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Abst rac t

In this paper, we introduce an adaptive kernel method for solving the optimal ltering
problem. The computational framework that we adopt is the Bayesian lter, in which we re-
cursively generate an optimal estimate for the state of a target stochastic dynamical system
based on partial noisy observational data. The mathematical model that we use to formulate the
propagation of the state dynamics is the Fokker-Planck equation, and we introduce an oper-ator
decomposition method to eciently solve the Fokker-Planck equation. An adaptive kernel method
is introduced to adaptively construct Gaussian kernels to approximate the probability
distribution of the target state. Bayesian inference is applied to incorporate the observational
data into the state model simulation. Numerical experiments have been carried out to validate
the performance of our kernel method.
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approximation

1 Intro duct ion

Data assimilation is an important topic in data science. It aims to optimally combine a mathematical
model with observational data. The key mission in data assimilation is the optimal ltering problem, in
which we try to nd the best estimate for the state of a stochastic dynamic model. Such a
stochastic dynamic model is typically in the form of a system of stochastic dierential equations
(SDEs),  and we call it the \state process". In many practical situations, the true value of the state
process is not available, and we can only use partial noisy observations to nd the best estimate for the
state. In the optimal ltering problem, the \best estimate" that we want to nd is dened as the
conditional expectation of the state conditioning on the observations.

When both the state dynamics and the observations are linear, the optimal ltering problem is
a linear ltering problem, which can be analytically solved by the classic Kalman lter [20]. In the
case of nonlinear ltering problem, one needs to derive an approximation for the conditional
probability of the state {  instead of calculating the conditional expectation directly, and we call
this conditional probability the \ltering density". There are two well-known nonlinear ltering
methods, e.g., the Zakai’s approach and the Bayesian lter. The Zakai’s approach formulates the
ltering density as the solution of a parabolic type stochastic partial dierential equation [32], e.g.,
the Zakai equation, then we solve the Zakai equation numerically to obtain an approximation for the
ltering density [5,6,14,34]. The Bayesian lter solves the nonlinear ltering problem in a recursive
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two-step procedure: a prediction step and an update step. In the prediction step, we predict the
ltering density of the state before reception of the observational data. Then, when the observational
data is available in the update step, we let the predicted ltering density be the prior and apply
Bayesian inference to incorporate the observational information into the prediction and obtain an
updated ltering density as the posterior in the Bayesian inference. Besides the Zakai’s approach and
the Bayesian lter, recently we developed a new approach to solve the optimal ltering problem, and we
named this approach the backward S D E  lter [4, 9]. The backward S D E  lter is similar to Zakai’s
approach in the sense that it utilizes a system of dierential equations (e.g., the backward SDEs)  to
analytically propagate the ltering density [3, 8]. At the same time, taking advantage of the S D E
nature, the backward S D E  lter is highly scalable, which can be implemented eciently on parallel
computers.

Among the aforementioned approaches, the Bayesian lter is widely used for solving the nonlinear
ltering problem in practice. The state-of-the-art Bayesian lter methods include the particle lter [1,16]
and the ensemble Kalman lter [12,13]. Both the particle lter and the ensemble Kalman lter use samples
(particles) to create an empirical distribution to describe the predicted ltering density (i.e. the prior)
in the prediction step. In the update step, the particle lter applies Bayesian inference to assign weights
to particles and use weighted particles to represent the updated ltering density ( i.e. the posterior).
On the other hand, the ensemble Kalman lter linearizes the observations and then adopts the
Kalman update in the Kalman lter method to derive an updated ltering density. Since the Kalman
lter is designed for linear problems, in the case that the optimal ltering problem is highly nonlinear, the
ensemble Kalman lter does not provide accurate estimates for the target state [29,30]. The major
drawback of the particle lter is the degeneracy issue [21,27]. When the observational data lies on the
tail of the predicted ltering density, only very few particles will receive high likelihood weights in the
Bayesian inference procedure, which signicantly reduces the eective particle size in the particle lter.

In addition to the methodology of using particles to propagate the state process, another approach
that can transport the probability density forward in time is to solve the Fokker-Planck equation,
which is a parabolic type particle dierential equation (PDE) .  Although the PDE-based Fokker-
Planck approach analytically formulates the propagation of the state model, solving a P D E  in high
dimensional state space is computationally expensive, which makes PDE-based optimal ltering
solvers dicult to be practically applied.

In this work, we will develop a novel kernel method to eciently solve the Fokker-Planck equation, and
the kernel approximated solution for the Fokker-Planck equation will be used as our estimate for the
predicted ltering density in the prediction step. Then, we will adopt Bayesian inference to
incorporate the observational data into the kernel approximated ltering density.

Kernel method recently attracted extensive attentions in machine learning and function approxi-
mation [15,18]. When solving the optimal ltering problem, the target function that we approximate
with kernels is the ltering density, which is a probability density function (PDF) .  In many scenarios in
the optimal ltering problem, the ltering density appears to be a bell-shaped function. This makes
kernel method (especially with Gaussian type kernels) an eective way to construct approx-imations
for the target ltering density [2]. Since optimal ltering is often used to solve practical application
problems in real time, eciency of an optimal ltering method is essential. In this pa-per, we will
introduce an operator decomposition method to decompose P D F  propagation in the Fokker-Planck
equation into a linear component and a nonlinear component. The linear component of propagation
can be analytically derived, and the nonlinear component needs to be carried out numerically.
Numerical solver for the nonlinear component in the Fokker-Planck equation will be formulated as
an optimization problem, which aims to determine kernel parameters that describe the nonlinear
propagation of the ltering density. To  implement the optimization procedure e-ciently, we will
introduce a boosting algorithm [23] to adaptively generate kernels to capture the
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main features of the state distribution. This allows us to use minimum amount of active kernels to
characterize the ltering density, which will be used to estimate the target state.

The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries
that we need to design the PDE-based adaptive kernel method for solving the optimal ltering
problem. Then, we shall give a detailed description for our adaptive kernel method in Section 3.
Numerical examples that validate the eectiveness of the kernel approach in solving the optimal
ltering problem and comparison experiments will be presented in Section 4. Finally, summary and
concluding remarks will be given in Section 5.

2 Prel iminaries

In this section, we provide the preliminaries to formulate our adaptive kernel method for solving the
optimal ltering problem. We shall rst briey introduce the optimal ltering problem. Then, we will
discuss one of the most important optimal ltering approaches, i.e., the Bayesian lter, and we will
describe the mathematical framework of the adaptive kernel method as a Bayesian lter type
approach.

2.1 The optimal ltering problem
In the optimal ltering problem, we consider the following stochastic dynamical system in the form
of a stochastic dierential equation ( S D E )  in the probability space (
; F ; P)

d X t  =  b(t; Xt )dt +  tdWt; (1)

where b : R +  Rd  !  Rd  is the drift coecient,  : R +  !  R d r  is the diusion coecient of the SDE,  W is a
standard r-dimensional Brownian motion under P, and the tdWt term is a standard Itô type
stochastic integral, which brings additive noises to the dynamical model. The d-dimensional
stochastic process X  : =  fX t g t 0  is called the \state process", which represents the state of the
dynamical model. In order to estimate the state of X t  when the true value of X t  is not available, we
collect partial noisy observational data for X t ,  denoted by Yt, which is dened by

Yt =  h(Xt )dt +  dBt ; (2)

where h : Rd  !  R l  is an observation function that measures the state of X t  and B  is another
Brownian motion independent of W with covariance R  at any given time t. The stochastic process Y
is often called the \observation process".

The goal of the optimal ltering problem is to nd the best estimate for ( X t )  given the obser-
vational information Yt ,  where Y t  : =  (Ys; 0  s  t) is the -algebra generated by the observation process Y
, and is a given test function. In mathematics, the best estimate for ( X t )  is dened
by the \optimal lter", denoted by (X t ) ,  which is the conditional expectation of     (X t ) ,  i.e.

~ ( X t )  : =  E[  (Xt )jYt ]: (3)

In this paper, we focus on the case that f  (in the state process) and/or h (in the observation
process) are nonlinear functions. The linear ltering problem is well-solved by the Kalman lter
(except for the extremely high dimensional cases). To  solve the nonlinear optimal ltering problem, the
standard approach aims to estimate the conditional probability of the state, i.e. P (X t jY t ) ,  which is also
called the \ltering density". Then, we can calculate the conditional expectation in Eq. (3) through
the integration formula

Z
E[ (X t ) jY t ]  = (x)P (xjYt )dx:

In what follows, we will introduce the Bayesian lter, which provides a two-step procedure to
estimate the ltering density P ( X t jY t )  recursively.
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2.2 The recursive Bayesian lter
The Bayesian lter recursively estimates the target state X t  on a sequence of discrete time instants 0
=  t1 <  t2 <   ; <  tn <  , and the Bayesian lter framework is composed of two steps: the prediction
step and the update step.

Predict ion step.

Assume that the ltering density p ( X t  jYt  )  is given at time tn. In the prediction step, we
propagate the ltering density from time tn to time tn + 1  without usage of the new observational data
Y t n + 1  , and we want to get the predicted ltering density, i.e. p ( X t n + 1  jY t n  ).

There are three major methods to achieve this goal:
The rst method is designed to nd the predicted ltering density through the following Chapman-

Kolmogorov formula Z
p ( X t n + 1  jY t n  )  = p ( X t n + 1  j X t n  ) p ( X t n  jY t n  ) d X t n  ;

where p ( X t jX t  )  is the transition probability of the state equation (1) that transports the previous
ltering density p ( X t  jYt  )  from tn to tn+1 . The above Chapman-Kolmogorov formula is often
carried out by independent sample simulations, and it’s the primary prediction technique in particle-
based optimal ltering methods, such like the particle lter and the ensemble Kalman lter. As a result
of the particle propagation of the ltering density, one may obtain an empirical representation for the
predicted ltering density.

The second method utilizes the following (time-inverse) backward stochastic dierential equation
( B S D E )  to generate the predicted ltering density:

Z t n + 1        d Z t n + 1

P t n + 1  =  P t n   (Xt )Pt dt  QtdW t; P t n  =  p ( X t n  jY t n  );
n i = 1 n

where X t  is the state process, and the 
R t n + 1  dW t is a backward Itô integral, which is an Itô type

stochastic integral integrated backwards [7, 24]. The solutions of the above B S D E  is a pair (P; Q),
where Q is the martingale representation of P  with respect to W [11]. We refer to [4, 8, 9] for more
details of the B S D E  method.

The third method, which is also the method that we are going to discuss in this paper, describes
the propagation of the ltering density through the following Fokker-Planck equation over the time
interval [tn ; tn+1 ]

@p(x; t) 
=       

X  @ 
bi (x; t)p(x; t)

 
+  

X @2
D i ; j  p(x; t) (4)

i = 1 i i ; j = 1           i         j

with initial condition p(x; tn ) =  p ( X t       =  x jYt  ), where bi  is the i-th component of the drift function b,
and the matrix D  is dened by D  =      >.  As a result, solution p(x; tn +1 ) of the Fokker-Planck equation
(4) gives us the desired predicted ltering density p ( X t n + 1  =  x jY t n  ).

Up date step.

With an approximation for the predicted ltering density (obtained through either one of the
aforementioned method), the Bayesian lter updates the predicted ltering density to the (posterior)
ltering density via the following Bayesian inference formula

p ( X t n + 1  j Y t n + 1  )  =  
p ( X t n + 1  jY t n  )   p(Yt n + 1  j X t n + 1  ) ; (5)

n + 1 n
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(6)

is the likelihood function, and p(Yt jYt  )  in the denominator normalizes the ltering density at
the time instant tn+1 .

Then, we carry out the above prediction-update procedure recursively to propagate the ltering
density p(Xt jYt ) over time.

3 Adapt ive  K e r n e l  Approx imat ion  Approach
In this paper, we solve the Fokker-Planck equation (4) numerically to generate an approximation for
the predicted ltering density p ( X t jYt  ), and we apply the Bayesian inference (5) to calculate the
estimated (posterior) ltering density p ( X t jYt ). In what follows, we shall give detailed discus-
sions on the computational framework that we construct to apply the adaptive kernel approximation
method to solve the optimal ltering problem.

3.1 Prediction through Fokker-Planck equation

For convenience of presentation, we denote

Lb;pt  : =    
i = 1  

@xi
 
bi (x; t)p(x; t)

 
+  

i ; j = 1  
@xi@xj 

D i ; j  p(x; t);

and we call L b ;  the the Fokker-Planck operator in this paper. The Prediction step in our adaptive
kernel approximation approach will focus on deriving a numerical solver for the Fokker-Planck
equation

@p(x; t) 
=  Lb;p; (7)

and the numerical solution to Eq. (7) will be our approximation to the predicted ltering density,
which will be combined with the likelihood function to generate an estimated posterior ltering
density.

Numerical methods for solving parabolic type PDEs,  such like the Fokker-Planck equation, have
been extensively studied [10, 17, 22, 31].     However, when the dimension of the problem is high,
solving Eq. (7) becomes an extremely expensive computational task [33]. The primary challenge in
obtaining numerical solutions to the Fokker-Planck equation is how to eciently and eectively
implement spatial dimensional approximation. Traditional mesh-based numerical methods, such like
nite dierence methods and nite element methods typically utilize polynomial approximations to
describe solutions of the equation. However, due to the so-called \curse of dimensionality", the
computational cost of solving the Fokker-Planck equation increases exponentially as the dimension of
the problem increases.

In this work, we adopt the following kernel approximation scheme to approximate the solution
of the Fokker-Planck equation

K

p(x; tn ) k (x); (8)
k = 1

where K  is the total number of kernels, and

n (x )  : =  ! n  exp       
2 

 ( x       k ) > ( k )  1 (x      k ) (9)
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is a Gaussian type kernel function, which is parameterized by weight ! k ,  mean k  and covariance
matrix k . Numerical analysis results have been derived to verify that the kernel approximation
scheme (8) is capable of generating accurate approximations to wide range of function when the
number of kernels K  is suciently large [19, 26, 28]. The reason that we pick Gaussian type kernels to
approximate the target function p is that p is the ltering density, which describes a conditional
probability distribution. In many situations in the optimal ltering problem, the ltering density is a
bell-shaped function, which can be eectively approximated by Gaussian type functions.

Then, assuming that we have a kernel approximation pn for the ltering density p ( X t  jYt  ), we
introduce the following temporal discretization scheme to solve the Fokker-Planck equation

p~n+1 =  pn +  Lb ;pn   tn; (10)

where tn : =  tn + 1    tn is the time step-size, and p~n+1 is a kernel approximation for the predicted
ltering density p ( X t Y t  ). Given kernels f k g K for the approximated ltering density p~n and
the approximation scheme

K

pn : = k (x); (11)
k = 1

we can rewrite Eq. (10) as

K  K

p~n+1 = k (x)  +  tn  L b ; n (x )  ; (12)
k = 1                                                          k = 1

and we let

p~n+1 : =  
X

n + 1 ;
k = 1

where f k g K is a set of kernels that approximates p~n+1 . We can see from the temporal dis-
cretization scheme (12) that obtaining an approximation p~n+1 for the predicted ltering density
p ( X t Y t  )  is equivalent to nding parameters for kernels f k g K       .     Note that the kernels
f k g k = 1  on the right hand side of Eq. (12) are Gaussian (as introduced in Eq. (9)). Hence the

Fokker-Planck operator part, i.e. L b ; k = 1  n (x )      can be derived analytically. In this way, we
transfer the computational cost of solving the Fokker-Planck equation from high dimensional spatial
approximation to solving an optimization problem for kernel parameters.

Since the target function for kernel approximation is a P D F ,  a relatively small number of Gaussian
kernels may be sucient to provide a reasonable description for the ltering density. On the other hand,
solving the Fokker-Planck equation through Eq. (12) suers from the stability issue. When values of
the drift function b in the state equation Eq. (1) are large (or the time step-size tn is large), the
drift term will generate a strong force that pushes the ltering density far from its current location.
However, due to exponential decay of Gaussian tails, which would typically cause local behaviors of
Gaussian kernels, the ltering density approximated by the kernel approximation scheme (11) can only
be transported to a limited distance. This can make our method dicult to track targets driven by
state equations with large drift terms.

In the following subsection, we shall introduce an operator decomposition method to alleviate
the above stability issue.

3.2 Operator decomposition
The central idea of our operator decomposition method is to divide the Fokker-Planck operator into

a drift operator and a diusion operator. Then, we further decompose the drift operator into a
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linear component and a nonlinear component, and we provide analytical and numerical methods to
characterize the linear component and the nonlinear component separately.

Before we introduce our decomposition strategy, we would like to point out the following facts
of the Fokker-Planck operator:

Fac t  1. Given a P D F  p, in the case that the diusion coecient  does not contain state X ,  we have
Lb ;p =  Lb;0 p +  L0;p:

Fac t  2. The Fokker-Planck operator L b ;  is linear, i.e., for two constants a, b and two P D F s  p, q,
we have

Lb;[ap +  bq] =  aLb;p +  bLb;q:

Therefore, the kernel approximated ltering density under the Fokker-Planck operator can be written
as

Lb ;pn  =  
X

L b ; n ( x ) ;  k = 1

and the right hand side of Eq. (12) becomes

L K K  
k (x)  +  tn L b ;

k (x )  = n (x )  +  tn  L b ;
k (x )  : (13)

k = 1                                          k = 1                                       k = 1

The linearity of the Fokker-Planck operator allows us to discuss the propagation of each Gaussian
kernel separately.

In light of Fac t  1, we can handle the drift term rst and then incorporate diusion into the
state propagation. Fac t  2 allows us to discuss state propagation kernel-by-kernel when necessary.

In this work, instead of deriving the operator decomposition method directly under the numerical
P D E  framework, we rst switch back to the state equation, and we consider the following Euler-
Maruyama scheme that propagates each kernel n  through the state equation

X n + 1  =  X n  +  b(tn ; Xn )tn  +  t n  Wt n  ; k =  1; 2;  ; K ; (14)

where the initial state X k   k , i.e. X k  follows the distribution of the k-th Gaussian kernel, and Wt

: =  Wt   Wt       N (0; tn  Id ). In this way, by combining distributions for f X k g K

obtained through the discretized S D E  scheme (14), we get a description for the predicted ltering
density, which can also be considered as an approximation for the right hand side of Eq. (13).

To  address the stability issue through operator decomposition and to transport Gaussian kernels
eectively to the next time step, we introduce a linear approximation to the (nonlinear) drift function,
and we denote it by b L ( t n ; X k )  : =  A X k  +  , where A  2  Rdd and  2  Rd . The linear operator b L  will be
determined as the best linear approximation to b in the sense of least square. In other words, we aim
to nd A  and  that will minimize the mean square error between the original drift function b and the
linear approximation bL ,  i.e.

min E b(tn ; X k )      ( A X k  +  ) : (15)

To  maintain the nonlinearity of the state dynamics, we introduce a residual function bN  (tn ; X k )  : =
b(tn ; X k )    b L ( t n ; X k )  that models the nonlinear component of b. Hence, the drift function is de-
composed into a linear component b L  and a nonlinear component b N  , i.e., b(tn ; X k )  =  b L ( t n ; X k )  +
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b N  (tn ; X k ),  and the Euler-Maruyama scheme for the state equation can be interpreted as
X n + 1  =  X n  +  

 
b L ( t n ; X n )  +  bN  (tn ; Xn )tn  +  Wt n  :

In what follows, we will introduce a three-step operator decomposition procedure to compute the
predicted ltering density p~n+1 .

In the rst step, we only transport the ltering density via the linear component bL .  Specically, we
implement the following scheme

X n + 1  : = X k  +  b L (tn ; X k )t n

= ( A t n  +  I ) X n  +  tn

to propagate the ltering density at the time step tn, and we let

T ( X n )  : =  (Atn  +  I ) X n  +  tn

(16)

be the operator that formulates the linear component of the drift function, i.e. X k ; L  =  T (X k ) .  Note
that a linear function will map a Gaussian distribution to a Gaussian distribution. Since X n  follows a
Gaussian distribution, X n + 1  will also follow a Gaussian distribution, which can be determined by the
linear operator T (), and we denote the distribution for X n + 1  by pn +1 .

In the second step, we incorporate the nonlinear component b N  of the drift function to the
ltering density so that both the linear and the nonlinear components are considered in the ltering

density propagation. Since b N  does not linearly propagates X n + 1 ,  we can not derive a Gaussian
kernel directly from p k ; L      to obtain a kernel that describes the nonlinear component of the drift. In
order to derive a kernel approximation for the predicted ltering density, which have considered the
nonlinear component of the drift, we dene an operator

b N ; T  ( t n ; X n + 1 )  : =  b N  (tn; T  1 ( X n + 1 ) )  =  b N  (tn ; X k ):

Then, with Gaussian distributions f p k ; L  g K        that describe random variables f X k ; L  g K        (introduced
in Eq. (16)), we introduce the following P D E  type solver to calculate a distribution p̂ n+1 dened by

K  
p̂ n+1 = p n + 1  +  L b N ; T  ;0 pn + 1 tn      ; (17)

k = 1

where L b N ; T  ;0 is a Fokker-Planck operator with drift bN ; T  , and the diusion  is chosen as 0. The P D F
p̂ n+1 on the left hand side of Eq. (17) is an approximation for the predicted ltering density before
incorporation of the diusion term, and we use kernel approximation scheme to represent p̂ n+1 , i.e.

K

p̂ n+1 = n + 1 (x) ; (18)
k = 1

where f n + 1 g k = 1  is a set of Gaussian kernels, and we will introduce the procedure to determine
parameters for f n + 1 g k = 1  in the next subsection.

Finally, in the third step we add diusion back to the predicted ltering density. Since we assume that
the state dynamics are perturbed by additive noises in this work, for each Gaussian kernel n + 1  that
approximates p̂ n+1 in Eq. (18), we can simply introduce the extra diusion information by adding tn t n

>  to the covariance of n + 1  and get a kernel n + 1  to approximate the predicted
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ltering density at time stage tn +1 . As a result, we obtain the kernel approximation for the predicted
ltering density as follows

p~n+1 =  
X

n + 1 : (19)
k = 1

In the above three-step procedure, we can see that the rst step and the third step can be
implemented analytically, and the second step incorporates the nonlinear behavior of the dynamical
model, which needs an optimization procedure to determine kernel parameters. In what follows, we
will introduce an adaptive boosting algorithm to achieve this goal.

3.3 Adaptive boosting algorithm for kernel training
Recall that each kernel in Eq. (18) is Gaussian and has the expression

n + 1 ( x )  =  !̂ n + 1  exp       
2 

 ( x       ̂ n + 1 ) > ( n + 1 )  1 (x      ̂ n + 1 )  :

Our optimization procedure aims to nd kernel parameters f ( !̂ n + 1 ; n + 1 ; ^ n + 1 )g K  
1 so that the left

hand side of Eq. (17), which is determined by f n + 1g K       , will be equal to the right hand side, which
is dened by the linear transformed Gaussian distributions f p k ; L  gk =1 . We denote

gn + 1  : =  
X

p n + 1  +  L b N ; T  ;0 p n + 1   tn (20)
k = 1

for convenience of presentation. Since f p k ; L  g K are Gaussian functions, gn + 1  dened in Eq. (20)
can be derived analytically.

In this work, instead of nding all the kernel parameters at the same time by solving a large scale
optimization problem, we adopt the so-called \boosting algorithm", which sequentially minimizes
the approximation error. Specically, we introduce the Boosting Algorithm in Table 1 to determine the
parameter set f ( !̂ n + 1 ; n + 1 ; ^ n + 1 )g k = 1 .

The boosting algorithm introduced in Table 1 will adaptively generate kernels, and this adaptive
kernel approximation procedure allows us to capture more important features (modes) in the ltering
density. Also, the Gaussian tails of the kernels can provide reasonable description for low density
regions in the ltering density, which will make our method stable.

3.4 Bayesian update for ltering density
To  incorporate the observational information to the predicted ltering density, we apply Bayesian
inference (5). Since the predicted ltering density is described by multiple kernels, we apply Bayesian
inference to each Gaussian kernel and obtain a kernel for the posterior ltering density. Specically,
for each state point x, let

pk;post (x) =  n + 1 (x )p(Yt n + 1  x);

where p(Yt n + 1  x )  is the likelihood function introduced in Eq. (6) with a given state position X t n + 1  =  x
and  is a Gaussian kernel in Eq. (19) that approximates the predicted ltering density p~n+1 . In this
way, the entire posterior ltering density is approximated by

post
X  

k;post
n + 1                        n + 1

k = 1

(21)
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^ k ^ k

k

^ k

^ k

n + 1

n + 1

K
k

n + 1

n + 1

n + 1 k = 1
k K

Table 1: Boosting Algorithm

Algor i thm 1: Boosting algorithm to adaptively generate kernels.

Initialize the kernel approximation as p̂ (x )  =  0; dene target function g through
Eq. (20); set global approximation tolerance tol.

while k =  1; 2;  ; K ,  do

- Generate M global state samples, denoted by f x̂ n + 1 g m = 1 ,  from the kernel approxi-
mated distribution based on fp n + 1 gk = 1 .

- Evaluate the approximation error on each state sample and calculate e : =  g(x̂  )
p̂ n +1 (x̂ m ) for m =  1; 2;  ; M.

- Compute global error E g  =  
M 

X
( e m ) 2 .  If E g  <  tol, break and set weights for other

kernels 0, i.e. ! j  =  0, k <  j   K .  Otherwise, continue.

- Locate the state sample with the largest approximation error, i.e. nd m s.t. e  =
maxm em.

- Generate a Gaussian kernel n + 1  centered at the state sample that suers from the
largest error, i.e. choose the initial guess for the mean as ^ n + 1  =  x̂ m  .

- Solve a local optimization problem to determine the weight and covariance for the
kernel n + 1  by comparing values of n + 1  (treated as the left hand side of Eq. (17))
with gn + 1  on locally generated state samples near the kernel center ^n +1 .

- Add the locally trained kernel n + 1  to kernel approximation p̂ n+1 , i.e. let p̂ n+1 =
p̂ n+1 +  n + 1 .

end while

Note that each kernel pk;post that we use to approximate the overall posterior ltering density
ppost may not be Gaussian due to the nonlinear observation. To  derive an approximation by Gaussian
kernels, we train a new set of Gaussian kernels to describe the posterior ltering density. Specically, we
introduce a kernel approximation

p n + 1  : =  
X

n + 1 ;
k = 1

and we let p n + 1  be an approximation to the approximated posterior ltering density ppost, i.e. p n + 1

ppost. To  this end, we adopt the same Boosting Algorithm framework introduced in Table 1 again to
adaptively generate Gaussian kernels f k g K       , and a normalization procedure will be
implemented to f n + 1 g k = 1  to make p n + 1  a P D F .

3.5 Summary of the algorithm

In this subsection, we summarize our algorithm in Table 2.
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0
K

n + 1 k = 1

^
n + 1 k = 1

tn
^ k

~
n + 1

n + 1

k K
n + 1

n + 1 k = 1

Table 2: Summary of the algorithm

Algor i thm 2: Algorithm of the adaptive kernel method.

Initialize the ltering density p0 with kernels f k gk = 1 .

Fo r  n =  0; 1; 2; 3;

 Prediction Step:

- Generate f p k ; L  g K through Eq. (16) to incorporate the linear component
(determined through Eq. (15) )  of the drift function.

- Use the Boosting Algorithm described in Table 1 to incorporate the nonlinear
component of the drift function and generate Gaussian kernels f k g K

from gn + 1  (dened in Eq. (20) )  to approximate p̂ n+1 .

- Add tn t n  
>  to the covariance of each Gaussian kernel n + 1  to incorporate state

diusion and get the kernel k to approximate the predicted ltering
density p~n+1 via Eq. (19).

 Update Step

- Carry out Bayesian inference to generate a posterior ltering density ppost de-
ned in Eq. (21).

- Carry out Boosting Algorithm in Table 1 again to obtain a Gaussian kernel
approximation p n + 1  =  f n + 1 g k = 1  to approxiomate ppost.

- Normalize f k g K to make p n + 1  a P D F ,  and p n + 1  is the estimated ltering
density at time stage n +  1.

end

4 Numerical  Exp er iments

In this section, we present three numerical examples to demonstrate the performance of our adaptive
kernel method for solving the optimal ltering problem. We rst present a demonstration example to
show how our adaptive kernel approximation method will adaptively capture the main features of the
ltering density in state propagation. In the second example, we solve a benchmark optimal ltering
problem, i.e. the bearing-only tracking problem, and we compare our method with the particle lter
method [25] and the ensemble Kalman lter method [13] to show accuracy and eciency of the
adaptive kernel method. Then, in Example 3 we solve a high dimensional Lorenz-96 tracking
problem, which is a well-known challenging optimal ltering problem due to the chaotic behavior of the
state model.

4.1 Example 1: Demonstration for adaptive kernel approximation.
We use the rst numerical example to demonstrate the performance of our adaptive kernel approxi-
mation method in propagating state dynamics. Instead of solving an entire optimal ltering problem, we
only present the eectiveness of our method in transporting a probability distribution through the
Fokker-Planck equation, and the primary computational eort of our approach lies on using kernels
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to approximate the Fokker-Planck operator. Since the ltering density is approximated by Gaussian
kernels, Gaussian type diusions can be directly added to the target distribution. Therefore, in this
example we shall focus on the drift part of the Fokker-Planck operator, i.e. Lb;0 , and the drift term is
dened by the following 2D function: 

b(x1 ; x2 ) = 2      +  3     2 x
1      +   2 :

For convenience of presentation, we consider state propagation in time with step-size be 1. Then,
we choose the initial distribution as a standard Gaussian distribution, denoted by , and we apply
the drift operator Lb ;0  to . In this way, the target function that we try to use our kernel method
to approximate is F  : =   +  Lb;0 . In Figure 1, we present the original target function F  driven by
the operator Lb ;0  on left, and the linear approximation for function F  obtained by the linear
transportation Eq. (16) is presented on the right. From this gure, we can see that the linear
component can roughly capture the main feature of the target function.

Figure 1: Example 1. Linear component in describing the Fokker-Planck operator

To  demonstrate the performance of kernel method in approximating the nonlinear component
(described in Eq. (17)) of the operator and the eectiveness of the adaptive boosting algorithm, we
compare the analytically derived true nonlinear component of the function with the approximated
nonlinear component in Figure 2. The subplot on the left shows the true function that we aim
to approximate, and the subplot on the right is our approximated function by using the boosting
algorithm introduced in Table 1. We use blue-to-red colors to represent function values, and we can
see from this gure that the boosting algorithm can accurately capture the true function, which
describes the nonlinear component of the Fokker-Planck operator.

To  show more details of the performance of the adaptive kernel construction in the boosting
algorithm, we present the approximation errors after tting up to 6 kernels in Figure 3. From this
gure, we can see that by using only one kernel to describe the nonlinear component of the Fokker-
Planck operator, the main part of the function in the region [ 1; 0]  [ 1; 1] (presented in the left
subplot in Figure 2) is well tted, and two remaining features that represent two tails in the function
(plotted in Figure 2) need to be tted. Then, by adding the second and the third kernels, we can
successfully approximate those two tails and get low overall tting errors. As more and more kernels are
added, we get rid of higher error regions one-by-one. As a result, we obtain more and more
accurate approximations to the nonlinear component of the drift operator.
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Figure 2: Example 1. Accuracy of approximation obtained by the boosting algorithm.

Figure 3: Example 1. Performance of the adaptive boosting algorithm in reducing approximation
errors in tting the nonlinear component of the operator.

4.2 Example 2: Bearing-only tracking
In this example, we solve the bearing-only tracking problem, which is a benchmark optimal ltering
problem in practice. Specically, we aim to track a moving target driven by the following state
dynamics

v1 0 0 0 dW 1

d X t  =  4
v27

dt +  
6  0 2 0 0 

5 4
dW 2

5 ; (22)

0 0       0 0      4 dW 4
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of the i-th detector.

where X t  =  [x1; x2; v1; v2]>, [x1 ; x2 ]> describes the 2D location of the target, and v1, v2 are
the velocities in x1 and x2 directions, respectively. Wt =  [W 1; W 2; W 3; W 4] is a 4D Brownian
motion that brings uncertainty to the state model, which is driven by the diusion coecient

0 0 0
6  0 0 0 7
4  0 0 3 0 5

0 0       0      4

In order to estimate the location of the target, we place two detectors on dierent observation
platforms to collect bearing angles as observational data. Specically, the observational data is given by
the following observational function

Yt =  arctan
 x2      xi-platform  +  i ; i  =  1; 2; (23)

t i-platform

where (xi-platform ; xi-platform )> gives the location of the i-th platform, and i  is the observation noise

Figure 4: Example 2. Demonstration of 10 sample trajectories of the target.

In this example, we track the target over the time period t 2  [0; 3] with initial state X 0  =
[1; 3; 10; 6]>, and we let t =  0:01, i.e. we track 300 time steps. The diusion coecient is chosen as 1 =  2

=  0:5, 3 =  4 =  0:3, and we locate two platforms at (2; 6)> and (10; 12)> , respectively. To  demonstrate
the stability of our method compared with other state-of-the-art methods, we assume that there’s an
unexpected turn in the target moving direction at the time instant t =  1:2, which would challenge
the robustness of optimal ltering methods. In Figure 4, we plot 10 sample target
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trajectories (by using dierent colors), and we mark the observation platforms with red stars. From this
gure, we can see that the target is designed to move in front of the observation platforms and then it
makes a sharp turn downward.

In Figure 5, we present a comparison experiment, in which we compare the tracking accuracy
between our adaptive kernel method with two state-of-the-art optimal ltering methods, i.e. the
ensemble Kalman lter and the particle lter. To  implement our adaptive kernel method, we use up

Figure 5: Example 2. Comparison of tracking performance in solving the bearing-only tracking
problem.

to 20 kernels to approximate the ltering density, and active kernels are adaptively selected by the
boosting algorithm (described in Table 1). For the ensemble Kalman lter, we choose 50, 2; 000 and
10; 000 realizations of Kalman lter samples to implement this tracking task. In the particle lter, we
use 5000 particles to generate empirical distributions for the ltering density. In the gure, we use the
black curve (marked by stars) to represent a sample of real target trajectory and use other colored
curves to represent the estimates obtained by various optimal ltering methods. The yellow, blue, and
red curves (marked by triangles) are estimates for the target location obtained by using the ensemble
Kalman lter ( E n K F )  with 50, 2; 000, and 10; 000 realizations of Kalman lter samples, respectively. The
green curve (marked by crosses) gives the particle lter ( P F )  estimates (obtained by using 5; 000
particles). The cyan curve (marked by dots) describes the estimates obtained by our adaptive kernel
method.

From this gure, we can see that the E n K F  doesn’t provide accurate estimates for the target
location when the target is right below a detector {  no matter how many realizations of samples we use
in the E n K F .  The poor performance of the E n K F  is caused by the high nonlinearity of obser-
vational data (bearing angles introduced in Eq. (23)) when the target moves in front of detectors. For
the P F ,  we can see that it provides accurate estimates until the sharp turn at the time instant t =
1:2. Then, the P F  loses track of the target due to the degeneracy of particles when trying to adjust
the change of the target location. On the other hand, the kernel method always keeps on track, and
it gives accurate estimates all the time during the tracking period.
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To  further examine the performance of dierent optimal ltering methods in solving the bearing-only
tracking problem (22)-(23), we repeat the above experiment 100 times and calculate the root mean
square errors (RMSEs) of target tracking performance. The log scaled RMSEs of each method with
respect to time are presented in Figure 6. From this gure, we can see that the adaptive kernel method
(cyan curve marked by dots) has the lowest RMSEs, and it can provide good accuracy even after the
sharp turn of the target. The P F  (green curve marked by crosses) has low RMSEs at rst. However, the
errors increase dramatically at the turning point of the target trajectories. On the other hand, the
E n K F  estimates (yellow, blue and red curves marked by triangles) always suer from low accuracy
when the target passes the detectors. But the E n K F  can recover quickly from inaccurate estimates,
which indicates that the E n K F  is a more stable method compared with the P F .

Figure 6: Example 2. Comparison of root mean square errors (RMSEs)  with respect to time.

To  summarize the general performance of each method, we present the accumulated RMSEs (the
combined RMSEs over the tracking period) together with the C PU time of each method (average
over the above 100 repeated tests) in Table 3. The C PU that we use is a AMD Ryzen 5 5600X

Table 3: Performance comparison

Accumulated RMSEs

C P U  time (seconds)

E n K F  50 E n K F  2,000

158:99               134:75

0:32 11

E n K F  10,000 P F  5000

134:87               169:58

56 70

Kernel Method

56:75

50

with 6 core 12 processing threads. We can see from this table that the P F  has the lowest accuracy
with the highest computational cost, which is mainly caused by the degeneracy of particles. The
E n K F  can solve the problem with very low computational cost. However, the accuracy of the E n K F
does not improve much even we use a lot more realizations of Kalman lter samples. The kernel
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learning method, on the other hand, has much lower RMSEs compared with the E n K F  and the P F
with moderate cost.

4.3 Example 3: Lorenz-96 model
To  examine the performance of the adaptive kernel method in solving high dimensional problems,
in this example we solve the Lorenz-96 tracking problem, which is a benchmark high dimensional
optimal ltering problem. The state model is given by the following stochastic dynamical system

x t  =  ( ( x i + 1       x i  2 )x i  1      x i  +  F )dt +  i dW i ; i  =  1; 2;  ; d (24)

where X  =  [x1; x2  ; xd ]>  is the target state. In the Lorenz-96 model (24), we let x  1 =  xd 1, x0

=  xd, x1 =  xd+1 , Wt =  fW 1; W 2  ; W dg is a d-dimensional Brownian motion, and  =  [1; 2  ; d ]> is
the diusion coecient. It is well-known that when F  =  8, the Lorenz-96 model has chaotic behavior,
which makes the corresponding optimal ltering problem very challenging. In this example, we track
the state X  of the Lorenz-96 model over the time period t 2  [0; 3], and we let d =  10. As a commonly
used scenario when tracking the Lorenz-96 model, we simulate the Lorenz-96 model with time step-
size t =  0:001, and we assume that we receive data of the state with time step-size t =  0:1.
Therefore, the Bayesian inference procedure is implemented after every 100 simulation steps. In
other words, we carry out one update step in every 100 predication steps.

Figure 7: Example 3. Comparison of tracking performance in dimensions 1 to 6.

In this example, the observational data that we receive to estimate the state of the Lorenz-96
model are noise perturbed direct state observations in odd dimensions, i.e.

Yt =  [xt ; xt ; x5 ; x7 ; x9 ]> +  t;
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where t   N (0; 1) is a standard Gaussian noise.
In Figure 7, we compare our kernel method with the P F  and the E n K F ,  and we present the

state estimation performance of each method in the rst six dimensions.     In each subplot, the black
curve shows a sample of real target trajectory of the Lorenz-96 model state. The blue curve is the
P F  estimates obtained by using 10; 000 particles to represent the empirical distribution of the state.
The green curve is the E n K F  estimates obtained by using 100 realizations of Kalman lter samples.
The red curve gives the estimates obtained by our kernel method, and we use at most 20 kernels
to approximate the ltering density in the adaptive boosting algorithm when tting the nonlinear
component of the state drift. From this gure, we can see that the E n K F  has comparable estimation
performance to the kernel method due to the linear observations, and the usage of \ensemble
estimation" in the E n K F  can handle the nonlinearity of the state dynamics. On the other hand,
the P F  provides low tracking accuracy. Especially, the long simulation period (without an update)
in this example would cause more severe degeneracy issue since no data can be used to resample the
particles.

To  conrm the comparison result presented in Figure 7, we repeat the above experiment 100
times and present the log scaled RMSEs of each method with respect to time in Figure 8. We can
see from this gure that the P F  has much higher errors compared with the E n K F  and the kernel
method while both the E n K F  and the kernel method have similar RMSEs in this Lorenz-96 tracking
problem.

Figure 8: Example 3. Comparison of RMSEs with respect to time.

5 S u m m a r y  and conclusions

In this paper, we developed an adaptive kernel method to solve the optimal ltering problem. The
main idea of our method is to use a set of Gaussian kernels to approximate the ltering density of a
target dynamical state model. Due to the fact that the ltering density describes a probabilistic
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distribution, Gaussian kernels can eectively characterize the distribution, which is often a bell-
shaped function. Then, an operator decomposition method is introduced to eciently propagate the
state of the model, and adaptive boosting algorithm is applied to adaptively capture important
features of the ltering density.

Three numerical experiments are presented to examine the performance of our kernel method.
In the rst example, we presented the eectiveness of the adaptive kernel method in characterizing
propagation of the ltering density. In the second example and the third example, we compared the
performance of the kernel method with two state-of-the-art methods, i.e. the particle lter and the
ensemble Kalman lter, in solving benchmark optimal ltering problems. Results in our numerical
experiments indicate that our method has high accuracy and high stability advantage compared
with the particle lter, and it outperforms the ensemble Kalman lter when data provide highly
nonlinear state observations.
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