
On the Regularity of Non-Scattering Anisotropic

Inhomogeneities

Fioralba Cakoni⇤ Michael S. Vogelius† and Jingni Xiao ‡

March 4, 2023

Abstract

In this paper we examine necessary conditions for an anisotropic inhomogeneous medium
to be non-scattering at a single wave number and for a single incident field. These con-
ditions are expressed in terms of the regularity of the boundary of the inhomogeneity.
We assume that the coe�cients, characterizing the constitutive material properties
of the medium, are su�ciently smooth, and the incident wave is appropriately non-
degenerate. Our analysis utilizes the Hodograph transform as well as regularity results
for nonlinear elliptic partial di↵erential equations. Our approach requires that the
boundary a-priori is of class C1,↵ for some 0 < ↵ < 1.

1 Introduction

Spectral problems with the wave number as spectral parameter play a central role in math-
ematical scattering theory. A particularly noteworthy development has been the theory
of scattering resonances, which correspond to the poles of the scattering operator viewed
as a meromorphic operator valued function of the wave number [14]. Quite related is the
question of injectivity of the relative scattering (incident-to-outgoing [13, 23]) operator for
inhomogeneous media, which has led to the study of the transmission eigenvalues [7]. To
be precise, given an inhomogeneous medium of compact support, the question is if there are
wave numbers for which there exist incident waves that are not scattered by the medium, i.e.,
the medium is rendered invisible to this particular probing experiment. Such wave numbers
are referred to as non-scattering wave numbers, and the corresponding incident waves as
non-scattering incident fields. An inhomogeneous medium that admits non-scattering wave
numbers is called a non-scattering inhomogeneity.
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If the given inhomogeneity does not scatter an incident wave at a fixed wave number, then
inside the support of the media this incident wave and the corresponding total field solve
the Helmholtz equation governing wave propagation in the background and in the medium,
respectively, and share the same Cauchy data on the boundary. This homogeneous boundary
value problem is known as the transmission eigenvalue problem, and its eigenvalues (the
wave numbers) are referred to as transmission eigenvalues. The transmission eigenvalue
problem is non-selfadjoint and has an interesting mathematical structure. Its formulation
involves the governing equations for the medium and background only inside the support
of the inhomogeneity, i.e., it does not depend on the external probing wave. Transmission
eigenvalues play a central role in inverse scattering theory for inhomogeneous media; we refer
the reader to [7] for an up-to-date discussion of transmission eigenvalues, their applications to
inverse scattering, and the vast literature on the subject. In particular, non-scattering wave
numbers form a subset (possibly empty) of the real transmission eigenvalues. The existence
of infinitely many real transmission eigenvalues is proven for a large class of (not necessarily
regular) inhomogeneities [8, 9]. The question then arises, whether these inhomogeneities are
non-scattering, in other words whether any of the corresponding real transmission eigenvalues
is a non-scattering wave number. It turns out that the existence of a non-scattering wave
number (unlike the existence of real transmission eigenvalues) generically implies a certain
regularity of the inhomogeneity. Such regularity results are proven in [10] and [27] for the
case of isotropic media with contrast only in the lower order term of the Helmholtz equation.
In this paper we deal with scattering by an anisotropic medium governed by the Helmholtz
equation, with variable coe�cients in the principal operator and the lower order term. We
establish necessary conditions for such a medium to be non-scattering, or equivalently by
negation, su�cient conditions for it to be scattering. The investigation of non-scattering
anisotropic media presents additional mathematical di�culties and leads to interesting open
questions.

Consider the following time-harmonic scattering problem

r · Aru+ k
2
nu = 0 in Rd

,

u = u
in + u

sc in Rd
,

lim
|x|!1

|x|
d�1
2

✓
@

@|x|u
sc � ikusc

◆
= 0, uniformly for all x̂ := x

|x| 2 Sd�1
,

(1)

where k > 0 is the wave number proportional to interrogating frequencies, and d � 2. Here,
u
in is a given incident field which satisfies the Helmholtz equation �u

in + k
2
u
in = 0 in Rd

and u
sc is the corresponding scattered field. We assume that n is a real-valued function

in L
1(Rd), and A = (aij) is a real, d ⇥ d symmetric matrix-valued function with L

1(Rd)
entries, satisfying

c
�1
0 |⇠|2  ⇠

>
A(x)⇠  c0 |⇠|2 for almost all x 2 Rd and all ⇠ 2 Rd

, (2)

for some positive constant c0. We further assume that A � I and n � 1 are supported in
⌦ ⇢ Rd, where ⌦ is a bounded Lipschitz domain. Let ⌫ denote the outward unit normal
vector to @⌦. In this model A(x), n(x), for x 2 ⌦, characterize the constitutive material
properties of an anisotropic dielectric inhomogeneous medium occupying the region ⌦ and
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located in an isotropic homogeneous background with constitutive material properties scaled
to one. In what follows (A, n,⌦) refers to this inhomogeneous medium. It is known that the
scattering problem (1) admits a unique solution u 2 H

1
loc(Rd) (see e.g. [7]). Note: the fact

that u 2 H
1
loc(Rd) solves (1) implies

u
� = u

+
, ⌫

>
Aru

� = @⌫u
+
, on @⌦ , (3)

where + and � indicate traces on the boundary @⌦ from outside and inside ⌦, respectively.
Additional regularity conditions on the inhomogeneity (A, n,⌦) will be imposed later as
required. Of main interest to us is the case when A has a jump across @⌦. In the following,
when A (or n) is continuous on ⌦, and we talk about the value of A (or n) on @⌦, we always
mean the limit value from inside ⌦.
The main focus of this paper is to investigate the implied regularity on @⌦ if it happens
that u

in is a non-scattering wave for the medium (A, n,⌦), in other words if usc vanishes
identically outside ⌦. In this case, with v := u

in, for simplicity of notation, we have that u|⌦
along with v becomes a solution to the following homogeneous problem

r · Aru+ k
2
nu = 0, �v + k

2
v = 0, in ⌦ ,

u = v, ⌫
>
Aru = @⌫v, on @⌦ ,

(4)

with v actually being a solution to

�v + k
2
v = 0 in all of Rd

. (5)

We note that v is real analytic in Rd. In our earlier terminology, the wave number k > 0
is a non-scattering wave number for (A, n,⌦). Considering only the set of homogeneous
equations (4), also known as the transmission eigenvalue problem, we conclude that k > 0
is a real transmission eigenvalue. The anisotropic transmission eigenvalue problem has been
subject of extensive investigation in the past decade [7]. Despite its deceptively simple
formulation, it is a non-selfadjoint eigenvalue problem even for real valued coe�cients A

and n. Nevertheless, for A, n real valued, and in L
1(⌦) and @⌦ Lipschitz, the existence of

an infinite discrete set of real transmission eigenvalues accumulating only at +1 is proven
in [8] provided A � I is one-sign definite uniformly in ⌦ and n ⌘ 1, and in [9] provided
both A� I and n� 1 are one-sign definite (the same or opposite sign) uniformly in ⌦. The
state-of the-art of the spectral analysis for the transmission eigenvalue problem, including
discreteness of real and complex eigenvalues, completeness of generalized eigenfunctions in
(L2(⌦))2, and Weyl asymptotics for the eigenvalue counting function, can be found in [25].
This spectral analysis is conditional on some “ellipticity” assumptions on the coe�cients at
the boundary @⌦. More specifically, it requires that @⌦ is of class C2, and that A and n are
continuous on ⌦ and satisfy for all x 2 @⌦,

(A(x)⌫ · ⌫)(A(x)⇠ · ⇠)� (A(x)⌫ · ⇠)2 6= 1 and (A(x)⌫ · ⌫)n(x) 6= 1,

for all unit vectors ⇠ 2 Rd perpendicular to the normal vector ⌫ (the first condition is equiv-
alent to the complementing condition, due to Agmon, Douglis and Nirenberg [1]). However,
under the above less restrictive assumptions on A and n, it is not known whether real
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transmission eigenvalues exist. We refer the reader to [28] for results about the location of
transmission eigenvalues in the complex plane.
Whereas real transmission eigenvalues exist for a broad class of (not necessarily smooth)
anisotropic inhomogeneities, the main result of this paper states that the existence of a non-
scattering wave number associated with an appropriate incident field, for regular A and n

implies a certain regularity of the inhomogeneity. In particular we prove that if A and n

are real analytic in ⌦, A 6= I on @⌦, and @⌦ is a-priori of class C
1,↵ for some 0 < ↵ < 1,

and if @⌦ is not analytic in any neighborhood of a point P 2 @⌦, then (A, n,⌦) scatters
all incident fields having a non-vanishing (A � I) conormal derivative at that point (see
(9)). In terms of the transmission eigenvalue problem, formulated only in ⌦, our result
provides a necessary condition, that the part v of the corresponding eigenfunction can be
extended as a solution of the Helmholtz equation in the exterior of ⌦ (i.e., v is real analytic
up to the boundary). We establish similar results for less regular A and n. To prove these
results we employ the Hodograph transform to locally straighten the boundary and transform
(4) to a strongly elliptic second order nonlinear partial di↵erential equation in divergence
form, accompanied with a nonlinear oblique derivative boundary condition. The regularity
result is then obtained by appealing to the work by Agmon, Douglis and Nirenberg [1].
The idea to use the Hodograph transform for C

1,↵ boundaries is inspired by the work of
Kinderlehrer and Nirenberg [19] (see also the work by Kinderlehrer, Nirenberg and Spruck
[20] and Alessandrini and Isakov [2]). Scattering from inhomogeneities (A, n,⌦) where @⌦
contains corner singularities is investigated in [11] and [33] by a di↵erent approach based on
the so-called Complex Geometric Optics (CGO) solutions combined with asymptotic analysis
in a neighborhood of the corner. For the readers’ convenience, we summarize these results
on corner scattering in Section 3, where we also provide a simple example of a non-scattering
inhomogeneity of the form (A, n,⌦) with corners. If ⌦ is a ball of radius R centered at the
origin, and A := a(r)I, n := n(r) with scalar functions depending only on the radial variable
r, satisfying

1

R

Z
R

0

✓
n(r)

a(r)

◆1/2

dr 6= 1 ,

then it is possible to show by separation of variables the existence of infinitely many non-
scattering wave numbers [9, 13]. In fact, for this spherically stratified medium the set of
transmission eigenvalues and the set of non-scattering wave numbers coincide. Furthermore,
the non-scattering incident waves are superpositions of plane waves, otherwise known as
Herglotz wave functions with particular densities, and each density is associated with an
infinite set of non-scattering wave numbers.
The fact that we in this paper assume that A � I 6= 0 on the boundary is essential, and it
makes the analysis more challenging. Regularity results for non-scattering inhomogeneities
with A ⌘ I in Rd are established in [10] and [27] (see also [4]). In this case the starting
regularity of the boundary is Lipschitz, and the incident wave can not vanish on boundary
points of interest. These results can be extended to the case when A(x) = a(x)I with a scalar
function a(x) which is at least C

2,↵ up to and across the boundary, by use of a standard
Liouville transformation. However, they do not extend to the case when a has a jump across
the boundary, nor to the anisotropic case. Scattering from corners has been investigated in
[3, 11, 15, 18, 26, 33]. It turns out that for geometries with corners and smooth A across the
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boundary (in particular A = I on @⌦) the non-vanishing of the incident wave is not necessary
to achieve non-zero scattered field. These results provide the foundation for proving that a
convex polygonal inhomogeneity with smooth A in a neighborhood of all corners is uniquely
determined from scattering data corresponding to one single incident wave [11, 15, 18]. Our
example in Section 3 show that such results cannot be expected in general for (A, n,⌦), when
A has a jump across the boundary, without additional assumptions on A and n. Finally let
us mention, that the non-scattering phenomenon of spherically symmetric media is very
unstable. More precisely, if a disk in R2, with A := I and n > 0 constant, is perturbed
using a very broad class of perturbations, then there exist at most finitely many positive
wave numbers for which Herglotz wave functions, with smooth non-trivial densities in an
appropriately compact set, can be non-scattering (see [29, 30]).

2 The Hodograph Transform and the Main Result

We start by rewriting (4)-(5) in a di↵erent form more convenient for our analysis, that is,
we write it in terms of the scattered field instead of the total field. To this end, we define
w := u� v. Then w satisfies

r · Arw + k
2
nw = �r · (A� I)rv � k

2(n� 1)v in ⌦ , (6)

with
w = 0 and ⌫

>
Arw = �⌫

>(A� I)rv on @⌦ , (7)

with v being a solution to (5), and hence real analytic in Rd. As it will become clear later
in the paper, what matters to our results is that v is su�ciently regular on ⌦.
From now on we shall assume that ⌦ is a C

1,↵ domain and that the matrix valued function
A has entries in C

1,↵(⌦)1. Due to the regularity of v, a standard regularity result for elliptic
equations (see Corollary 8.36 in [17]) gives that w 2 C

1,↵(⌦). Moreover, since w = 0 on @⌦,
we have ⌫ = ±rw/|rw|, provided rw 6= 0. The second condition in (7) therefore leads to

(rw)>Arw + (rw)>(A� I)rv = 0 on @⌦ . (8)

We are interested in the case when A has a jump across @⌦. Now let P be a (fixed) point
on @⌦ with A(P ) 6= I. We also assume that

⌫
>(A� I)rv(P ) 6= 0 . (9)

Then, recalling the boundary condition (7) we also have

⌫
>
Arw 6= 0 at P .

1By Ck,↵(⌦), k an integer � 0, and 0 < ↵ < 1, we understand the set of functions that may be extended
as Ck,↵ functions in an open neighborhood of ⌦. The analogue of Whitney’s Extension Theorem [31] for
Ck,↵ functions, 0 < ↵ < 1, asserts that this definition of Ck,↵(⌦) amounts to requiring that all derivatives
of order less than or equal to k are ↵-Hölder continuous in ⌦, and up to the boundary @⌦, with constants
that are uniformly valid in ⌦.
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Up to a rigid change of coordinates we may assume that ⌫
>
A = (�c1, 0, . . . , 0) with c1 =

|A⌫| > 0 at P , and that P = 0. Without loss of generality we may also assume that
⌫
>(P )A(P )rw(P ) = �c1@1w(0) < 0. Then, by the regularity of w we can find positive

constants r and c2 such that

0 < c
�1
2 < @1w(x) < c2, for all x 2 ⌦ \Br(0) , (10)

and hence

0 < c
�1
3 < �(rw)>(A� I)rv

|rw| < c3 , for all x 2 @⌦ \Br(0) (11)

for some constant c3. Denoting x = (x1, x2, . . . , xd) = (x1, x
0), we consider the mapping

H : x 7! y = (w(x), x0) , x 2 ⌦ \Br(0) .

Due to the regularity of w, the map H is in C
1,↵(⌦ \ Br(0)). It can be calculated directly

that the Jacobian of H is

DH(x) =


@x1w r>

x0w

0 I

�
.

Therefore, H is invertible on ⌦ \ Br(0), thanks to the non-vanishing of @x1w. We may
conclude that H is bijective from ⌦ \Br(0) to V

+ = V \ {(y1, y0) : y1 > 0}, and also from
@⌦\Br(0) to ⌃ = V \{(y1, y0) : y1 = 0}, where V is an open neighborhood of 0. The inverse
map of H can be expressed as H�1(y) = (z(y), y0) for some function z 2 C

1,↵(V + [ ⌃). In
terms of z the Jacobian of H can be re-written as

DH(x) =


@x1w r>

x0w

0 I

�
=


1/@y1z �r>

y0z/@y1z

0 I

�
�H(x) .

Next, we derive equations for z. By a direct calculation we obtain for y = H(x) that

r>
x
= er>

z @y1 + (0,r>
y0) , where er>

z =
1

@y1z
(1,�r>

y0z) .

In the following, all the di↵erential operators are with respect to y, unless they carry explicit
subscripts of x. We then have

(rxw) �H�1 = erz and (rx · Arxw) �H�1 =
⇣
er>

z @1 + (0,r>
y0)
⌘
(AH

erz) ,

with AH = A �H�1. A direct calculation gives that

2 er>
z @y1(AH

erz) = @y1

⇣
(er>

z)AH
erz

⌘
+ er>

z (@y1AH) erz ,

and that

@y1AH(y) = @y1A(H
�1(y)) = @y1A(z(y), y

0) = (@y1z)
@A

@x1
(H�1(y)) .
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Therefore, we deduce from (6) that z(y) satisfies

dX

j=1

@yjaj(y, z,rz) + a0(y, z,rz) = 0 in V
+
, (12)

where aj, j = 0, 1, . . . , d, are functions of 2d+ 1 arguments given by

a1 =
1

2
(er>

z)AH
erz , aj = (AH

erz)j , j = 2, . . . , d ,

and

a0 =
1

2
(@1z) er>

z (@x1A) erz + k
2
ny1 +rx · (A� I)rxv + k

2(n� 1)v .

Here, in the lower order term a0, with an abuse of notation, we still use n to denote n �
H

�1(y) = n(z(y), y0); the same applies to A and v, as well as their derivatives with respect
to x. Similarly, from the boundary condition (8) for w we obtain that

b(y0, z,rz) := (erz)>AH
erz + (erz)>(AH � I)rxv = 0 on ⌃ , (13)

where AH = AH(0, y0) and rxv = (rxv) �H�1(0, y0) .
We claim that (12) is a uniformly strongly (nonlinear) elliptic equation and (13) is an

associated proper (nonlinear) oblique derivative boundary condition. This result heavily
depends on the fact that @1z = 1/@x1w and thus

0 < c
�1
2 < @1z(y) < c2 for all y 2 V

+ [ ⌃ . (14)

We shall present the proof of this claim in the Appendix.

Remark 2.1. In the special case when A = aI in ⌦ with a being a positive constant, the
problem for z becomes

�1

2
a @1

✓
1

(@1z)2
(1 + |ry0z|2)

◆
+ ary0 ·

✓
1

@1z
ry0z

◆
= k

2
ny1 + k

2(n� a)v in V
+
,

a
1 + |ry0z|2

(@1z)2
+ (a� 1)

@x1v � (ry0z) ·rx0v

@1z
= 0 on ⌃ .

Moreover, the non-degeneracy condition (9) simplifies to

a 6= 1 and @⌫v(P ) 6= 0 .

We now assume that n 2 C
1,↵(⌦) and A 2

�
C

2,↵(⌦)
�d⇥d

. We are then in a position to use
Theorem 11.2 of [1], with l = m = m1 = 1 and p = 2, to conclude that a solution to the
boundary value problem (12)-(13) which belongs to C

1,↵(V +[⌃) is indeed in C
2,↵(V +[⌃).

Here we use (among other things) that the functions aj in (12), j = 0, 1, . . . , d, are C
1,↵ in

all the arguments, and so is b in (13). Once we have established that z is C2,↵ near P = 0, it
follows that @⌦ and w are C

2,↵ near 0. Furthermore, if A and n admit higher regularity up
to C

1, by a bootstrap procedure we can establish higher regularity results for @⌦ (as well as
for w and u) up to C

1 . In addition, if A and n are analytic, we can also prove analyticity
of @⌦ near P = 0, using results of Morrey [24]. To be quite precise we have established
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Theorem 2.1. Let ⌦ be a bounded domain in Rd, d � 2, of class C
1,↵. Suppose for some

integer ` � 1 that n 2 C
`,↵(⌦) and that A 2

�
C

`+1,↵(⌦)
�d⇥d

with the condition (2) satisfied.
Let (u, v) be a solution to (4), with v a solution to �v + k

2
v = 0 in a neighborhood of ⌦.

Let P be a point on @⌦ at which the non-degeneracy condition (9) is satisfied. Then @⌦ is
of class C`+1,↵ near P . Moreover, if both A and n are C

1 on ⌦, then @⌦ is C1 near P . If
A and n are real analytic on ⌦, then @⌦ is also analytic near P .

Remark 2.2. We note that we never specifically use in the proof of Theorem 2.1 that v solves
the Helmholtz solution in the exterior of ⌦, it su�ces that it has a smooth extension. In
fact, we need only su�cient regularity of v, that is C`+2,↵ up to the boundary. Furthermore,
the higher regularity assumptions on the coe�cients in Theorem 2.1 are only needed locally
in ⌦ \ BR(P ) for some R > 0.

Remark 2.3. Theorem 2.1 in particular implies C`+1,↵ regularity of a non-scattering inho-
mogeneity, provided that the associated incident field v satisfies (9), since in that case the
incident field v is an analytic solution to �v + k

2
v = 0 in all of Rd.

Of course Theorem 2.1 only adds insight if the wave number k is a real transmission eigenvalue
(which is a necessary condition for the incident field to produce a vanishing scattered field). If
k > 0 is a transmission eigenvalue, a variant of Theorem 2.1 also sheds light onto regularity up
to the boundary of the v part of the corresponding transmission eigenfunction. In particular
we have the following result.

Corollary 2.1. Assume k > 0 is a real transmission eigenvalue with eigenfunction (u, v)

satisfying (4). Assume that @⌦ is C
1,↵, A 2

�
C

1,↵(⌦)
�d⇥d

, 0 < ↵ < 1 satisfying (2). Let
P 2 @⌦, and assume that A(P )� I 6= 0. The following assertions hold:

1. If A and n are real analytic in a neighborhood of P , and @⌦\Br(P ) is not real analytic
for any ball Br(P ), then v can not be real analytic in any neighborhood of P , unless
⌫
>(A� I)rv(P ) = 0.

2. If n 2 C
`,↵(⌦) \ BR(P ), A 2 C

`+1,↵(⌦ \ BR(P )) for some integer ` � 1, 0 < ↵ < 1
and some ball BR(P ), and @⌦ \Br(P ) is not C`+1,↵ for any ball Br(P ) then v cannot
be in C

`+1,↵(⌦ \ Br(P )) for any ball Br(P ), unless ⌫
>(A� I)rv(P ) = 0.

The idea to use the Hodograph transform, as an essential tool when starting from a C
1,↵

boundary, is one we have borrowed from Kinderlehrer and Nirenberg [19] (see also Kinder-
lehrer, Nirenberg and Spruck [20], and Alessandrini and Isakov [2]). For the problem treated
in [2] in the two dimensional case there is a direct approach using conformal mapping, which
works when starting only with a Lipschitz assumption on @⌦. That approach does not work
for our problem even in R2, and so it remains an open and very interesting problem to resolve
whether the initial C1,↵ assumption on @⌦ can be relaxed to a Lipschitz assumption.

In the case when A = I but n di↵ers from 1, a result similar to that in Theorem 2.1 was
established in [10] (see also [18]), starting from a Lipschitz domain, and under the assumption
that the incident wave does not vanish (locally). In that case, techniques of Ca↵arelli [6]
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and Williams [32] were used to proceed from Lipschitz to C
1,↵. The result in [10] is entirely

local in character, and therefore also applies if A = I in a neighborhood of P 2 @⌦ with
n(P ) 6= 1. In that case it only guarantees local regularity of @⌦ near P . For A = I the
non-vanishing of the incident wave turns out not to be necessary for scattering from corners;
see e.g. [11, 15, 26, 33].

3 Concluding Remarks

3.1 Examples of Non-Scattering Inhomogeneities

Scattering properties of inhomogeneities (A, n,⌦) in R2 with support ⌦ containing a corner
are studied in [11, 33]. In the remark below we summarize the main results, obtained in [33]
in the case when A is isotropic and is discontinuous across @⌦.

Remark 3.1. Let ⌦ 2 R2 and P 2 @⌦ be the vertex of a corner with aperture 2✓, ✓ 2
(0, ⇡/2) [ (⇡/2, ⇡). Assume that A := aI with a scalar function a 2 C

1,↵(⌦) \ BR(P ),
for some ball BR(P ), such that a(P ) 6= 1. Then this inhomogeneity (A, n,⌦) scatters any
incident field v (which is a solution to the Helmholtz equation in a neighborhood of ⌦),
provided that:

(a) v(P ) 6= 0 and rv(P ) 6= 0, or

(b) v(P ) = 0 and 2✓ 6= p⇡/N for any integer p � 1, with N being the vanishing order of v
at P (in particular if 2✓ 2 (0, 2⇡)/Q⇡)), or

(c) v(P ) 6= 0 and rv(P ) = 0, and either 2✓ /2 {⇡/2, 3⇡/2} with v admitting a specific
expansion, or 2✓ 2 {⇡/2, 3⇡/2} and a(P ) 6= n(P ).

In the next example we show that (exceptional) non-scattering may indeed happen for non-
smooth inhomogeneities.

Example (Non-Scattering Waves and Non-Scattering Isotropic Inhomogeneities with Cor-
ners). Consider the case when A = aI and n = a, with a a constant di↵erent from 1. In that
case any k

2 for which (4) has a non-trivial solution is either a Dirichlet eigenvalue for ��
or a Neumann eigenvalue for �� on ⌦ [12]. To see this, define w1 = u� v and w2 = au� v.
Then �wj+k

2
wj = 0 in ⌦, j = 1, 2, and w1 = 0 on @⌦ while @⌫w2 = 0 on @⌦. The functions

w1 and w2 cannot both vanish identically, since (u, v) is a non-trivial solution to (4), and so it
follows that k2 is either a Dirichlet eigenvalue or a Neumann eigenvalue for ��. Conversely,
if � = k

2 is a Dirichlet or a Neumann eigenvalue for �� on ⌦ with associated eigenfunction
w, then (u, v) = (w, aw) or (u, v) = (w,w), respectively, is a nontrivial solution to

r · aru+ k
2
au = 0, �v + k

2
v = 0, in ⌦ ,

u = v, a@⌫u = @⌫v, on @⌦ .

Whether w corresponds to a non-scattering incident wave at wave number k, depends on
whether w can be extended to a (smooth) solution to �w + k

2
w = 0 in all of Rd.
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Let us now take ⌦ ⇢ R2 be to the unit square ⌦ = Q = (0, 1) ⇥ (0, 1). In that case all the
Dirichlet eigenvalues of �� are given by (p2 + q

2)⇡2, where p and q are positive integers;
corresponding Dirichlet eigenfunctions are given by w(x1, x2) = sin p⇡x1 sin q⇡x2. All the
Neumann eigenvalues of �� are given by (p2 + q

2)⇡2, where p and q are non-negative inte-
gers, and corresponding Neumann eigenfunctions are given by w(x1, x2) = cos p⇡x1 cos q⇡x2.
Notice that all these eigenfunctions are smooth functions on all of R2. As a consequence it
follows that, as an incident wave for the medium 0 < a = n 6= 1, uin := v = cos p⇡x1 cos q⇡x2

is non-scattering (at wave number k =
p

(p2 + q2)⇡2)) for any p, q 2 Z. The same holds for
the incident wave sin p⇡x1 sin q⇡x2 for any p, q 2 Z \ {0}. We note that rw vanishes at all
the corners of ⌦ for any of these w, which violates the non-degeneracy condition (9). This
example of non-scattering waves in fact falls into the possible set of non-scattering waves in
Remark 3.1.

This very simple example illustrates two points: (i) It furnishes an example of a Lipschitz
domain and isotropicA for which there exist plenty of non-scattering incident waves, however,
notice that these non-scattering incident waves all have vanishing gradients at the irregular
boundary points. (ii) In doing so, it indicates the need for a non-degeneracy condition of the
form (9) (or rv 6= 0 at points, where the normal is not well defined) if one wants to prove
regularity of @⌦, starting with a Lipschitz assumption.

Example (Non-Scattering Inhomogeneities with Anisotropic A). If one allows anisotropic
A, there is a natural way to construct a media which is non-scattering for any incident wave.
Simply let � be a su�ciently smooth (C3,↵) di↵eomorphism from ⌦ onto ⌦, with �(x) = x

on @⌦, and define

A = �⇤I =
D�D�>

| detD�| � �
�1 and n = �⇤1 =

1

| detD�| � �
�1

.

(A, n,⌦) is the so-called pushforward of (I, 1,⌦) under �. It is well known that the operator
r·(Ar·)+k

2
n· has the same Dirichlet-to-Neumann data map (or Cauchy data) as �+k

2 for
any k > 0 (see [21, 22]). Therefore (A, n,⌦) is non-scattering for any wave number and any
incident wave. We note that �⇤I is anisotropic, unless � = id, in which case A = I and n = 1.
To understand why this construction does not contradict Theorem 2.1, one must understand
that if @⌦ is not of class C l+1,↵ near P , then either Range(A(P )� I) = Range(�⇤I(P )� I)
is orthogonal to the normal to @⌦ at P (remember, the gradient field of the incident wave
at P can be arbitrary) or (A, n) = (�⇤I,�⇤1) fails to be (C l+1,↵

, C
l,↵) near P . To further

illustrate this: if one takes ⌦ ⇢ R2 be to be a polygon, with vertices Pi, i = 1, . . . , N,

and if  (x) is a nontrivial C1 vector field that vanishes on @⌦, then �(x) = Ix + ✏ (x)
is a C

1 di↵eomorphism of ⌦ onto ⌦ for ✏ su�ciently small, with �(x) = x on @⌦ and
with D�(Pi) = I for i = 1, . . . , N . The corresponding medium (A, n,⌦) = (�⇤I,�⇤1,⌦)
is anisotropic and non-scattering for any wave number and any incident wave; it has C

1

coe�cients A and n, however, it has A(Pi) = I, n(Pi) = 1 for all i.
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3.2 Incident Fields satisfying the Non-Degeneracy Condition (9)

A natural question to ask is whether there are incident fields that satisfy the non-degeneracy
condition (9) at any point on @⌦, i.e., whether one can find v that satisfies

�v + k
2
v = 0 in Rd and ⌫

>(A� I)rv 6= 0 on @⌦ , (15)

provided that A 6= I on @⌦. For (isotropic) inhomogeneities with A = aI and a(x) 6= 1 for
x 2 @⌦ this reduces to finding v that solves

�v + k
2
v = 0 in Rd and

@v

@⌫
6= 0 on @⌦ , (16)

A plane wave v(x) = cos(k ⇠ ·x) (or v(x) = sin(k ⇠ ·x)) where ⇠ 2 Sd�1 is the unit propagation
direction, is one of the most commonly used incident waves in scattering theory. It doesn’t
satisfy the non-vanishing condition in (16) on all of @⌦. In fact, for a smooth boundary,
by continuity of ⌫(x) there always exists a point P 2 @⌦ where ⌫

>(P ) · ⇠ = 0 and hence
@v/@⌫(P ) = 0. This applies to point sources as well. However, there are plenty of Herglotz
wave functions (superpositions of plane waves) given by

vg(x) :=

Z

Sd�1

g1(⇠) cos(k ⇠ · x) ds⇠ +

Z

Sd�1

g2(⇠) sin(k ⇠ · x) ds⇠ , (17)

which satisfy (15), and thus (16) for A = aI, if we exclude some values of wave number
k > 0. Such values of k > 0 correspond to k

2 being an eigenvalue of the oblique Neumann
eigenvalue problem

�q + k
2
q = 0 in ⌦ and ⌫

>(A� I)rq = 0 on @⌦ .

If we assume the regular oblique derivative condition, i.e.,

(A(x)⌫ · ⌫)(A(x)⇠ · ⇠)� (A(x)⌫ · ⇠)2 6= 1 for all ⇠ 2 Sd�1 such that ⌫ · ⇠ = 0 ,

then the oblique Neumann eigenvalues form a discrete set that accumulate at 1 (see e.g.
[17]). Now if k2 is not an oblique Neumann eigenvalue, then one can find a v 2 C

1,↵(⌦) that
satisfies the Helmholtz equation �v + k

2
v = 0 in ⌦ such that ⌫

>(A � I)rv = � > 0 on
@⌦. Therefore any Herglotz wave function (17) that approximates v su�ciently well in the
C

1(⌦) norm2 satisfies the non-degeneracy condition (15) on all of @⌦. Since Theorem 2.1 is
meaningful only if k is a real transmission eigenvalue, the excluded values are real transmis-
sion eigenvalues k > 0 such that k2 is simultaneously a (oblique) Neumann eigenvalue. It is
an open problem if such a set of wave numbers is finite or not.

2It is possible to slightly modify the duality argument in the proof of Preposition 3.4 in [27]
to show that Herglotz wave functions (17) with g1, g2 2 C1(Sd�1) are dense in the space�
v :2 W 1+�,p(⌦) : �v + k2v = 0

 
for some 0 < � < 1 and any p > 1, with respect to the W 1+�,p(⌦)-norm.

Then the approximation property in C1(⌦) follows from the Sobolev Imbedding Theorem.
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Appendix

Here we show that the first variation of the nonlinear partial di↵erential equations (12)–(13)
is uniformly strongly elliptic with a proper oblique derivative boundary condition; this allows
us to apply Theorem 11.2 in [1]. The first variation

Lz(y,�,r�) = 0

of the set of nonlinear equations (12)–(13), in shorthand written as

F(y, z,rz) = 0 ,

is defined by means of

Lz = I 0(0) where I(⌧) = F(y, z + ⌧�,r(z + ⌧�)) .

See [16, Chapter 8] and also [1, Page 684]. Assuming that z is a function of d variables, rz

is regarded as d arguments, namely @jz, j = 1, . . . , d, of F .
A straightforward calculation shows that the first variation of (12) has the following matrix
coe�cient eA in the principal (divergence form second order) part of the operator at each
point y 2 V

+,

eA = � 1

@1z

"
(er>

z)A erz
1

@1z
(~a0 � Ad�1ry0z)>

1
@1z

(~a0 � Ad�1ry0z) Ad�1

#
,

where ~a0> = (a12, a13, . . . , a1d) and Ad�1 = (aij)di,j=2, that is,

A =


a11 ~a

0>

~a
0

Ad�1

�
.

For simplicity of notations, we have again used A = (aij) to denote AH = A � H
�1 =

(aij �H�1). We calculate for ⇠ = (⇠1, ⇠0>)> 2 Rd that

�(@1z) ⇠
> eA ⇠ = ⇠

2
1 (er>

z)A erz + 2 ⇠1
1

@1z
(~a0 � An�1ry0z)

>
⇠
0 + ⇠

0>
An�1⇠

0 = e⇠>
z
A e⇠z ,

with
e⇠>
z
=

✓
1

@1z
⇠1 , (⇠0 � ry0z

@1z
⇠1)

>
◆

= (0, ⇠0>) + ⇠1
er>

z .

It then follows by continuity (and compactness) that, for all y 2 V
+,

(c4)
�1|⇠|2  � ⇠

> eA ⇠  c4|⇠|2,

with some positive constants c4 > 0 depending on c0 in (2), c2 in (10), and kerzkV +\⌃ =
krxwk⌦\Br(0). This verifies the uniform, strong ellipticity condition.
In regards to the boundary condition (13), the principal part of the first variation at each
boundary point y = (0, y0) is given by

P
d

j=1 bj@j with
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b1 = � 1

@1z

⇣
2 (er>

z)A erz + (er>
z) (A� I)rxv

⌘
= � 1

@1z
(er>

z)A erz ,

and

bj = � 1

@1z

⇣
2A erz + (A� I)rxv

⌘

j

, j = 2, . . . , d ,

where again, by abuse of notation, we use A in place of A �H�1(0, y0) and rxv in place of
(rxv) �H�1(0, y0). From (2) and (14) we get that

0 < c
�1
0 c

�3
2 < c

�1
0 c

�1
2 |erz|2 < �b1 for all y = (0, y0) on ⌃ .

This ensures that the linearized boundary condition (on ⌃) is a proper oblique derivative
condition, and as a consequence it is “covering” for the linearized second order elliptic
di↵erential operator.
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