A Stochastic Maximum Principle Approach for Reinforcement Learning
with Parameterized Environment

Richard Archibald
Computer Science and Computational Science, Oak Ridge National Laboratory, Oak Ridge, TN, archibaldrk@ornl.gov
Feng Bao
Department of Mathematics, Florida State University, Tallahassee, FL, bao@math.fsu.edu

Jiongmin Yong

Department of Mathematics, University of Central Florida, Orlando, Florida, jiongmin.yong@ucf.edu

Abstract

In this work, we introduce a stochastic maximum principle (SMP) approach for solving the reinforcement
learning problem with the assumption that the unknowns in the environment can be parameterized
based on physics knowledge. For the development of numerical algorithms, we apply an eective online
parameter estimation method as our exploration technique to estimate the environment parameter during
the training procedure, and the exploitation for the optimal policy is achieved by an ecient backward
action learning method for policy improvement under the SMP framework. Numerical experiments are
presented to demonstrate that the SMP approach for reinforcement learning can produce reliable
control policy, and the gradient descent type optimization in the SMP solver requires less training
episodes compared with the standard dynamic programming principle based methods.

Keywords: Reinforcement learning, optimal control, stochastic maximum principle, parameter

estimation, optimal Itering

1. Introduction

Reinforcement learning (RL) is an important research area in machine learning. Dierent from
supervised learning and unsupervised learning, RL aims to nd how to map situations (state) to actions
(control), and the goal of the RL problem is to let an agent learn how to take actions in an environment in
order to minimize a performance cost or maximize a reward. As a major machine learning task, RL has
been extensively studied, and it has application potentials to solve many real-life problems, e.g., robotic
automation, natural language processing, health care, image processing, and trading in nancial market. In
addition to its straightforward engineering style applications, RL has also drawn increasing attention
from the science community. Some recent studies show that RL techniques can be used to solve scientic

problems related to dynamic experimental design in physics and chemistry [16, 24].

Preprint submitted to Journal of computational physics May 16, 2023

The mathematical foundation of the standard approach for solving the RL problem is the dynamic
programming principle (DPP) [26], which was introduced to solve the optimal control problem. The main
idea of the DPP approach is to consider a family of local optimal control problems with dierent initial
states and times and establish relationships among these sub-problems through the Hamilton-Jacobi-
Bellman equation [28]. An important numerical method for implementing the DPP for solving theRL
problem is temporal dierence (TD) learning [22], and a major breakthrough was the development of an
o-policy TD control algorithm known as \Q-learning" [19, 27]. The Q-Learning method can carry out
TD learning eciently, and it can learn how to take optimal actions without requiring an environment
model. This makes Q-Learning applicable to solve many control problems in real-life. On the other hand,
TD learning also has some limitations. For example, TD learning methods typically use gradient-free
optimization to determine the optimal policy, hence even the Q-learning method suers from the eciency
issue due to the low convergence rate of gradient-free optimization. Another notable disadvantage of TD
learning is that it’s a bootstrap procedure that analyzes how good is a guess from another guess. Hence
the feedback in TD Learning is delayed and heavily corrupted by noise [10, 19]. As a result, decisions made
by TD Learning are more reliable to optimize the agent’s short-term performance. However, TD Learning
can be misled when short-term gains disagree with the long-term goal. In this case, the agent can be
attracted by carefully designed baits that lead it towards a trap. This is especially more challenging when
using TD Learning to solve a continuous problem since approximation of the original problem can make
predictions more complicated [13]. Such a drawback in TD Learning is mainly due to the nature of
DPP, which solves the optimal control problem by combining a set of local sub-problems, and the fact

that no overall physics model is considered to supervise the policy improvement in DPP.

In this work, we develop a fundamental methodology of solving the RL problem by using the stochastic
maximum principle (SMP), which is a major alternative approach for solving the stochastic optimal
control problem besides the DPP, and we will focus on the continuous time-space state model with
noise perturbations. An important assumption we need for our SMP approach is that the environment
is described by a physics model, and the unknown factors in the environment are characterized by
model parameters. Although the capability of training an agent how to take actions without an explicit
environment model is necessary for many RL applications, being able to take the rst principle into
account is also important when applying RL to solve scientic problems with well-established physics
knowledge.

As a fundamental mathematical eort, we will not discuss deep learning related deep reinforcement
learning techniques (e.g. [25]), which might be more powerful but certainly will lead to several challenges
caused by computational implementation of deep neural networks, such like the overtting issue, the

representation capability, and the reliability in training. Although we don’t consider the application of

deep learning in this work, appropriately designed deep learning methods can also be applied to our

general computational framework and improve the eciency of our maximum principle approach.

For solving the classic stochastic optimal control problem, the SMP aims to nd the optimal control
by optimizing a stochastic system called the Hamiltonian, and a gradient process with respect to control
can be derived by applying the \Gateaux derivative" to the adjoint process of the state dynamics in
order to carry out gradient descent optimization [20]. The SMP approach has several advantages over
the DPP approach. For example, it allows to have random coecients in the state equation and in
the performance cost/reward, and it allows more state constraints { especially some nite dimensional
terminal state constraints (see [28]). Moreover, the gradient process can give us a direction to improve
the policy over the performance period. This is potentially more ecient compared with the DPP
approach due to the application of gradient-based optimization. In addition, the gradient with respect
to control derived under the SMP framework is based on the understanding of the \global" environment.
In this way, the SMP designed policy can better balance between the short-term gains and the long-term
goal. Therefore, the SMP approach can be more reliable than the DPP based methods, which typically

rely on solutions of stacked local optimization problems.

On the other hand, the SMP approach has to face two challenges when solving the RL problem. First
of all, although the gradient process with respect to control can be derived and formulated explicitly
by using the adjoint of the state process, obtaining a numerical approximation for the adjoint state
process, which is a backward stochastic dierential equation, is a challenging task. As a result, the
optimization procedure for nding the optimal policy (i.e. the exploitation procedure) needs to evaluate
the gradient repeatedly, which makes the SMP approach computationally expensive [11]. Secondly, the
environment (i.e. the state model and the cost/reward model) in a RL problem is not completely known.
Therefore, an environment estimation method for the purpose of exploration is needed while searching
for the optimal policy.

To address the eciency issue in searching the optimal policy, we introduce a \backward action
learning" (BAL) method for eciently solving the stochastic optimal control problem. The main theme of
the BAL method is to apply a sample-wise numerical scheme to approximate the solution of the (back-
ward) adjoint equation sample-by-sample and then adopt the methodology of stochastic approximation to
carry out a stochastic gradient descent procedure to determine the optimal policy. In this way, we can
avoid the high computational cost of solving backward stochastic dierential equations in the state space.
At the same time, the mathematical expression of the gradient process, which contains solutions of the
adjoint equation, can still be eectively utilized through the sample-wise approximator to search for the
optimal policy.

To address the second issue and explore the environment, we assume that we have enough physics

knowledge so that the environment can be formulated as a parameterized model. Then, exploring the

environment is equivalent to searching for the environment parameter, and therefore exploration can be
achieved via parameter estimation. In this work, we apply the direct Iter, which is an accurate and
ecient online parameter estimation method [2], to estimate the environment parameter during the training
procedure. Other online parameter estimation methods may also be used under our general SMP
methodology.

Since an online parameter estimation method can dynamically provide feedbacks through training
trials and generate real-time updates to improve the understanding of the environment, the estimated
environment parameter can guide the BAL optimal control solver to exploit the optimal policy. To
further explore the environment and balance between exploration and exploitation, we also perturb the

policy by some articial noise and adopt an \-greedy" mechanism to encourage exploration [23].

The rest of this paper is organized as follows. In Section 2, we introduce the model-based RL problem
with parameterized environment, and we shall provide a general methodology of using the SMP to solve
the RL problem. In Section 3, we introduce the numerical algorithms that eciently solve the RL
problem under the SMP framework. In Section 4, we present three numerical examples to demonstrate
the eectiveness of our algorithm and the necessity of using the SMP approach to solve the RL problemin
application scenarios. Some concluding remarks that summarize our research outcomes will be given in

Section ?7?.

2. Problem setting and methodology

In this section, we rst introduce the formulation of model-based reinforcement learning (RL) with
parameterized environment. Then, we shall introduce a direct Iter method for learning the environment

parameter and a stochastic maximum principle (SMP) type optimal control solver to nd the optimal

policy.

2.1. Problem setting

In this work, we consider the mode-based RL problem under the complete Itered probability space (
; F; F; P), on which a d-dimensional standard Brownian motion W is dened such that F := fFsgso is the
natural Itration of W augmented by all the P-null sets in F. The dynamics of the agent is modeled by the

following stochastic dierential equation (SDE)
dX{' = b(t; X% ae; Jdt + (t; Xy s ae;)dWy; t2 [0;T); (1)

where Xi;, valued in RY, is the state of the agent, called state process; at, valued in R™, stands for the
agent action at time t, called control process; b : [0; TIRAR™RY | RY and : [0; TJRIR™RY | R9 are

suitable maps called drift and diusion, respectively; the d-dimensional standard Brownian

motion W := fWigty[0;7] introduces uncertainty to the system. In the model-based RL problem, we
use b and to model the dynamics of the agent, and they contain the \physics knowledge" of the
environment that we already possess. Since we assume that there are also unknowns in the environment, we
introduce a parameter , valued in R%, to represent physics-informed unknown factors that we need
to learn in the environment. In the RL problem, the control process is also called the \policy". Denote
A © Ul0;T]:= a:[0;T]
I U R™ a is F-progressively measurable as the admissible control set, in
which we can choose the control actions. Under some mild conditions [28], for every choice of parameter
2 R% and control a 2 U[0;T], SDE (1) admits a unique solution X?:.
The performance of the action a is measured by the following cost (or reward):
") #
J(a) = E f(t; X%y ac)dt + h(X*) ; (2)
0
where f is the running cost, which may contain some unknown factors that reect the environment,
and h measures the cost at the terminal time T.
In this work, we let the \environment" in the RL problem be mathematically formulated by b, , f and
h. The unknowns in the environment are represented by parameter , and we want to re-emphasize that
being able to incorporate physics knowledge into a RL task is necessary in many practical scientic machine
learning problems.
The goal of the stochastic optimal control problem is to nd the \optimal control" a that minimizes

the costJ 1, i.e.

J(a)= inf J(a): (3)
a2u [0;T]

In the RL language, we aim to nd the optimal policy a that minimizes the \penalty". Similar framework can
also search for the optimal policy that maximizes the \reward" by switching the minimization problem
to maximization problem in Eq. (3).

When parameter is given, equations (1) - (3) formulate a classic stochastic optimal control problem.
The major dierence that distinguishes the RL problem from the stochastic optimal control problem is

the unknown environment, which is modeled by the physics-informed unknown parameter in this work.

As a numerical approach for solving the RL problem, our method will consist an exploration procedure
and an exploitation procedure. Since the environment in this work is parameterized, the exploration
procedure, which aims to determine the environment during learning, is equivalent to implementing

online parameter estimation for . On the other hand, the exploitation procedure, which nds the

—Linthe-ease-of I —is—areward—we-maximize—the reward functional.

optimal policy, is equivalent to solving the stochastic optimal control problem. In what follows, we shall

introduce a SMP based RL solver with online parameter estimation for learning the environment.

2.2. A stochastic maximum principle framework for the reinforcement learning problem

Since the major dierence between the RL problem and the classic optimal control problem is the
exploration of the environment, nding the parameter that represents the environment while learning the
optimal policy is a key challenge. In this work, we formulate the dynamical estimation of the

environment parameter as an optimal Itering problem.

Exploration: Learning the environment by using the direct Iter method
The main idea of the \optimal Itering" approach for dynamically estimating parameters is to
\project" the data of the agent state to the parameter space and use the conditional probability density
function (PDF) of the parameter, i.e. p(kjXk), to calculate the estimate for at the k-th training
episode, where -algebra X := X2 fi(t; Xe;ae); 0 t T;1= 0;1; ;k contains the informa-
tion of the state of the agent as well as the parameterized cost in the previous training episodes, and we
assume an initial guess ¢ for the environment. In this work, we apply the direct Iter method [2] to

estimate the environment parameter in the online manner.

To proceed, we use a sequence of random variables fygko to represent our estimates for the
unknown parameter , where i is the estimate corresponding to the k-th training episode. Assuming that
we have ¢ that follows the conditional PDF p(xjXk), we generate a proposal parameter random variable,

i.e. k+1, through the following pseudo-dynamics:
kel = k + k; k=10,12;; (4)

where ¢ N (0; («)?) is a standard Brownian motion with pre-chosen covariance constants fxgko, and
gives articial noise that allows to explore other possible values of the environment parameter.

For a given conditional PDF p(kjXk), which describes the estimated parameter at the k-th episode,
we apply the following Bayesian inference to obtain the posterior PDF p(k+1jXk+1) that \optimally"
describes the estimated parameter +1 corresponding to the state information of the k + 1-th episode

as follows

Plks1jXks1) Plee1jXi)p(X?; fiken); (5)

where p(k+1jXk) is the prior conditional PDF of x+1 derived from the pseudo-dynamics (4) and the
parameter distribution p(xjXk) at the training episode k, and p(X?’; fjk+1) is the likelihood function that
compares the simulated agent state and its corresponding cost derived from the prior parameter variable

k+1 with the real agent state X2’ and the real cost f produced by the true environment parameter .

Exploitation: The stochastic maximum principle approach for searching the optimal policy
In the case that the complete knowledge of the environment (or the environment parameter is
known), and the optimal strategy a is in the interior of U 2, we can deduce by using the Gateaux
derivative of a and the maximum principle that the gradient process of the cost functional J with
respect to the control process over time interval t 2 [0; T] has the following form [11, 28]
h i
rla(ac) = E ba(t; X775 a6)Y ¥ ¢ a(t; X% 50y)7Z% + f(t; X% ae)” 5, (6)

where subscripts are used to denote partial derivatives of functions. The stochastic processes Y and Z

are adapted solutions of the following forward backward stochastic dierential equations (FBSDE) system

dx 2

dy @
t

b(t; X¥; ar; Jdt + (t; X*; ag;,)dWy; (forward SDE)
bx(t; X¥5ae;)°Y® (t; X% a;)7Z% f(t; X¥; ar) dt
t t t t X t
+ Z29dWy; Y2 = hy(X?)7; (BSDE)
(7)

where the rst equation in (7) is a standard forward stochastic dierential equation (SDE) with the same

expression as the state equation (1) for the agent, and the second equation is a backward stochastic
dierential equation (BSDE), which is also call the \adjoint equation" of the state equation. The solution Z
of the BSDE is the martingale representation of Y with respect to the Brownian motion W.

With gradient r J ; introduced in Eq. (6) and solutions X, Y, and Z introduced in the FBSDE system
(7), the SMP approach for solving the stochastic optimal control problem will carry out the following

gradient descent optimization procedure to solve for the optimal control, i.e. the optimal policy in RL,

ak*l = ok r).(ak); k=012 ;K 1; (8)

where we have an initial guess policy a°, « is the learning rate, K is a pre-determined total number of

training episodes, and we let aX be our estimated optimal policy.

The general methodology of solving the RL problem via the SMP

In what follows, we briey discuss the general methodology about how to solve the RL problem
under the SMP framework. At this moment, we ignore computational implementation issues, and the
numerical algorithms will be introduced in the next section.

The main theme of the SMP solver for RL is to use the iterative scheme (8) to improve the policy

2|1n many practical RL scenarios, people often let U be the real space.

and use the direct Iter to explore the environment. Assume that with k episodes of training, we have an
estimated environment parameter ¢ (with its conditional PDE p(xjXx)) and a sub-optimal policy a*
based on the understanding of the environment corresponding to .

For the k+1-th episode, we use scheme (4) to generate a prior conditional PDF p(k+1jXk) that char-
acterizes the proposal parameter. Then, we let the agent follow the current policy a* and interact with the
real environment to obtain a state process Xak?, which can be used to compare with simulated state
processes to generate the likelihood p(Xik;ij,l), and we can obtain the posterior PDF p(k+1jXk+1)

for the estimated parameter variable x+1 via the Bayesian inference (5). Note that the agent trial state

process, i.e. Xak;, provides the feedback from the real environment for exploration. With an updated
estimate for the environment at the learning episode k+1, we apply the SMP method to nd the optimal
policy. Specically, we compute the solutions of the FBSDE system (7) with the estimated policy a* and
the environment parameter .1 to obtain approximations for X a5k , ya i1 and z2“ike1 .Then, the
gradient rJ , introduced in Eq. (6) can be calculated by using the simulated solutions of the FBSDE
system (7). As a result, the approximated gradient would give us a direction to improve the current

1 via the gradient descent scheme (8). To

policy, and we can obtain the improved policy a**
encourage exploration, we also adopt the \-greedy" method by perturbing the sub-optimal policy with

some articial noise.

3. Numerical algorithms

In this section, we derive numerical algorithms to implement the above SMP approach for the RL
problem. For convenience of presentation, we assume that the diusion coecient in the state dynamics (1) is
a deterministic time-dependent process, denoted by :. Algorithms for more general cases can be
obtained under our methodology with more tedious derivation, and the model with the simplied diusion
coecient can already cover wide range of application problems since the physics knowledge of a stochastic
model is often incorporated into the drift term. In what follows, we shall rst discuss numerical
implementation of the direct Iter method for exploration (Section 3.1), and we will provide a backward
action learning (BAL) method for solving the classic stochastic optimal control problem under the SMP
framework for the purpose of exploitation (Section 3.2). Then, we combine exploration with exploitation
and introduce an overarching algorithm to solve the RL problem (Section 3.3). A pseudo-algorithm
that summarizes our SMP approach for the RL problem will be provided at the end of this section

(Section 3.4).

3.1. Particle implementation of the direct Iter method for exploration

In this paper, we adopt the numerical recipe of the \particle Iter" [6, 12], which is also known as a

\sequential Monte Carlo method", to implement the direct Iter for exploring the environment in the

RL problem.

Assume that after k training episodes, we have a (suboptimal) policy a* and a set of Q samples
(called \particles" in the particle Iter), denoted by f(q)lgqﬁ, that follow the conditional PDF p(kjXk) for

the estimated parameter . To carry out the exploration procedure in the k + 1-th episode, we rst

generate a set of particles based on the pseudo-dynamics introduced in Eq. (4) to generate a set of

proposal particles, fk+1gq 1, as follows:

M, = W @ =12 ,;Q (9)
where (q) k, and the particle set f(‘”lg;(_+1 férmulates the empirical distribution, i.e. p(k+1jXk) :=
1P) (k+1), for the prior PDF p(k+1jXk). x+1

Q q=1
To incorporate the trial agent state at the k + 1-th training episode and learn the environment, we
update the proposal particles through Bayesian inference. Specically, for each proposal particle k+1"fq\)ve

~ k. NSGH;
generate a simulated state trajectory %? ’ " = X

Ygotr based on the current policy a®
and the proposal particle .} ~9) On the other hand, the agent that follows policy a¥ interacts with the real
environment, and it generates the real state trajectory X 2“5 that reects the true environment parameter
. Then, by comparing each simulated state sample trajectory X a%i.1 with theT’qe)aI agent

state Xak", we have the following (unnormalized) likelihood for the parameter particle , 7' as

h 2+ ;Q)T

k.
p(Xa k+1ﬁq@xp X ° Teldt X2 idt? ¢
0 0
z T (%) ak; ~a) K z T aks k 2i 2
+ fooa(t; X, ' ak)dt f(t; X* ;2%)dt", =27; ‘
0 0

(10)
where i is the standard deviation of the articial noise in the pseudo parameter process that encourages
exploration.

Then, by combining the prior with the above likelihood through Bayesian inference, we have

(q)
p(k+1Xk) p(Xa f)
P ok+1 = “f(‘l)l Xks1 = c k41 , a= 1,2, ;Q; (11)

where C is a normalization factor.

Since the empirical prior distribution p“(k+1Xk) is described by a set of (unweighted) prediction
particles, the weighted particle pairs f k+1, k+1)gq , obtained in Eq. (11) can describe the (weighted)
empirical distribution for p k+1Xi+1 , where the weight!!, ,, 1= p(X2"; f7{9))=C is the likelihood
of each parameter particle. To improve the stability and address the degeneracy of the particles, i.e.

only a very small number of particles have signicant likelihood weights [1, 8, 17], we also introduce a

classic bootstrap resampling procedure by using the importance sampling method [12] for the weighted

particle pairs"ﬁ()ﬂ; f‘;’+1§ -, and obtain a set of equally weighted particles fk((j)lggzl, which follow
the conditional PDF p k+1Xk+1 as needed for the next exploration procedure in the next training

episode.

~a)
Remark 3.1. Note that the simulated state trajectories fX a*fh g%zl need to be calculated on discrete
temporal points with appropriate numerical schemes. Since the state of the agent coincides with the
forward SDE in the FBSDE system, we shall postpone our discussion on the numerical method for the

state dynamics in the next subsection when we introduce the numerical method for solving FBSDEs.

Remark 3.2. In the case that the environment parameter is state-dependent, we let be a vector
corresponding to agent states and carry out the direct Iter method to estimate the parameter if the agent
enters the correspondent state block. Numerical experiments that demonstrate this scenario will be

presented in Section 4.

3.2. Backward action learning for exploitation

To introduce the numerical algorithm for exploitation, which is equivalent to solving a stochastic
optimal control problem, we rst assume that we have complete knowledge of the environment, i.e. the
environment parameter is known. Then, we shall combine the direct Iter method for exploration with the
backward action learning method for exploitation in the next subsection.

The computational framework of our backward action learning method is to carry out a gradient
descent optimization procedure with iterative scheme (8) to improve the policy, and the gradient with
respect to the policy, which is introduced in Eq. (6), is derived based on the SMP with usage of
the Gateaux derivative. Since the gradient is composed of solutions of the FBSDE system, numerical
methods for solving FBSDEs are needed.

Numerical solvers for both forward SDEs and backward SDEs have been well studied [7, 15, 31]. In

what follows, we introduce the standard numerical schemes for solving SDEs and BSDEs.

To proceed, we introduce a temporal partition
Ny = fth 0= to< t1< < th< < tn, = Tg;

and we consider the following FBSDE system (7) over the time interval [tn; tn+1] with a policy ak and

a given environment parameter , which needs to be estimated by the direct Iter based exploration

10

procedure in the RL problem,

Xak; _ Xak; + foes b(t'Xak;' k. z foe dW,
ther tn ’ sas;)dt+ tdWy; (forward SDE)
t . th t
ak; ak; fret ak; k.\>v a*; a“; ky> z foet
Ytn =Y o T kbx(t,'x ;@ ;) Y + f(t;x |) gt ¢ (12)
Za ;thZ
R (BSDE)

k.
For a random variable X% ’ that represents the solution of the forward SDE at time t,, we can

approximate Xtankjl by using the following standard Euler-Maruyama scheme

ak;

th+a

ak; Cyafi ok .
X7k b(ta; X7 7505 5)ty + ¢, We,; (13)
where tn := ths1 th and Wy, 1= Wy,,, Wy,.
To solve the BSDE and obtain a numerical solution for Y, we take conditional expectation EX ‘ []:=
E[jg(nak"] on both sides of the BSDE in Eq. (12). Since the BSDE is the adjoint equation of the forward
state equation, which is backward in time, we assume that a random variable Yt:'fl" representing the
solution of the BSDE at time tn+1 is given, and we use the right-point formula to approximate the
deterministic integral on the right hand side of the BSDE. Then, we obtain the following approximation
scheme for Y

h i
k. k k. k k. k. k.
Yol EXOY T EY baftaens X7 g)Y T F(pans X0 A,)t K (14)

n n+1

R N
where we have used the martingale property of It6 type stochastic integrals to get E X ‘ ttn"“ Z%'dW; =

0, and note that Ytik; = EX: \% a:n"] due to the adaptedness of Y with respect to X .

By using approximation equations (13)-(14) as a guideline, we introduce the following (temporal-

discretized) scheme for solving the FBSDE system (see [4, 29]):

k k k
H— ; . ;oako. .
X2 =X2 7+ b(ty; X% '; a ,t)tn+ t, Wt ;

. k. k. k. k. i 15
yai =Xy X bx({‘m;\(a';ati”;)ﬁxa (X e)7 e (13)
n n+ n+

n n n+1 n+1 X
k. k. k.
where X° ’ and Y2" are approximations for X7 7 and Y*’ with an estimated policy a* and an
k.
environment parameter . The side condition of the BSDE is xf " = hy, where h is the terminal
cost (i.e. penalty), and X is initialized with the initial state of the agent. With scheme (15), we use

numerical solutionsr)(ak? and)(ak? to approximate X and Y in the gradient process and get the

11

following approximation scheme for rJ,:

h i
rla(ak) rla(ak)= E ba(ta; X270)Y 4 f(ta; X2 7534)" 5 0= 0;1; ; Nt 1:(16)

Then, the iterative scheme for nding the optimal control, i.e. the optimal policy in the RL problem,

becomes

ak™l = a wriafa) n=0;1;2; ;Nt 1: (17)

To implement the gradient descent iteration (17) with the gradient fully calculated by the approx-
imation scheme (16), one needs to evaluate the expectation E[] in Eq. (16) as well as the conditional
expectation E, ‘ [l in scheme (15), which is needed to approximate the numerical solutions Xnar;l and

r}(ak?. The standard approach to evaluate an expectation (especially in high-dimensional spaces) is the
Monte Carlo method, in which we use simulated Monte Carlo samples to represent the random variables
and use the average of Monte Carlo samples as an approximation to the desired expected value. How-
ever, when utilizing the Monte Carlo method in gradient descent optimization with numerical solution
Ynak" of the adjoint BSDE, in addition to simulating the expectation for the expected gradient r J with
Monte Carlo samples, one also needs to generate a large number of state samples for X at each
time step t, in order to evaluate the conditional expectation Eﬁ “ in the numerical scheme (15) for the
calculation qf ya', Since, Y* is a random variable whose value is corresponding to the state X*°’,
which is also a random variable that continuously takes values in the state space RY, a Monte Carlo type
representation of Y with a set of random samples requires numerical approximation for Y in the entire
state space. This would cause a very challenging computational task of high-dimensional approximation
when the state dimension d is large, which is often computationally prohibitive due to the so-called
\curse of dimensionality". Moreover, the numerical approximation for expectation E and conditional
expectation E} “ needs to be calculated repeatedly over the gradient descent iteration procedure, which

will make the full calculation of the gradient descent optimization procedure infeasible in practice.

In our backward action learning approach for the stochastic optimal control problem, we use a single
realization of Monte Carlo sample (or a mini-batch of samples) in the Monte Carlo approximation to
represent the entire state of the random variable in an expectation. Specically, at each iteration stage
k we use the Euler-Maruyama scheme to generate one sample-path fX"naJrkl; gr“,'jl for the state process as

follows
X200 = X2 4 b(tn; X3¥; A, Mty + I:)t ; n=0;12; ;N 1 (18)
n+1 ~ n,An , 9t n th nn» -] T ’

k.,
where , is a random sample drawn from the standard Gaussian distribution, and X, ' = Xo is the

initial state of the agent at time t = 0. Note that the single-realization representation of the state process

12

coincides with an agent trial in the training procedure under the RL framework.

When solving the BSDE, we use the single-realization of the state sample f)(”na:;l gt‘,;l generated by
(18) to represent the state process in the FBSDE system. In this way, we rewrite the numerical scheme
for the BSDE and obtain the following sample-wise approximation for the adjoint process Y

k.
;

k. . ~ oK. k. ~
v’na TE YT bx(tn+1;xa'k';1;+atn+1k;)> ’ ,Y'nwf{t”*l;(Xa ,;atnmfyt”j(n=Nr 150;

n+1
(19)

k. k. . . k. k. . k.
where Y2/ and Y@n;lare approximations for Y? : and Y ? ’ corresponding to the state samples X2
n n+1

and X, .1, Pdpectively, i.e. Y2" =“}(ak;(xa"n;) and’Y ., = Yn”+alk‘(Xn+~la)k,;anaavt/'e have used stochastic

approximation to approximate conditional expectations in Eq. (15) as follows:
k
Yafs (Xak1) En xYniga;

and
k

5 ~af
Y ?N 4 f(taga; Xog T87,,,)F

i
k. k. k.
En x bx(tn"'l;xan'i-ftnuk"))Ya ' J?w+f1(tn+1>2 X® ';atrﬂﬂl)> 2

byx(tn+1; X:+;1; at,',(”;
h
Then, we use sample-wise approximations introduced in (18) and (19) to represent the stochastic

processes X and Y in the gradient r J , and get the following sample-wise approximation for the gradient
r13(a%) = baltn; X205 0%)Y 25+ f, (t; X, 8% ;)2 (20)

As a result, the fully calculated gradient descent scheme (17) becomes the following stochastic gra-

dient descent scheme

af™ = af «rlala X n=0;1;2 ;Nr 1 k=0;1;2; ;K 1 (21)

Although the sample-wise approximator f)(ak?ghr'gl cannot provide a comprehensive representation for
the adjoint process f}(n at; N1, in the entire state space since the conditional expectations are only
approximated by single-realization of state samples, it’s important to point out that Y only appearsin
the gradient process under expectation, and the primary contribution of Y is to incorporate the
dierential dynamics of the adjoint process into the gradient and guide the search of the optimal control (i.e.
policy). Therefore, our sample-wise approximation for Y can already embed information of the
dierential dynamics into the gradient process, and the rationale of applying stochastic approximation in

stochastic gradient descent can be used to justify the sample-wise solver for the FBSDE system.

In this work, we name the sample-wise numerical solver introduced by schemes (18) - (21) the

\backward action learning (BAL)" method for solving the stochastic optimal control problem, and such

13

a BAL framework constitutes the key mechanism of our SMP type approach for policy improvement in

reinforcement learning.

3.3. Combine direct Iter with backward action learning for solving the reinforcement learning problem

Now, we combine the direct Iter based exploration method with the BAL based exploitation method
and construct a numerical algorithm to solve the RL problem. Since the key of the numerical recipe of our
SMP approach for solving the RL problem is the BAL method for the stochastic optimal control
problem, in the rest of this paper we will also call our SMP based RL solver \the BAL method" for

convenience of presentation.

To proceed, we assume that we can instantly receive the state of the agent during the training
procedure. With online reception of the agent state, instead of applying the direct Iter to estimate the
environment parameter after each training episode to update our understanding of the environment with
the information of the entire agent trial trajectory (as we introduced in Section 3.1), in the BAL
algorithm for solving the RL problem we implement the direct Iter dynamically at each time stepin
each training episode. This time-step parameter estimation implementation will allow us to better
utilize the state information of the agent. As a result, we can more frequently update the environment

information and therefore more suciently explore the environment.

) .=QfQ)

k+1:to8q=1 gq_l(behe initial parameter particles at the beginning of the k

Specically, we let f
+ 1-th training episode, where f(q) -, formulates an empirical distribution for the conditional

PDF p(kjXk) of the environment parameter after the k-th training episode. Assuming that we have a

set of (equally-weighted) parameter particles fk+1 t.8q-1 2 at time step tn under the temporal partitionn;, ,

we use the following zero-dynamics scheme, which is similar (9), to generate a set of predicted

parameter particles fk"iql)t gq , for time step tn+1 in the k + 1-th training episode
™~a) _ (a) (q) . - 1.9 -O-
k+1;tn+1 ~ k+1;tn + k+1;tn”’ q= 12, Q (22)

Then, we discretize the state equation at time step t, corresponding to the parameter particles as

follows
k. ~a) k. ~a) K. ~a) p
A ik1t,, A a'; L kK ~q) — J—
Xoer = X5 bty XTY A KT ek, 79 T 9= 12 5Q0(23)

Note that the Gaussian random samples fk+1 . gq , add articial noise to the parameter particles
f'\(q)

K1 tmngl, and it can provide a natural mechanism that encourages the agent to explore the envi-

ronment. Then, we use X a"; to denote the trajectory of the k + 1-th agent trial, which interacts with «

la)~
the real environment, and we compare the simulated state-parameter samples X‘n+1 Pt (generated

14

k.
by Eq. (23)) with the real agent state XtaM'1 at time tn+1 to derive the following likelihood value for

; ; ~q)
each predicted parameter particle , ;3
ak ~aq)
p(th Pfltne; X2 5%) 0,00))
K ~a) k. ~a)
ak; 3+t 2 EVE R sy . LLETAL P 2
th+1 Xn+1 " + f(tne1; X tnila) f ll"”(t”’fllxn+1 "hal)

exp

2 2k+ (¢ t)nz ’

(24)
where the likelihood p()&"7 ; f(tas1; X2'i; a*), 9) focuses on the comparison of the agent state at
time tnh+1, which plays the same role as the likelihood for the entire agent trajectory introduced in Eq.

k“ﬁ),tm; !kiql)_tm gqgl, where the weight value is assigned

(10). As a result, the particle-weight pairs f
as
k. k.
e, = POXE 75 F(tneas X2 a8, 000)=C

¥ k+1;tns+1

with an appropriate normalization factor C, form a weighted empirical distribution for the poste-rior
distribution of the parameter at time instant t,+1 in the k + 1-th training episode. To avoid the
degeneracy issue of the particle Iter, we resample all the particles based on the weighted pairs
fk“iql)tm' |k£q1);tn+1gq , and generate a set of equally-weighted particles fk+1 t..,8q=1 & for the next
time step.

In this way, at the terminal time T we have carried out Nt 1 times parameter estimation procedure,
which can eectively incorporate the information of the agent state at each time instant in the k + 1-th
training episode, and the particle set fkﬂél 1= fl(ﬂ)l - gcézl provides our \best" understanding of

the environment after considering the state of the k + 1-th agent trial. Then, we use the mean of the
parameter particles fkﬁéq 1, denoted by +1, as our estimate for the environment parameter in the k
+ 1-th training episode.

With the updated estimate k+1 for the environment parameter, we follow the BAL algorithm dis-
cussed in Section 3.2 to improve the policy in the exploitation procedure. Recall that the main theme
of the BAL method is to use a single-realization of the state trajectory as a stochastic approximation to

the state process when approximating expectations. Since the real agent trajectory X 2“5 that follows
policy a* already provides a path of the agent state, we can use the real agent trial state at the temporal
partition points, i.e. fX¢ gnNTl, to replace the single-realization simulated state trajectory f‘)gak"g':T:l
(introduced in Eq. (18)) for the BAL optimal control solver. On the other hand, the adjoint equation,

i.e., the BSDE, is still driven by the current estimated parameter .1 except that the forward process is

replaced by the real agent state. In this way, we introduce the following sample-wise solution for the

15

adjoint BSDE in the k + 1-th training episode:

Yak; 1=y ak; +1 b _Xak; ak; +1
n - + X(tn+1' k n+1

. k >
k n+il atn+1'k+1) Y

thaa

(25)
KVt n= Nt 1;;0:

thea

k
+1 .yas.
+ fX (tn+1, X tnlf

Note that we have used k.1 as our estimated environment parameter in b and f when is explicitly
needed in the numerical scheme for the BSDE, and the single-realization representation of the forward
k.

SDE is given by the real agent trial trajectory fXatn'gn:NlT.
Then, we derive the sample-wise approximation for the gradient as follows

Lo fa (s Xk), (26)

k. k
rJa(aﬁn) = ba(tn;xfn';akté|<+1)>Ya -

and we carry out the following stochastic gradient descent iteration to improve the policy

k+1 _
atn = a

=
El

krla(af); n=0;1;2; ;Ny 1 (27)

Dierent from the classic stochastic optimal control problem, which aims to nd the optimal control with
an explicitly given environment, the agent in the RL problem needs to explore the environment
corresponding to the state space. In the above BA L approach for solving the R L problem, the exploration is
implemented through the parameter estimation procedure, and the articial noise added to the pseudo
parameter dynamics (as described in Eq. (22)) allows the agent to explore. In order to explore more
actively and detect other possibilities, we adopt the -greedy type exploration algorithm and provide a
mechanism for the agent to randomly explore the environment.

Specically, for the suboptimal policy a® that we obtained in the k-th training episode, we let the

updated policy for the k + 1-th training episode as follows

8
) < afn" 1; with probability 1
ak*l = ; n=0;1;2; ;Nr 1 (28)
’ Sy with probability

where , N(0O;) is a user dened noise level that brings random perturbations to the policy with the size of a
pre-determined covariance , and 0 < 1 is the probability of implementing the enhanced policy

exploration.

It’s important to point out that the estimated optimal policy a X obtained through the above explo-
rative stochastic gradient descent optimization procedure only gives a deterministic policy process, which
is based on the initial state Xi, = Xo. In this way, only the policy at time to = 0, i.e. af = af (Xt,),

is a time/state-dependent action that reects the actual state-to-action map, and the policy process

16

beyond time to only gives an estimate based on the expected future behavior of the agent. In order
to let the agent take optimal actions based on its current state beyond the initial time to as desired in
the RL problem, we need to screen the state space and calculate the optimal policy corresponding to
the state at any time instant t,. In what follows, we shall modify the BAL method to generate a
time/state-dependent optimal policy process.

Note that the state of the agent at time tn+1 only depends on the previous states and actions.
Therefore, we don’t need to search the optimal policy in the entire state space. At the initial time to,
assume that we have calculated the policy process fatKn g':LO 1 through schemes (25) - (28) based on the
estimated environment parameter obtained by the direct Iter method. With the initial state Xo and
the optimal action at time to, i.e. atK0 = atKO(Xto), we carry out the following Euler-Maruyama scheme

to generate M samples for X ilk"
k.. b -
X"il"(m) = Xto + b(tn; Xto; @, N X1,);)to + o to!™; o m= 1;2; ;M; (29)

where f(rg)gm""=1 are M samples drawn from the standard Gaussian distribution, and the state samples
k.. K .
X2 ”(m)gm"ﬁl characterize the state variable X ?, 7 in the state space. Then, we let Dy, be the region in
t1 t1
k..
the state space that covers all the state samples fX ® ’“trln)gm:l MApparently, if we run Eq.(29) with a large

k..
enough number M, the simulated samples fX ® ”(m)tgm=1 wdlld provide very reliable predictions for the

future state X ’ anglthe corresponding region D¢, would be large enough to cover the agent
state at time t; if the agent takes the optimal action at time to. In this way, actions corresponding to
state points in the region D¢, at time t; are needed. To proceed, we introduce a set of state points,
denoted by X:,, as a spatial discretization for the state region D¢,. Then, we carry out the same BAL
algorithm (25) - (28) from initial time t; to terminal time tn,, and the initial state is chosen among the
state points in X¢,, i.e.)gla . X 2 Xt,. As aresult, we obtain a set of state-dependent optimal actions
fatK1 (x)gx2x,, at time instant t1, and we use fa{<1 (x)gx2x, as our policy variable (or the policy table) to
guide the agent at time t1. Similarly, following the above procedure, if we start from state points in X¢,
with their optimal actions fatKn (x)gx2x,, , we can determine the state region D¢,,, and the state points
Xt,,, attime tns1. Then, we can compute the optimal policy fat'(n+1 (X)gxzxtm corresponding to the
state points in Xt,,, by using the BAL method. As a result, we can adaptively calculate the optimal
policy over the state space along the temporal partition n; .
We also want to point out that indeed the training procedure for the optimal policy needs to be
repeated carried out step-by-step in time, the direct Iter based exploration can provide good under-
standing of the environment through the exploration procedure even at the rst time instant to since the

agent trial trajectories already explored the environment with a well-designed deterministic policy.

Although the uncertainty in the state model may lead the agent to dierent possible paths in the future,

17

the deterministic optimal policy can be close to the stochastic optimal policy. The training procedure for
the optimal policy after time instant to mainly incorporates stochasticity to the policy process so that
the agent can take appropriate actions corresponding to the random state due to the uncertainty
generated by the Brownian motion W in the state dynamics. In other words, we can get better and
more complete estimate for the environment parameter as the time step increases. This makes the RL
problem that we consider in this work become more and more like a classic stochastic optimal control

problem except that we allow the agent to test the BAL designed policy as trials.

3.4. Summary of the algorithm

To summarize our BAL algorithm for solving the RL problem, we provide a pseudo algorithm in

Table 1.

4. Numerical experiments

In this section, we use three numerical examples to demonstrate the performance of our BAL method

for solving the RL problem.

4.1. Examplel: Classic linear-quadratic control with a hidden environment parameter.

In the rst example, we solve a classic linear-quadratic stochastic optimal control problem, in which the
state model contains a hidden parameter that represents the unknown in the environment. The main
purpose of demonstrating a linear-quadratic control example is that the optimal control can be explicitly
derived, hence we can use this example to present the accuracy of our BAL method by comparing with the
analytically derived solution. On the other hand, the unknown parameter in the state model requires an
exploration procedure to determine the environment, which also makes the control problem in this

example an RL problem.

To proceed, we consider an agent, whose state is formulated by the following 2-dimensional linear

stochastic dynamical system:

dX{" = (A(t)X® + Bar)dt + dWy; (30)

where X i; 2 R? is the state of the agent; A(t) = [sint;0;0;cost] is the drift coecient for state X, which
contains an unknown parameter , and we choose = 2 in our numerical experiments in this example;
B = (0:5;0:5) is a 2-dimensional constant vector as the coecient of the scalar policy term as;

[0:1;0;0;0:1] is the diusion coecient for the stochastic integral driven by the 2-dimensional Brownian

motion W. The cost functional, which is equivalent to the penalty in the RL problem, is in

18

Table 1: Summary of the algorithm

Algorithm: Backward action learning method for reinforcement learning

Set up the initial state Xo, environment guess particles f()o‘)gq‘}1 for o, initial guess a° for the policy,
and choose the user dened constants: K, Q, M, fkg,.{ and .

for n=0;1;2; ;NT 1

Let Xtan0 = x 2 Xt, be the initial state at time tn, and obtain the optimal policy af (x) for each
x 2 Xt, as follows:

while k= 0;1;2; ; K, do

k.
Implement policy atnk:NT , and obtain the agent trial state trajectory th‘f'N'T.
Implement the direct Iter method to explore:

Let fk+l(;?)ngq=1q= fk(”gé|=1 Be the particles for the estimated environment parameter for
l=nn+1; ;Nt 1
- Generate a set of Q predicted parameter particles fk"f‘}),_t Mggﬂ through the pseudo
parameter dynamics Eq. (22);

. ™aq)
'k+1;t|+1

k
a
- Generate Q versions of the state samples fX‘|+1

scheme Eq. (23) for the next state stage;

Calculate likelihood values for fk“fcl‘),_tmgqgl as particle weights f!kﬁ?t“l g, by com-

gqgl from the approximation

Kk . ~a) L .
paring fX”lil' Kt g?zl with the real agent state X athk’l through Eq. (24);

- Resample the particle-weight pairs fk"f‘i)_tlﬂ; !k,fql)_tmgq(}l to generate a set of equally
weighted particles fk,fi).tl+1 gqgl.
end for
Set fk+Pl%’;=1Q = fkﬂ;in)T 8q-1 %o initialize the next training episode, and let 41 = 1

Q 1 .\9) be the estimated environment parameter in the training episode k + 1.

Implement the BAL method to exploit:

- Solve the adjoint BSDE through the numerical BSDE scheme Eq. (25) by using the
k.
agent state trajectory Xt"‘n N, and the estimated environment parameter i.1;

- Calculate the sample-wise approximator r J ; for the gradient introduced in Eq. (26);

- Carry out stochastic gradient descent scheme (27), to get the improved policy ak*?1.

Use -greedy method (28) to enhance exploration and obtain a**?1.
end while
Generate the next state region Dt,,, from the state points Xt, and the policy table fa® (x)gx2x,, at
time tn through scheme (29). Discretize D¢,,, and create state points X¢, ., .
end for

19

the following quadratic form

h z T i
1 a,; a,;: . >&T .
J(a)=E = hQX?®;; X*i,+ hRag; atidt+ _hFXr; X1i ;
2 2
where Q = |2 and F = |, are given constant matrices, and we let R = 1. In the numerical experiments,

we introduce a temporal partition over [0; 1] with the uniform step-size t = 0:01, i.e. Nt = 100.
We rst show the performance of our direct Iter parameter estimation method for the purpose of
exploration in the RL task, and we use Q = 100 particles to describe the empirical distribution for the
unknown parameter . The initial state of the agent is chosen as){)a; = (6; 2)”, and we assume that

the initial guess for the environment parameter is 2. In Figure 1, we present the estimated parameter

Parameter
o

I ﬁ = % = Estimated parameter
2 f True parameter value

0 0.5 1
Time

Figure 1: Example 1. Parameter estimation with respect to time in the rst episode.

with respect to time in the rst training episode, where the solid black line shows the true environment
parameter value = 2 while the blue dashed curve marked by plus signs gives our estimated parameter
values corresponding to time in the training episode k = 1. We can see from this gure that the direct
Iter method can quickly capture the true parameter even in the rst training episode in this 1-dimensional
state-independent parameter estimation case. In Example 2 and Example 3, we will consider more
complicated situations with state-dependent environment parameters, which can be challenging for
standard reinforcement learning techniques.

With the accurately estimated environment, we present the performance of policy estimation with
respect to the number of training episodes in Figure 2. In subplots (a), (b), (c), and (d) we compare the
BAL method estimated optimal policy (the black dashed curves marked by circles) with the analytical

optimal policy (the black dashed curves), which is given by
a, = R 'BTP(t)X¥; (31)

where Xt is the agent state, and P (t) is the unique solution of the following so-called Riccati equation

20

-1 1
== ¢== Analytical optimal policy == ¢== Analytical optimal policy
-2 | = & =Estimated optimal policy -2 |= & =Estimated optimal policy
-3 -3
g™ §
<5 25
6 -6
7 -7
-8 -8
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time Time
(a) 50 episodes (b) 100 episodes
1 1
== om= Analytical optimal policy == om= Analytical optimal policy
-2 |= ® = Estimated optimal polic -2 r|= ® = Estimated optimal polic
-3 -3
c c
S 4 £ -4
3} 3]
< <
-5 -5
-6 -6
-7 -7
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time Time
(c) 500 episodes (d) 1,000 episodes

Figure 2: Example 1. Comparison between the estimated optimal policy (actions) and the analytical optimal control.

corresponding to the state equation (30)

dP(t)

e P(t)A(t) AT(t)P(t)+ P(t)BR 'BTP(t) Q; P(T)=F:

From this gure, we can see that as we increase the number of training episodes, i.e. K = 50, K = 100,K =
500, and K = 1;000 in (a), (b), (c), and (d), respectively, we obtain better and better policy estimation
results. When carrying out K = 1;000 training episodes, the estimated optimal policy is almost
perfectly aligned with the analytical optimal policy. The convergence analysis for the BAL method
in the linear case has been discussed in [3]. However, for nonlinear problems, it’s hard to guarrantee
the global convergence to the optimal control (policy). We also refer to [3] for the general
convergence study of the BAL method.

Finally, in Figure 3 we show the accuracy of our policy estimation with dierent initial states){)a; =

(4;5)”, X% = (4;1)>, and X*" = (6; 2)>. We can see that the BAL method constantly provides

accurate policy estimation results.

4.2. Example 2: Reinforcement learning for atomic level manufacture.

In the second example, we solve a mathematically modied material science problem that motivated
us to develop such an SMP approach to solve the RL problem with parameterized environment. We want

to use this problem as an example to show that there are application problems which require physics

21

== o== Analytical optimal policy == o== Analytical optimal policy == o== Analytical optimal policy
= & = Estimated optimal policy = & =Estimated optimal policy -2 | |= ® = Estimated optimal policy

Action
Action
Action

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time Time Time

(a) Xo = (4;4)> (b) Xo = (4;1)” (c) Xo = (6; 2)”

Figure 3: Example 1. Policy accuracy with dierent initial state.

knowledge to be incorporated into the RL model, and there are needs to parameterize the environment
in scientic machine learning practices.

The scientic background of the RL problem that we consider in this example is known as the \atomic
forge", which is a technique to control and design materials at the nano scale [14]. A new nano-phase
fabrication approach has been developed to utilize a scanning transmission electron microscope (STEM) to
assemble and manipulate matter atom-by-atom [9, 18]. Although many practical challenges still need to
be addressed to achieve the atomic forge technique from the physics aspect, in this work we focus on the
mathematical problem about how to automatically control atoms and formulate an RL method to design
an eective policy to move a target atom to a pre-designated location on a 2-dimensional material surface,
where two-atom potential models can be applied 3.

The motion of a target atom, which is the agent in the RL problem, is mainly driven by atomic
forces derived from intermolecular potentials. One of the most important intermolecular potentials is
the Lennard-Jones (LJ) potential, which models soft repulsive and attractive interactions between two
atoms. In this work, we consider the following AB form of the LJ potential

A B
VLJ(r) L= (12 6

where r is the distance between two interacting atoms, is the depth of the potential-well (usually
referred to as \dispersion energy"), and A, B are constant values referred to as \size of the atom". In this
work, we let A = B = 0:5 be pre-chosen constants, and the depth of the potential-well is an unknown
value to be determined. Since we try to move a target atom on a material surface, the value of may vary

depending on the type of the xed background atom, which is interacting with the moving

3Moving atoms in the 3-dimensional space would be similar from the mathematical aspect. However, it could be more
challenging in physics.

22

target atom in the environment.
The atomic force between atoms is in the form of the gradient of the potential rV ,. In Figure 4, we
present a demonstration for the eld of the atomic force generated by the LJ potential V|, corresponding to

two types of altogether 9 background atoms with depth parameters deep = 30 and shallow = 1. We

10
g 0
&
L |
|
10 % . ;
| i
4 ot Al
T |
2" ; | ”
0
2 4
X 0 e
4 2 &
1 Y

Figure 4: Example 2. The atomic force on the material surface.

can see from the gure that corresponding to the deep potential parameter, i.e. geep = 30, both the
repulsive and attractive forces are large, while on the other hand the intermolecular force is generally
much small near the atoms with the shallow potential parameter, i.e. shallow = 1. Also, the moving
target atom cannot get too close to the xed background atom due to the exponentially increased
repulsive force, and the target atom can be trapped by one of the background atoms with deep potential

well due to the large attractive force applied to the target atom.

With the assumed intermolecular potential V() and a background atomic structure as the environ-

ment, the trajectory of the target atom can be formulated as
an; = (rVLJ(r)+ at)dt+ tth; (32)

where rV , is the gradient of the LJ potential V,, which is determined by the depth parameter

of the potential-well, and r = k)t(a; Atombpackgroundk2 is the distance between the target atom
and it’s closest background atom, i.e. Atompackground- The policy a: is the control actions that we
apply to drive the target atom and guide it to the pre-designated location. More specically, we leta; :=
(ft cosy; frsint)>, where f¢ is the amount of external force that we apply to counter-eect the background

atomic force caused by the LJ potentials, and : is the steering angle that determines the

23

direction of the external force.

To demonstrate how an RL algorithm can be applied to the atomic forge technique, we design a
background atomic structure in Figure 5, where the blue dots show the locations of the background
atoms that can generate shallow potential wells, the yellow dots show the locations of the background
atoms that can generate deep potential wells, and the color bar on the right hand side shows the mapping

from color to LJ potential values. In this example, we consider the moving target atom as the agent in

10 30
8+t ° ° ° 25
6t °
20
4 + °
> 15
2 ° .
0 ° ° ° 10
21 5
B e S
-5 0 5 10
X

Figure 5: Example 2. The true potential parameters on the material surface.

the RL problem, and we choose a pre-designated destination Xgestination = (2; 8)” to be arrived at the
terminal time T = 10. The initial state of the agent is chosen as Xo = (4:75;0:75)>, which is near a
background atom that generates shallow potential well. The cost for the RL problem is dened by
"] #
J(a) = E jfejdt+ F kXi" Xdestinationk2 (33)

0

where F = 50 is the amount of penalty for not being able to arrive at the destination at the terminal time
T, and ' jftjdt is the running cost that measures how much eort (or energy) that we make to move
the agent. The RL problem is to nd an optimal policy a that minimizes the cost J(a). It’s worthy
to point out that such an RL problem is quite challenging since once the target atom is \captured" by
one of the deep potential-well atoms, it needs very large force to drive it out of the potential-well.

We rst use the standard Q-Learning method with -greed exploration (see [21, 27]) to solve the RL
problem described by Eq. (32)-(33). To discretize the original continuous problem, we introduce a
temporal partition with step-size t = 0:2, i.e. Nt = 50, and we introduce a uniform spatial partition with
step-size x = 0:1 in the state space to generate the g-table. The policy approximation for the
g-table is chose as f = 0:2 for discretizing the external force f and = 4 for discretizing the steering

direction .

24

In Figure 6, we show 5 agent performance trajectories following the policy determined by the trained

g-table with 103, 104, 10°, and 108 training episodes in subplots (a), (b), (c), and (d), respectively. We

Target atomic position
—— Atomic trajectories

Target atomic position
——— Atomic trajectories

8 O R . 8 (9] . .

6 . 6

> 4 ﬁé? > 4

3
2 . K%;S\X{

2 2
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
X X
(a) 103 training episodes in Q-Learning (b) 10% training episodes in Q-Learning
10 10

Target atomic position
——%— Atomic trajectories
» . .

s, o m%

o Target atomic position
——— Atomic trajectories

[
®

P "‘\3% ¢
0 . ° . 0 . ° °
2 2
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
X X
(c) 10° training episodes in Q-Learning (d) 10° training episodes in Q-Learning

Figure 6: Example 2. Performance of Q-Learning.

can see from this Q-Learning performance experiment that with 103 training episodes in the Q-Learning
method, the agent could avoid the shallow potential \trap atoms" on the left side, which looks more
promising at beginning but has some deep potential-well atoms as the \barrier" towards the destination
atom (marked by the red diamond). However, with only 103 episodes, the Q-Learning method cannot
generate a suciently trained g-table that guides the agent towards the nal destination. We can also
observe from Figure 6 that with longer and longer training procedures, the agent performance becomes
better and better. With 10° training episodes, one of those 5 agents can nally arrive at Xgestination, and
the other 4 agents also get close to the destination.

To show the advantageous performance of our algorithm, we also solve the RL problem for the

25

atomic-forge technique by using our BAL method. To compare with the Q-Learning method, we use the
same temporal partition, and we introduce the same uniform spatial partition with step-size x = 0:1 to
approximate the state region D¢, at each time t,. Therefore, we approximate the continuous RL
problem Eq. (32)-(33) with the same level of discretization accuracy as the Q-Learning method when
using the BAL method. To explore the environment, we use Q = 100 particles in the direct Iter to
estimate the environment parameter, and we carry out K = 103 episodes in the training procedure. The

initial guess for the potential depth parameter of each atom is chosen as guess = 1. We rst present

10 30
8 ° ° ° -
6+ °
20
4+ °
> 15
2 . °
0 . . . 10
21 5
a4l
5 0 5 10
X

Figure 7: Example 2. The estimated potential parameters on the material surface.

the performance of direct Iter based exploration in Figure 7, where we also use the same color bar as we
used in Figure 5 to demonstrate the estimated potential depth parameter values corresponding to
dierent background atoms. By comparing the estimated environment in Figure 7 with the true atomic
environment in Figure 5, we can see that the environment learned in the BAL method is very similar to
the true environment except for the left-bottom corner. Note that the agent (i.e. the target atom) tries to
move around the atoms with shallow potential-well (blue atoms) to save energy, and the agent does not
have much experience near the left-bottom corner, which makes the left-bottom corner insuciently
explored.

In Figure 8, we present 5 performance trajectories of the agent guided by the trained policy, which
is obtained by the BAL method with 103 training episodes. From this gure, we can see that all 5
agents arrived at the designated target location at the terminal time. We also want to mention that due
to the exploration mechanism in the BAL approach for RL, the agent has good understanding of the
potential-well depths for the atoms near its route towards the destination. On the other hand, since the
agent does not need to move around near the atoms at the left-bottom in the graph, it cannot learn the

potential-well depth parameters very well for those atoms.

26

10

-2

Figure 8: Example 2. Performance of BAL.

®
1

~
T

)
T

o
T

IS
T

L | —%— BAL 102 episodes
—=— aL10® episodes

’ﬁk*
L 4 i*******
—2&— QL 10* episodes Foby,
L QL 105 episodes M‘%*

—#— QL 10° episodes

w

Average distance to the taget
N

o

o
N
IN
oL
™
5

Figure 9: Example 2. Comparison of average distance to the destination.

To further demonstrate the performance comparison between the Q-Learning method and the BAL
method, we calculate the average distance to the destination by letting the agent repeatedly run 100
trajectories, and we present the average distance in Figure 9. We can see from this gure that the BAL
method with 103 training episodes outperforms the Q-Learning method with 103, 104, and 10° training
episodes in terms of the average distance to the destination, and it slightly outperforms the Q-Learning
method with 10° training episodes with a very small margin. The main reason that the BAL would
outperform the temporal-dierence type RL with fewer training episodes is that the gradient process
(with respect to policy) can give us a direction to improve the policy. Therefore, the policy improvementin
the BAL method is more eective.

On the other hand, the criteria for the general performance of the agent is not only the distance
to the designated destination. The consumption of energy for moving the agent, i.e. the running cost

R
OT jfijdt, should also count for the performance. In Figure 10, we present the average running cost of

27

50

—— BAL 10° episodes
—*— QL 10° episodes
—4&— QL 10* episodes WM
5 A
QL 10° episodes ot F
30 | —*— QL 10° episodes =
F

40 -

20 -

Average running cost

Figure 10: Example 2. Comparison of average running costs.

each implementation with respect to time. We can see from this gure that the BAL requires much lower
energy consumption compared with all the Q-Learning implementations { regardless of the distance to

the destination.

4.3. Example 3: Reinforcement learning for continuous maneuvering of a robot in a maze.

In this example, we solve an RL problem for continuous maneuvering of a robot in a 2-dimensional
maze, which is a continuous version of the maze solver problem [5, 30]. We want to use this example to
show the major advantage of the SMP approach over the DPP approach. As an SMP type approach, the
B AL method treats the entire control procedure as a whole task, which allows the RL algorithm to design
the control policy based on the predicted future trajectories of the agent. On the other hand, the DPP
based methods, such like Q-learning, typically balance between the short-term optimal performance and
the possible ultimate goal of the control task, and the design of the policy in the Q-Learning method
does not rely on the comprehensive understanding of the entire environment. As a result, the Q-Learning
designed policy could make the agent stuck in a local dilemma.

To proceed, we consider the following stochastic dynamics that describe the agent state

dx{* =v cos()dt + dw ™,

(
t

dx‘2) =y s (2), (34)
¢ =vsin()dt+ dW'

where Xt = (>§‘1’; }((2))> is the 2-dimensional location of a robot, the policy term a = (v;) controls
the velocity v and the steering action . The goal of the RL task in this example is to let the robot, i.e.
the agent, learn how to arrive at a pre-designated destination X ; at the given terminal time T with the

lowest cost, and the cost function that we aim to minimize during the learning procedure is

Zq
J(a) = E[xkXt Xok,®t+ FkXt Xqka; (35)
0

where F = 20 is a terminal cost constant that denes the amount of penalty for not being able to arrive

28

at the destination X ;at the terminal time T, and RO Tkat Xo kzdtzis the running cost term with an
unknown parameter x. Dierent from the RL problem for the atomic forge technique, in which we

try to learn environment parameters that determine the state dynamics. In this work, as a RL problem
for maze solver, the parameters that represent the unknowns in the environment are in the cost function
J(a) dened in Eq. (35). Moreover, the RL problem that we try to solve in this example is dierent from a
standard maze solver R L problem, in which the environment contains discrete obstacles (that add constant
penalties to the cost if the agent touches them) and barriers (that stop the robot from getting through). In
the RL problem Eq. (34) - (35), we introduce a space-dependent cost parameter x, which does not stop the
agent from getting through, and the cost parameter x will continuously add dierent levels of cost as the
agent moving in the environment. Therefore, stepping into a small region with high cost parameter may
not bring very high cost to the overall cost function J(a). On the other hand, if the agent moves in a
region with a xed cost parameter, the faster the agent moves (or the farther the agent travels in a unit
time) the more cost will be generated due to the accumulated running cost with respect to the distance
that the agent traveled, i.e. kXt Xokz in Eq. (35).

To carry out numerical experiments, we introduce a temporal partition over time interval [0; T] with
T = 20, and we choose the time step-size t = 0:2, i.e. Nt = 100. The diusion coecient in Eq. (34)
is chosen as = 0:05, which can bring relatively large amount of uncertainty to the state process given
the length of the time interval and the time step-size. Also, we introduce a spatial partition to the
environment by letting the x-dimension step-size x = 0:2 and y-dimension step-size y = 0:25, and we
introduce a small base running cost 2% = 0:02 everywhere in the state-space. The initial state of the

agent is chosen as Xo = (5;4)”, and the destination location is X = (5;25)”.

We rst solve the above maze problem by using the Q-Learning method. Apparently, if the parameter «
remains as the small invariant base cost P25 over the entire state space, the Q-Learning method would
quickly converge and provide a policy that guides the agent to arrive at the destination directly. However,
when an unknown high cost obstacle region appears, the maze problem could be more challenging. In
the rst Q-Learning experiment, we put a rectangle region [4:8;5:4] [7;11] in the environment and let the
running cost coecient in the region be x = 20. Then, we train the g-table for 5 10> episodes and
present 30 testing agent trajectories using the trained g-table in Figure 11, where the red diamond

shows the location of the destination X ; , and the background mesh reects the spatial partition for the
state space. We can see from this gure that all the agents know that they should move up towards the
destination. Once they step into the obstacle region, since they are still getting closer to the destination,
the cost (or penalty) in the near future may not be large enough to stop them from moving forward. In
other words, the high penalty of not being able to reach the destination may persuade the agent to
overcome the short-term diculties. However, when the agent accumulates large enough cost as it gets

deeper into the obstacle region, the cost would only increase no matter where the agent goes. Therefore,

29

Figure 11: Example 3. Performance of Q-Learning with a smaller obstacle region in the environment.

we can see from Figure 11 that most agents stop somewhere in the obstacle region. At the same time,
we can also see from the gure that there are still several policy paths that would guide the agent to
avoid the obstacle region, and it’s more likely that those agents can arrive at the designated destination.
To explore more along this direction and study a more challenging scenario for the Q-Learning
method, we increase the size of the obstacle region to [4:6;5:6] [7;13] and still train the g-table for 5
10° episodes. The performance of 30 testing agent trajectories is plotted in Figure 12 (a). From this
gure, we can see more clearly how the agents moved horizontally and tried to move out of the
obstacle region. One agent trajectory on the right hand side actually moved out of the obstacle region.
Unfortunately, as this agent turned back towards the destination, it’s trapped by the obstacle region
again. The only agent that successfully arrived at the destination is plotted by the trajectory on the
left. To further demonstrate the performance of the agent in this experiment, we present 100 agent
testing trajectories in Figure 12 (b). From this gure, we can see that the \successful" policy followed
by the trained g-table is on the left, and only the agents that follow the left-side-policy could arrive at
the destination.
In Figure 13, we design a much more complicated environment with 6 obstacle regions, and each
region has a dierent cost parameter value. Specically, from the right to the left we let , = 5, = 20,
(2= 15, 2 25 , =10, , = 30. The dierent running cost parameter values are presented by the

heights of the obstacle regions in Figure 13. In Figure 14, we show the performance

30

(a) Performance of Q-Learning: 30 agent tra- (b) Performance of Q-Learning: 100 agent
jectories trajectories

Figure 12: Example 2. Performance of Q-Learning with a larger obstacle region in the environment.

iy

L=

2

E 3 ! 25

-
. 0 A
. [10

o 5 v

x & °

Figure 13: Example 3. The 3D view of the true environment of the maze. The heights of the obstacle regions show dierent
cost parameter values.

of the agent with 30 testing trajectories that follow the policy obtained by the Q-Learning method with

510° training episodes. There’s no surprise that the agent cannot nd a path to avoid all the obstacles

31

Fl:-l';:: ZSZIZIZI

Figure 14: Example 3. Performance of Q-Learning in the maze presented in Figure 13.

and arrive at the destination. Although we can conjecture that by training the agent with more and

more episodes, the g-table may eventually be well-trained enough to create some \successful" policies.
However, for such a complicated environment with so many trapping obstacle regions, it would be very

computationally expensive for Q-Learning to nd a path to arrive at the destination.

In the following experiments, we show the success of the BAL method in solving the RL problemEq.
(34) - (35). To implement the BAL method, we use Q = 100 particles to carry out the direct Iter based
parameter estimation for exploration, and we carry out K = 1000 training episodes in the BAL
algorithm. The temporal partition and the spatial partition that we use for the BAL method are the
same as the Q-Learning method. In this experiment, we don’t assume that the agent knows there are
altogether 6 obstacle regions. Instead, we use the direct Iter based exploration technique to estimate the
running cost parameter in every articially partitioned spatial block with partition size x y.

In Figure 15, we rst present the estimated environment learned by the BAL method, where the
background mesh shows all the articially partitioned spatial blocks that determine the size of environ-
ment parameter. We can see by comparing Figure 15 with Figure 13 that the BAL method successfully
recovered the environment, and the estimate for every obstacle region is very accurate { in both thesize
of each obstacle region and the value of each cost parameter. Although we only implemented 1000
training episodes, since the direct Iter updates the estimate for the environment at every time instantin
each training episode, the parameter estimation algorithm has suciently incorporated the agent trial states

into the exploration procedure, and this helps the agent have very good understanding of the

32

—

]‘ I‘ I (i “ I

Figure 15: Example 3. The estimated estimated environment of the maze obtained by the BAL method.

environment.

Figure 16: Example 3. Performance of the BAL method in the maze.

In Figure 16, we present 30 agent trajectories guided by the BAL trained policy with initial state
Xo = (5;4)”, and terminal destination is still chosen as X ;= (5;25)>. We can see from this gure that all
the agent trajectories follow very smooth paths towards the destination, and they all arrived at the

destination at the terminal time.

33

To further demonstrate the performance of the BAL method in this example and show the robustness
of our method, we let the agent start from randomly picked initial states in the spatial area [4; 6] [3; 5],

and we present 30 agent trajectories following the BAL trained policy in Figure 17. We can see from this

Figure 17: Example 3. Performance of the BAL method in the maze with random initial states.

gure that no matter where the agent started, it can always nd the right path towards the destination,

and it can perfectly avoid the obstacle regions.

By comparing the performance of the Q-Learning trained policy with the BAL trained policy from
the above experiments, we can see that the BAL method clearly outperforms the Q-Learning method in

this continuous maze solver RL problem.

5. Conclusions

In this work, we developed a stochastic maximum principle (SMP) approach for solving the rein-
forcement learning (RL) problem in the case that the environment can be parameterized. To explore
the environment, we introduced a direct Iter method as an online parameter estimation method to
learn the environment parameters during the training procedure, and the exploitation task is carried out
through an ecient backward action learning (BAL) algorithm for nding the optimal policy under the SMP
framework. The main advantage of such an SMP approach, compared with dynamic programming
principle (DPP) based methods, is that the gradient of the cost with respect to the control aims to nd the
improvement direction for the control over the entire performance period, which could potentially

provide better overall performance for the long-run. In contrast, the standard temporal dierence (TD)

34

learning methods under the DP P framework, such like Q-Learning, only consider short-term rewards or
penalties, which could ignore possible future opportunities. Especially, like the numerical experiments
presented in Example 4.3, if the environment is carefully designed so that the agent is deeply trapped in
a situation where no short-term strategy can lead it out, any TD learning method will struggle unless it
can consider long-term predictions. However, TD learning with long-term predictions can be very dicult
when the environment is unknown. Although our BAL method also needs to consider long-term
predictions, the direct Iter method can be eectively combined with the BAL algorithm to establish a
comprehensive understanding of the environment, and this allows us to dynamically learn the en-tire
environment while searching for the long-term optimal policy. The major drawback of our BAL method
for solving the RL problem is that we require a parameterization for the environment. But for
applications of RL in science, such like the atomic forge technique, physics knowledge and pre-dened
models are necessary to make the RL problem \physics-informed". In this case, having a parameterized
environment is a reasonable assumption.

Although the BAL outperforms the DPP based RL in reliability, we also acknowledge that with help
of deep learning, the so-called deep RL is potentially capable to exploit the expressive power of neural
networks to handle very large-scale problems. In the future, we plan to adopt deep neural network
techniques in our BAL framework and develop deep learning based BAL to solve high-dimensional

problems.

Acknowledgement

This work is partially supported by U.S. Department of Energy through FASTMath Institute and
Oce of Science, Advanced Scientic Computing Research program under the grant DE-SC0022297. The
second author (FB) would also like to acknowledge the support from U.S. National Science Foundation
through project DMS-2142672. The third author (JY) would like to acknowledge the support from U.S.
National Science Foundation through project DMS-2305475.

References

[1] C. Andrieu, A. Doucet, and R. Holenstein. Particle markov chain monte carlo methods. J. R.

Statist. Soc. B, 72(3):269{342, 2010.

[2] R. Archibald, F. Bao, and X. Tu. A direct Iter method for parameter estimation. J. Comput.
Phys., 398:108871, 17, 2019.

[3] R. Archibald, F. Bao, Y. Cao, and H. Sun. Convergence Analysis for Training Stochastic Neural

Networks via Stochastic Gradient Descent. arXiv preprint arXiv:2212.08924, 2022.

35

[4] R. Archibald, F. Bao, J. Yong, and T. Zhou. An ecient numerical algorithm for solving data

driven feedback control problems. Journal of Scientic Computing, 85(51), 2020.

[5] Bram Bakker. Reinforcement learning with long short-term memory. Advances in neural information

processing systems, 14, 2001.

[6] F. Bao, N. Cogan, A. Dobreva, and R. Paus. Data assimilation of synthetic data as a novel strategy for
predicting disease progression in alopecia areata. Mathematical Medicine and Biology: A Journal of

the IMA, 2021.

[7] Feng Bao, Yanzhao Cao, Amnon Meir, and Weidong Zhao. A rst order scheme for backward

doubly stochastic dierential equations. SIAM/ASA J. Uncertain. Quantif., 4(1):413{445, 2016.

[8] D. Crisan and A. Doucet. A survey of convergence results on particle Itering methods for practi-

tioners. IEEE Trans. Sig. Proc., 50(3):736{746, 2002.

[9] O. Dyck, M. Ziatdinov, S. Jesse, F. Bao, A. Yousefzadi Nobakht, A. Maksov, B.G. Sumpter, R.
Archibald, K.J.H. Law, and S.V. Kalinin. Probing potential energy landscapes via electron-beam-

induced single atom dynamics. Acta Materialia, 203:116508, 2021.

[10] Pierre Yves Glorennec and Lionel Joue. Fuzzy g-learning. In Proceedings of 6th international fuzzy

systems conference, volume 2, pages 659{662. IEEE, 1997.

[11] Bo Gong, Wenbin Liu, Tao Tang, Weidong Zhao, and Tao Zhou. An ecient gradient projection
method for stochastic optimal control problems. SIAM J. Numer. Anal., 55(6):2982{3005, 2017.

[12] N.J Gordon, D.J Salmond, and A.F.M. Smith. Novel approach to nonlinear/non-gaussian bayesian

state estimation. IEE PROCEEDING-F, 140(2):107{113, 1993.

[13] Shixiang Gu, Timothy Lillicrap, llya Sutskever, and Sergey Levine. Continuous deep g-learning
with model-based acceleration. In International conference on machine learning, pages 2829{2838.

PMLR, 2016.
[14] S. Kalinin, A. Borisevich, and S. Jesse. Fire up the atom forge. Nature, 22 November 2016.

[15] P. E. Kloeden and E. Platen. Numerical solution of stochastic dierential equations, volume 23 of

Applications of Mathematics (New York). Springer-Verlag, Berlin, 1992.

[16] Viraj Mehta, Biswajit Paria, Je Schneider, Stefano Ermon, and Willie Neiswanger. An experimen-

tal design perspective on model-based reinforcement learning, 2021.

[17] M. Morzfeld, X. Tu, E. Atkins, and A. J. Chorin. A random map implementation of implicit Iters.
J. Comput. Phys., 231(4):2049{2066, 2012.

36

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

Ali Yousefzadi Nobakht, Ondrej Dyck, David B Lingerfelt, Feng Bao, Maxim Ziatdinov, Artem
Maksov, Bobby G Sumpter, Richard Archibald, and Sergei V Kalinin Stephen Jesse, and Kody JH
Law. Reconstruction of eective potential from statistical analysis of dynamic trajectories. AIP

Advances, 10:065034, 2020.

Jing Peng and Ronald J Williams. Incremental multi-step g-learning. In Machine Learning Pro-

ceedings 1994, pages 226{232. Elsevier, 1994.

Shi Ge Peng. A general stochastic maximum principle for optimal control problems. SIAM J.

Control Optim., 28(4):966{979, 1990.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction second edition:

2014, 2015. 2014.

Gerald Tesauro et al. Temporal dierence learning and td-gammon. Communications of the ACM,

38(3):58{68, 1995.

Michel Tokic and Genther Palm. Value-dierence based exploration: adaptive control between
epsilon-greedy and softmax. In Annual conference on articial intelligence, pages 335{346. Springer,

2011.

Neythen J. Treloar, Nathan Brani, Brian Ingalls, and Chris P. Barnes. Deep reinforcement learning

for optimal experimental design in biology. bioRxiv, 2022.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-

learning. In Proceedings of the AAAI conference on articial intelligence, volume 30, 2016.

Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou. Reinforcement learning in continuous
time and space: A stochastic control approach. Journal of Machine Learning Research, 21(198):1{

34, 2020.
Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279{292, 1992.

Jiongmin Yong and Xun Yu Zhou. Stochastic controls, volume 43 of Applications of Mathematics

(New York). Springer-Verlag, New York, 1999. Hamiltonian systems and HJB equations.
Jianfeng Zhang. A numerical scheme for BSDEs. Ann. Appl. Probab., 14(1):459{488, 2004.

Xiaoping Zhang, Yihao Liu, Dunli Hu, and Lei Liu. A maze robot autonomous navigation method
based on curiosity and reinforcement learning. In The 7th Int. Workshop on Advanced Compu-
tational Intelligence and Intelligent Informatics (IWACIII 2021), Article, number M1-6, page 1,
2021.

37

[31] Weidong Zhao, Yu Fu, and Tao Zhou. New kinds of high-order multistep schemes for coupled
forward backward stochastic dierential equations. SIAM J. Sci. Comput., 36(4):A1731{A1751,
2014.

38

