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ABSTRACT

Modern IoT device manufacturers are taking advantage of the man-
aged Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service
(IaaS) IoT clouds (e.g., AWS IoT, Azure IoT) for secure and con-
venient IoT development/deployment. The IoT access control is
achieved by manufacturer-specified, cloud-enforced IoT access poli-
cies (cloud-standard JSON documents, called IoT Policies) stating
which users can access which IoT devices/resources under what
constraints. In this paper, we performed a systematic study on the
security of cloud-based IoT access policies on modern PaaS/IaaS IoT
clouds. Our research shows that the complexity in the IoT semantics
and enforcement logic of the policies leaves tremendous space for
device manufacturers to program a flawed IoT access policy, intro-
ducing convoluted logic flaws which are non-trivial to reason about.
In addition to challenges/mistakes in the design space, it is aston-
ishing to find that mainstream device manufacturers also generally
make critical mistakes in deploying IoT Policies thanks to the flexibil-
ity offered by PaaS/IaaS clouds and the lack of standard practices for
doing so. Our assessment of 36 device manufacturers and 310 open-
source IoT projects highlights the pervasiveness and seriousness of
the problems, which once exploited, can have serious impacts on IoT
users’ security, safety, and privacy. To help manufacturers identify
and easily fix IoT Policy flaws, we introduce P-Verifier, a formal ver-
ification tool that can automatically verify cloud-based IoT Policies.
With evaluated high effectiveness and low performance overhead,
P-Verifier will contribute to elevating security assurance in modern
IoT deployments and access control. We responsibly reported all
findings to affected vendors and fixes were deployed or on the way.

“The first two authors Ze Jin and Luyi Xing are ordered alphabetically.
TCorlresponcling authors: Luyi Xing, Qixu Liu.

This work is licensed under a Creative Commons Attribution-
By No SA NonCommercial-ShareAlike International 4.0 License.

CCS 22, November 7-11, 2022, Los Angeles, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560680

Luyi Xing*

Indiana University Bloomington

Bin Yuan
School of Cyber Science and
Engineering, Huazhong University of
Science and Technology

Yiwei Fang
Institute of Information Engineering,
Chinese Academy of Sciences;
School of Cyber Security, University
of Chinese Academy of Sciences;
Indiana University Bloomington

Qixu Liu®
Institute of Information Engineering,
Chinese Academy of Sciences;
School of Cyber Security, University
of Chinese Academy of Sciences

CCS CONCEPTS

« Security and privacy — Access control; « Software and its
engineering — Formal software verification.

KEYWORDS

10T, Formal Verification, Access Control Policy, Cloud.

ACM Reference Format:

Ze Jin, Luyi Xing, Yiwei Fang, Yan Jia, Bin Yuan, and Qixu Liu. 2022. P-
Verifier: Understanding and Mitigating Security Risks in Cloud-based IoT
Access Policies. In Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS °22), November 7-11, 2022, Los
Angeles, CA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3548606.3560680

1 INTRODUCTION

The Internet of Things (IoT) cloud is one of the key pillars of the
foundation upon which modern IoT systems rest. Newer IoT de-
vices and their manufacturers take advantage of the much-less
studied, third-party, managed Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service (IaaS) IoT cloud services (e.g., AWS IoT
Core [10], Azure IoT Hub [21], and Tuya IoT Cloud [44]), which of-
fload much of the security responsibilities and deployment burden
to the public cloud providers. Such PaaS and/or IaaS IoT clouds (re-
ferred to as 0T clouds in this paper) must trust-manage hundreds of
millions of IoT devices and users, and provide device manufacturers
with reliable and usable tools for secure IoT deployments. In the IoT
cloud systems, compromised security or improper deployments can
cause hazardous and deadly consequences. Despite the importance,
the security of managed third-party IoT clouds was not fully under-
stood [6, 52, 58, 83]. In particular, it is imperative to systematically
explore whether and to what extent their PaaS and IaaS design and
practices effectively help device-manufacturers make secure IoT
development and deployment, which will be studied in this paper.

Cloud-based access policies and IoT access policies. In general,
the convenience of accessing resources in the cloud is made secure
by developer-specified access control policies. A cloud-based access
policy is an expressive specification of what resources can be ac-
cessed, using what actions (e.g., read/write/create), by whom, and
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under what conditions. Cloud providers such as AWS and Azure
generally define a policy language (e.g., in the JSON format, called
IAM policies across all AWS services [37]) that lets developers gov-
ern access to resources in the cloud. A cloud-based IoT access policy
(or IoT Policy for short), taking AWS IoT as an example, inherits
the syntax of the service-agnostic AWS IAM policies and is an ex-
tension of IAM policy in the IoT context. An IoT Policy specifies
which users/clients can access which IoT devices/resources under
what constraints and can specify action/resource types in the IoT
context (e.g., publish an MQTT message — a type of action from
the popular IoT messaging protocol, see § 2).

Prior works [53, 54, 61, 108] studied the misconfiguration of
cloud-based access policies, in particular focusing on AWS IAM poli-
cies [53, 54, 61]. In the meantime, the IoT Policies introduce new chal-
lenges due to the IoT-unique, complicated semantics, syntax, and
constraints (see § 4) and, thus, could not be effectively analyzed by
prior cloud-based policy analysis tools (see the comparison in § 5.2).

Security analyses and attacks. To understand the error space and
real-world impact of flawed IoT Policies, we systematically studied
IoT Policies developed by mainstream device manufacturers on AWS
IoT. By analyzing the policy designs/practices of 36 mainstream
device manufacturers (e.g., Onelink, Belkin, Govee, Netvue) and 310
open-source IoT projects (on GitHub [30]), our study brings to light
the fundamental design challenges and tremendous error space for
device manufacturers to develop secure IoT Policies (see below). The
design challenges/flaws we found also highlight that PaaS and IaaS
IoT cloud providers (e.g., AWS, Azure) generally failed to provide an
IoT infrastructure with necessary tools that easily, and reliably helps
manufacturers secure modern IoT development and deployment.
Our analysis is guided by the theories of strings and automata [8]
and partially automated by P-Verifier, a formal verification tool to
verify cloud-based IoT access policies (see below).

Regarding the design-space challenges, above all, we found that
the semantic gap between IoT contexts and the cloud-general pol-
icy language (e.g., AWS IAM [37]) makes the development of JoT
Policy extremely error-prone (§ 3.1). In particular, the AWS-wide
policy enforcement mechanism can be abstracted as an automaton
model (a finite state acceptor for strings [47]): each policy essen-
tially defines a string-acceptor sa which decides, given an input
string res that describes a resource to access (e.g., an S3 file path,
an IoT device/topic, see § 2), whether or not res is accepted by the
sa, and, thus, the access is allowed. Although such a general en-
forcement model has long been successful in cloud computing, we
find that it fails to soundly restrict IoT resources whose semantics
are more complicated than common resources in cloud computing.
Specifically, in 10T, one string in a request can refer to multiple
IoT resources in the cloud; one IoT resource can be referred to by
multiple strings (§ 4) — we call such multiple strings IoT synonyms
(or ISes for short) of the IoT resource. Without a thorough semantic
analysis of IoT synonyms, we find that it is difficult for IoT device
manufacturers to soundly specify a string-acceptor-based automaton
model (i.e., an IoT Policy) that can fully deny all ISes of an IoT resource
to protect. This has led to serious over-privileges in the IoT policies of
many real vendors (§ 3.1).

Further, our research shows that the logical relations between
IAM policies and IoT Policies, and between AWS IoT’s authorization
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logic and Cognito (the AWS-wide authorization service) are far
more complicated than expected. The actual complexity generally
failed to be understood and properly handled by real-world IoT
vendors/developers, leading to security-critical logic loopholes in
cloud-based IoT access-control policy development (§ 3.2). Also
alarming are the flawed practices of mainstream device manufac-
turers in deploying IoT Policies (§ 3.3). These mistakes are diverse
and non-trivial to avoid in the first place, highlighting the lack of
standard, adequate security practices with cloud-based IoT policy
deployment.

Measurement of impacts. To understand the impact and perva-
siveness of the problems, we studied devices/mobile-apps of 36
IoT manufacturers and 310 open-source AWS-IoT-based projects
from GitHub. 13 IoT vendors were confirmed to have 17 instances
of IoT Policy flaws, affecting at least 3.3 million users. IoT Policies
in 172/310 open-source projects suffered from the flaws we found.
The attack consequences (Appendix Table 1) are serious, impacting
safety, security, and privacy. For example, any users can control all
t2Fi users’ smart grills, with serious danger of fire/safety; any users
can collect all Biobeat users’ sensitive health/medical information
such as blood pressure, height, weight, and age. We reported all
problems to affected vendors and helped them fix the issues.
Logical encoding and automated reasoning for IoT policies.
To help manufacturers detect security flaws in IoT Policies, we de-
signed and implemented P-Verifier, a formal verification tool that
can effectively verify cloud-based IoT access policies (§ 4). P-Verifier
takes IoT Policies as input and develops formal models that seman-
tically, fully represent the policies; the models are encoded with
Satisfiability Modulo Theories (SMT) formulas, and we leverage the
state-of-the-art, off-the-shelf SMT solver Z3 and CVC4 to verify the
formulas with a set of generalized IoT-access properties. P-Verifier
reports counterexamples indicating security flaws in the IoT Policies.
In doing so, P-Verifier addressed a few fundamental, IoT-unique chal-
lenges. In particular, it is difficult to check whether a string-acceptor
model (the cloud-general policy enforcement model) fully denies ac-
cess to an IoT resource without thorough semantic analysis, and it is
difficult to reason about the actually allowed permissions by an IoT
Policy due to the semantic complexity/flexibility of IoT resources
(§ 4). To enable a thorough evaluation, we introduce IoT-Policy
Bench (§ 5.1), a new test suite (with 403 flawed and 303 secure IoT
Policies) that is designed to evaluate IoT Policy analysis tools. With a
thorough evaluation, P-Verifier shows high effectiveness (zero false
positives/negatives) and low performance overhead (see § 4.1).
Contributions. The contributions are outlined as follows:

o New understanding. We performed a new, systematic study on the
security of cloud-based IoT access policies on modern PaaS/IaaS
IoT clouds. Our research brings to light new categories of security-
critical vulnerabilities in the design and development of IoT Policies,
the serious consequences once the vulnerabilities are exploited, and
the fundamental challenges in addressing the problems. The lessons
learned will contribute to more secure design and practices in the
modern, cloud-based IoT development/deployment infrastructure.

o New techniques. Based upon the understanding, we developed a
formal verification tool P-Verifier that can effectively verify cloud-
based IoT Policies. P-Verifier can help IoT manufacturers automati-
cally identify policy flaws, elevating security assurance in modern
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Figure 1: Architecture of cloud-based IoT communication

IoT deployments. We also introduced IoT-Policy Bench, a benchmark
designed to evaluate IoT Policy analysis tools. We open-sourced
P-Verifier and released IoT-Policy Bench [43].

2 THE CLOUD-BASED IOT ACCESS-CONTROL
INFRASTRUCTURE

Architecture of Cloud-based IoT Communication. A cloud-
based IoT system typically includes three components: the IoT cloud,
the IoT device, and the user’s management console (mobile apps in
particular) to control the device, as illustrated in Figure 1. Central to
the system is the cloud that facilitates/mediates the communication
between the device and the app, through which the app sends
control messages (commands) to the device (e.g., to lock a smart
door) and gets information back from the device (e.g., sensor values,
the status of a lock). To protect such interactions, the cloud enforces
security policies specified by the device manufacturer, and decides
whether a user should be allowed to control a device or receive
messages from it.
Message Queuing Telemetry Transport (MQTT). MQTT is ar-
guably the most popular messaging protocol in cloud-based IoT
communication. MQTT leverages a classical publish-subscribe pat-
tern [2]: the client publishes a message to a named topic hosted by
the server, which then relays the message to other clients that sub-
scribed to the topic; a topic is named similar to a file path with mul-
tiple/many levels separated by “/”, such as /[DeviceId]/status.
Figure 2 illustrates the communication. First, the client (a device or
app) connects with the cloud server. An IoT device subscribes to its
unique topic (e.g., /[DeviceId]/cmd) by sending a SUBSCRIBE mes-
sage (including the topic name) to the server. The server maintains
the subscription status. The user’s app can command the device, by
publishing messages with commands (e.g., start or stop) to the topic
the device subscribes to. Also, the device can publish messages (e.g.,
sensor values, activities, status) to its topic that the user app sub-
scribes to. A message can include commands or informational texts.
A client can use MQTT wildcards # (matching any number of
levels in a topic) or + (matching one level) to subscribe to multiple
topics. For example, by subscribing to the topic /a/#, one would
receive messages published to /a/b, /a/c, ..., /a/b/a, /a/b/b, etc.
By subscribing to /a/+, one would receive messages published to
/a/b, /al/c, etc.
AWS IoT Policy. An IoT Policy on AWS inherits the syntax of AWS
IAM policies. An IoT Policy is a JSON document that contains one or
more policy statements (see Figure 3), and is applied to a principle to
make access decisions against the principle’s request (to AWS IoT).
Each statement contains a tuple: (Effect, Action, Resource).

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Connect 10T Cloud Connect
Clientld: Client A Topi Clientld: Client B
opics
Subscribe Subscribe

Deviceld/cmd

Topic: Deviceld/status

Topic: Deviceld/cmd
Publish Publish

E Topic: Deviceld/status X Topic: Deviceld/status
l Publish X Deviceld/status Publish

Topic: Deviceld/cmd Topic: Deviceld/cmd

Figure 2: MQTT-based IoT communication

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"iot:Connect"
”I’Zesource”: "client/${iot:Connection.Thing.ThingName}'
1,
{
"Effect": "Allow",
"Action": "iot:Subscribe",
"Resource": [
"topicfilter/a/*"
1,
{
"Effect": "Allow",
"Action": [
"iot:Publish",
"iot:Receive"
”I’Zesource”: "topic/a/b/*"
}
]
1

Figure 3: An Example of IoT policy

Effect is either Allow or Deny. By default, access to a resource is
denied. Allow statements override the default permissions, and Deny
statements override the permissions granted by Allow statements.
That is, to get access to a resource, there must be an allow statement
that grants the access and no deny statement that revokes that
access. The Action construct specifies the IoT-related action(s) that
are either allowed or denied on the corresponding resource, such
as iot:Publish and iot:Subscribe (or simply referred to as Publish and
Subscribe). The Resource construct specifies the list of IoT resources
to which access is either granted or denied, such as an MQTT topic.
Like any AWS resource, an IoT resource is unique and identified by a
string value. String values can include the wildcard * which matches
any number of characters. AnIoT policy does not include a principal
field, and is assigned to a principal/user by the developers (e.g.,
through the AWS API [18]). When the principal/user makes requests
to AWS-I0T, the cloud enforces the policy against the principal/user.

Considering the potentially huge number of IoT end-users, in-
stead of creating a separate IoT policy (a JSON document) for each
user — AWS IoT supports/recommends a template-style IoT policy
with policy variables (Figure 3). With such an IoT policy, when a
client makes an API request to AWS IoT, the variable values are pop-
ulated, based on which an access decision can be made. In Figure 3,
for example, the variable ${iot:Connection.Thing.ThingName}
will be populated at runtime by AWS IoT to be the user-unique thing
name [14] (similar to the user identity). This template feature can
help device manufacturers avoid hard coding specific thing name
in the IoT policy, and, thus, use the same policy for many/all users.
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3 ERROR SPACE IN CLOUD-BASED IOT
ACCESS POLICIES

To understand the error space and security challenges in cloud-
based IoT deployment, we studied the policy design and practices
of 36 mainstream IoT device manufacturers (e.g., WeMo, Govee,
Netvue) who deploy IoT devices leveraging the AWS IoT. Our sys-
tematic security analysis brings to light the fundamental, general
design challenges and tremendous error space for device manufac-
turers to program/deploy flawed IoT policies. To confirm the weak-
nesses we identified, we purchased 12 real devices of the affected
vendors (or used their mobile apps), and performed end-to-end
and/or proof-of-concept exploits. The exploits would have allowed
unauthorized users in the wild to control target devices or even
completely control all devices of the manufacturer deployed under
the cloud, or stealthily receive private personal information (e.g.,
name, ID, behavior habits, routines, and medical/health data such
as blood pressure, weight, and height, see measurement in § 3.4).
We also thoroughly inspected 310 open-source cloud-based IoT
projects on GitHub and 172 of them have different levels of logic
flaws in their IoT Policies.

Threat model. We consider realistic attack and application scenar-
ios. In particular, the adversary can open user accounts with IoT
device manufacturers and IoT clouds and is capable of collecting and
analyzing network traffic between the IoT cloud, the IoT device, and
the app under his control. On the other hand, he cannot eavesdrop
on or interfere with the communication of other users’ devices and
apps. He can read public (not proprietary) documentation of the IoT
clouds and public protocol specifications. We consider the IoT cloud
infrastructure and systems to be benign (the cloud, management
console, IoT hardware and firmware in the device).

3.1 Design-Space Flaw 1: Semantic Gap in IoT
Access Policies

In general, an access policy on AWS (concerning both IAM policy
and IoT policy) specifies the set of resources that a principle is al-
lowed and denied to access. The IoT policy of Hippokura X MyNavi
(called Hippokura for short, a popular IoT-based medical applica-
tion), for example, specifies that the user cannot subscribe to the
topic with a wildcard xmd/session/#. In a legitimate scenario, the
user will only subscribe to a topic such as xmd/session/[Session
ID] in which the last part in the topic is her confidential session ID
only known by herself or intended users. She can subscribe to such
an MQTT topic to receive private/confidential messages but cannot
subscribe to the wildcard topic which would otherwise effectively
subscribe her to all other users’ topics with different session IDs.
The AWS-general policy enforcement mechanism is that, given
arequest to access a particular resource, abstracted by a string (e.g.,
the MQTT topic xmd/session/# or xmd/session/[a particular
session ID], AWS allows the request if the string matches the
string(s) defined in the allow statement(s) of the policy (notably the
wildcard “*” represents any strings on AWS, see Figure 3) and does
not match the string(s) in the deny statement(s). To facilitate the
reasoning of possible security gaps, we can abstract the AWS policy
enforcement mechanism as an automaton model (i.e., a finite state
acceptor for strings): regarding a type of action (e.g., subscribe),
each policy defines a string-acceptor sa which decides, given an
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input string res that describes a specific resource to access (e.g., an
MOQTT topic), whether or not res is accepted by the sa, and, thus,
whether or not the access is allowed.

Although such a general enforcement model has long been suc-
cessful in cloud computing, our research shows that it cannot
soundly restrict IoT resources whose semantics and expressions are
more complicated than what was understood before with serious
implications to access control. In particular, it is fundamentally
difficult for a string-acceptor-based automaton model to deny all
synonyms of an IoT resource without thorough semantic analysis.
That is, if two inputs/strings share the same/similar semantic (e.g.,
referring to the same MQTT topic), the definition of the automa-
ton sa must be sound to exclude all related synonyms (strings)
that relate to the MQTT topic. Figuring out such synonyms relies
on the context of IoT and cannot be cloud-general. For example,
based on the MQTT protocol, subscribing to the topic xmd/# ef-
fectively subscribes the client to many topics including all under
xmd/session/[any stringl. Without excluding the topic xmd/#
in the policy of Hippokura (using the deny statement), we found that
a malicious user could subscribe to the topic and receive all other
users’ messages under Hippokura. In our experiment, the leaked
messages to an attacker include doctor conversations and personal
information related to the patients (see PoC exploit below).
Difficulties for a policy fix. A sound policy fix can be difficult in
practice for IoT vendors who use AWS IoT. In the above example,
the policy flaw can be difficult for the vendors to notice since the
normal functionalities are not affected — a user normally only ac-
cesses the topic xmd/session/[his/her session ID], which is allowed
by the policy (allow xmd/session/*, deny xmd/session/#). Further,
adding a deny statement for topic xmd/# is insufficient and because
of the highly expressive, flexible syntax for describing the same
IoT resources, a malicious user can alternatively subscribe to # to
actually subscribe to all topics and receive all messages of the doc-
tors/patients under Hippokura (see our PoC exploit below). Actu-
ally, our study shows that the attackers may alternatively subscribe
to xmd/session/+ and potentially lots of other IoT-synonyms to
bypass IoT access control (see § 4.1).

The problem is general and potentially affects many IoT device
manufacturers (see measurement in § 3.4) and other IoT clouds
(see § 5). As also shown in the prior work [102], the leaked
MQTT messages can be highly privacy- and security-sensitive,
including SwitchMate users’ device IDs, private MQTT topics,
device activities, etc., or can be used to infer personal usage habits.
Notably, using the leaked device topics, combing a flaw discussed
in Section 3.3, we found that a malicious user could control (turn
on/off) any SwitchMate switches anytime (Section 3.4).

Further, we found that the policy of Govee smart plugs (Figure 4)
plausibly avoided the problem above although it actually failed
to do so. The policy intends to deny subscription to topics using
MOQTT wildcards (#, +) and only allows subscription to particular,
known MQTT topics — in a format of GD/[MD5 of the device
ID]. Effectively, one cannot subscribe to topics such as GD/# or
GD/+ for subscribing to all/many users’ device topics. However, our
study (detailed in the measurement Section 3.4) shows that such a
policy, although likely carefully crafted, is still unsound and insecure
after more thorough reasoning (see our tool in § 4): the filtering
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of wildcards is incomplete, and a malicious Govee user can still
subscribe to the topic +/ (and effectively subscribes to multiple
topics of Govee such as LWT/, detailed in Appendix § .1).

Notably, due to the potentially huge number of users, it can be ex-
tremely cumbersome for device manufacturers to create/maintain
separate policies for each individual IoT user, and, thus, device
manufacturers commonly develop a unified IoT policy — as also
recommended/supported by AWS IoT [17] — and apply it to many
users. The policy of Hippokura, for example, needs to be permissive
supporting many users (allow xmd/session/*) and thus should ex-
plicitly exclude/deny certain wildcard-topics (xmd/session/#) which
otherwise can subscribe one to other users’ topics.

PoC exploit. We conducted PoC experiments for the above prob-
lems using real devices of SwitchMate and Govee and the app of
Hippokura. We developed a script to connect to their public end-
points on AWS IoT (a7zl8evrsaz7q-ats.iot.us-east-1.amazonaws.com,
agm3wdlqlc3dy-ats.iot.us-east-1.amazonaws.com, and a2qare4ca4-
Imz2-ats.iot.ap-northeast-1.amazonaws.com respectively), just as
their mobile apps could do. We used our own account credentials
(obtained by reverse engineering the apps) to authenticate the con-
nection. Our script could make requests to those endpoints in an
attempt to subscribe to intended topics, just like what real attackers
could do. We confirmed that the subscription to the aforementioned
topics could succeed and stopped the connection immediately with-
out impacts to other parties (see IRB approval, responsible exper-
iment design, and vendor acknowledgment in § 3.4). We reported
all findings to the vendors, discussed the possible consequences,
and helped them fix the issues, which were acknowledged by the
vendors.

(C allow,
action iot:Subscribe,
resource *),

( deny,
action iot:Subscribe,
resource Ck+, *)))

Figure 4: IoT policy of Govee plugs

3.2 Design-Space Flaw 2: Flawed Cooperation
between IAM Policy and IoT Policy

In addition to the challenges with enforcing policies (Flaw 1), our
study shows that the highly-coupled but vaguely defined relations
between IoT policy and the AWS-general IAM policy make the
development of sound IoT access policies even more challenging
with serious real-world implications.

AWS IoT directly leverages two other AWS services, i.e., Cognito
and IAM, to help with authentication and authorization. As out-
lined in Figure 6, an IoT user/app logs in with AWS Cognito; based
on the user identity (called Cognito identity ID) already recorded
by the device manufacturer in an identity pool (Figure 6), Cog-
nito returns to the user/client a Cognito credential (a secret string
such as aws_access_key_id=ASIAR4BOIXWCSZG53UU5), referred
to as cred_authed. As defined by AWS, the identity pool (with
many/multiple identities in the pool) created by the manufacturer
is associated with one (or more) IAM policy (e.g., iam_p1in Figure 6).
The user/client presenting the cred_authed can make API requests
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to any AWS service (e.g., AWS IoT, S3, DynamoDB) as allowed
by the IAM policy. On receiving the request, the target AWS ser-
vice (e.g., AWS IoT, S3) queries Cognito based on the cred_authed,
to obtain the user’s Cognito identity and associated IAM policy,
and based on the service-specific statements in the IAM policy,
enforces the policy by determining whether the particular action
in the request (e.g., s3:ListBucket, iot:Publish, iot:AttachPolicy) is
allowed. Interestingly, unlike common AWS services (e.g., S3) that
only use the IAM policies to authorize an API request, AWS IoT
additionally requires an IoT policy associated with the client. In
particular, a client/principle whose associated IAM policy allows
the “iot:AttachPolicy” action can attach a given IoT policy to a given
Cognito identity, by calling the AWS IoT API attach_policy [18].

Modeling the logical relation between IAM policy and IoT
policy. We observed that both the IAM policy and IoT policy associ-
ated with a client/principle can specify its allowed IoT actions (e.g.,
iot:Subscribe, iot:Publish) and IoT resources (e.g., MQTT topics). Al-
though poorly/not documented, we observed a few logical relations
between a client’s IAM policy and IoT policy: (1) The client must
have a permissive IAM policy to connect to/make API requests with
AWS IoT — the IAM policy should allow IoT-related actions (in con-
trast to those of other AWS services) such as iot:AttachPolicy
and iot:Subscribe. Such a requirement of AWS IoT is likely inher-
ited from all AWS services which generally rely on the AWS-wide
IAM policy evaluation engine to determine whether or not the AWS
service (i.e., AWS IoT here) should process the API requests [61].
(2) For the client to control/interact with an IoT device (by making
requests to AWS IoT, see Figure 6), the specific IoT actions (e.g.,
iot:Publish, iot:Subscribe) [16] and target resources must be
allowed in the IoT policy. (3) By default, an empty IoT policy is
associated with the client, nullifying any allowed actions and re-
sources in IAM policies related to IoT-device controls/interactions
(e.g., iot:Publish, iot:Subscribe) — the security principle of
“fail-safe default” [29]. To model and better reason about the logical
relations between IAM and IoT policies, we abstract the IoT-related
permissions (conceptually meaning the allowed IoT actions such as
iot:Subscribe and resources such as MQTT topics) allowed by
an IAM policy as Pjgm and those allowed by an IoT policy as Pjo;.
The effective IoT-related permissions of a client c is
Pc = Pigm N Piot (1)
Simply put, from the device manufacturer’s perspective, for the
whole IoT application to function despite the complicated IAM/IoT
policy development, (1) an IAM policy must/can be highly permis-
sive, which otherwise prevents the clients from connecting to AWS
IoT or making any IoT related API requests; (2) security is achieved
as long as a proper, restrictive IoT policy is used. Indeed, based on
our study of 36 IoT vendors and 310 open-source GitHub projects,
we found that IoT vendors/developers generally bear the above (or
similar) understanding, by actually defining a highly permissive
IAM policy for IoT users (e.g., using iot:* to allow any IoT APIs
to be called to AWS IoT, see the policy in Figure 5) while striving to
use a restricted, secure IoT policy to achieve secure access control.

What logic can go wrong. However, our research shows that
the logical relations between IAM policy and IoT policy, and be-
tween AWS IoT’s authorization logic and Cognito (the AWS-wide
authorization service) are far more complicated than expected. The
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(C allow,
action iot:*
resource : * ))

Figure 5: An overly permissive IAM policy

actual complexity generally failed to be understood and properly
handled by real-world IoT vendors/developers, leading to security-
critical logic loopholes in cloud-based IoT access-control policy
development.
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Figure 6: Cognito auth flow
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Specifically, although a highly permissive IAM policy may not
lead to a security violation, as backed by an IoT policy if prop-
erly developed (see Equation (1)), we found that this could fail
in certain circumstances. In particular, AWS allows unauthenti-
cated users (without login) to still use part of the services, for
example, to publish logs to AWS CloudWatch Logs [46] under
the manufacturers’ discretion. We found that a real example is
with Molekule, a manufacturer of high-end smart air purifiers [4]
(cleared by the Food and Drug Administration to kill bacteria
and viruses including the coronavirus [5]). Before a login, the
Molekule mobile app fetches a Cognito credential cred_unauth
representing an AWS-supported unauthenticated Cognito role (or
unauth role for short) and an anonymous/ephemeral Cognito iden-
tity id_unauth for the user. As configured by Molekule, the unauth
role is associated with an IAM policy iam_p2 (see Figure 7) which
allows the unauthenticated user to access a few IoT-related func-
tionalities. In particular, iam_p2 allows the unauth role to per-
form an IoT action iot:AttachPolicy, so that when the user logs
in (obtaining an authenticated identity id_authed and credential
cred_authed), the client by presenting the cred_unauth calls the
IoT API iot:AttachPolicy to attach an IoT policy to the authen-
ticated identity. The Molekule app will then leverage the authen-
ticated identity/credential (id_authed, cred_authed) to make API
requests [20] to AWS IoT to control/operate the device.

Behind such complicated policy practices, we find that the man-
ufacturer strives to seek simplicity and sets the IAM policy iam_p2
(for the unauth role, see Figure 7) to be highly permissive (e.g., al-
lowing multiple IoT actions on multiple resources), relying on the
property that the default “empty” IoT policy (see above) will prevent
the unauthenticated users from sending IoT requests/commands
(e.g., iot:Publish, iot:Subscribe) to AWS IoT. We found that
such a property is partially invalidated, since AWS IoT does not
maintain IoT policies for anonymous/ephemeral Cognito identities
(not even maintaining an empty policy, see the design rationale be-
low). Hence, the actual permissions of the unauthenticated identity
id_unauth is calculated as:
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Pid_unauth = Piam7p2 (2)

Note that the cloud imposed convoluted/unclear relations and
cooperations between the cloud-general policies (IAM) and IoT poli-
cies. We found equation (2) reflects the true authorization logic for
the unauthenticated identity. This effectively gives the unauth role
all permissions in the iam_p2, which, thus, are overly permissive.
We find that an unauthenticated Molekule user can send any IoT
commands to any Molekule devices (e.g., iot: Subscribe to topic
# to subscribe to all users’ device topics, and iot:Publish com-
mands to any users’ devices such as for turning on/off). In contrast,
an authenticated Molekule user, restricted by the IoT policy, has
fewer permissions.

Notably, we found that the design rationale under which AWS
IoT does not maintain IoT policies for anonymous/ephemeral Cog-
nito identities is that, AWS IoT does not manage Cognito identities
(which is the responsibility of the AWS Cognito service): when AWS
IoT receives a Cognito credential cred_authed that comes with a
request, AWS IoT queries the Cognito service to obtain the corre-
sponding Cognito identity id_authed, and uses it to retrieve/index
the IoT policy. Since AWS IoT does not issue/manage Cognito iden-
tities, it is difficult should it maintain IoT policies for ephemeral
Cognito identities (e.g., difficult/costly to synchronously delete the
IoT policies once an ephemeral identity is gone).

Last but not least, we found that the problem is general and other
mainstream IoT vendors such as broil-king [25], sun-pro [42], and
Biobeat VitalDisplay [24] all come with the same problem in their
products, allowing unauthenticated users to control all other users’
devices with serious security, safety, and privacy implications (see
measurement in Section 3.4). Further, we discuss why AWS IoT
needs separate IoT policies besides IAM policies in Appendix § .2.

PoC exploit. We performed PoC experiments using our real de-
vices of Biobeat and Molekule and confirmed their all suffered from
the above problem. We reverse engineered the mobile apps of the
IoT vendors and without login in the IoT vendors’ mobile apps, we
obtained the Cognito credentials for the unauth role (by dynami-
cally instrumenting the app) after we opened each app. With the
Cognito credentials, our script could connect to the public end-
points of the vendors on AWS IoT, just like what their apps could
do. Our script (representing an unauthenticated app user) could
subscribe to the wildcard topic # (we filtered messages only related
to our own devices based on our device ID and dropped the rest)
and publish arbitrary commands to the “victim” devices (our own
devices). We reported all findings to the vendors, discussed the pos-
sible impacts/consequences and helped them fix the issues, which
were acknowledged by the vendors.

3.3 Implementation-Space Flaws: Chaotic
Practices of IoT Policy Deployments

Flaw 1 and Flaw 2 above highlight the design-space challenges/flaws
with IoT access policies. Further, our study shows that mainstream
device manufacturers use diverse practices with IoT Policy deploy-
ment, and generally make implementation-level, security-critical
mistakes. These mistakes are diverse, non-trivial to avoid in the
first place due to the disturbing lack of standard, adequate security
practices with cloud-based IoT policy deployment.



P-Verifier: Understanding and Mitigating Security Risks in
Cloud-based loT Access Policies

1| (Callow,

2 action : iot:Publish,

3 resource : (topic/dc/*,

4 topic/sc/${iot:Connection.Thing.ThingName}_*),

5| (allow,

6 action : 1iot:Subscribe,

7 resource : (topicfilter/cs/${iot:Connection.Thing.ThingName}/*,
8 topicfilter/cd/${iot:Connection.Thing.ThingName}/*))

Figure 8: Part of NetVue’s IoT Policy

Flaw 3: Dilemma with IoT policy templates. Based on the “DRY”
principle in the software industry (every piece of knowledge must
have a single representation [81]), developing template-based IoT
policy (using policy variables, see § 2) to reduce boilerplates (re-
dundant policies/codes for each individual user with substantial
maintenance burden and a higher chance of unintended inconsis-
tency) is intended. However, our research shows that problems
arise since the manufacturers commonly misuse policy variables.
For example, NetVue (a popular home-safety cam) has an IoT
Policy as Figure 8. The resource field cs/${ThingName} with a
variable ${ThingName} will be populated at runtime to be the
topic of a specific user (e.g., cs/58412338f7944fb0). This policy
applied to all NetVue users effectively/securely restricts that a
user can only subscribe to her own topic. Also, when a NetVue
cam publishes a message/status to its device-specific topic such
as dc/4047512672901241/control, based on internal forwarding
rules (with AWS IoT rules engine [39]), the message will be for-
warded to the legitimate user’s (e.g., device owner) topic (e.g.,
cs/58412338f7944fb0). That is, security is achieved both by an
IoT policy and the forwarding rules configured by the manufacturer.
We found that, although the usage of policy variables reduces
the burden of creating separate policies for each user, the semantics
and expressiveness of policy variables are insufficient to express
necessary IoT authorization requirements — a design limitation.
In particular, using a generic template-based policy for all/many
users, the manufacturer was incapable of expressing which are the
device topics that specific users can access (publish messages to).
This is because AWS policy variables are populated from the API
requester/user’s attributes (e.g., source ip, MQTT Clientld, a pre-
registered thing name [14]) to identify a user, and, likely for this
reason, no policy variables can be used to specify complicated rela-
tions, i.e., the list of allowed devices of the user which may quickly
change over time. Consequently, we observed that IoT vendors
likely have to resort to few functionality-working workarounds,
for example, commonly using a wildcard (e.g., dc¢/”, see line 3 in
Figure 8) to allow a user to publish to any device topics. We ob-
served such an insecure practice in using IoT policy template with
mainstream IoT vendors NetVue, Govee, Belkin, etc. (see the full list
in measurement § 3.4). The consequences are severe. For example,
a prior employee/Airbnb/hotel/guest user whose permission has
been revoked can operate the NetVue cam (by sending commands
to the device’s topic, see PoC below), turning its angle up to 360
degrees so it cannot monitor the owner-intended space.
Flaw 4: The constraint of IoT-policy mutual exclusion. An ac-
cess control system can be enhanced with the capability to establish
relations/constraints between permissions. For example, two roles
can be established as mutually exclusive, so the same user is not al-
lowed to take on both roles [90]. Such a constraint helped fulfill the
security principle “Privilege Separation” or increased the difficulty
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of collusion among individuals [96]. Interestingly, in the IoT con-
text, our study shows that a similar principle is also required when
associating a “high-privilege” IoT policy (e.g., with “admin” permis-
sions for an IoT device) with users. We find that, for example, any
user who can temporarily physically touch a button on the Switch-
Bot device can pair with it and is assigned the same “admin” level
IoT policy to fully control the smart switch (turn on/off, factory-
reset, monitor device activities). Consequently, for example, an
ex-employee/Airbnb/hotel/guest user, once assigned the IoT policy
for the device, can fully control the device when it is serving other
users. Even worse, we find that even if the new user resets the device
(by pressing a button both on the device and in the SwitchBot app),
the ex-user still bears the IoT policy and can control the device. Such
a practice comes with serious safety, security, and privacy implica-
tions considering, for example, home-safety, health-related devices
are connected with the SwitchBot switch. Hence, the same IoT pol-
icy for managing the same IoT device should not be assigned to dif-
ferent users without restrictions. Our study suggests the risks with-
out practice/adaption of “mutual exclusion” constraint in assigning
IoT policies, which was not mentioned in AWS IoT best practices [7].
We have reported the findings to the affected vendors and AWS IoT.
PoC exploit. We performed PoC experiments using our real de-
vices of NetVue, Govee, Beurer FreshHome, and FirstAlert Onelink
(Smoke and CO Detector, see all device types in Appendix Table 1)
for all the flaws above. Similar to PoC in the above sections, we had
a script that could connect to the public endpoints of the vendors
on AWS IoT. We obtained the AWS credential of our own accounts
by instrumenting the apps. Flaw 3: with our NetVue cam, our “ma-
licious” script, whose underlying credential/user did not have the
permission for the cam, could publish commands (MQTT messages
like {“payload” : “ptz":“x":-20,°y":0, “token" : “uewlylljoewbheek" ,
“clientld" : “957e9eb81b8e4fe5"}) to the target cam’s topic and con-
trol the cam’s angle arbitrarily. Flaw 4: We registered two user
accounts with SwitchBot, which could independently pair with
(after pressing a device button) and fully control our SwitchBot
smart switch without restriction. Each user account by using the
mobile app could not observe that the device was also granted to
the other account.

3.4 Measurement of Impact

To understand the impact and pervasiveness of the problems with
cloud-based IoT Policies, we studied devices/mobile-apps of 36 IoT
manufacturers and 310 open-source AWS-IoT-based projects from
GitHub. We purchased 12 real devices of 9 vendors for end-to-end
PoC experiments, and the study of the other vendors was through
analyzing their mobile apps (i.e., app behaviors and traffic).
Appendix Table 1 shows the overall results with real vendors
in our experiments: 13 IoT vendors were confirmed to have 17 in-
stances of IoT Policy flaws discussed in the above sections, affecting
potentially at least 3.3 million IoT users (based on the number of
app downloads on Google Play). All four types of IoT Policy flaws
are general, each affecting multiple vendors; some vendors suf-
fered from multiple flaws (see Appendix Table 1). For example, the
Govee plug and Belkin Wemo smart plug (each with more than one
million app downloads) have two different flaws in their policies.
The attack consequences (Appendix Table 1) are serious, impacting
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safety, security, and privacy. For example, any users can control all
t2Fi users’ smart grills (e.g., control temperature), with serious dan-
ger of fire/safety; any users can collect all Biobeat users’ sensitive
health/medical information such as blood pressure, height, weight,
and age. We also searched (using keywords such as “AWS IoT”,
“IoT policy”) and downloaded 2,587 open-source cloud-based IoT
projects from GitHub; we filtered 310 projects involving IoT policies
and IAM policies, among which 172 projects have the flaws dis-
cussed above. Specifically, 147 projects involved flawed IoT policies
(related to § 3.1 and § 3.3), and 43 projects had overly permissive
IAM policies (related to § 3.2). Detailed device models and GitHub
repositories are presented online [43].

Vendor acknowledgments and responsible experiments. No-
tably, we confirmed the policy flaws and attack consequences based
on (1) PoC experiments (using our own devices/traffic, and we never
attacked/impacted other users’ security, safety, and privacy) and (2)
feedback from the IoT manufacturers. Additionally, our experiment
was approved by our university’s IRB. In particular, any data we
processed was encrypted in transit and at rest; we do not store
any personally identifiable information (PII), e.g., device ID, user
ID; as a preventative procedure, any PII if appearing in our experi-
ment was hashed through SHA-512 at runtime and again was never
stored. Notably, in case a potential PoC experiment might impact
other users, we did not fully conduct the experiment end-to-end;
we reported/discussed the projected issues with the vendors for
confirmation and helped them fix the problems. Our efforts to help
the vendors were well received and acknowledged through their
bug bounty programs. For PoC experiments that only affect our
own devices/accounts, we implemented full end-to-end PoC attacks.
We are also reporting the issues to affected GitHub project owners.

4 LOGICAL ENCODING AND FORMAL
VERIFICATION OF I0T ACCESS POLICIES

Given the semantic and logical complexity, manually reasoning
about security of IoT Policies is difficult and error-prone, especially
in large policies with multiple correlated statements, operators, and
multiple wildcards. To help IoT manufacturers automatically reason
about [oT Policies, identify the flaws, and conveniently fix the issues,
in this section, we elaborate on the design and implementation of
P-Verifier, a tool capable of formally defining and verifying security
properties for cloud-based IoT access policies.

4.1 Overview

Our security analysis (§ 3) suggests that IoT Policies developed by IoT
manufacturers failed to soundly protect intended IoT resources and
block requests from unintended parties. To reason about security
flaws in IoT Policies, our innovative approach is built on the generic
framework of ZELKOVA [54] (the state-of-the-art for verifying
the AWS-general IAM policies) and addresses the unique semantic
and logical challenges in IoT Policies (see design below and our
thorough, end-to-end comparison with ZELKOVA in § 5). P-Verifier
takes as input IoT Policies and develops formal models that fully, and
semantically represent IoT policies; the models are encoded with
Satisfiability Modulo Theories (SMT) formulas, and we leverage
the state-of-the-art SMT solvers Z3 and CVC4 to reason about the
formulas with respect to a set of generalized security properties
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Figure 9: The two-stage trust management for IoT resources
on the cloud

and report security flaws in the policies if any. We elaborate on the
design as follows and leave the implementation in Appendix § .5.
Capabilities of P-Verifier. P-Verifier reasons about all possible
IoT-related permissions allowed by an IoT Policy to verify properties
(properties are specified in the same policy language). While the
properties to be verified can be specified by developers for specific
needs, P-Verifier provides three built-in, generalized checks to help
eliminate all four types of flaws reported earlier (§ 3): (1) whether
an JoT Policy soundly excludes a permission as expected — Check
1, e.g., preventing the principle/user from accessing a target IoT
resource; (2) whether an IoT Policy is less-or-equally permissive
than a reference policy (a policy stating a security property or an
upper bound of permissiveness) — Check 2; (3) whether multiple
independent policies (intended to be assigned to independent users)
share permissions — Check 3.

Challenges for verifying IoT policies. To enable the above
checks in IoT, P-Verifier has to address a few key challenges. In
particular, IoT Policies on the cloud have a unique two-stage trust
management (TM) [51, 57, 60, 89, 94] mechanism (Figure 9). Given
a request (a dotted vertical arrow above Stage 1 in the figure), in
Stage 1 (policy enforcement stage), the cloud’s IoT policy engine
inspects the resource string in the request (e.g., a/b/#) based on the
IoT Policy. Inspection at this stage is based on the string-acceptor
automaton model [47]: each policy essentially specifies an automa-
ton that determines whether a request string (e.g., a/b/x/+, a/b/#,
and a/b/x/y) is allowed. A resource request string that has passed
Stage 1 goes through a resource reference stage (Stage 2); for exam-
ple, subscribing to a/b/x/+ or a/b/# (an MQTT topic with + or #
is an MQTT topic filter, see § 2) can actually subscribe to MQTT
topic a/b/x/y, for which the IoT Policy in Figure 9 intends to deny
access. Note that the resource reference is done by IoT message bro-
kers such as MQTT brokers [1, 83]. The string-acceptor automaton
model specified by the policy does not effectively restrict requested
resource strings like a/b/x/+ and a/b/#, which will actually access
the topic a/b/x/y, in violation of the security expectation.

Notably, prior approaches [53, 54, 61] could be adapted to model
Stage 1 automaton and reason about the allowed request strings:
the policy could be encoded as a logical formula or deterministic
finite automaton (DFA) and each satisfiable assignment represents
a unique request string that is accepted by the policy DFA and thus
can pass the policy check. Prior logical-reasoning that ensures a
policy to exclude a resource string will certainly deny any requests
to that resource. However, prior security guarantee of policy verifi-
cation is invalidated in IoT because an IoT-synonym (e.g., a/b/x/+)
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((C allow,
action : iot:Subscribe,
resource : topicfilter/a/b/*),
( deny,
action : iot:Subscribe,
resource topicfilter/a/b/x/y))
(a) Policy X
(C allow,
action : iot:Subscribe,
resource topicfilter/a/b/#))
(b) Policy Y

Figure 10: IoT policy X and Y (snippets)

Resource: a/b/x/y

#, +/#, +/+/H#, +/+/H/#, A/, A/ /Y, A/ /X,
+/+/X/+, +/+/X/y, +/b/# , +/b/+/#, +/b/+/+, +/b/+/y,
+/b/x/#, +/b/x/+, +/b/x/y, o/#, a/+/#, a/+/+/#,
a/+/+/+, a/+/+/y, a/+/x/#, a/+/x/+, a/+/x/y, a/b/#,
a/b/+/#, a/b/+/+, a/b/+/y, a/b/x/#, a/b/x/+, a/b/x/y

Figure 11: The set of IS strings, denoted as ISes(“a/b/x/y”),
that can refer to the IoT resource a/b/x/y.

can be the request string, which itself in nature is a DFA repre-
senting multiple resources (in prior models [53, 54, 61], a request
string represents a unique resource and thus is not a DFA in nature).
However, the policy check in Stage 1 (to identify whether a string
or IoT-synonym is accepted by the policy DFA) cannot directly
take the IoT-synonym as a DFA (thus representing the full seman-
tics of the IoT-synonym) because the IoT-synonym’s DFA is based
on an alphabet Xjo7—_synn different from the alphabet X ,,j;¢, of
the policy DFA (i.e., Z1oT—synn = Zpolicy — {+ #}). Hence, likely
based on state-of-the-art approaches [53, 54, 61], AWS IoT takes
the request string (even if being an IoT-synonym) as a literal string
(compared to taking it as a DFA) to compare with the policy DFA
and decides whether the request string is allowed or not. Such an
approach of security verification based on prior models/techniques
is inadequate for handling IoT semantics, essentially leading to the
security risks.

Further, to model/encode the full permissions of a policy (e.g.,
to reason about permissions between policies to fulfill Check 2 and
3), we should precisely model the two-stage TM process (Figure 9)
to reason about all resources actually allowed by the cloud in each
of the consecutive stages. Notably, like prior works [53, 54, 61], we
can logically model the policy as a DFA encoded as an SMT formula
f (based on theories of strings, regular expressions, see § 4.2), de-
noting all “literal” request strings accepted by Stage 1. We consider
such a DFA as a Stage 1 DFA. However, to reason about actual
permissions (resources allowed to access), we should subsequently
encode and reason about Stage 2 DFA (IoT synonyms’ DFAs), which
effectively runs on a reduced alphabet than the policy DFA (see
above); for example, allowed strings by Stage 1 include a string
a/b/x [+ (an IoT-synonym of a/b/x/y), which we should decompose
in Stage 2 to fully encode all MQTT topics it can reference/access, in-
cluding a/b/x/a,a/b/x/b,a/b/x]c, ...,a/b[/x/aa, .... Here, without
finding out and modeling all such IoT-synonym strings accepted
by Stage 1 DFA and decomposing their semantics, one is not able
to reason about all permissions allowed by the policy, which has
not been done in prior works (also see our thorough, end-to-end
comparison with state-of-the-art tools in §5).
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(C deny,
action : iot:Subscribe,
resource topicfilter/a/b/x/y))

Security property p/ for policy X

(C allow,
action : iot:Subscribe,
resource topicfilter/a/b/+))

Security property p2 for policy Y

Figure 12: The security properties p; and p;

Fy : a = “iot : Subscribe” Ar = “a/b/+”
F,1 : a = “lot : Subscribe” Ar = “a/b/z/y’
F, : Fyo AN—Fx1

Figure 13: Basic SMT encoding of policy X
F, :a = “iot : Subscribe” A1 = “a/b/#”
Figure 14: Basic SMT encoding of policy Y
4.2 Logical Encoding of IoT Access Policies

This section elaborates on P-Verifier’s semantic-based logical en-
coding of JoT Policies — a prerequisite to soundly verify the security
of IoT Policies using a theorem prover such as Z3. We first introduce
a basic encoding built on the generic framework ZELKOVA [54]
(the resulting SMT formulas lack full IoT semantics), and then a
novel alphabet-reduced encoding based on the basic encoding to
fully encode IoT resources.

Modeling and a basic encoding. An IoT Policy is a list of state-
ments, and each statement consists of a tuple (Effect, Action, Re-
source) (see § 2). The encoding for a policy is a formula over two
variables a and r denoting the action and resource. The permissions
granted by the policy are encoded as all the permissions granted by
the allow statements and not revoked by deny statements. Figure 10
illustrates a policy X and Figure 13 presents its SMT encoding: pol-
icy X grants access if and only if Fy( allows access and Fy1 does
not deny it: Fyp A =Fx1. The formula Fy evaluates to true (for an as-
signment given a request) when the policy grants access. Similarly,
Figure 14 shows the basic SMT encoding of policy Y.

Note that, with the wildcard * (see § 2), we are abusing the
notation in Fyg to say r = “a/b/+”. Similar to ZELKOVA, P-Verifier
actually uses regular expressions to encode the semantic of the
cloud-general wildcards: with the traditional regular expression
pattern, “” standards for any single character, and “*” is the Kleene
star operator representing zero or more occurrences of the previous
character set. Formula (3) illustrates the string encoding related to
policy X and Y:

@

“a/b” v Var equals “a/b”

“a/*” v~ Var matches “a/.*”
“a/b/# v Var matches “a/b/#”
“a/b/+” v Var matches “a/b/+”

Alphabet-reduced encoding for IoT policies. The basic encod-
ing in Formula (3) essentially yields the automaton defined on an
alphabet Y41 including characters + and #. As mentioned ear-
lier (§ 4.1), on this alphabet, request strings with + or # character
(MQTT topic filters in IoT contexts) only literally represent the
strings, losing the semantics to represent many IoT resources that
they actually reference/access (Figure 11). Hence, to encode all IoT

®)
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Fp1 : —(a = “iot : Subscribe” Ar € ISes(“a/b/z/y”))
Fyp : a = “iot : Subscribe” Ar = “a/b/+”

Figure 15: SMT encoding of security properties p; and p;

resources actually allowed by the policy, we should further decom-
pose Formula (3) and generate an automaton on a reduced alphabet
Zstg2. To this end, P-Verifier has two steps. First, we decompose
a string with wildcard * (essentially an automaton, such as “a/*”)
to a set of automata based on the positions of +, # (the characters
to remove from the alphabet) in the resulting automaton (see an
alphabet-reducing algorithm in Appendix § .4):

“a/+” v Var matches “a/+”
U Var matches “a/#”
U Var matches “a/+/.*” (4)
U Var matches “a/+/#”

Second, for each generated automaton (the right side of each row
in Formula (4) after U or ), we further encode the character + and #
based on Zszg2. Based on their semantics (“4” matching any number
of levels within a topic and “+” matches one level [35]), we introduce
two sets: (1) Us, which is the set of UTF-8 symbols (denoted as U)
excluding the set of MQT T-reserved symbols/characters, such as “#”
and “+”, and MQTT-excluded symbols such as the null character; (2)
Up, which is Us excluding the MQTT topic separator “/”. Formula (5)
illustrates the alphabet-reduced SMT encoding for resource strings
with # and +:

“a/b/#” — Var matches “a/b/U;”

5
“a/b/+” v Var matches “a/b/U;” ©)

Note that, Uy with the Kleene star, denotes all strings over the
alphabet Uy, which can include the empty string e. Also, based on
the MQTT specification [35], the filter a/b/# can match the topic
a/b. However, some real-world vendors did not strictly follow the
standard here (e.g., a/b/# does not match the topic a/b on AWS IoT).
So we omitted a/b for a/b/# in Equation 5 in our current version.
Discussion. We handle/encode policy variables (see § 2) based on
their semantics. A policy variable (populated by AWS IoT at run-
time for each client) is usually used to represent an attribute of the
client [12]. As discussed in the prior work [83], some policy vari-
ables are populated based on the untrusted information (e.g., the
$fiot:Clientld} is populated with any value that the client claims [83]);
we simply encode such a policy variable as a wildcard “*”. In con-
trast, the policy variable ${iot:Connection.Thing.ThingName}
is based on trusted, user-specific value maintained by AWS IoT. We
encode such a policy variable with a random, unique string.

4.3 Formal Verification and Flaw Detection

With the logical encoding of IoT Policies, this section presents how
P-Verifier enables the three checks (§ 4.1) with respect to three
types of security properties. In general, the verification of P-Verifier
includes a few major steps: (1) translate the target policy into an
SMT formula f, (2) check the validity/satisfiability of f with the
security property p as a constraint. If the result is not valid (or
satisfiable, depending on the property), P-Verifier reports that the
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policy f violates the property p (e.g., at least some assignments for
£, intuitively meaning some IoT requests, will violate the property).

Check 1. Taking Policy X as an example (Figure 10), P-Verifier will
first translate the policy into an SMT formula Fyx (Figure 13). The
expected security property p; (Figure 12) — Type 1 property for
excluding a permission — is translated into an SMT formula Fp;,
stating that the policy is expected to deny access to one particular
topic a/b/x/y. Then, P-Verifier leverages the SMT solver Z3 to check
the satisfiability of

Fx A —|Fp1 (6)

A satisfiable assignment corresponds to an IoT request allowed by
Fx while violating the property. Indeed, P-Verifier reports (1) Fx
violates the security property and (2) the satisfiable assignment. In-
tuitively, for example, IoT requests to a/b/+/+ or a/b/# are allowed
by Fyx, and can be used to access/subscribe to the topic restricted
by property p1.

The challenge is to reason about and report all property-violating
assignments, so the manufacturer can soundly fix the policy (e.g., by
specifying literally all the strings in deny statements). Our insight is
that, an assignment that violates a Type 1 property is essentially an
IS of the target resource to deny access to. To address the challenge,
P-Verifier encodes Fp; to include the set of all ISes of the target
resource, as illustrated in Figure 15. Note that ISes("a/b/x/y”) de-
notes the set of all ISes of the topic “a/b/x/y”, which can be easily
enumerated (Figure 11) based on MQTT semantics (Appendix § .3).
Check 2. Take policy Y (Figure 10) as an example with its SMT
encoding Fy, (Figure 14) and a property p» (Figure 12), SMT-encoded
as Fpy (Figure 15) stating a reference/upper-bound permission —
Type 2 property — which is to allow access (subscribe) to a/b/+.
To check if policy Y is less-or-equally permissive than the property
Fpa, P-Verifier uses Z3 to prove formula f:

Fy = Fpa )
If the result was valid, it indicates that policy Y is less-or-equally per-
missive than Fpa. Actually, the result is not valid, and indeed Fy is
more permissive than the upper-bound permission. Intuitively, sub-
scribing to topic a/b/# as allowed by policy Y effectively subscribes
to more resources such as the topic a/b/c/d than the reference Fp.
For improved usability, P-Verifier reports examples such as a/b/c/d
to help IoT manufacturers easily understand the problem. This is
achieved by solving the formula —f, and Z3 will report “satisfiable”
and an example such as the above.
Check 3. P-Verifier can also check whether two policies share per-
missions (e.g., that independent users share permissions indicates a
security risk, see Flaw 4). Take the policies X and Y, encoded as Fx
and Fy respectively, as an example: P-Verifier leverages Z3 to solve
the formula

Fx A Fy (8)

A result “unsat” (unsatisfiable) indicates that there are no shared
permissions between the two policies; a result “sat” (satisfiable)
means the two policies have overlapping permissions (with shared
IoT resources). To make the results more informative, in our im-
plementation, P-Verifier decomposes the policy and takes out each
“Allow” statement to check the overlapping with the other policy.
This helps IoT vendors easily identify which part of a complex
policy has the problem.
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Usability discussion. As mentioned above, the outputs of P-Verifier
are easy to understand and actionable for IoT vendors to fix the
policies. Further, P-Verifier features convenience for constructing
security properties. Specifically, Type 1 property (denying certain
resources/permissions) can be easily obtained from the target policy
to check (e.g., the property p1 for policy X). Also, IoT vendors can
integrate P-Verifier for necessary security checks in the regular IoT
lifecycle when there is a permission change. For example, with
Check 3 vendors can avoid Flaw 4: the vendors can leverage P-
Verifier to check whether an ex-user and the current user share
permissions when a device is reset or the ex-user’s permissions are
revoked; unexpected, shared permissions indicates a security flaw.
Discussion of generality and extensibility. The design of P-
Verifier enables its generality and potential extensibility to analyze
and detect more than the flaws discussed in § 3. Above all, one criti-
cal capability offered by P-Verifier is the full-semantic encoding and
modeling of an IoT policy (representing the complete permissions
and resources allowed by the policy), a fundamental prerequisite
for developing sophisticated or flaw-specific detection logic. Based
on the modeling, our three check capabilities above can be used to
verify a variety of high-level security properties.

For example, to manage an IoT lock in a house/organization,
suppose the lock owner/administrator is assigned the policy z1
(Figure 16) and the less-privileged users (e.g., employees in the
organization or guest users such as an Airbnb/rental guest in the
house) is assigned the policy z2 (Figure 16). In such a scenario,
one may need to ensure a few high-level security properties: (1)
ensure unrestricted public access (e.g., access by guests) to the
MQTT topic deviceId/highpriv/reset is not allowed since send-
ing commands to this topic can factory-reset the device (least-
privilege [7, 34]); (2) ensure the guests’ permission is less than
(i.e., being a subset of) the owner/administrator permission (least-
privilege); (3) ensure the owner/administrator can publish to and
subscribe to MQTT topic deviceId/highpriv/reset (availabil-
ity property); (4) ensure the guests can publish to and subscribe
to MQTT topic deviceId/lowpriv/open (availability property).
These properties are described in the policy language in Appen-
dix Figure 21 (pr1 to pr4).

R1= _‘Fprl A Fyo
R2=F,, = Fprg
R3 = Fpr3 = Fn
R4 = Fpr4 = F,

We can leverage P-Verifier to verify these high-level security
properties. Specifically, using exactly the same encoding approach
as described in § 4.2, we first encode the two policies as F;; and Fz»
and four properties as Fyr1, Fpr2, Fpr3, Fprq (also see the full details
of the encoding in equation (10) and equation (11) in Appendix sub-
section .6 in our long version paper), and then leverage the Check
1 and Check 2 to reason about these formulas and thus verify the
properties (see formulas (9)). More specifically, for property pri,
we directly leverage Check 1 to check whether policy z2 excludes
the target permission (by reasoning about whether formula R1
in equation (9) is satisfiable, similar to equation (6). For pr2, we
directly leverage Check 2 to check whether permission of policy z2
is a subset of policy z1’s permission (i.e., R2 in equation (9)) is valid);
for pr3, we can leverage Check 2 and verify whether policy z1 is
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more or equally permissive than pr3 which encodes a lower-bound
permission (i.e., R3 is valid); pr4 is similar to pr3. We provide more
examples for checking other security properties in Appendix §.7.

5 EVALUATION

We evaluated P-Verifier for its high effectiveness and low perfor-
mance overhead. To enable a thorough evaluation, we introduce
IoT-Policy Bench comprised of 706 policies, presenting a new test
suite that is designed to evaluate IoT Policy analysis tools. Our exper-
iment based on JoT-Policy Bench shows that P-Verifier significantly
outperforms the prior tools in precision and coverage on AWS IoT
policies. We released IoT-Policy Bench online [43].

Policy z1
(C allow,
action : iot:Publish,
resource : topic/deviceld/*),
(C allow,
action : iot:Subscribe,
resource : topicfilter/deviceld/*))
Policy z2
(C allow,
action : 1iot:Publish,
resource : topic/deviceld/lowpriv/*),
( allow,
action : iot:Subscribe,
resource : topicfilter/deviceld/lowpriv/*))

Figure 16: Example IoT policies to manage an IoT lock

5.1 New Benchmark: IoT-Policy Bench

IoT-Policy Bench (IPB) includes both secure and flawed IoT Poli-
cies that aim to best cover the error space (§ 3) in real-world de-
sign/development of IoT Policies. IPB covers all types of flaws in IoT
Policies discussed in § 3. For example, related to Flaw 1, IPB includes
a set of policies that failed to soundly excludes an expected permis-
sion. For diversity, IoT-Policy Bench includes (1) 146 hand-crafted
policies by our domain experts (44 flawed, 102 secure), (2) 560 poli-
cies we gathered from open-source IoT projects on GitHub (§ 3.4),
and (3) 10 flawed IoT policies likely used by real vendors (based
on real access-control behaviors of their products, see § 3.4). Our
hand-crafted policies are generated by mutating MQT T-topics (i.e.,
adding/using +/#/*) and statements (i.e., adding/removing) based
on policies from GitHub and those likely used by real devices.

For each policy in IPB, we leverage multiple domain experts
to manually construct its expected security property (similar to
Figure 12) and come up with a ground truth. Specifically, the secu-
rity properties can be constructed based on the scenarios in which
the IoT policies can be used. For example, a set of policies in IPB
gathered from GitHub and in our manually crafted policies include
statements to deny access to certain resources (similar to Figure 10
), and we can take their security properties as excluding a certain
resource/permission (corresponding to our Check 1, § 4.1). As an-
other example, in the real world, two IoT policies may be assigned
separately to two separate IoT owners or two independent groups
of users; a security property corresponding to our Check 3 (§ 4.1)
can be that the two policies do not have overlapped permissions or
shared resources to access.

Ground truth composition. As an established ground truth, IPB
includes 242 IoT policies with Flaw 1 and 40 IoT policies that are
secure regarding this flaw. Regarding Flaw 2, IPB includes 62 IAM
policies with the flaw and 46 secure IAM policies. Last, IPB includes
87 IoT policies with Flaw 3 accompanied with 179 confirmed secure
IoT policies, and 11 IoT policies with Flaw 4 accompanied with 39
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secure IoT policies. Note that Flaw 2 concerns IAM policies used in
IoT contexts and all other flaws only concern IoT policies. The entire
IPB including all ground truth information is released online [43].

5.2 Effectiveness

We ran P-Verifier on IoT-Policy Bench showing high precision and
coverage (zero false positive and false negative). Notably, although
real-world manufacturers often did not release their IoT policies, IoT-
Policy Bench includes our manually crafted snippets of IoT policies
for ten IoT manufacturers (e.g., Govee, Belkin, Molekule) based
on the vulnerabilities confirmed thanks to our white-hat reports
to the manufacturers (following standard responsible disclosure
practices [78]) and communication with them. P-Verifier shows zero
false positive/negative on the entire dataset (released online [43]).
Comparison with ZELKOVA/industry tools. Up to our knowl-
edge, AWS IoT Defender (Defender) [13] (backed by ZELKOVA [54]
based on Defender’s white paper [45]) is the state-of-the-art and
only tool known to be capable of security verification for IoT Poli-
cies. P-Verifier significantly outperforms Defender for the precision
and coverage based on functionalities described in their user manu-
als [13] and our thorough, end-to-end experiment on IPB (detailed
below). Note that AWS did not release the source code of ZELKOVA
and we may not directly compare it with P-Verifier.

In our comparison with Defender/ZELKOVA, for each of the
flaws separately (Flaw 1 to Flaw 4, see § 3), we assessed the tools’
false positive rate (FPR) and false negative rate (FNR) for verifying
IoT policies with and without the flaw. If the tool raised false alarms
for an actually secure policy (based on our ground truth, see § 5.1),
that indicated a false positive. If the tool failed to raise alarms for
an IoT policy that is indeed flawed, this indicated a false negative.
The detailed results are shown in Appendix Table 2. In particular,
while P-Verifier shows high precision and detection coverage (i.e.,
zero false positive and zero false negative), Defender suffers from a
low coverage (with FNR up to 100%, see Appendix Table 2) for its
inadequate capability to analyze and identify the flaws introduced
in this paper.

More specifically, regarding Flaw 1, Defender (with 21.1% FNR)
is not capable of analyzing whether a policy specifies sufficient
“IoT synonyms” of a resource to deny (in the “deny” statement);
the flawed IoT policies that Defender typically reported were those
with relatively simple patterns of wildcard “*” (see Figure 18 in
Appendix). In the meantime, Defender did not take user-provided
security properties as inputs (e.g., deny the access to resource x/y/z
as supported by P-Verifier), and hence, the detection semantic sup-
ported by Defender is much more coarse-grained, mainly focusing
on identifying whether the policy in general overly uses “*” in speci-
fying the resource fields. Note that IPB includes such simple policies
from GitHub, whose over-permission could thus be detected by
Defender. Also due to the lack of support for policy-specific secu-
rity properties and semantic/logic, Defender cannot handle Flaw 4
(with 100% FNR): our P-Verifier can compare whether two policies
unwittingly share permissions/resources, while Defender can only
check policies individually. Regarding Flaw 2, Defender is compara-
ble with P-Verifier because the detection needed here is to identify
overly permissive IAM policies (e.g., Figure 5), without complicated
IoT semantic analysis needed in handling Flaw 1. Regarding Flaw
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3, Defender (37.9% FNR) failed to identify overly permissive poli-
cies that have a policy-specific or vendor-specific prefix prior to “*”
such as “dc/” in NetVue’s policy (Figure 8). Additionally, Defender
did not properly analyze the semantics of certain policy variables,
such as “${iot:Connection.Thing. ThingName}”, which effectively
will be populated at runtime to be a trusted, user-/client-specific
value (§ 3.3), and thus is not overly permissive (see an example
in Figure 19 in Appendix). Defender showed false positives in such
cases related to Flaw 3. Overall, Defender underperforms P-Verifier
for these properties due to two major disadvantages: (1) it lacked
the sophisticated semantics/logic analysis offered by P-Verifier; (2)
it did not take expected security properties as inputs.

5.3 Performance Overhead

We evaluated the performance overhead of P-Verifier running on
the above dataset using a workstation with 3.40GHz Intel i7-6700
CPU, 15.6GB memory and 931.5GB hard drive. With an average of
ten runs, P-Verifier took 1.15 seconds and 43MB memory at most
to fully verify a policy (with Z3 as the prover). We did not observe
unusually complicated (with multiple wildcards in multiple levels
of the topics) policies that cannot be finished within 120 seconds
(the time threshold of P-Verifier) in our dataset and after a thorough
search of 560 open-source AWS-IoT-based IoT projects on GitHub.

We further evaluated P-Verifier using more complex policies (be-
yond the 2048-non-white-char limit of AWS IoT [11, 40]). For each
individual check (Check 1 to 3), we reuse the policy X or Y in the
original example (§ 4.1) and increase the policy complexity in two
separate settings: (1) increasing the number of “allow” statements
(each added statement having the similar complexity, i.e., the same
string length 20 and wildcard number 1), (2) increasing string length
(statement number and wildcard number remain unchanged). Ap-
pendix Figure 22 and Figure 23 show the result of the two settings
respectively (based on the average results of 20 trials). Specifically,
for Setting 1 of each check: we observed an approximately linear
correlation between the execution time and statement number (in
our implementation, P-Verifier reasons about each added “allow”
statement separately and thus is capable of reporting all individual
statements that violate the property — a fine-grained reporting
actionable for IoT vendors); for Setting 2, the efficiency of ana-
lyzing longer strings depends largely on the performance of the
underlying solver (Z3 in our experiment). The performance over-
head is based on end-to-end execution time (including the time
to read/encode the policy and reason with the property) and the
generated (more complex) statements and strings yielded “unsat”
result with the security properties (we released all generated poli-
cies online [43]). Further, we increased the wildcard number based
on policy X and Y (statement number and string length remain un-
changed) and observed a result similar to what was reported in [54]:
when the number of “*” wildcards is more than 5, Z3 may not ter-
minate (e.g., for the query “is topic/*/a/*/a/b/y less or equally
permissive than topic/*/a/*/a/*/y”). Still, 99% of policies with
less than 6 wildcards (600 policies in total, released online [43])
are solved within 0.6 seconds. Note that in all 560 IoT policies we
found on GitHub, we did not observe policy statements with more
than 3 wildcards in 1 string resource (policy with many wildcards
is hard for human to write/understand and thus can violate the
programming principles [32]).
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6 DISCUSSION

Although our study primarily focuses on the IoT Policies on AWS
IoT, the problems we identified can generally affect device manufac-
turers on other IoT clouds (e.g., Azure, Tuya, Alibaba). We indeed
found that IoT policies on Azure IoT [38] also suffered from the
Flaw 1 (§ 3.1), sharing the same fundamental challenge with AWS
IoT as discussed in § 3.1. To fundamentally address the problems, we
expect multiple-level efforts: (1) improved verification techniques
and new level of formal guarantees (such as those offered by P-
Verifier), (2) improved, more open design of IoT clouds, (3) improved
developer guides/awareness.

Wildcards in access policies. Mainstream policy languages (such
as XACML [438], APPEL [36], AWS IAM policy [31], Azure policy
[22], Kubernetes API [33]) and access control policies [19, 23, 26, 27]
are designed to support and leverage wildcards. Despite a set of
known kinds of security risks with wildcards [59, 82] (e.g., over per-
missiveness due to careless developers), wildcards are necessary in
describing resources at scale, e.g., in production/cloud environment
with hundreds or millions of resources [26, 61], bringing signifi-
cant efficiency in development and maintenance compared to, for
example, exhaustively listing all individual resources. More specifi-
cally, in the IoT context, wildcards such as + and # are an inherent
part of the MQTT protocol, which help easily describe and access
multiple/many MQTT topics of a certain user/device/organization.
For example, making a single MQTT request to subscribe to de-
viceID/# effectively subscribes to deviceID/cmd, devicelD/states,
deviceID/configure, and more, compared to sending many requests
for individual resources; this is important for IoT devices which
may work on resource-constrained devices in low-bandwidth or
unreliable networks [83, 92]. Hence, wildcards still appear to be
part of the state-of-the-practice [19, 23, 26, 27] to develop access
policies, and can be hard to completely get rid of. Notably, state-
of-the-practices have warned developers to avoid a set of known
bad paradigms/practices in using wildcards [3, 9, 15, 41] (e.g., to
avoid coarse-grained * for an unbounded range of resources, and
use better crafted regular expressions for a finer-grained range of
resources). Further, recent efforts from industry and academia [54,
61, 71] have aimed at helping developers construct secure policies
supporting wildcards while elevating the security assurance with
new formal guarantees. Our work makes new contributions at least
in this line of efforts (by identifying new kinds of risks such as the
IoT-synonym and formally verifying the policies to provide security
guarantees against the new risks).

7 RELATED WORK

Security of cloud-based IoT policies. Under the generic term of
“IoT policies,” prior works extensively the security, safety and pri-
vacy implications of different IoT policies on diverse platforms.
[55, 64, 68, 69, 73, 93, 97, 100] studied IoT Trigger-Action plat-
forms (TAP), which suffered from over-privilege recipes (TAP apps),
inter-rule vulnerabilities, and privacy implications. On IoT applica-
tion platforms which support third-party applications (e.g., Smart-
Things apps [72, 98]), prior works [62, 63, 72, 84, 98] studied their
coarse-grained access control model and security and privacy of
IoT apps. Voice-Controlled Platforms were also extensively stud-
ied [65, 76, 79, 87, 91, 95, 99, 104-106]. [107] studied access control
of the emerging “Mobile-as-a-Gateway” IoT paradigm. [83] lightly
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discussed issues related to wildcards, e.g., vendors missed restricting
wildcards at all. We systematically discussed wildcard-related issues
using model-based approaches and the fundamental challenges to
deny/verify IoT-synonyms for DFA. The prior work [6, 83] concern-
ing IoT messaging protocols only marginally relates to our focus.
Formal methods for analyzing access control policies. Prior
works proposed methods to formally reason about access control
policies [53, 54, 61, 66, 77, 82, 101]. In the literature, policy languages
have been studied [28, 56, 67, 70, 74, 74, 75, 77, 80, 85, 86, 88, 88, 89].
Most related is ZELKOVA [54, 61], which presents the state-of-the-
art, being a generic framework to formalize/model and analyze
policies on public clouds. P-Verifier is built on ZELKOVA while
addressing fundamental, new challenges in the IoT context, such as
how to reason about ISes, fully encode IoT semantics and provide
usable, actionable reasoning results for IoT vendors.

8 CONCLUSION

We performed a systematic study on the security of cloud-based IoT
access policies. Our research shows that the complexity in the IoT
semantics and enforcement logic of IoT Policy leaves tremendous
space for device manufacturers to program a flawed IoT Policy, intro-
ducing convoluted logic flaws which are non-trivial to reason about.
The problems are general and pervasive, and serious. To help man-
ufacturers identify IoT Policy flaws, we introduce P-Verifier, a novel
formal verification tool that can automatically verify cloud-based
IoT Policies and is highly effective and efficient. Our work will con-
tribute to elevating security assurance of modern IoT deployments
for the cloud-based IoT infrastructure.
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APPENDIX

.1 Additional Technical Details for A Few
Flawed IoT Policies

Issues with the IoT policy of Govee smart plugs. We found
two problems with the Govee policy (Figure 4): (1) The filtering of
wildcards specified in the policy is incomplete, and being complete
is practically difficult for the manufacturer. Specifically, a mali-
cious Govee user can still subscribe to the topic +/, and effectively
subscribes to multiple topics of Govee such as LWT/, allowing the
adversary to receive sensitive messages (e.g., device mac, device
name) of all Govee plug users. (2) Once a malicious user obtains
the topic tpc (or device ID) of the victim’s device, subscribing to
tpc or GD/[md5 of device ID] satisfies the policy specification.
Notably, obtaining IoT device information such as device ID and its
topic is entirely practical, for example, an Airbnb/hotel guest, home
visitor, or virtually any user who had at least temporary access to
the device — this is also evidenced by the prior research [83, 103].
In our PoC experiment, we confirmed that a (guest) user who ever
uses the Govee device can easily obtain the device ID and MQTT
topic from the traffic or internal program states of his Govee mobile

app.

.2 Discussion of Relation between IAM Policy
and IoT Policy

Due to the complicated logical relations between IoT policies and
the Cognito and IAM policies (§ 3.2), it is natural to ask why AWS
IoT needs separate IoT policies (while other AWS services such as
S3, EC2 just leverage the IAM policy). Although never documented
by AWS, we found a few key reasons. First, AWS IoT supports three
types of identity principles for device or client authentication: (1)
X.509 certificate, (2) IAM users, groups, and roles, and (3) Cognito
identities. The X.509 certificate is an AWS IoT feature (typically
used by IoT devices for authentication to AWS IoT) and is not
supported by Cognito/IAM for authentication purposes. That is,
Cognito cannot maintain the IAM policy for an X.509 certificate
based identity. Second, IAM policies are not designed to support
the potentially huge number of IoT end-users of an IoT manufac-
turer. In particular, under an IoT manufacturer’s AWS account, one
cannot create more than one thousand different IAM policies [11],
considering that the IoT manufacturer may actually want to assign
different IAM policies for different users. In contrast, AWS IoT does
not have such a limit and allows the IoT manufacturer to create
different IoT policies for each IoT user.

(C allow,
action : (iot:AttachPolicy,
iot:AttachPrinciplePolicy),
resource : *)

Figure 17: IAM policy that allow user to attach IoT policy

.3 Algorithm to Enumerate ISes

P-Verifier uses a simple algorithm to get all ISes of a topic (see
§ 4.2). A basic idea is to convert a string problem into a numerical
sequence problem, and the syntax of topic (“/” is the delimiter) gives
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Table 1: Measurement of impact

Security Privacy Impact
& Safety and
Impactl Information Leak
Govee plug, light 1 1000K+ C,M,F

Device Flaw App

Vendor Type Type | Downloads

device id, user id
device id
user id,
Zmoke L2 10K+ M, F de_vice status,

etector wifi name,
device mac,
pmesh key
device id,
in-door air quality,
power, fan speed,
temperature
device id, device mac,
Belkin . device type,
WeMo plug light 1 1000K+ M,F device serial number,
device status

Onelink

Beurer air purifier 1 1K+ C,M,F

device mac,
device version,
device status
device id,

device status,
temperature

wifi name, lan ip,
wan ip, wifi mac,
barbecue temperature,
fan status,

motor status
Personal medical

SwitchMate plug, light 1 100K+ C,M

sun-pro3 awning 1,2 500+ C,M,H

broil-king4 grill 1,2 5K+ C,M,H

/health informa\tion,2
device id,

device mac, app mac,
mobile system version
Molekule air purifier 1,2 10K+ C,M,H in-door air quality
NetVue camera 3 100K+ C N/A

alexa topic,

device mac,

control command,
serial number

user id, chat message
device id,

hardware password
device status,

control command,
in-door air quality

biobeat medical 1,2 700+ C,M,H

singlecue TV 1 5K+ C,M

Hippokura medical 1 5K+ C,M

SwitchBot plug 4 100K+ M

air purifier,

4 1000K+ C,M
vacuum

Dyson

! Security & Safety Impact: C: Control the device; M: Monitor device activities/status;
F: Fake device messages to users; H: Control the vendor’s AWS IoT developer account.
2 Personal health information leaked: blood pressure, height, weight, age, calories,
steps walked, sleep status (whether the user is sleeping).

34 Sun-pro and broil-king: Both broil-king and sun-pro are developed by t2Fi, and
they share the same endpoint.

us great convenience. Take topic filter “a/b/x/y” as an example, P-
Verifier splits the string by “/” and gets a string sequence [a, b,
X, y1], then we know the length of the sequence is 4 and the basic
numerical sequence is [@, 1, 2, 3] as subscript. Algorithm 1
shows how to get the subsets of a numerical sequence. Based on the
obtained subset of all subscript numeric sequences, all synonyms
containing “+” are obtained by replacing the corresponding position
with “+”. Based on all the ISes with "+", replace the corresponding
position with “#” respectively, after string cutting, de-duplication,
and merging, we can get all the ISes.

.4 Algorithm of Alphabet-Reducing

Asmentioned in § 4.1, the alphabet-reducing algorithm (Algorithm 2
) generates a set of automata at a reduced alphabet by decomposing
an automaton running on a more inclusive alphabet (see an example
with formula 4).
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Algorithm 1 Get subsets of numerical sequence

Require: set The basic numerical sequence

1:
2:

11:

function GETSUBSETS(set)
subsets = [[ ]]
for var in set do
cache =[]
for item in subsets do
cache.add(item + [var])
end for
subsets.extends(cache)
end for
return subsets
end function

Algorithm 2 Alphabet-Reducing

10:
11:
12:
13:
14:
5:
16:
17:
8:
9
. mqtt_ban ("/’,y) = True

. mqtt_ban (x/+') = x ="/
. mqtt_ban (x,/#) = x ="/

—_

NN N = e
N = S

[\ CR N
IS RS N

1
2
3
4
5:
6: star_closure as = iterate step
7
8
9

: next_in_set :: (Eqa)=> a — [a] — a
: next_in_set x (y:ys) = if x==y

then head ys
else next_in_set x ys
star_closure :: [Char] — [String]
where step s = case splitAt (lengths — 1) sof
(s",) = s++fst_ch_s
(s, [ch]) — if [ch] == last_ch_s
then step s’ ++ fst_ch_s
else s’ + +[next_in_set ch as]
last_ch_s = drop (length as — 1) as
fst_ch_s = [head as]
check :: String — Bool
check s = and $ map mqtt_ban (zip s (tail s))
mqtt_ban :: (Char,Char) — Bool
mqtt_ban ("+’, ") = False
mqtt_ban ('+,y) =y == "/
mqti_ban ("#,y) = False

’

mqtt_ban _ = True

. alphabets = ['+,)#) ") +']
: mqtt_topics :: [String]
. mqtt_topics = filter check (star_closure alphabets)

{
"Version": "2012-10-17",
"Statement": [

"Effect": "Allow",

"Action": [
"iot:Connect",
"iot:Subscribe",
"iot:Publish",
"iot:Receive"

3

"Resource": [

]
3
]
3

Figure 18: A policy with simple patterns of wildcard
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{
"Version": "2012-10-17",

"Statement": [
{
"Action": [
"jot:Connect"
L
"Effect": "Allow",
"Resource": [
"arn:aws:iot:us-east-1:123456789012:client/S{iot:Connection.Thing.ThingName}"
1
2
{
"Action": [
"iot:Subscribe"

L
"Effect": "Allow",
"Resource": [
"arn:aws:iot:us-east-1:123456789012:topicfilter/${iot:Connection.Thing ThingName}/*"
1
}
]
}

Figure 19: A simple policy not overly permissive

.5 Implementation of P-Verifier

We have implemented P-Verifier in Python with 961 lines of code.
P-Verifier leverages the off-the-shelf SMT prover Z3. P-Verifier lever-
ages the Z3Py APIs [50] (for Python applications) provided by Z3
to invoke the functionalities of Z3 (e.g., And/Or/Not, Regular Ex-
pression, Solver). We use Z3 with its String Constraint Solver[49].
Similar to ZELKOVA, in case the verification for a policy exceeds a
threshold of time (120 seconds), P-Verifier also tries the solver CVC4
to re-run the task and reports an “unknown” result if no result
is obtained within the same time threshold. Such a case will only
happen for unusually complicated IoT policies with many levels of
wildcards, which are rare (see the evaluation in § 5). We released
the full source code of P-Verifier online [43].

Table 2: Comparison with AWS IoT Defender (backed by
ZELKOVA [45])

Flaw1l | Flaw2 | Flaw3 | Flaw4

. FPR | 0 0 0 0
P-Verifier NR 0 0 0 0
FPR | 0 | 283% | 156% | 0

Defender |-ooe =117 T 0 [ 37.0% | 100%

.6 Equations of encoding the lock policies and
properties

Fx = (a = “iot : Subscribe” A r matches “deviceld/. =) Vv
(a = “iot : Publish” A r matches “deviceld/. =)
Fy = ((a = “iot : Subscribe” A r matches “deviceld/lowpriv/. ”) v

(a = “iot : Publish” A r matches “deviceld/lowpriv/. "))
(10)
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Device Policy
(C allow,
action iot:Connect,
resource : client/device-*))
User Policy
(C allow,
action iot:Connect,
resource : client/user-*))

Figure 20: Example IoT policies for devices and users

Fpr1 = —(a = “iot : Subscribe” A r = “deviceld/highpriv/reset”)

«

Fpra = (a = “iot : Subscribe” A r matches “deviceld/. ")V

(a = “iot : Publish” A r matches “deviceld/. =)
Fpr3 = (a = “iot : Subscribe” A r = “deviceld/highpriv/reset”) v
(a = “iot : Publish” A r = “deviceld/highpriv/reset”)
Fpra = (a = “iot : Subscribe” A r = “deviceld/lowpriv/open”) v

«

(a = “iot : Publish” A r = “deviceld/lowpriv/open”)
(11)

.7 A high-level scenario to avoid client ID
conflict

To manage users and devices in an organization, suppose the de-
vices and users are assigned policies in Figure 20. In this scenario,
since the users and devices share the same MQTT broker, one
should ensure a user client cannot use an MQTT Client ID that is
conflicting with that of a device client [83]. Otherwise, the user
(who can be malicious) can force the device offline based on the
MQTT protocol [35], and then may fake device messages on behalf
of the device [83].

We can leverage P-Verifier to verify this high-level security prop-
erty. By using the same encoding approach as described in §4.2,
we can encode the two policies as Fy and F,,, and then leverage
the Check 3 to reason about if the resource field of the connect
action — determining the Client IDs that are allowed to use — in the
device policy shares permissions with that in the user policy (see
equation (12)). If the two policies share resources (allowed Client
IDs), a user can use the same Client ID as a device.

R=F \F, (12)

Ze Jin et al.

Property pri
(C deny, ) .
action iot:Subscribe,
resource : topicfilter/deviceld/highpriv/reset))
Property pr2
Same as policy z1 in Figure 16
Property pr3
(C allow,
action : iot:Publish,
resource : topic/deviceld/highpriv/reset),
(C allow,
action iot:Subscribe,
resource : topicfilter/deviceId/highpriv/reset))
Property pr4
(C allow,
action : 1iot:Publish,
resource : topic/deviceld/lowpriv/open),
C allow,
action iot:Subscribe,
resource : topicfilter/lowpriv/open))

Figure 21: Multiple security properties for the lock
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Figure 22: Performance evaluation for setting 1
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Figure 23: Performance evaluation for setting 2
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