PHYSICAL REVIEW D 106, 104021 (2022)

Concurrent estimation of noise and compact-binary signal parameters
in gravitational-wave data

Cailin Plunkett ,1’* Sophie Hourihane ,2 and Katerina Chatziioannou

2,3

lDepartment of Physics and Astronomy, Amherst College, Amherst, Massachusetts 01002, USA
2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
*LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA

® (Received 3 August 2022; accepted 27 October 2022; published 10 November 2022)

Gravitational-wave parameter estimation for compact binary signals typically relies on sequential
estimation of the properties of the detector Gaussian noise and of the binary parameters. This procedure
assumes that the noise variance, expressed through its power spectral density, is perfectly known in
advance. We assess the impact of this approximation on the estimated parameters by means of an analysis
that simultaneously estimates the noise and compact binary parameters, thus allowing us to marginalize
over uncertainty in the noise properties. We compare the traditional sequential estimation method and the
new full marginalization method using events from the GWTC-3 catalog. We find that the recovered signals
and inferred parameters agree to within their statistical measurement uncertainty. At current detector
sensitivities, uncertainty about the noise power spectral density is a subdominant effect compared to other

sources of uncertainty.
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I. INTRODUCTION

Estimating the source properties of compact binary
coalescences (CBC) using data from gravitational-wave
(GW) observatories [1,2] relies on accurate models of both
the astrophysical signal and the noise in the detector. While
the signal model employs waveform templates that are based
on analytic approximations to Einstein’s field equations, the
noise model typically takes the form of the power spectral
density (PSD) of the detector Gaussian noise, S,(f) [3].
Given GW datad = h + n that are a sum of a coherent signal
h between detectors and uncorrelated random noise n, and an
accurate signal model %/, the residual r = d — i’ should
follow the same distribution as the noise. Assuming Gaussian
and stationary noise, the likelihood function £(d|#’) in the
frequency domain is [4,5]

L(d|) = H#GXP [—2ﬁ] (1)
ﬂ'TS”(f,') TSn(fi) ’

i

which explicitly depends on S,,(f); T is the duration of the
data analyzed and i counts frequency bins.

The likelihood of Eq. (1), and thus analyses of GW
signals, depend on multiple formal assumptions about the
detector noise and its PSD. Parameter estimation [6—8]
assumes that the noise is Gaussian and stationary in time,
though mitigation techniques and methods to relax these
assumptions have been explored [9—13]. Furthermore, the
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PSD is typically a required input for CBC parameter
estimation. Using a point estimate for S, (f) assumes the
noise PSD is perfectly known or at least that is it estimated
to precision far greater than other statistical uncertainties.
The noise PSD must be estimated from the data [3],
typically in one of two ways. The first, termed the “off-
source” method, relies on the median PSD of many data
segments around, but not including, the data segment
containing the signal [6]. This calculation requires the
stationarity assumption to hold over the entire stretch of
data used to estimate the PSD, typically O(10° s) [6,14].
The second, termed the “on-source” method, uses only the
data segment containing the signal.

The “on-source” method relies on BayesLine [15], inte-
grated into the broader Bayeswave algorithm [12,16], and
models the PSD with a two-component phenomenological
fit. A cubic spline describes the broadband noise behavior,
while narrow-band spectral features are fit using
Lorentzians. The number and parameters of the spline
points and Lorentzians are marginalized over with a trans-
dimensional Markov chain Monte Carlo (MCMC) algo-
rithm [17], also known as a reversible-jump MCMC
(RIMCMC). Any non-Gaussian components of the data
(namely, instrumental glitches or astrophysical signals) are
modeled with sine-Gaussian wavelets, thus relaxing the
assumption that the noise is Gaussian during PSD estima-
tion. By using the same data segment for both PSD and
signal parameter estimation, the on-source method addi-
tionally restricts the stationarity assumption to a shorter
data segment, typically O(4 s). A point estimate from the
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PSD posterior, typically a fair draw or the median, is then
selected and passed on for downstream analyses. The on-
source and off-source methods were compared in [18]
where it was demonstrated that the former results in PSDs
that are more consistent with the Gaussian likelihood
assumptions. Both methods, however, still provide a single
point-estimate for the PSD.

Traditional parameter estimation [19-21] involves
sequential estimation of the noise PSD and the binary
parameters. Once a point-estimate for the noise PSD has
been provided with either the on-source or the off-source
methods, LALInference [6], BILBY [7,8], or other similar pipe-
lines marginalize over the binary parameters using waveform
templates as the signal model. During this two-step sequen-
tial process, care must be taken to ensure that the spectral
resolution and maximum and minimum frequencies of the
estimated PSD match the desired parameter estimation
analysis settings. Besides these technical complications,
the sequential process assumes that the PSD is perfectly
estimated with negligible uncertainty, or at least that any
uncertainty is not correlated with the binary parameters.

Assessing the impact of the assumption that the noise
PSD is perfectly known requires marginalizing over noise
uncertainty during parameter estimation. The choice of
PSD estimation method and PSD prior results in different
functional forms for the marginalized CBC likelihood
[15,22-29]. Rover et al. [22] showed that assuming a
PSD prior that is an inverse y2-distribution allows one to
analytically marginalize over PSD uncertainty and converts
the standard Whittle likelihood to a Student-t distribution.
Talbot and Thrane [29] extended [22] and computed the
marginalized likelihood for both the mean and median off-
source PSD. Finally, Biscoveanu et al. [28] explored a
method of incorporating PSD uncertainty in CBC param-
eter estimation by considering the full PSD posterior from
BayesLine rather than a point-estimate. They still analyzed
the data sequentially, but used 200 fair draws from the PSD
posterior to perform 200 parameter estimation analyses and
combined the resulting posteriors. Besides the computa-
tional cost, one drawback of this method is that it ignores
potential correlations between the PSD and the CBC
parameter posterior.

Both Biscoveanu et al. [28] and Talbot and Thrane [29]
concluded that PSD uncertainty is likely a subdominant
effect compared to typical current statistical uncertainties
given their respective PSD and binary parameter estimation
methods. Biscoveanu et al. [28] found posteriors under the
median and marginalized on-source PSD that agree in
position and width to within a few percent, which they
determine is an order of magnitude higher than expected due
to statistical fluctuations. Among the GWTC-1 events [19],
GW151012 [30] displays the largest effect due to uncertainty
on the LIGO Hanford PSD. However, the choice of PSD
estimation method, specifically the off-source mean or
median studied in [29], had a greater impact on the inferred

parameter posterior than PSD marginalization. Similar con-
clusions were reached in [31] in the context of the impact of
PSD misestimation on inferring the tidal deformability of
neutron star binaries. The impact of marginalization could be
more significant when precise calculations of Bayesian
evidence are needed [29].

In this study we revisit the issue of uncertainty in the PSD
estimation and its effect on the inferred CBC parameters on
events from GWTC-3 [21]. We take advantage of recent
developments on the BayesWave algorithm1 that augment its
list of models with a CBC model that describes the signal
with waveform templates [10,32]. This allows us to simulta-
neously model the noise PSD and the GW signal from the
same on-source data, thus obtaining CBC parameter poste-
riors that are marginalized over noise uncertainty. Compared
to the approach of [28], our method allows us to obtain a joint
posterior for the noise and the signal rather than assume the
signal and noise posteriors are uncorrelated and obtained by
sequential analysis of the same data.

We apply our analysis to binary black hole (BBH) signals
from GWTC-3 [21]. To reduce computational cost, we
restrict to confident detections with signal-to-noise ratio
(SNR) > 10. We further discard signals with analysis seg-
ments > 16 seconds and events with technical complications
of different lower frequency cutoffs in different detectors, for
a total sample of 50 events. We analyze each event with two
methods. The sequential method follows the procedure
employed for parameter estimation in [21] by first estimating
the median for the on-source noise PSD and then using this
point estimate to sample from the posterior of the CBC
source parameters. The marginalized method samples from
the joint posterior of the noise PSD and CBC source
parameters. We compare the resulting source parameter
posteriors and find broad agreement between the two
methods. In particular, over all events the marginalized
method results in an average change of O.Ofll.'g1 % in the
marginalized chirp mass posterior median and a decrease of
271%% in the marginalized posterior 90% width. Neither are
statistically distinguishable from zero. In addition, we find no
significant trend between the change in posterior width and
the posterior median or signal SNR. Finally, we devise a
simple toy model to demonstrate how a broadband increase
or reduction in the noise PSD results in a higher-order, and
thus subdominant, effect in the CBC parameter posteriors.

The rest of the paper is organized as follows. In Sec. II, we
describe the Bayeswave algorithm and models for the GW
signal available within it. In Sec. III, we discuss our analyses
on a set of events from GWTC-3 [21], considering the
waveform reconstructions as well as the parameter posteri-
ors. We use a toy model of a shifted PSD to help explain the
minimal impact of PSD marginalization on parameter
posteriors in Sec. IV. Finally, in Sec. V we conclude.

'From now on we use the term BayesWave to describe the
combined BayesLine and Bayeswave algorithms.

104021-2



CONCURRENT ESTIMATION OF NOISE AND COMPACT-BINARY ...

PHYS. REV. D 106, 104021 (2022)

II. METHODS AND ANALYSIS

In this section, we describe the features of BayesWave that
are relevant to our study as well as details about our analysis
of GWTC-3, for which we use data from the Gravitational
Wave Open Science Center (GWOSC) [33,34].

A. Algorithm description

The Bayeswave algorithm is described in detail in
[5,10,16,32] and here we describe the aspects relevant to
this work. BayesWave simultaneously models GW signals,
detector noise, and glitches using different models. We
provide a glossary of terms in Table I, a schematic algorithm
workflow in Fig. 1, and further describe each model below.
(i) The noise model uses the BayesLine algorithm, fully
integrated into BayesWave, to model the PSD S,,(f) asa
sum of a broadband spline and Lorentzians for
spectral lines [15]. The number and parameters of
the spline control points and Lorentzians are margin-
alized over with an RIMCMC. In the workflow of
Fig. 1, the noise RIMCMC is depicted with a blue box.

(ii) The CBC model uses waveform templates derived
within general relativity to model a CBC signal. The
CBC sampler and its integration within BayesWave are
described in detail in [32]. For this work, we use the
IMRPhenomD [35,36] waveform model with identical
settings and priors as [32]. The CBC likelihood is
computed with the heterodyning method to reduce the
computational cost [37,38]. In the workflow of Fig. 1,
the CBC model parameters are split between the
extrinsic MCMC that handles parameters 6., (purple
box) and the CBC MCMC that handles parameters
gebe (pink box); see [32] for details.

(iii) The glitch model targets any incoherent non-Gaussian
noise in the detectors by modeling such noise with a
sum of sine-Gaussian wavelets. The number and
morphology of the wavelets are not fixed a priori
but instead marginalized over with an RIMCMC. This
model is typically used to target instrumental glitches,
but can capture any excess power that is unaccounted
for, including signals. In the workflow of Fig. 1, the
glitch RIMCMC is depicted with a yellow box and its
parameters are collectively denoted as Qw.z

BayesWave samples from the multidimensional posterior of
all its models using a blocked Gibbs sampler. Each model is
sampled iteratively using independent MCMC or
RIMCMC samplers that update their corresponding block

*For completeness we also mention the signal model though it
is not used in this study and thus not depicted in Fig. 1. The signal
model targets astrophysical signals by modeling coherent power
between the detectors through a sum of sine-Gaussian wavelets.
The number and morphology of the wavelets are again margin-
alized over with an RIMCMC. The signal model is very similar to
the glitch model, only the wavelets are coherent rather than
incoherent across the detector network.

d(f) () Intrinsic CBC and
. -
(), S,

‘Wavelet RIMCMC on ‘
d(f) . }'lclx:( acbc’ 9 ext)

Gibbs sampler

echc, gext
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FIG. 1. Bayeswave workflow diagram. Preconditioned fre-
quency-domain data d(f) undergo quick initial parameter fits
to use as starting points for the blocked Gibbs sampler (black
box). The Gibbs sampler cycles through the component samplers,
which are given in filled colored boxes with their names and input
parameters, using independent MCMCs. The yellow (purple,
blue, pink) box represents the glitch (extrinsic parameter, noise
PSD, intrinsic CBC parameter) sampler. Below each component
sampler, the parameters that are held fixed (sampled) are unboxed
(boxed in navy).

QBC MQMC on
d(f) — h¥(@")

— |

of parameters while keeping others parameters fixed. Each
independent sampler proceeds for a given number of iterations,
before returning the last set of parameters and switching to the
next sampler. This procedure provides an efficient way of
approximating the joint distribution of all parameters, provided
that the parameters across blocks are not too correlated. The
breakdown of parameters within blocks is described in [32],
while [11] shows that this procedure converges even when the
parameters across blocks are correlated.

BayesWave can be used with any combination of these
models, resulting in different analysis modes as shown in
Table I. The “cleaning phase” is the standard BayesWave
mode used to compute median PSDs for analyses that use a
point-estimate for the PSD. Data in each detector are
analyzed separately with the noise model and the glitch
model. The former targets the noise PSD, while the latter
targets any excess non-Gaussian power (glitch or GW
signal) to ensure that its presence does not affect PSD
estimation. A posterior for the noise (and the excess power)
is returned from which a median can be computed for
further parameter estimation analyses such as [19-21].
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TABLE I. Bayeswave term glossary. The first column gives the model name, while the second column provides a
brief description of its configuration. The third, fourth, and fifth columns correspond to the three analyses modes
used in this study and denote which models are active during each.

Analysis mode

Model name Model configuration Cleaning Phase =~ CBC +noise =~ CBC + fixed
CBC model GW signal with CBC templates X v v
glitch model Incoherent power with wavelets v X X
noise model Noise PSD with splines and Lorentzians v v X
signal model ~ GW signal with wavelets X X X

During the “CBC +noise” analysis mode, data from all
detectors are analyzed simultaneously. The GW signal is
modeled with the CBC model while the noise PSD in each
detector is modeled with the noise model and thus fully
marginalized over. For comparison to the standard analysis
of [19-21], we also use the “CBC + fixed” analysis mode
where again the GW signal is modeled with the CBC
model, but now the noise PSD is fixed, typically acquired
from a previous “Cleaning Phase” analysis.

B. Analysis description and data

We analyze the BBH events from GWTC-3 with SNR
above 10, excluding events that contain neutron stars to
limit computational cost. A list of events and analysis
settings are provided in Table II. In order to examine the
effect of uncertainty on the noise PSD on inference, we
perform two analyses on each event, which we label
sequential and marginalized.

TABLE II. Table of events and analysis settings. The columns in order provide the event name, its geocenter GPS time, the analysis
segment length, the analysis sampling rate, the detector network (H: LIGO Hanford, L: LIGO Livingston, V: Virgo), and network SNR
as reported in the GW Open Science Center. For all events, we use a lower frequency cutoff of fj,, = 20 Hz.

Event GPS time (s) Segment length (s) Sampling rate (Hz) Detector network Network SNR
GW150914 1126259462.420 4 2048 H, L 24 .4
GW151012 1128678900.400 4 2048 H, L 10.0
GW151226 1135136350.647 8 2048 H, L 13.1
GW170104 1167559936.599 8 2048 H, L 13.0
GW170729 1185389807.328 4 1024 H, LV 10.2
GW170809 1186302519.747 4 2048 H, L,V 12.4
GW170814 1186741861.527 4 2048 H, L,V 15.9
GW170818 1187058327.082 4 2048 H, L,V 11.3
GW170823 1187529256.518 4 2048 , L 11.5
GW190408_181802 1238782700.286 8 2048 H L,V 14.7
GW190412 1239082262.170 8 4096 H, L,V 18.9
GW190421_213856 1239917954.260 4 1024 , L 10.6
GW190503_185404 1240944862.298 4 2048 H, LV 12.1
GW190512_180714 1241719652.419 8 2048 H, LV 12.3
GW190513_205428 1241816086.747 4 2048 H LV 12.3
GW190517_055101 1242107479.838 4 2048 H L,V 10.2
GW190519_153544 1242315362.398 4 1024 H L,V 12.1
GW190521_030229 1242442967.460 4 512 H L,V 14.3
GW190521_074359 1242459857.466 4 1024 , L 24.4
GW190602_175927 1243533585.089 4 1024 H, LV 12.1
GW190620_030421 1245035079.311 4 1024 L,V 10.9
GW190630_185205 1245955943.180 4 2048 LV 15.6
GW190701_203306 1246048404.580 4 1024 H LV 11.6
GW190706_222641 1246487219.346 4 2048 H, L 12.4
GW190707_093326 1246527224.169 16 4096 H, L 13.0
GW190708_232457 1246663515.384 8 4096 LV 13.1
GW190720_000836 1247616534.707 16 4096 H LV 11.7
GW190728_064510 1248331528.534 16 8192 H LV 13.6
GW190828_063405 1251009263.800 4 2048 H LV 16.0
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TABLE II. (Continued)

Event GPS time (s) Segment length (s) Sampling rate (Hz) Detector network Network SNR
GW190828_065509 1251010527.890 8 2048 H LV 11.1
GW190910_112807 1252150105.324 4 1024 L,V 13.4
GW190915_235702 1252627040.692 8 2048 H LV 13.1
GW191109_010717 1257296855.217 4 1024 H, L 17.3
GW191129_134029 1259070047.197 16 8192 H, L 13.1
GWI191204_171526 1259514944.092 8 4096 H, L 17.5
GWI191215_223052 1260484270.334 8 2048 H/ LV 11.2
GWI191216_213338 1260567236.472 16 8192 H, V 18.6
GW191222_033537 1261020955.124 8 1024 H, L 12.5
GW191230_180458 1261764316.407 4 2048 H LV 10.4
GW200112_155838 1262879936.091 4 2048 L,V 19.8
GW200128_022011 1264213229.901 4 1024 H, L 10.6
GW200129_065458 1264316116.433 8 2048 H L,V 26.8
GW200202_154313 1264693411.556 16 8192 H LV 10.8
GW200208_130117 1265202095.950 4 1024 H LV 10.8
GW200219_094415 1266140673.197 4 2048 H LV 10.7
GW200224_222234 1266618172.402 4 1024 H LV 20.0
GW200225_060421 1266645879.396 8 2048 H, L 12.5
GW200302_015811 1267149509.516 8 2048 H, V 10.8
GW200311_115853 1267963151.300 4 2048 H L,V 17.8
GW200316_215756 1268431094.158 16 4096 H LV 10.3
(1) The sequential method is constructed to closely (mym,)3/3

follow the traditional fixed PSD analysis. First, M= W? (2)

we use the “cleaning phase” mode (see Table I)

to obtain a posterior for the PSD. From that . effective spin,

posterior, we compute the per-frequency-bin median

PSD. Second, we use the “CBC + fixed” mode with My cos 0; + may, cos 0,

the previously computed median PSD as input. Heft = ) 3)

(2) The marginalized method includes a single analysis
of the data with the “CBC + noise” mode (see
Table I) where the CBC and PSD are inferred
simultaneously.

III. RESULTS ON GWTC-3 EVENTS

In this section we present the results of the sequential
and marginalized noise methods for each event. We begin
with an in-depth discussion of GW150914 [39] and then
present results for all events.

A. GW150914

We show the time- and frequency-domain reconstruc-
tions of GW150914 in Fig. 2 with both methods. We find
that the recovered waveforms agree in median and uncer-
tainty; despite the marginalized method adding free param-
eters to the analysis, the resulting reconstructions have
comparable widths. The marginalized and median PSDs
agree quite well overall, with minor deviation around the
low-frequency spectral lines in LIGO Hanford.

We then consider the posteriors for select CBC param-
eters. In Fig. 3 we show one- and two-dimensional
marginalized posteriors for the detector-frame chirp mass,

my —l—m2

which is a relatively well-measured spin parameter [40]; the
mass ratio g = m,/m; < 1; and the luminosity distance
D, . In the above equations, m;, y;, and cos@; with i €
{1,2} are the component masses, spin magnitudes, and
angles between the spin and the Newtonian orbital angular
momentum, respectively. As with the waveforms, the
parameter posteriors are consistent within the statistical
measurement uncertainty. For all parameters, the median
appears shifted to slightly larger values but the effect is
small, with only a 0.4% shift in the chirp mass. The
marginalized method additionally recovers ~1% higher
network SNR, which is a minimal difference possibly
attributable to the slightly closer distance posterior.

B. Remaining events

We present the one-dimensional marginalized posterior
for M, y.s, Dy, and g for the entire set of GWTC-3 events
in Fig. 4. While we find small variation in posterior position
and width between the marginalized and the sequential
methods, overall there is broad agreement.

To quantify the difference between the methods, we
compute the Jensen-Shannon divergence (JSD) [41]
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FIG. 2. Whitened time-domain reconstruction (top) and spectrum (bottom) of GW150914 in LIGO Hanford (left) and LIGO
Livingston (right). The median and 90% credible interval for the signal are shown in pink and teal for the sequential and the marginalized
analyses, respectively. The red line gives the median PSD used for the sequential analysis, while the median and 90% credible interval
for the PSD from the marginalized analysis are in dark blue. Time is with respect to GPS 1126259462.42.
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FIG. 3. One- and two-dimensional marginalized posterior for the

detector-frame chirp mass M, the effective spin y ¢, the luminosity
distance Dy , and the mass ratio ¢ of GW150914. We show results
obtained with the sequential and the marginalized noise estimation
methods in pink and teal, respectively. The methods give consistent
results to within the statistical uncertainty.

between the sequential and marginalized posteriors. This
summary statistic describes the similarity of two distribu-
tions and ranges from 0 for identical distributions to 1 for
dissimilar distributions. In Fig. 5, we show the JSD for the
marginalized M, y., Dy, and ¢ posteriors as a function of
the network matched-filter SNR as reported in GWOSC
[33,34]. The average JSD is 0.006 across all events and
parameters and the JSD is smaller than 0.05 for all except
one, indicating overall agreement between the methods
[19]. The largest JSD is 0.052, for the chirp mass of
GW190512_180714. The magnitude arises from a sizeable
posterior width discrepancy, which is further discussed
below and is shown in Appendix to depend on the analysis
low frequency cutoff. Overall, the difference between the
marginalized and sequential posteriors is below the differ-
ence in posteriors induced by choice of waveform model
[19]. In addition, the JSD shows minimal trend with SNR
with the exception of a slight trend of increasing chirp mass
JSD with SNR. However, the underdensity of events at high
SNR makes it premature to confirm a relation.

Further, we examine the chirp mass posterior width in
Fig. 6, where we plot the relative difference between the
two methods as a function of the posterior median (i.e., the
event chirp mass) and the SNR. We find no significant
trends between these parameters, concluding that the effect
of marginalizing over PSD uncertainty does not depend on
the chirp mass or signal strength. Indeed, a linear fit of the
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FIG. 4. Violin plots of the posterior probability density of the sequential (pink) compared to the marginalized (teal) noise estimation
method for the detector-frame chirp mass M, effective spin y., luminosity distance D; , and mass ratio ¢ of each event. The dashed and
dotted lines depict the quartiles for each posterior.
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FIG. 5. Jensen-Shannon divergence (JSD) between the sequen-
tial and marginalized parameter posteriors as a function of the
network matched-filter SNR for M, y.¢, Dy, and g. Each dot
corresponds to one event from Table II. Across all events we
find JSDs < 0.05.

data of Fig. 6 returns a slope consistent with zero.
The biggest outlier is GW190512_180714, for which
we obtain a ~40% decrease in posterior width using the
marginalized PSD. Upon further testing, reducing the
lower frequency limit to f),, = 16 Hz from f,, =
20 Hz reduces these differences. We apply the same test
to another event with a large posterior width discrepancy,
GW190513_205428 (~25% decrease) and reach the same
conclusion. We continue to use the standard settings for
the remaining analyses, but present the f,, = 16 Hz
results in Appendix.
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FIG. 6. Fractional difference between the width of the 90%
credible interval of the sequential and marginalized methods as a
function of the network matched-filter SNR and the median
posterior M. We find no overall trend.

IV. TOY MODEL OF PSD VARIATION

The results of Sec. I B suggest that the sequential noise
estimation method results in CBC parameter posteriors that
are qualitatively similar to the marginalized method. The
main difference between the two is that the former uses the
median of the PSD posterior, while the latter uses the full
posterior. To further explore the difference between the
two, we consider what happens if we instead had selected
the upper or lower 90% estimate of the PSD with the
sequential method. A larger noise PSD should lead to
underestimation of the signal SNR, and as a consequence,
overestimation of the posterior uncertainty. Similarly, a
lower PSD should lead in more narrow posteriors. In effect,
we expect a correlation between the noise posterior height
and the CBC parameter posterior width.

To explore this behavior in the data, we revisit the
“CBC + fixed” analysis for GW159014 using not only the
median PSD, but also the lower and upper 90% credible
interval PSDs. The chirp mass posterior for each analysis is
plotted in the top panel of Fig. 7; they show the expected
posterior broadening and narrowing but also a small shift in
the posterior median. The bottom panel of Fig. 7 shows the
width of the 90% credible interval for M as a function of

x107°
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M =309712
6 Median PSD:
M =30971%
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=4 M = 308171
=
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[
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M [Me]
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S| e
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e
|5 000
o
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—0.05 0.00 0.05

Fractional Difference in ASD

FIG. 7. Top: marginalized detector-frame chirp mass posterior
for GW150914 with the “CBC + fixed” analysis using the
median, lower 90%, and upper 90% estimate for the PSDs.
Bottom: fractional difference between the 90% credible interval
widths of the chirp mass posteriors from the top panel against the
fractional difference between amplitude spectral density and the
median at 100 Hz.
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the height of the amplitude spectral density (i.e., the square
root of the PSD that is proportional to the SNR and thus the
posterior width), given as fractional difference to the
median at 100 Hz. Though with three points it is premature
to conclude that the trend is linear, it is still evident that the
uncertainty increases as the PSD increases (and the SNR
decreases). In the case of GW159014, we also find an
increase in the posterior median with decreased PSD
height. However, tests on other events confirm the trend
of the bottom panel of Fig. 7 regarding the posterior width,
but no trend regarding the median. This suggests that the
median shift is not a generic feature and further confirms
the expected correlation between the posteriors.

We further explore a toy model to illuminate this
behavior. When marginalizing over PSD uncertainty, each
step in the CBC MCMC uses a different PSD that is drawn
from the PSD posterior. Overall, the sampler therefore uses
a range of PSDs that can be either higher or lower than the
median, and thus the CBC posterior width of each sample
will be either increased or decreased compared to the
median. As a result, the CBC posterior that results from
marginalizing over PSD parameters will be a collection of
samples from posteriors with different standard deviations.
Simplifying to the case of a Gaussian posterior, this effect is
comparable to a normal distribution integrated over a range
of standard deviations. The difference between the poste-
riors from using a fixed median PSD (the sequential
method) versus the full PSD posterior (the marginalized
method) can then be approximated by the difference
between a normal distribution and one integrated over a
range of standard deviations,

5(0) = % /_ ZN(9|M, (1 4 x)o)dx = N (6|, ), (4)

where 6 is the parameter of interest, y is the mean of the
posterior, ¢ is the standard deviation when using the

0.05
=0.1
0.2
=03
0.4

m M M M O

—0.01
B L | 0 1 2 3 4
0
FIG. 8. Plot of §(8), Eq. (4), the difference between A(6]0, 1)

and [¢, N(6|0,1+ x)dx for various values of e. A Taylor
expansion shows that 5(0) ~ £ at @ = 0.

median PSD, and ¢ encodes the relative PSD uncertainty.
Here we choose £ symmetric about ¢, which arises from the
expectation (and observation, as shown in Fig. 7) that if
the ASD uncertainty is Gaussian and thus symmetric about
the median, then the resulting range of posterior widths will
also be roughly symmetric. Figure 8 shows §(6) for u = 0,
o =1, and several values of . A Taylor expansion around
€ = 0 shows that the difference between the two distribu-
tions peaks at their mean and goes as §(0) ~ . This
scaling suggests that a small PSD uncertainty (and thus a
small €) results in a suppressed effect in the parameter
posteriors as it is a higher order effect. Indeed as shown in
Fig. 7, the typical PSD uncertainty at current sensitivities is
€ ~0.05, which is much smaller than the typical width of
the posteriors.

V. CONCLUSION

In this study, we assessed the impact of assuming a
known and fixed PSD during parameter estimation for
CBCs. We compared two methods, a sequential method
that first computes the PSD posterior and then uses the
median to estimate the posterior for the CBC parameters,
and a marginalized method that simultaneously infers the
posterior for the PSD and the CBC parameters. We
recovered similar parameter posteriors, in agreement with
previous results [28,29]. In particular, the difference in the
chirp mass posterior median (width) between the two
methods is 07]4% (27/%) across all events. We found
no trends between these differences and the event chirp
masses and network SNRs. The marginalized method
involves simultaneous modeling of more parameters and
thus comes with a greater computational cost than the
sequential method. This increase is smaller for high-mass
events, but can reach an increase of up to ~1.5 in
computing time for low-mass events.

The simultaneous modeling of the CBC signal and the
noise PSD allows us to marginalize over uncertainty in the
latter. Compared to the method explore in [28], our method
involves a single parameter estimation analysis and can
account for potential correlations between the CBC signal
and the PSD model parameters. Additionally, our method
enables estimation of the Bayesian evidence for the
marginalized PSD analysis and thus computation of the
Bayes factor between different models. However, correctly
interpreting the Bayes factor within the context of the
chosen priors of the PSD model is a nontrivial task and lies
outside the scope of this paper.

We explained our results within the context of a toy
model that considers the impact of a systematic increase or
decrease of the PSD. In the case of simple Gaussian
distributions, the difference between the posterior from
the median PSD and the one from the full PSD posterior is
of higher order in the PSD uncertainty. Thus the sequential
method that is based on the median PSD already results in
posteriors that are very similar to the marginalized method.
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We conclude that at current detector sensitivities, PSD
uncertainty is subdominant compared to other sources of
uncertainty, especially when the median on-source PSD
is used.
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APPENDIX: OUTLIER FOLLOW-UP

We revisit the two events with the largest differences in
parameter posteriors between the marginalized and sequen-
tial method, GW190512_180714 and GW190513_205428.
In the analyses with the standard settings presented in
Sec. Il B, we found fractional differences in the chirp mass
90% posterior width of 38.1% and 24.9%, respectively.

[ Sequential
E Marginalized

GW190512 180714

GW190513 205428

20 30 40
MM,]

FIG. 9. Detector-frame chirp mass posterior comparison
between the sequential (pink) and marginalized (teal) analyses
for GW190512_180714 and GW190513_205428 using fio, =
16 Hz. These events have larger discrepancies between the
posteriors when using f,,, = 20 Hz, presented in dashed for
comparison.

Among the various parameter settings, reducing the lower
frequency cutoff from f,,, =20 Hz to f,, = 16 Hz
significantly mitigates the observed differences. We com-
pare the different M posteriors for GW190512_180714
and GW190513_205428 in Fig. 9. Using f,w = 16 Hz
reduces the posterior width differences to —7.1% and
11.3%, respectively. Similarly, the JSDs are reduced from
0.052 and 0.033 to 0.0025 and 0.015 for each event,
respectively. This follow-up analysis confirms that the
differences between the posteriors of these events goes
down with smaller lower frequency cutoffs, and suggests
that analysis settings can sometimes significantly influence
parameter estimation results.
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