

state space. We can see from this gure that all the agents know that they should move up towards the

destination. Once they step into the obstacle region, since they are still getting closer to the destination,

the cost (or penalty) in the near future may not be large enough to stop them from moving forward. In

other words, the high penalty of not being able to reach the destination may persuade the agent to

overcome the short-term diculties. However, when the agent accumulates large enough cost as it gets

deeper into the obstacle region, the cost would only increase no matter where the agent goes. Therefore,
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Figure 11: Example 3. Performance of Q-Learning with a smaller obstacle region in the environment.

we can see from Figure 11 that most agents stop somewhere in the obstacle region. At the same time,

we can also see from the gure that there are still several policy paths that would guide the agent to

avoid the obstacle region, and it’s more likely that those agents can arrive at the designated destination.

To  explore more along this direction and study a more challenging scenario for the Q-Learning

method, we increase the size of the obstacle region to [4:6; 5:6]  [7; 13] and still train the q-table for 5

105 episodes. The performance of 30 testing agent trajectories is plotted in Figure 12 (a). From this

gure, we can see more clearly how the agents moved horizontally and tried to move out of the

obstacle region. One agent trajectory on the right hand side actually moved out of the obstacle region.

Unfortunately, as this agent turned back towards the destination, it’s trapped by the obstacle region

again. The only agent that successfully arrived at the destination is plotted by the trajectory on the

left. To  further demonstrate the performance of the agent in this experiment, we present 100 agent

testing trajectories in Figure 12 (b). From this gure, we can see that the \successful" policy followed

by the trained q-table is on the left, and only the agents that follow the left-side-policy could arrive at

the destination.

In Figure 13, we design a much more complicated environment with 6 obstacle regions, and each

region has a dierent cost parameter value. Specically, from the right to the left we let x  =  5, x  =  20,

x  =  15, x  =  25, x  =  10, x  =  30. The dierent running cost parameter values are presented by the

heights of the obstacle regions in Figure 13. In Figure 14, we show the performance
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(a) Performance of Q-Learning: 30 agent tra-
jectories

(b) Performance of Q-Learning: 100 agent
trajectories

Figure 12: Example 2. Performance of Q-Learning with a larger obstacle region in the environment.

Figure 13: Example 3. The 3D view of the true environment of the maze. The heights of the obstacle regions show dierent
cost parameter values.

of the agent with 30 testing trajectories that follow the policy obtained by the Q-Learning method with

5 105 training episodes. There’s no surprise that the agent cannot nd a path to avoid all the obstacles
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Figure 14: Example 3. Performance of Q-Learning in the maze presented in Figure 13.

and arrive at the destination. Although we can conjecture that by training the agent with more and

more episodes, the q-table may eventually be well-trained enough to create some \successful" policies.

However, for such a complicated environment with so many trapping obstacle regions, it would be very

computationally expensive for Q-Learning to nd a path to arrive at the destination.

In the following experiments, we show the success of the B A L  method in solving the R L  problem Eq.

(34) - (35). To  implement the B A L  method, we use Q =  100 particles to carry out the direct lter based

parameter estimation for exploration, and we carry out K  =  1000 training episodes in the B A L

algorithm. The temporal partition and the spatial partition that we use for the B A L  method are the

same as the Q-Learning method. In this experiment, we don’t assume that the agent knows there are

altogether 6 obstacle regions. Instead, we use the direct lter based exploration technique to estimate the

running cost parameter in every articially partitioned spatial block with partition size x   y.

In Figure 15, we rst present the estimated environment learned by the B A L  method, where the

background mesh shows all the articially partitioned spatial blocks that determine the size of environ-

ment parameter. We can see by comparing Figure 15 with Figure 13 that the B A L  method successfully

recovered the environment, and the estimate for every obstacle region is very accurate {  in both the size

of each obstacle region and the value of each cost parameter. Although we only implemented 1000

training episodes, since the direct lter updates the estimate for the environment at every time instant in

each training episode, the parameter estimation algorithm has suciently incorporated the agent trial states

into the exploration procedure, and this helps the agent have very good understanding of the
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Figure 15: Example 3. The estimated estimated environment of the maze obtained by the B A L  method.

environment.

Figure 16: Example 3. Performance of the B A L  method in the maze.

In Figure 16, we present 30 agent trajectories guided by the B A L  trained policy with initial state

X 0  =  (5; 4)> , and terminal destination is still chosen as X  =  (5; 25)> . We can see from this gure that all

the agent trajectories follow very smooth paths towards the destination, and they all arrived at the

destination at the terminal time.
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To  further demonstrate the performance of the B A L  method in this example and show the robustness

of our method, we let the agent start from randomly picked initial states in the spatial area [4; 6] [3; 5],

and we present 30 agent trajectories following the B A L  trained policy in Figure 17. We can see from this

Figure 17: Example 3. Performance of the B A L  method in the maze with random initial states.

gure that no matter where the agent started, it can always nd the right path towards the destination,

and it can perfectly avoid the obstacle regions.

By comparing the performance of the Q-Learning trained policy with the B A L  trained policy from

the above experiments, we can see that the B A L  method clearly outperforms the Q-Learning method in

this continuous maze solver R L  problem.

5. Conclusions

In this work, we developed a stochastic maximum principle (SMP) approach for solving the rein-

forcement learning ( R L )  problem in the case that the environment can be parameterized. To  explore

the environment, we introduced a direct lter method as an online parameter estimation method to

learn the environment parameters during the training procedure, and the exploitation task is carried out

through an ecient backward action learning ( B A L )  algorithm for nding the optimal policy under the SMP

framework. The main advantage of such an SMP approach, compared with dynamic programming

principle ( D P P )  based methods, is that the gradient of the cost with respect to the control aims to nd the

improvement direction for the control over the entire performance period, which could potentially

provide better overall performance for the long-run. In contrast, the standard temporal dierence ( T D )
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learning methods under the D P P  framework, such like Q-Learning, only consider short-term rewards or

penalties, which could ignore possible future opportunities. Especially, like the numerical experiments

presented in Example 4.3, if the environment is carefully designed so that the agent is deeply trapped in

a situation where no short-term strategy can lead it out, any T D  learning method will struggle unless it

can consider long-term predictions. However, T D  learning with long-term predictions can be very dicult

when the environment is unknown. Although our B A L  method also needs to consider long-term

predictions, the direct lter method can be eectively combined with the B A L  algorithm to establish a

comprehensive understanding of the environment, and this allows us to dynamically learn the en-tire

environment while searching for the long-term optimal policy. The major drawback of our B A L  method

for solving the R L  problem is that we require a parameterization for the environment. But for

applications of R L  in science, such like the atomic forge technique, physics knowledge and pre-dened

models are necessary to make the R L  problem \physics-informed". In this case, having a parameterized

environment is a reasonable assumption.

Although the B A L  outperforms the D P P  based R L  in reliability, we also acknowledge that with help

of deep learning, the so-called deep R L  is potentially capable to exploit the expressive power of neural

networks to handle very large-scale problems. In the future, we plan to adopt deep neural network

techniques in our B A L  framework and develop deep learning based B A L  to solve high-dimensional

problems.
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