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Abstract

In this paper, we introduce an adaptive kernel method for solving the optimal Itering
problem. The computational framework that we adopt is the Bayesian Iter, in which we re-
cursively generate an optimal estimate for the state of a target stochastic dynamical system
based on partial noisy observational data. The mathematical model that we use to formulate the
propagation of the state dynamics is the Fokker-Planck equation, and we introduce an oper-ator
decomposition method to eciently solve the Fokker-Planck equation. An adaptive kernel method
is introduced to adaptively construct Gaussian kernels to approximate the probability
distribution of the target state. Bayesian inference is applied to incorporate the observational
data into the state model simulation. Numerical experiments have been carried out to validate
the performance of our kernel method.

Keywords: Optimal Itering problem, Bayesian inference, partial dierential equation, kernel
approximation

1 Introduction

Data assimilation is an important topic in data science. It aims to optimally combine a mathematical
model with observational data. The key mission in data assimilation is the optimal Itering problem, in
which we try to nd the best estimate for the state of a stochastic dynamic model. Such a
stochastic dynamic model is typically in the form of a system of stochastic dierential equations
(SDEs), and we call it the \state process". In many practical situations, the true value of the state
process is not available, and we can only use partial noisy observations to nd the best estimate for the
state. In the optimal Itering problem, the \best estimate" that we want to nd is dened as the
conditional expectation of the state conditioning on the observations.

When both the state dynamics and the observations are linear, the optimal Itering problem is
a linear Itering problem, which can be analytically solved by the classic Kalman Iter [20]. In the
case of nonlinear Itering problem, one needs to derive an approximation for the conditional
probability of the state { instead of calculating the conditional expectation directly, and we call
this conditional probability the \ltering density". There are two well-known nonlinear ltering
methods, e.g., the Zakai’s approach and the Bayesian lter. The Zakai’s approach formulates the
Itering density as the solution of a parabolic type stochastic partial dierential equation [32], e.g.,
the Zakai equation, then we solve the Zakai equation numerically to obtain an approximation for the
Itering density [5,6,14,34]. The Bayesian lter solves the nonlinear Itering problem in a recursive
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two-step procedure: a prediction step and an update step. In the prediction step, we predict the
Itering density of the state before reception of the observational data. Then, when the observational
data is available in the update step, we let the predicted Itering density be the prior and apply
Bayesian inference to incorporate the observational information into the prediction and obtain an
updated Itering density as the posterior in the Bayesian inference. Besides the Zakai’s approach and
the Bayesian lter, recently we developed a new approach to solve the optimal Itering problem, and we
named this approach the backward SDE Iter [4,9]. The backward SDE Iter is similar to Zakai’s
approach in the sense that it utilizes a system of dierential equations (e.g., the backward SDEs) to
analytically propagate the Itering density [3,8]. At the same time, taking advantage of the SDE
nature, the backward SDE Iter is highly scalable, which can be implemented eciently on parallel
computers.

Among the aforementioned approaches, the Bayesian Iter is widely used for solving the nonlinear
Itering problem in practice. The state-of-the-art Bayesian Iter methods include the particle Iter [1,16]
and the ensemble Kalman Iter [12,13]. Both the particle Iter and the ensemble Kalman Iter use samples
(particles) to create an empirical distribution to describe the predicted Itering density (i.e. the prior)
in the prediction step. In the update step, the particle Iter applies Bayesian inference to assign weights
to particles and use weighted particles to represent the updated Itering density ( i.e. the posterior).
On the other hand, the ensemble Kalman Iter linearizes the observations and then adopts the
Kalman update in the Kalman Iter method to derive an updated ltering density. Since the Kalman
Iter is designed for linear problems, in the case that the optimal Itering problem is highly nonlinear, the
ensemble Kalman lter does not provide accurate estimates for the target state [29,30]. The major
drawback of the particle Iter is the degeneracy issue [21,27]. When the observational data lies on the
tail of the predicted Itering density, only very few particles will receive high likelihood weights in the
Bayesian inference procedure, which signicantly reduces the eective particle size in the particle Iter.

In addition to the methodology of using particles to propagate the state process, another approach
that can transport the probability density forward in time is to solve the Fokker-Planck equation,
which is a parabolic type particle dierential equation (PDE). Although the PDE-based Fokker-
Planck approach analytically formulates the propagation of the state model, solving a PDE in high
dimensional state space is computationally expensive, which makes PDE-based optimal Itering
solvers dicult to be practically applied.

In this work, we will develop a novel kernel method to eciently solve the Fokker-Planck equation, and
the kernel approximated solution for the Fokker-Planck equation will be used as our estimate for the
predicted Itering density in the prediction step. Then, we will adopt Bayesian inference to
incorporate the observational data into the kernel approximated Itering density.

Kernel method recently attracted extensive attentions in machine learning and function approxi-
mation [15,18]. When solving the optimal Itering problem, the target function that we approximate
with kernels is the Itering density, which is a probability density function (PDF). In many scenarios in
the optimal Itering problem, the Itering density appears to be a bell-shaped function. This makes
kernel method (especially with Gaussian type kernels) an eective way to construct approx-imations
for the target Itering density [2]. Since optimal Itering is often used to solve practical application
problems in real time, eciency of an optimal ltering method is essential. In this pa-per, we will
introduce an operator decomposition method to decompose PDF propagation in the Fokker-Planck
equation into a linear component and a nonlinear component. The linear component of propagation
can be analytically derived, and the nonlinear component needs to be carried out numerically.
Numerical solver for the nonlinear component in the Fokker-Planck equation will be formulated as
an optimization problem, which aims to determine kernel parameters that describe the nonlinear
propagation of the ltering density. To implement the optimization procedure e-ciently, we will
introduce a boosting algorithm [23] to adaptively generate kernels to capture the



main features of the state distribution. This allows us to use minimum amount of active kernels to
characterize the Itering density, which will be used to estimate the target state.

The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries
that we need to design the PDE-based adaptive kernel method for solving the optimal ltering
problem. Then, we shall give a detailed description for our adaptive kernel method in Section 3.
Numerical examples that validate the eectiveness of the kernel approach in solving the optimal
Itering problem and comparison experiments will be presented in Section 4. Finally, summary and
concluding remarks will be given in Section 5.

2 Preliminaries

In this section, we provide the preliminaries to formulate our adaptive kernel method for solving the
optimal Itering problem. We shall rst briey introduce the optimal Itering problem. Then, we will
discuss one of the most important optimal Itering approaches, i.e., the Bayesian lter, and we will
describe the mathematical framework of the adaptive kernel method as a Bayesian Iter type
approach.

2.1 The optimal Itering problem

In the optimal Itering problem, we consider the following stochastic dynamical system in the form
of a stochastic dierential equation (SDE) in the probability space (
;F;P)

dXt = b(t; X¢)dt + (dWy; (1)

where b : R* R4 1 RY is the drift coecient, : R* | RY" is the diusion coecient of the SDE, W is a
standard r-dimensional Brownian motion under P, and the {dW: term is a standard It6 type
stochastic integral, which brings additive noises to the dynamical model. The d-dimensional
stochastic process X := fXigto is called the \state process", which represents the state of the
dynamical model. In order to estimate the state of X when the true value of X is not available, we
collect partial noisy observational data for X;, denoted by Y:, which is dened by

Yi = h(Xt)dt+ dBg; (2)

where h : R9 | R! is an observation function that measures the state of X; and B is another
Brownian motion independent of W with covariance R at any given time t. The stochastic process Y
is often called the \observation process".

The goal of the optimal Itering problem is to nd the best estimate for (Xt) given the obser-
vational information Y, where Y: := (Ys; 0 s t) is the -algebra generated by the observation process Y
, and is a given test function. In mathematics, the best estimate for (X:) is dened
by the \optimal Iter", denoted by ~(Xt), which is the conditional expectation of (X¢), i.e.

T(Xe) 1= EL (Xe)jYel: (3)

In this paper, we focus on the case that f (in the state process) and/or h (in the observation
process) are nonlinear functions. The linear Itering problem is well-solved by the Kalman Iter
(except for the extremely high dimensional cases). To solve the nonlinear optimal Itering problem, the
standard approach aims to estimate the conditional probability of the state, i.e. P (XtjYt), whichis also
called the \Itering density". Then, we can calculate the conditional expectation in Eq. (3) through

the integration formula .

E[ (X¢)jYel = (x)P (xjYt)dx:

In what follows, we will introduce the Bayesian Iter, which provides a two-step procedure to
estimate the Itering density P (XtjY¢) recursively.



2.2 The recursive Bayesian lter

The Bayesian Iter recursively estimates the target state X+ on a sequence of discrete time instants 0
= t1 < t2 < ;< tn <, and the Bayesian lter framework is composed of two steps: the prediction
step and the update step.

Prediction step.

Assume that the Itering density p(X: jYt ) is given at time tn. In the prediction step, we
propagate the Itering density from time t, to time t,:+1 without usage of the new observational data
Yt,,,, and we want to get the predicted ltering density, i.e. p(Xt,,,]jYt,)-

There are three major methods to achieve this goal:

The rst method is designed to nd the predicted Itering density through the following Chapman-
Kolmogorov formula Z

P(Xt,1jYen) = P(Xt,. 1 JXe, )P (Xe,jYe, ) d X, ;

where p(Xt ., jXt ) is the transition probability of the state equation (1) that transports the previous
Itering density p(Xt jYt ) from tn to ths1. The above Chapman-Kolmogorov formula is often
carried out by independent sample simulations, and it’s the primary prediction technique in particle-
based optimal ltering methods, such like the particle Iter and the ensemble Kalman lter. As aresult
of the particle propagation of the ltering density, one may obtain an empirical representation for the
predicted ltering density.
The second method utilizes the following (time-inverse) backward stochastic dierential equation

(BSDE) to generate the predicted ltering density:

z thet Xd @t
= (X¢)Pedt Q:dW; Pe, = p(Xt,jYe,);
tn i=1 i tn

Pi,.. = Pt

n

where X: is the state process, and the Rt"t"” dW: is a backward It6 integral, which is an It6 type
stochastic integral integrated backwards [7,24]. The solutions of the above BSDE is a pair (P; Q),
where Q is the martingale representation of P with respect to W [11]. We refer to [4,8,9] for more
details of the BSDE method.

The third method, which is also the method that we are going to discuss in this paper, describes
the propagation of the Itering density through the following Fokker-Planck equation over the time
interval [tn; th+1]

X X e
@p(x;t) _ gbi(x;t)p(xit) +

@t i=1 @)6 i;j=1 @X@)q

Di;j p(x;t) (4)

with initial condition p(x; tn) = p(Xt = xjYt ), where b is the i-th component of the drift function b,
and the matrix D is dened by D = >. As a result, solution p(x; tn+1) of the Fokker-Planck equation
(4) gives us the desired predicted Iterin§ density p(Xt,., = xjYt,)-

Update step.

With an approximation for the predicted Itering density (obtained through either one of the
aforementioned method), the Bayesian Iter updates the predicted Itering density to the (posterior)
Itering density via the following Bayesian inference formula

p(xtn+1thn) p(Ytn+1thn+1)' (5)
p(Ytn+1 thn ) ’

p(th+1thn+1) =



where ,

. Ytn+1 h(xtn+1)
p(Ytn+1Jth+1) = E‘Xp R (6)

is the likelihood function, and p(Y:_ . jY: ) in the denominator normalizes the Itering density at
the time instant tn+1.

Then, we carry out the above prediction-update procedure recursively to propagate the Itering
density p(X¢jYt) over time.

3 Adaptive Kernel Approximation Approach

In this paper, we solve the Fokker-Planck equation (4) numerically to generate an approximation for
the predicted Itering density p(X: _  jYt ), and we apply the Bayesian inference (5) to calculate the
estimated (posterior) Itering density p(Xt _ jYt ). In what follows, we shall give detailed discus-
sions on the computational framework that we construct to apply the adaptive kernel approximation
method to solve the optimal ltering problem.

3.1 Prediction through Fokker-Planck equation

For convenience of presentation, we denote

Lo;pe := i:de @06 1P 1) + i;,-:l)(d@"'@g@m p(x; t);

and we call Lp; the the Fokker-Planck operator in this paper. The Prediction step in our adaptive
kernel approximation approach will focus on deriving a numerical solver for the Fokker-Planck
equation

@p(xt) _

@

and the numerical solution to Eq. (7) will be our approximation to the predicted Itering density,
which will be combined with the likelihood function to generate an estimated posterior ltering
density.

Numerical methods for solving parabolic type PDEs, such like the Fokker-Planck equation, have
been extensively studied [10, 17, 22, 31]. However, when the dimension of the problem is high,
solving Eq. (7) becomes an extremely expensive computational task [33]. The primary challenge in
obtaining numerical solutions to the Fokker-Planck equation is how to eciently and eectively
implement spatial dimensional approximation. Traditional mesh-based numerical methods, such like
nite dierence methods and nite element methods typically utilize polynomial approximations to
describe solutions of the equation. However, due to the so-called \curse of dimensionality", the
computational cost of solving the Fokker-Planck equation increases exponentially as the dimension of
the problem increases.

In this work, we adopt the following kernel approximation scheme to approximate the solution
of the Fokker-Planck equation

Lb;p; (7)

X
p(X; tn) K(x); (8)

k=1

where K is the total number of kernels, and

R O I T B (9)



is a Gaussian type kernel function, which is parameterized by weight Lk, mean r‘j and covariance
matrix X, Numerical analysis results have been derived to verify that the kernel approximation
scheme (8) is capable of generating accurate approximations to wide range of function when the
number of kernels K is suciently large [19,26,28]. The reason that we pick Gaussian type kernels to
approximate the target function p is that p is the Itering density, which describes a conditional
probability distribution. In many situations in the optimal ltering problem, the Itering density is a
bell-shaped function, which can be eectively approximated by Gaussian type functions.
Then, assuming that we have a kernel approximation p, for the Itering density p(Xt jYt ), we

introduce the following temporal discretization scheme to solve the Fokker-Planck equation

Pn+1 = Pn+ Lb;pn ta; (10)

where tn := the1  tn is the time step-size, and p'n+1 is a kernel approximation for the predicted
Itering density p (Xt LY ). Given kernels fk%"kzl for the approximated Itering density p, and
the approximation scheme

X k
Pn i= (x); (11)
k=1
we can rewrite Eq. (10) as
X '
Pae1 = (X) + tn Lo; a (%) (12)
k=1 k=1
and we let
X< ~
Pn+r i = n+ :{(;
k=1

where f"“Mng= is a set of kernels that approximates pn+1. We can see from the temporal dis-
cretization scheme (12) that obtaining an approximation pnh+1 for the predicted Itering density
p(Xt Y: ) is equivalent to nding parameters for kernels f* ~ 1gK_ . Note that the kernels
fk%kllzll on the right hand side of Eq. (12) are Gaussian (as intrcr)]aucgalin Eqg. (9)). Hence the
Fokker-Planck operator part, i.e. Ly; P K4 .(x)  can be derived analytically. In this way, we
transfer the computational cost of solving the Fokker-Planck equation from high dimensional spatial
approximation to solving an optimization problem for kernel parameters.

Since the target function for kernel approximation is a PDF, a relatively small number of Gaussian
kernels may be sucient to provide a reasonable description for the Itering density. On the other hand,
solving the Fokker-Planck equation through Eq. (12) suers from the stability issue. When values of
the drift function b in the state equation Eq. (1) are large (or the time step-size t, is large), the
drift term will generate a strong force that pushes the ltering density far from its current location.
However, due to exponential decay of Gaussian tails, which would typically cause local behaviors of
Gaussian kernels, the Itering density approximated by the kernel approximation scheme (11) can only
be transported to a limited distance. This can make our method dicult to track targets driven by
state equations with large drift terms.

In the following subsection, we shall introduce an operator decomposition method to alleviate
the above stability issue.

3.2 Operator decomposition

The central idea of our operator decomposition method is to divide the Fokker-Planck operator into
a drift operator and a diusion operator. Then, we further decompose the drift operator into a



linear component and a nonlinear component, and we provide analytical and numerical methods to
characterize the linear component and the nonlinear component separately.

Before we introduce our decomposition strategy, we would like to point out the following facts
of the Fokker-Planck operator:

Fact 1. Given a PDF p, in the case that the diusion coecient does not contain state X, we have
Lb;p = Lb;op + Lo;p:

Fact 2. The Fokker-Planck operator Lp; is linear, i.e., for two constants a, b and two PDFs p, q,
we have

Lp;[ap + bg] = alp;p + blp;q:

Therefore, the kernel approximated Itering density under the Fokker-Planck operator can be written
as

X K
Lo;pn = Lb;n(X) k=1
and the right hand side of Eq. (12) becomes
X X X k
(r?() + ta Lb; (Xr) = n(kx) + th Lb; (x) H- (13)
k=1 k=1 k=1

The linearity of the Fokker-Planck operator allows us to discuss the propagation of each Gaussian
kernel separately.

In light of Fact 1, we can handle the drift term rst and then incorporate diusion into the
state propagation. Fact 2 allows us to discuss state propagation kernel-by-kernel when necessary.

In this work, instead of deriving the operator decomposition method directly under the numerical
PDE framework, we rst switch back to the state equation, and we consider the following Euler-
Maruyama scheme that propagates each kernel , fthrough the state equation

XK1= X5+ b(tn; X tn + ¢, Wy, ; k= 1;2; ;K; (14)

where the initial state X¥ ¥, i.e. X* fqllows the distribution of the k-th Gaussian kernel, and W
= Wy Wi, N(O;tn la). In this way, by combining distributions for fX k n+1ng=1
obtained through the discretized SDE scheme (14), we get a description for the predicted Itering
density, which can also be considered as an approximation for the right hand side of Eq. (13).

To address the stability issue through operator decomposition and to transport Gaussian kernels
eectively to the next time step, we introduce a linear approximation to the (nonlinear) drift function,
and we denote it by b (tn; an) = AX kn+ , where A 2 R% and 2 RY. The linear operator b‘ will be
determined as the best linear approximation to b in the sense of least square. In other words, we aim
to nd A and that will minimize the mean square error between the original drift function b and the
linear approximation b, i.e.

n+1

2
min € b(tn; X¥)  (AXK+) : (15)

To maintain the nonlinearity of the state dynamics, we introduce a residual function b (tn; Xnk) 1=
b(tn; X:) bl (tn; X:) that models the nonlinear component of b. Hence, the drift function is de-
composed into a linear component b' and a nonlinear component bV, i.e., b(tn; X';) = b'(tn; X‘:\) +



bN (tn; X‘;), and the Euler-Maruyama scheme for the state equation can be interpreted as
X1 = X+ b5(tn; Xg) + bY (tn; Xy )ta + W,

In what follows, we will introduce a three-step operator decomposition procedure to compute the
predicted ltering density pn+1.

In the rst step, we only transport the Itering density via the linear component b'. Specically, we
implement the following scheme

X5 =X+ b (tn; X )th

16
=(Atn + )X, £"tn (16)

to propagate the Itering density at the time step t,, and we let
T(XX) := (Ata + 1)X, ¥ t,

be the operator that formulates the linear component of the drift function, i.e. X:+; =T (Xr'j). Note

that a linear function will map a Gaussian distribution to a Gaussian distribution. Since X, follows a
Gaussian distribution, X, , ' will also follow a Gaussian distribution, which can be determined by the

linear operator T (), and we denote the distribution for X ,,; By‘'p,,,. "t

In the second step, we incorporate the nonlinear component bN of the drift function to the
Itering density so that both the linear and the nonlinear components are considered in the Itering

density propagation. Since bN does not linearly propagates Xnk,r"lL, we can not derive a Gaussian

kernel directly from pr'firLl to obtain a kernel that describes the nonlinear component of the drift. In
order to derive a kernel approximation for the predicted Itering density, which have considered the
nonlinear component of the drift, we dene an operator

BT (tn; XF3Y) t= bV (t; T T(XK2Y)) = bN (ta; XK):

n+1

Then, with Gaussian distributions fp:iLl gX | that describe random variables f X ';irLl gl , (introduced

in Eq. (16)), we introduce the following PDE type solver to calculate a distribution gn+1 dened by

P+l = ){ Py + Lpnit.o Pkl tn (17)
k=1

where Lpn;:7 .0 is a Fokker-Planck operator with drift bN:T, and the diusion is chosen as 0. The PDF
P'n+1 on the left hand side of Eq. (17) is an approximation for the predicted Itering density before

incorporation of the diusion term, and we use kernel approximation scheme to represent pn+1, i.e.
K

Par1 =y ava(X); (18)
k=1

where f 3% g, K is a set of Gaussian kernels, and we will introduce the procedure to determine

parameters for f\% g, X in the next subsection.

Finally, in the third step we add diusion back to the predicted Itering density. Since we assume that
the state dynamics are perturbed by additive noises in this work, for each Gaussian kernel ,,, that

aBproximates Pn+1 in Eq. (18), we can simply introduce the extra diusion information by adding tn«,
> to the covariancetnof n+1 and get a kernef'k, ; to approximate tRé predicted



Itering density at time stage tn+1. As a result, we obtain the kernel approximation for the predicted
Itering density as follows

Pos1 = o 7E (19)

In the above three-step procedure, we can see that the rst step and the third step can be
implemented analytically, and the second step incorporates the nonlinear behavior of the dynamical
model, which needs an optimization procedure to determine kernel parameters. In what follows, we
will introduce an adaptive boosting algorithm to achieve this goal.

3.3 Adaptive boosting algorithm for kernel training

Recall that each kernel in Eq. (18) is Gaussian and has the expression

1
Ak _ k k k1 k.
(x) = A5 exp T At (e AL

2

Our optimization procedure aims to nd kernel parameters f(#,.%; .15 2.9 1,80 that the left
hand side of Eq. (17), which is determined by f,\agX = Will be equal to the right hand side, which
is dened by the linear transformed Gaussian distributions fpk;nLJrgk:Ll. We denote

X
gn+1 1= P Lonitio pokit ta (20)
k=1

for convenience of presentation. Since fp':‘;nglf=1 are Gaussian functions, gn+1 dened in Eq. (20)
can be derived analytically.

In this work, instead of nding all the kernel parameters at the same time by solving a large scale
optimization problem, we adopt the so-called \boosting algorithm", which sequentially minimizes
the approximation error. Specically, we introduce the Boosting Algorithm in Table 1 to determine the
parameter set f(4,,1;%,1; Ak, 1 )gl . X

The boosting algorithm introduced in Table 1 will adaptively generate kernels, and this adaptive
kernel approximation procedure allows us to capture more important features (modes) in the Itering
density. Also, the Gaussian tails of the kernels can provide reasonable description for low density
regions in the ltering density, which will make our method stable.

3.4 Bayesian update for Itering density

To incorporate the observational information to the predicted Itering density, we apply Bayesian
inference (5). Since the predicted Itering density is described by multiple kernels, we apply Bayesian
inference to each Gaussian kernel and obtain a kernel for the posterior Itering density. Specically,
for each state point x, let

Pt () = A ()P (Ye,.s X);
where p(Y¢,,, x) is the likelihood function introduced in Eq. (6) with a given state position X¢,,, = x
and is~a Gaussian kernel in Eq. (19) that approximates the predicted ltering density p'n+1. In this

way, the entire posterior Itering density is approximated by

X
post k;post
n+1 n+1 (21)

P = k=1p



Table 1: Boosting Algorithm

Algorithm 1: Boosting algorithm to adaptively generate kernels.

Initialize the kernel approximation as #,,,(x) = 0; dene target function g ,, through
Eq. (20); set global approximation tolerance tol.
while k= 1;2; ; K, do

(m)

nr18M_,, from the kernel approxi-

- Generate M global state samples, denoted by f®
mated distribution based on fp':]LngLl.

- Evaluate the approximation error on each state sample and calculate e, := g(%,,)
Pr+1(Rm) form= 1;2; ; M.

XM
- Compute global error Eg = Mi (em)?. If Eg < tol, break and set weights for other

m=1
kernels 0, i.e. !; = 0, k< j K. Otherwise, continue.

- Locate the state sample with the largest approximation error, i.e. nd ms.t. e =
maXxm €m-

- Generate a Gaussian kernel Nk centered at the state sample that suers from the
largest error, i.e. choose the initial guess for the mean as *k,; = ®m.

- Solve a local optimization problem to determine the weight and covariance for the
kernel N by comparing values of |, *f{treated as the left hand side of Eq. (17))
with gn+1 on locally generated state samples near the kernel center A,;. &

- Add the locally trained kernel % to kernel approximation pn.1, i.e. let Pns1 =
Bt + 0k

end while

Note that each kernel pnkf’lc’St that we use to approximate the overall posterior Itering density
post

Pn.1 May not be Gaussian due to the nonlinear observation. To derive an approximation by Gaussian
kernels, we train a new set of Gaussian kernels to describe the posterior ltering density. Specically, we
introduce a kernel approximation

X k
Pn+1 1= 415
k=1

and we let p+1 be an approximation to the approximated posterior Itering density pP°*

post
p

adaptively generate Gaussian kernels f¥
implemented to f,.,q g, to make pn+1 a PDF.

s 138 Pn+1
n+
. To n'cblis end, we adopt the same Boosting Algorithm framework introduced in Table 1 again to

n+1ng—1 , and a normalization procedure will be

3.5 Summary of the algorithm

In this subsection, we summarize our algorithm in Table 2.

10



Table 2: Summary of the algorithm

Algorithm 2: Algorithm of the adaptive kernel method.

Initialize the Itering density po with kernels f*g, 5"
For n= 0;1;2;3;

Prediction Step:

- Generate fpﬁﬂ}lglle through Eq. (16) to incorporate the linear component

(determined through Eq. (15) ) of the drift function.

- Use the Boosting Algorithm described in Table 1 to incorporate the nonlinear
component of the drift function and generate Gaussian kernels fk’\n+1gk'<=1
from gn+1 (dened in Eq. (20) ) to approximate 1.

- Add tne,” tq the covariance of each Gaussian kernel %6 incorporate state

diusion and get the kernel ¥ " .+, to approximate the predicted Itering
density pn+1 via Eq. (19).

Update Step

. . . . . post

- Carry out Bayesian inference to generate a posterior Itering density p™, ,de-
ned in Eq. (21).

- Carry out Boosting Algorithm in Table 1 again to obtain a Gaussian kernel
approximation pn+1 = f,.5 g, X to approxiomate pP°".,

- Normalize X n+1ng:1 to make pn+1 @ PDF, and pn+1 is the estimated Itering
density at time stage n + 1.

end

4 Numerical Experiments

In this section, we present three numerical examples to demonstrate the performance of our adaptive
kernel method for solving the optimal ltering problem. We rst present a demonstration example to
show how our adaptive kernel approximation method will adaptively capture the main features of the
Itering density in state propagation. In the second example, we solve a benchmark optimal Itering
problem, i.e. the bearing-only tracking problem, and we compare our method with the particle Iter
method [25] and the ensemble Kalman Iter method [13] to show accuracy and eciency of the
adaptive kernel method. Then, in Example 3 we solve a high dimensional Lorenz-96 tracking
problem, which is a well-known challenging optimal Itering problem due to the chaotic behavior of the
state model.

4.1 Example 1: Demonstration for adaptive kernel approximation.

We use the rst numerical example to demonstrate the performance of our adaptive kernel approxi-
mation method in propagating state dynamics. Instead of solving an entire optimal Itering problem, we
only present the eectiveness of our method in transporting a probability distribution through the
Fokker-Planck equation, and the primary computational eort of our approach lies on using kernels
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to approximate the Fokker-Planck operator. Since the Itering density is approximated by Gaussian
kernels, Gaussian type diusions can be directly added to the target distribution. Therefore, in this
example we shall focus on the drift part of the Fokker-Planck operator, i.e. Ly;0, and the drift term is
dened by the following 2D function:

b(x1;x2) = 3 + 3 4 Xi t g

For convenience of presentation, we consqder state propagation in time with step-size be 1. Then,
we choose the initial distribution as a standard Gaussian distribution, denoted by , and we apply
the drift operator Lp;0 to . In this way, the target function that we try to use our kernel method
to approximate is F := + Lp;0. In Figure 1, we present the original target function F driven by
the operator Ly;0 on left, and the linear approximation for function F obtained by the linear
transportation Eq. (16) is presented on the right. From this gure, we can see that the linear
component can roughly capture the main feature of the target function.

Total operator value Linear component

* 100 1.00

’ 073 0.75

2 0.50 0.50

1 . 0.25 . 0.25

0 — 0.00 — 0.00
-1 F-0.25 - F-0.25
-2 F-0.50 —0.50
-39 -0.75 - -0.75
-4 T T T T T . ; -1.00 -1.00

Figure 1: Example 1. Linear component in describing the Fokker-Planck operator

To demonstrate the performance of kernel method in approximating the nonlinear component
(described in Eq. (17)) of the operator and the eectiveness of the adaptive boosting algorithm, we
compare the analytically derived true nonlinear component of the function with the approximated
nonlinear component in Figure 2. The subplot on the left shows the true function that we aim
to approximate, and the subplot on the right is our approximated function by using the boosting
algorithm introduced in Table 1. We use blue-to-red colors to represent function values, and we can
see from this gure that the boosting algorithm can accurately capture the true function, which
describes the nonlinear component of the Fokker-Planck operator.

To show more details of the performance of the adaptive kernel construction in the boosting
algorithm, we present the approximation errors after tting up to 6 kernels in Figure 3. From this
gure, we can see that by using only one kernel to describe the nonlinear component of the Fokker-
Planck operator, the main part of the function in the region [ 1;0] [ 1;1] (presented in the left
subplot in Figure 2) is well tted, and two remaining features that represent two tails in the function
(plotted in Figure 2) need to be tted. Then, by adding the second and the third kernels, we can
successfully approximate those two tails and get low overall tting errors. As more and more kernels are
added, we get rid of higher error regions one-by-one. As a result, we obtain more and more
accurate approximations to the nonlinear component of the drift operator.
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True function Kernel approximation

3 0.04
0.03 0.03
24
0.02 0.02
1
0.01 0.01
0+ 0.00 0.00
-0.01 —0.01
~14
~0.02 -0.02
24
~0.03 -0.03
3 . . -0.04
-3 -2 -1 0 1 2 -3 =2 -1 0 1 2

Figure 2: Example 1. Accuracy of approximation obtained by the boosting algorithm.

5 Fitting error after kernel 1 R Fitting error after kernel 2 5 Fitting error after kernel 3
0,012 0,012 0,012
2 0010 2 0010 2 0,010
N L 0008 ! | 0008 ! 0.008
0T —— 0,006 O T —— 0006 O i 0.006
-1 | 0.004 —1 i 0.004 ~1 0.004
-2 0.002 -2 0.002 -2 0.002
-3 +—L0.000 -3 L 0.000 -3 +—L 0.000
-3 -2 -1 0 1 2 3 -3 -2 -1 [ 1 2 3 -3 -2 -1 0 1 2 3
5 Fitting error after kernel 4 R Fitting error after kernel 5 5 Fitting error after kernel 6
0,012 0,012 0,012
2 0010 2 I 0010 2 0,010
N | 0008 ! | 0008 ! ‘ 0.008
0 T i 0.006 0 _ 0006 © — 0.006
-1 0.004 -1 0.004 —1 0.004
-2 0.002 -2 0.002 -2 0.002
-3 +—L0.000 -3 L 0.000 -3 +—L 0.000
-3 -2 -1 0 1 2 3 -3 -2 -1 [ 1 2 3 -3 -2 -1 0 1 2 3

Figure 3: Example 1. Performance of the adaptive boosting algorithm in reducing approximation
errors in tting the nonlinear component of the operator.

4.2 Example 2: Bearing-only tracking

In this example, we solve the bearing-only tracking problem, which is a benchmark optimal ltering
problem in practice. Specically, we aim to track a moving target driven by the following state
dynamics 2 3 2 392 3
0 0 O dW;
gvtg §o > 0 0%8dwgs
= 40 dt + . 054qwis (22)
0 4 th4
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where X; = [xtl;xf;vtl;vtz]>, [xtl;xtz]> describes the 2D location of the target, and vtl, v are
the velocities in x1 and x» directions, respectively. W; = [th;Wtz;Wt3;Wt4] is a 4D Brownian
moticbn that brings unfertainty to the state model, which is driven by the diusion coecient

L, 0 0 0
'_ g 0 5 0 Oé
T 0 0 3 0>

0 0 O0 g4

In order to estimate the location of the target, we place two detectors on dierent observation
platforms to collect bearing angles as observational data. Specically, the observational data is given by
the following observational function

x2  x2
i -platf .
Y{ = arctan w+ i i=1;2; (23)
Xt Xi-platform
where (X, 1atforms X2 platform)” 8ives the location of the i-th platform, and i is the observation noise

of the i-th detector.

target location(10 cases)

12 1 *

101

x2

T T T T

2 4 6 8 10 12 14
x1

Figure 4: Example 2. Demonstration of 10 sample trajectories of the target.

In this example, we track the target over the time period t 2 [0;3] with initial state Xo =
[1;3;10;6]>, and we let t = 0:01, i.e. we track 300 time steps. The diusion coecient is chosen as1 = 2
= 0:5,3 = 4= 0:3, and we locate two platforms at (2; 6)” and (10; 12), respectively. To demonstrate
the stability of our method compared with other state-of-the-art methods, we assume that there’s an
unexpected turn in the target moving direction at the time instant t = 1:2, which would challenge
the robustness of optimal Itering methods. In Figure 4, we plot 10 sample target
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trajectories (by using dierent colors), and we mark the observation platforms with red stars. From this
gure, we can see that the target is designed to move in front of the observation platforms and then it
makes a sharp turn downward.

In Figure 5, we present a comparison experiment, in which we compare the tracking accuracy
between our adaptive kernel method with two state-of-the-art optimal Itering methods, i.e. the
ensemble Kalman Iter and the particle lter. To implement our adaptive kernel method, we use up

Location

—%— Target
EnkF_50

—— EnKF_2000

EnKF_10000

PF_5000

Kernel Method

144

124

10 A

x2

—2‘.5 0‘,0 2j5 5:0 7,‘5 1(;.0 12.5 1.’;,0
x1

Figure 5: Example 2. Comparison of tracking performance in solving the bearing-only tracking
problem.

to 20 kernels to approximate the Itering density, and active kernels are adaptively selected by the
boosting algorithm (described in Table 1). For the ensemble Kalman Iter, we choose 50, 2; 000 and
10; 000 realizations of Kalman Iter samples to implement this tracking task. In the particle Iter, we
use 5000 particles to generate empirical distributions for the Itering density. In the gure, we use the
black curve (marked by stars) to represent a sample of real target trajectory and use other colored
curves to represent the estimates obtained by various optimal Itering methods. The yellow, blue, and
red curves (marked by triangles) are estimates for the target location obtained by using the ensemble
Kalman Iter (EnKF) with 50, 2; 000, and 10; 000 realizations of Kalman Iter samples, respectively. The
green curve (marked by crosses) gives the particle Iter (PF) estimates (obtained by using 5;000
particles). The cyan curve (marked by dots) describes the estimates obtained by our adaptive kernel
method.

From this gure, we can see that the EnKF doesn’t provide accurate estimates for the target
location when the target is right below a detector { no matter how many realizations of samples we use
in the EnKF. The poor performance of the EnKF is caused by the high nonlinearity of obser-
vational data (bearing angles introduced in Eq. (23)) when the target moves in front of detectors. For
the PF, we can see that it provides accurate estimates until the sharp turn at the time instantt =
1:2. Then, the PF loses track of the target due to the degeneracy of particles when trying to adjust
the change of the target location. On the other hand, the kernel method always keeps on track, and
it gives accurate estimates all the time during the tracking period.
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To further examine the performance of dierent optimal Itering methods in solving the bearing-only
tracking problem (22)-(23), we repeat the above experiment 100 times and calculate the root mean
square errors (RMSEs) of target tracking performance. The log scaled RMSEs of each method with
respect to time are presented in Figure 6. From this gure, we can see that the adaptive kernel method
(cyan curve marked by dots) has the lowest RMSEs, and it can provide good accuracy even after the
sharp turn of the target. The PF (green curve marked by crosses) has low RMSEs at rst. However, the
errors increase dramatically at the turning point of the target trajectories. On the other hand, the
EnKF estimates (yellow, blue and red curves marked by triangles) always suer from low accuracy
when the target passes the detectors. But the EnKF can recover quickly from inaccurate estimates,
which indicates that the EnKF is a more stable method compared with the PF.

Location RMSE

EnkF_50
—¥— EnkF_2000
—¥— EnkF_10000

—— PF_5000
Kernel Method

10° 4 y

10-1 4

0.0 0.5 1.0 15 2.0 25 3.0

Figure 6: Example 2. Comparison of root mean square errors (RMSEs) with respect to time.

To summarize the general performance of each method, we present the accumulated RMSEs (the
combined RMSEs over the tracking period) together with the CPU time of each method (average
over the above 100 repeated tests) in Table 3. The CPU that we use is a AMD Ryzen 5 5600X

Table 3: Performance comparison

EnKF 50 | EnKF 2,000 | EnKF 10,000 | PF 5000 | Kernel Method
Accumulated RMSEs 158:99 134:75 134:87 169:58 56:75
CPU time (seconds) 0:32 11 56 70 50

with 6 core 12 processing threads. We can see from this table that the PF has the lowest accuracy
with the highest computational cost, which is mainly caused by the degeneracy of particles. The
EnKF can solve the problem with very low computational cost. However, the accuracy of the EnKF
does not improve much even we use a lot more realizations of Kalman Iter samples. The kernel
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learning method, on the other hand, has much lower RMSEs compared with the EnKF and the PF
with moderate cost.

4.3 Example 3: Lorenz-96 model

To examine the performance of the adaptive kernel method in solving high dimensional problems,
in this example we solve the Lorenz-96 tracking problem, which is a benchmark high dimensional
optimal Itering problem. The state model is given by the following stochastic dynamical system

xb= (Ot xp 2)xp b oxb+ F)dt+ W i= 1,25 5d (24)
where X, = [x};x? ;x9]} is the target state. In the Lorenz-96 model (24), we let x = x¢ I, x°
= x4, xt = x4, W, = fwl; W2 ;WU g is a d-dimensional Brownian motion, and = [};2 ;9] is

the diusion coecient. It is well-known that when F = 8, the Lorenz-96 model has chaotic behavior,
which makes the corresponding optimal Itering problem very challenging. In this example, we track
the state X of the Lorenz-96 model over the time period t 2 [0; 3], and we let d = 10. As a commonly
used scenario when tracking the Lorenz-96 model, we simulate the Lorenz-96 model with time step-
size t = 0:001, and we assume that we receive data of the state with time step-size t = 0:1.
Therefore, the Bayesian inference procedure is implemented after every 100 simulation steps. In
other words, we carry out one update step in every 100 predication steps.

dim 1 dim 3 dim 5
8 64 8
6 4] 6
4
2 41
24
04 —— Target 0+ 21
Y e PF_10000
EnKF_100 24 0+
—4 4 —— Kernel Method
T T T T T T T T T T T T T T -2 T T T T T T
00 05 1.0 15 20 25 3.0 00 05 1.0 15 20 25 3.0 0.0 0.5 1.0 15 20 25 30
dim 2 dim 4 dim 6

Figure 7: Example 3. Comparison of tracking performance in dimensions 1 to 6.

In this example, the observational data that we receive to estimate the state of the Lorenz-96
model are noise perturbed direct state observations in odd dimensions, i.e.

- 1.3.y5.¢7.,971> .
Ye = [xtIXtIXtIXtIXt] +
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where + N(0; 1) is a standard Gaussian noise.

In Figure 7, we compare our kernel method with the PF and the EnKF, and we present the
state estimation performance of each method in the rst six dimensions. In each subplot, the black
curve shows a sample of real target trajectory of the Lorenz-96 model state. The blue curveis the
P F estimates obtained by using 10; 000 particles to represent the empirical distribution of the state.
The green curve is the EnKF estimates obtained by using 100 realizations of Kalman lter samples.
The red curve gives the estimates obtained by our kernel method, and we use at most 20 kernels
to approximate the Itering density in the adaptive boosting algorithm when tting the nonlinear
component of the state drift. From this gure, we can see that the EnKF has comparable estimation
performance to the kernel method due to the linear observations, and the usage of \ensemble
estimation” in the EnKF can handle the nonlinearity of the state dynamics. On the other hand,
the PF provides low tracking accuracy. Especially, the long simulation period (without an update)
in this example would cause more severe degeneracy issue since no data can be used to resample the
particles.

To conrm the comparison result presented in Figure 7, we repeat the above experiment 100
times and present the log scaled RMSEs of each method with respect to time in Figure 8. We can
see from this gure that the PF has much higher errors compared with the EnKF and the kernel
method while both the EnKF and the kernel method have similar RMSEs in this Lorenz-96 tracking
problem.

L96-10d: RMSE

—— PF_10000
—— EnkF_100
—— Kernel Method

10°

RMSE

T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 8: Example 3. Comparison of RMSEs with respect to time.

5 Summary and conclusions
In this paper, we developed an adaptive kernel method to solve the optimal Itering problem. The

main idea of our method is to use a set of Gaussian kernels to approximate the Itering density of a
target dynamical state model. Due to the fact that the Itering density describes a probabilistic
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distribution, Gaussian kernels can eectively characterize the distribution, which is often a bell-
shaped function. Then, an operator decomposition method is introduced to eciently propagate the
state of the model, and adaptive boosting algorithm is applied to adaptively capture important
features of the Itering density.

Three numerical experiments are presented to examine the performance of our kernel method.
In the rst example, we presented the eectiveness of the adaptive kernel method in characterizing
propagation of the ltering density. In the second example and the third example, we compared the
performance of the kernel method with two state-of-the-art methods, i.e. the particle Iter and the
ensemble Kalman lIter, in solving benchmark optimal Itering problems. Results in our numerical
experiments indicate that our method has high accuracy and high stability advantage compared
with the particle Iter, and it outperforms the ensemble Kalman Iter when data provide highly
nonlinear state observations.
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