
Perils and Mitigation of Security Risks of Cooperation in
Mobile-as-a-Gateway IoT

Xin’an Zhou
xzhou114@ucr.edu

University of California, Riverside
Riverside, California, USA

Jiale Guan
guanjia@iu.edu

Indiana University Bloomington
Bloomington, Indiana, USA

Luyi Xing
luyixing@indiana.edu

Indiana University Bloomington
Bloomington, Indiana, USA

Zhiyun Qian
zhiyunq@cs.ucr.edu

University of California, Riverside
Riverside, California, USA

ABSTRACT
Mobile-as-a-Gateway (MaaG) is a popular feature using mobile
devices as gateways to connect IoT devices to cloud services for
management. MaaG IoT access control systems support remote
access sharing/revocation while allowing “o�ine availability” for
better usability. Realizing these functionalities requires secure co-
operation among the cloud service, the companion app, and the
IoT device. For practical considerations, we �nd that almost all
cloud services perform access model translation (AMT) to translate
expressive cloud-side access policies to simple device-side policies.
During the process, ad-hoc protocols are developed to support
the access policy synchronization. Unfortunately, current MaaG
IoT systems fail to recognize the security risks in the process of
access model translation and synchronization. We analyze ten top-
of-the-line MaaG IoT devices and �nd that all of them have serious
vulnerabilities, e.g., allowing irrevocable and permanent access for
temporary users. We further propose a secure protocol design that
defends against all identi�ed attacks.

CCS CONCEPTS
• Security and privacy! Embedded systems security; Software
reverse engineering; • Networks ! Network architectures.

KEYWORDS
IoT; Access Control; Attack; Protocol; Formal Proof

ACM Reference Format:
Xin’an Zhou, Jiale Guan, Luyi Xing, and Zhiyun Qian. 2022. Perils and
Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3560590

1 INTRODUCTION
IoT devices are featured varying Internet connectivity capabilities
and paradigms. Many prior works [54] studied IoT devices that are

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560590

not connected to a server/cloud at all and such devices are managed
by local consoles, such as a mobile phone. Recent works [20, 22–
25, 29, 30, 32, 38, 40, 51, 56, 58, 68, 70, 82, 85] studied IoT devices that
leverage the modern IoT cloud infrastructure for convenient access
management and deployment, and such devices are connected to
the cloud/Internet either through built-in Wi-Fi/cellular modules,
or through a local Internet-connected IoT hub, such as a Bluetooth-
capable, Zigbee or Z-Wave compatible IoT hub. Access to the devices
(e.g., operation commands sent from the user’s mobile phone) goes
through the cloud for centralized mediation and access control.

Less studied is an emerging category of IoT devices that aims to
leverage the modern IoT cloud infrastructure (e.g., for centralized
user management, convenient device �rmware updates), but lacks
persistent Internet connectivity. For reduced power consumption,
manufacturing cost, and maintenance cost, such devices are not
built with Wi-Fi/cellular modules (Wi-Fi is shown to consume 7x
the power compared to Bluetooth [59]), nor do they require a per-
sistent, dedicated Internet-connected IoT hub to connect to the
cloud. Rather, these devices leverage users’ mobile phones to act as
“Internet gateways” that relay information to and from the cloud
when the phones are nearby. We call such a paradigm Mobile-as-
a-Gateway (MaaG) IoT (Figure 1). Despite the popularity of MaaG
IoT [15, 77, 78], its security and privacy risks have yet to be fully
understood, not to mention adequately mitigated.

Companion AppCloud Service IoT Device

Access Policy Access Policy

Figure 1: The MaaG IoT Architecture

New security challenges inherentwithMaaG IoT. Priorworks [13,
36, 50] studied Device-Gateway-Cloud (DGC) IoT, which is simi-
lar to the MaaG IoT architecture studied in this paper. In particu-
lar, [13, 36] show that it is di�cult to synchronize a permission-
revocation policy from the cloud to IoT devices in the presence
of network partitions (e.g., due to intentional blocking of devices’
access to the Internet, or internet outage). However, modern MaaG
IoT in the wild has become much more complicated (than DGC)
whose design comes with new fundamental security challenges. In
particular, di�erent from the previously studied cloud-based IoT

https://orcid.org/0000-0002-9994-5922
https://orcid.org/0000-0001-5253-1477
https://orcid.org/0000-0002-1036-1163
https://orcid.org/0000-0003-1506-2522
https://doi.org/10.1145/3548606.3560590
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3560590

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

in which devices maintain persistent Internet connections with
the cloud and all commands/requests to the devices are access-
controlled by the IoT cloud [13, 50], in MaaG IoT, the devices and
the cloud split security responsibilities and thus need to coordinate
their security control to ensure the overall system is secure (unau-
thorized/unexpected users should not operate the devices). For ex-
ample, popular IoT locks such as Kwikset Aura [2] manage/maintain
access code (used for unlocking) that is not shared with the cloud
(so a compromise of the cloud or communication channels will
not compromise the home’s physical security). In the meantime,
the IoT devices leverage the IoT cloud for complicated user man-
agement (user roles, permission, delegation, revocation, etc., see
Section 3). However, the proper security coordination among the
cloud service, the companion app, and the IoT device turns out to
be di�cult to make right. Due to the lack of proper de�nition of
access control models in the cloud and devices for MaaG IoT (the
models often di�er between the two), unclear and unsound results
of their combined control e�orts can arise (see below).

Also challenging is the lack of proper consistency model for
the access policies between the cloud and IoT devices. MaaG IoT
is inherently network-partitioned [13] and devices often are not
connected to the cloud to fetch the latest access policies (e.g., revo-
cation of a certain user). For example, one might think an “eventual
consistency” model [36] (a benign user can help synchronize ac-
cess policies after a malicious attacker’s access is revoked) can be
a reasonable model. However, we �nd that it is tricky and error-
prone to implement such models for MaaG IoT. Further, even after
the devices are connected to the cloud through the gateway, the
necessary policies to synchronize between the cloud and devices
are never properly de�ned, easily leaving real-world devices under
insecure states (Section 5). The security challenges come with seri-
ous real-world security, privacy, and safety implications, but were
never systematically studied.
Security analysis and real-world �aws. To understand the se-
curity implications of real-world MaaG IoT, we pick ten top-of-
the-line MaaG IoT devices. After reverse engineering their custom
protocols, we systematically recovered their conceptual models
related to Access Model Translation and Synchronization. These
lead to discovering several classes of security �aws that can have
serious consequences. They include (1) allowing a temporary user
retaining permanent access to the device; (2) allowing a temporary
user to share her access to other unauthorized users; (3) allowing a
temporary user to escalate her privilege.

Even though similar forms of attacks have been demonstrated
in the past [36, 50], we wish to point out that the extent of the
consequences and the root causes they rely on are substantially
di�erent. For example, [36, 50] have demonstrated that a malicious
temporary user can retain access to a smart lock for as long as they
can block the lock from synchronizing the access control policy
with the cloud — if a benign user is able to help the lock synchronize,
then the temporary user will lose access. However, in the attacks
we demonstrate, a temporary user can retain access forever even
after the permission is revoked at the cloud and the corresponding
policy being successfully synchronized with the IoT device. The
stronger results are obtained because of our superior understanding
of the fundamental operating model of MaaG IoT.

Table 1: Security models of di�erent MaaG IoT devices

MaaG IoT device Access Management O�ine Availability

Level [8] Remote Guest & Admin
August [1] Remote Admin only
Yale [11] Remote Admin only

Ultraloq [10] Local Admin only
Kwikset Aura [2] Remote Guest & Admin
Honeywell [6] Remote Guest & Admin
Schlage [9] Remote Guest & Admin
Geon�no [5] Remote Guest & Admin

Tile [4] Remote Guest & Admin
Chipolo [3] Remote Guest & Admin

Secure protocol design. Facing the security challenges of MaaG
IoT, we distill common design goals to avoid the pitfalls that we
witnessed in real-world systems. We then design a coherent access
control model/mechanism, and a novel lightweight protocol to
securely synchronize access policies between a cloud service and
an IoT device without trusting the gateway, which can defend the
attacks we have discovered.
Contributions. We summarize the contributions of the paper as:
• We distill and formulate the unique security challenges of MaaG
IoT, from the two main aspects: access model translation and access
policy synchronization.
• We study ten top-of-the-line MaaG IoT devices and discover a
number of weaknesses. They allow us to develop a number of
attacks, achieving stronger consequences than previous results.
• We design and implement a secure protocol that is tailored to
MaaG IoT. It avoids all the common pitfalls and is lightweight.

2 BACKGROUND
In this section, we �rst introduce two major and maybe contra-
dicting functionalities of MaaG IoT devices: remote access shar-
ing/revocation and o�ine availability. We then describe the com-
mon work�ow of MaaG IoT.

2.1 Remote Access Sharing/Revocation and
O�line Availability

As of 2022, we observe that all MaaG IoT access control systems in
this paper have tried to enable access sharing/revocation and o�ine
availability. However, di�erent systems employ slightly di�erent
security models, as shown in Table 1.

We can see that all devices except Ultraloq can natively support
remote access sharing/revocation. It means that a (privileged) user
doesn’t need to physically approach the IoT device to share/revoke
access to/from an invitee: she can simply add that invitee to the
cloud-side access control policy [34]. The invitee’s app can later
ask the cloud to endorse its eligibility to access the device, e.g., by
authenticating to the cloud to obtain an access token/credential.
In contrast, in local access sharing/revocation, a (privileged) user
has to physically approach the IoT device to share/revoke access
to/from an invitee.

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

We can also see that all devices support o�ine availability: users
may access the device even when their apps do not have Inter-
net connections. This can be done, for example, using access to-
kens/credentials that are recognized by the IoT devices directly.
O�ine availability has become an indispensable feature for smart
locks because otherwise Internet outages or server downtime can
lock out residents. It is interesting to see that some devices allow
o�ine availability for low-privileged guest users while others allow
only high-privileged administrative users. In any case, this feature
is prevalent.

2.2 CommonWork�ow of MaaG IoT
To implement the two functionalities, IoT device manufacturers
deploy cloud services to maintain generally authoritative and up-
to-date access policies in order to decide whether a user is allowed
to access a device at a certain time. However, an IoT device can also
have its own on-device access control model and mechanism, which
are required by the device to decide whether a user agent (i.e., the
companion app) can have access, as well as to implement o�ine
availability which can improve usability as mentioned earlier.

With the MaaG IoT architecture, the device manufacturer’s of-
�cial IoT device companion app acts as the gateway (also, a user
agent) between the cloud and the device [15, 77, 78], and translates
responses from the cloud into application-layer messages under-
stood by the device. These messages are delivered to the device
using wireless protocols such as Bluetooth Low Energy (BLE). A
device may also have a feedback mechanism to inform the cloud
that a speci�c access policy update has been applied. Currently,
ad-hoc access policy synchronization protocols are designed by
di�erent IoT device manufacturers to implement remote access
sharing/revocation and o�ine availability.

Figure 1 illustrates that with theMaaG IoT architecture, the cloud
service and the IoT device have di�erent but closely related access
control models/mechanisms. For example, an MaaG IoT device may
have o�ine access code, allowing device access without using the
companion app, that is not synchronized to the cloud at all. The
cloud service, companion app, and the IoT device have to cooperate
to securely synchronize access policies between the cloud service
and the IoT device in order to ensure secure access control. In the
next section, we will show that theMaaG IoT architecture has subtle
and serious security implications.

3 SECURITY RISKS IN COOPERATION OF
MAAG IOT

Overview. A trustworthy MaaG IoT system needs security cooper-
ation and coordination among the cloud, the companion app, and
the IoT device. In MaaG, the cloud generally serves as the authority
to issue/manage policies and the device is the party to enforce the
policy when a user attempts to operate the IoT device (e.g., to unlock
a smart lock). The cloud can support/manage increasingly compli-
cated access control semantics and models, such as complicated
user roles [64], delegation relations between users [44, 76], and
grouped or location-based permissions [61, 65]. In the meantime, it
is di�cult for the device to maintain access semantics/policies of the
cloud’s complexity, which can be overly complicated and expensive,
e.g., considering power consumption [59, 81], delays/di�culties in

�rmware updates [35, 57, 73], or even the increasing cost of soft-
ware development [43]. For example, a smart lock may not need
to be aware of users’ delegation relations (e.g., whether user A’s
permission is granted by user B), as long as it can serve user A
when he attempts to operate the lock while denying unexpected
users. To support the access control in MaaG IoT, real-world manu-
facturers developed a set of protocols to translate the semantic-rich
cloud-side access models/policies to lighter weight device-side ac-
cess models/policies, presenting a mechanism which we call access
model translation (AMT). Section 4 reports the �rst and most in-
depth security analysis of real-world AMT processes, and reveals
the fundamental security design challenges with our end-to-end
attacks.

Further, the cloud intends to keep the device-side policies in sync
with the cloud, although this is di�cult since MaaG IoT essentially
is featured with network partition and weak consistency. Section 5
shows that the prior “eventual consistency” model [69] for data syn-
chronization in distributed systems bestows low security assurance
for modern MaaG IoT, and real world vendors and stakeholders
failed to fully understand and come up with a su�cient access pol-
icy consistency model between the cloud and the MaaG IoT device,
leaving tremendous space for new attacks.

In this paper, we summarize the �aws we discover into two
classes related to access model translation (Section 4) and access
policy synchronization (Section 5) in the MaaG IoT scenario.
Threat model. First, we assume the cloud service and the IoT de-
vice are trusted. We also assume the mobile device and the compan-
ion app of the legitimate user (e.g., owner) are trusted (e.g., free of
malware). However, we assume the companion app and mobile op-
erating systems of the attacker (e.g., temporary and low-privileged
users such as invited guests) can be arbitrarily tampered. For ex-
ample, an attacker can root/jailbreak his own smartphone [74, 84],
reverse engineer the publicly available companion app, and modify
the app. More speci�cally, the attacker can read any user man-
uals or developer-facing APIs (if any) and understand the proto-
col/interactions between the device, the companion app, and the
cloud service. This means that the attacker can arbitrarily replicate
and change the logic of the companion app to interact with the
device and the cloud. We do not assume the attacker can inspect or
alter either the device �rmware (e.g., not even a factory reset) or
the cloud-side code [71].

The goal of a malicious temporary user is to retain her access
for as long as possible, to distribute such access further, or even to
escalate her privilege.
Responsible Disclosure. At the time of writing, we have reported
every product vulnerability in this work to related vendors, and
we have received acknowledgements from seven vendors. Three
vulnerabilities already have unpublished CVE numbers, and four
vendors have already patched their vulnerabilities (e.g., August/Yale,
Level, and Geon�no).

4 RISKS IN ACCESS MODEL TRANSLATION
A key security challenge in MaaG IoT is how the IoT cloud can
translate modern semantic-rich security policies/models to lighter
weight policies for the device side to enforce. By studying a set of

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

Kwikset Lock

2. Challenge String rslock3. Challenge String rslock

5. cr = σ(rslock) 6. cr = σ(rslock)

4. If the user is
authorized

1. Request Challenge rslock

7. Authorized OS-wide
BLE bonding is built

HTTPS

BLE

Kwikset Cloud

Figure 2: Kwikset AMT process

ten popular MaaG IoT devices, our study shows that it is gener-
ally di�cult for mainstream IoT manufacturers to ensure that the
policy-translation preserves su�cient security semantics, and con-
sequently it is di�cult for the IoT devices to soundly enforce access
policies (Weakness 1, Section 4.1). Further, the device-side access
policy/model is not merely a simpli�ed version of the cloud-side
policy, and the device may also maintain access policies that are
not intended to be fully shared and synchronized with the cloud,
of which the management is often chaotic and vulnerable in reality
(Weakness 2, Section 4.2).

4.1 Weakness 1: Semantic Loss in AMT
Although the MaaG IoT device commonly aims to support lighter
weight access model than the cloud, it ought to maintain commen-
surate, su�cient semantics when the complex cloud-side access
model is translated to the device-side, a security-critical process
that was never adequately de�ned.

In MaaG IoT, the device owner can manage users (e.g., managing
user roles such as admin, guest; inviting guests and granting them
individualized permissions such as locking, unlocking, and inviting
additional users). Such modern access management is performed
through the IoT companion app (mobile app), and the policies are
maintained on the device manufacturer’s cloud side.1 Although the
cloud o�ers functionality-rich access management, in the MaaG
architecture (Section 2), it is the IoT device that enforces access
policies when a user attempts to operate the device (e.g., to unlock
the smart lock) and for this purpose, the device side maintains a
simpler access model �"⇡ . For example, the access model �"⇠ in
the cloud side includes managing the access roles ' (e.g., whether
it is an admin user or guest user), delegation relations ⇡' (e.g.,
user A authorized user B as a guest), and permissions % (e.g., lock,
unlock, add access code) of IoT users based on their user identity
83 (e.g., email address, phone number, or account nickname) and
supports sophisticated user authentication mechanisms *� (e.g.,
entering passwords in the mobile app, clicking links in the email,
or 2FA [16]):

�"⇠ := (83, *�, ', %, ⇡') (1)

In contrast, �"⇡ (the device side model) might not be main-
taining the user IDs or supporting the complicated authentication
(likely for simplicity and the lack of resources/hardware such as
I/O [48]). To support access control, a user’s identity and her permis-
sions from the cloud-side access model is translated to an abstract
notion of secret credential 2A and a set of attributes �CCA related
to 2A (e.g., including permissions), which are all recorded in the

1The term “app” in this paper always refers to the IoT vendor’s mobile app (sometimes
called companion app).

device-side access model:

�"⇡ := (2A , �CCA) (2)

The credential 2A is endorsed by the cloud (e.g., based on a sig-
nature, see below), so the device is assured that it represents an
intended/authorized user. When an intended user wants to operate
the device, her IoT mobile app presents 2A (obtained from the cloud,
see below) to the device, which can make access decisions based
on information stored in its access model �"⇡ .

The key question here is whether �"⇡ maintains su�cient se-
mantics commensurate with �"⇠ for making access decisions. In
our study, we found that�"⇠ and�"⇡ are often extended/customized
by individual vendors based on the access control features they o�er
(e.g., grouped permissions based on locations on SmartThings [61],
user roles, etc.). In the absence of a standard, security-assured mech-
anism to translate �"⇠ to a corresponding access model �"⇡ that
features light footprint and e�ciency — called access model transla-
tion or AMT in this paper — we show that mainstream IoT vendors
generally failed to preserve commensurate semantics when trans-
lating the access models and policies between the cloud and device.
We elaborate on the AMT processes of a few vendors, their security
weaknesses, and our attacks as follows.
Lost identities in AMT. Our study shows that in the absence of
a principled security guideline and approach, real-world manufac-
turers’ e�orts to translate the �"⇠ side user identities, roles and
permissions to the device-side counterparts in �"⇡ were ad-hoc
and could easily go wrong.

Figure 2 outlines the AMT process we recovered from Kwikset
(i.e., Kwikset Aura Smart Lock [2]) by reverse engineering the Kwik-
set mobile app and app tra�c. The user with the Kwikset app �rst
needs to be authenticated to the lock before operating it. Based on
a BLE connection (non-authenticated, based on Just Works [66]),
the Kwikset app obtains a random string AB;>2: from the lock (step
1&2), and sends it to the Kwikset cloud (step 3). Based on the cloud-
side policy in �"⇠ , if the user is authorized (e.g., a guest, tenant,
employee authorized by the owner/administrator), the cloud replies
with a user credential 2A , which is a signature signed on AB;>2: by
the cloud (step 4&5). The lock receives 2A (step 6), veri�es the sig-
nature, and thus is assured that the user is authorized by the cloud.
Then the lock trusts the user app and establishes a BLE bonding
with the mobile phone following a standard BLE pairing/bonding
process, so her phone can connect to and operate the lock in the
future without going through steps 1 to 6 again. After these steps,
the lock drops 2A and relies solely on the BLE bonding to recognize
an authenticated user.

There are multiple problems in the AMT process of the Kwikset
Aura lock, as found out in our study. The �rst is the loss of trusted
user identities in�"⇡ , which can lead to a number of consequences.

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Although the IoT device is only bound with authorized users who
have authenticated to the Kwikset cloud and are endorsed by the
cloud, the device side �"⇡ does not maintain the user’s identity
or the user-related credential 2A known to the cloud (as mentioned
above). Instead, the lock maintains only a BLE-level binding rela-
tion, i.e., (⌫!⇢_34E824_=0<4,⌫!⇢_1>=38=6_;>=6_C4A<_:4~) with
the phone denoted as A_1;4; ⌫!⇢_1>=38=6_;>=6_C4A<_:4~ is also
maintained on the user’s phone so she can connect to the lock in
the future without asking the cloud again (for o�ine access). Note
that here the ⌫!⇢_34E824_=0<4 (e.g., JaneDoeNexus6) is provided
by the attacker-controlled Kwikset app, which can be set to any
arbitrary value unrelated to the user’s identity known to the cloud
(83 in �"⇠ , see Equation 1), e.g., the user ID or email address. This
means that a benign “owner” will not be able to revoke the ac-
cess of a malicious user at the device, because there is no mapping
stored anywhere between the ⌫!⇢_1>=38=6_;>=6_C4A<_:4~ and
the original trusted user identity. Indeed, based on the Kwikset user
manual [7], when a benign “owner” (or “admin” user) denoted as
>F wants to revoke the user’s permission (a delegatee user), >F can
use the Kwikset app to remove a delegatee user based on her user
ID, which will only remove the user from the cloud (�"⇠) behind
the scene.

To try to clean up�"⇡ , we �nd that>F will have to go physically
to the lock and use the Kwikset app to remove the user from the lock,
although this is still problematic. Behind the scene, the app sends
a query message query_paired_smartphones to the lock (through
the BLE bonding), retrieves all recorded BLE binding relations such
as A_1;4 , and displays device names such as ⌫!⇢_34E824_=0<4 for
the “owner” to select and delete. The owner’s selection of device
name is sent to the lock, which correspondingly deletes the A_1;4 ,
so the target user can no longer connect to (or control) the lock. The
problem is that in�"⇡ , ⌫!⇢_34E824_=0<4 is untrusted, not reliably
related to user identities (or the user credential 2A known to the
cloud). In practice, a malicious delegatee user (e.g., an Airbnb/hotel
guest [52], prior employee) can use a deceptive device name (e.g.,
name of the owner), so the real owner can easily get confused and
fail to locate the delegatee user correctly, or mistakenly believe the
delegatee is already removed.
Lost roles, permissions, and lifecycle control in AMT. The
problem of the above AMT process did not stop here. Unlike Au-
gust/Yale locks (see §5.2) that di�erentiate user roles based on a
logical “slot” number recorded in the device, the design of Kwikset’s
access model �"⇡ lacks the semantics to identify user roles and
their di�erent privilege levels. Speci�cally, although the Kwikset
cloud keeps track of each user’s roles and permissions in�"⇠ (e.g.,
only “admin” users can invite other users, only authorized users
can bind with the lock), in step 6 outlined in Figure 2, when the
lock receives a credential 2A that assures the legitimacy of the user,
there is no companion attribute associated with 2A that can describe
the user’s role or permissions. Interestingly, the “privilege level” at-
tribute seems to be recorded locally by the app. For a low-privileged
guest user, the Kwikset app will not display privileged operations in
its GUI, e.g., adding/reading o�ine access code, or removing other
users from the lock. Nevertheless, the attribute is apparently miss-
ing in the device’s�"⇡ . This means that a malicious low-privileged
guest user who may only have temporary access to the lock (e.g.,
an Airbnb/hotel guest, visitor [79], prior employee) can essentially

act as an “owner” and send any privileged commands supported by
the lock. These privileged commands can be practically obtained
by reserve engineering the Kwikset app.
PoC Attack. For Kwikset Aura Smart Lock, we implemented the
following attack where a less-privileged guest user can perform
high-privilege (i.e., security-critical) operations. First, we, acting
as an invited guest attacker using attacker’s Kwikset account (au-
thorized as a guest user of the device) and attacker’s own smart-
phone, will authenticate to the cloud and obtain a corresponding
application-layer credential to the guest account. This credential
can then be presented to the lock using the non-authenticated
BLE connection, in order to establish a BLE bonding (pairing) with
the lock. Once the BLE bonding is established, the attacker can
send commands directly to the lock from his smartphone. Even
though the app GUI will not contain options for performing any
privileged operations, e.g., creating/reading access codes, we by-
pass that by modifying the Kwikset app states/logic using dynamic
instrumentation tools (e.g., Frida [62]). Speci�cally, we crafted
BLE messages to the device containing privileged operations, e.g.,
creating/reading access code by sending BLE messages like new

byte[]{TLV8CommandTxType.CMD_TX_TYPE_SET_ACCESS_CODE,
access_code}; where access_code is the attacker-controlled ac-
cess code. This e�ectively broke the security requirement that only
administrative users can create/read access code.

4.2 Weakness 2: Asymmetric and Misplaced
Security Responsibilities

In the design of MaaG, the device-side access model �"⇡ is not
merely a simpli�ed version of the cloud-side model�"⇠ . In certain
circumstances, the device needs to maintain access policies that
are not intended to be fully shared with the cloud, and thus needs
to properly coordinate its security responsibility and control with
the cloud. However, our study shows that real vendors’ design and
practice are often ad-hoc and vulnerable in reality.

For example, a Kwikset lock owner or authorized, invited users
can add o�ine access code to Kwikset locks (used for unlocking
without using the app, see Section 2). Speci�cally, the authorized
user whose Kwikset app has bound with the Kwikset lock (see
Section 4.1) can simply use the app to designate an access code, and
the app will encode the access code into a device-speci�c command
and send the command to the lock to add the access code. Behind
the scene, the �"⇡ recorded the o�ine access code denoted as 02 .
While the access code is security/safety-critical, we found that 02 is
not designed/intended to be shared with the Kwikset cloud, which
does not record the lock’s access code in �"⇠ . Indeed, by design,
the Kwikset cloud does not maintain any credential that can be
directly used to unlock/lock the Kwikset device — �"⇠ only keeps
track of who the authorized users are and helps them bind with
the device when they need to as outlined in Figure 2. Such a design
does help mitigate some security risks so the Kwikset cloud does
not become the single point of security failure: even if the cloud is
compromised and leaked credentials it stored, attackers would not
otherwise get the access codes to control all Kwikset users’ devices.

Despite the security bene�t from this design, serious problems
arise: while a typical IoT owner may rely on the vendor’s app
(which communicates with the cloud) to remotely manage the

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

device and fully inspect the accessibility states of the device (e.g.,
all current authorized users, locked/unlocked status), the Kwikset
cloud could not show there is access code added on the device,
even after a malicious delegatee user adds one during her stay (e.g.,
in Airbnb or vacation rental). Even after the owner revokes the
delegatee user from the app — an operation that actually removes
the user from �"⇠ , we found that the access code is still recorded
in �"⇡ and e�ectively allows the malicious user to still unlock the
smart lock after his permission is revoked from the cloud’s/app’s
perspective (see our PoC attack below). In our experiment, we
found that the owner has to go physically near the lock, so her app
could query the full status from �"⇡ in the lock: the app has a
dedicated UI to show access codes already added to the lock and
allows the owner to add/remove the codes. Such a design has two
practical problems in modern IoT usage. First, modern Airbnb hosts
and hospitality services often only remotely manage the access
for guests and leverage the vendor’s app to manage (add/remove)
users and grant/revoke access without the intention/assumption to
physically go to the house. Second, from the owner’s perspective,
the full, secure management of the IoT device is split into two
complementary parts without being made clear by the vendor: the
remote management of �"⇠ and the local management of �"⇡
(e.g., the management of access code has to be done locally), and
the oversight of managing any part, which is highly possible in
reality, can leave the device under an insecure, unintended state,
with serious security and safety implications.
PoC attacks. We implemented the following attack. We, acting
as an authorized, invited user of Kwikset Aura, �rst have to au-
thenticate to the cloud and obtain a valid credential and establish a
valid BLE bonding with the lock (just like the previous PoC). Then
we add a malicious access code using the attacker’s smartphone
directly to the lock via the BLE message mentioned in the previous
PoC. As discussed, such access codes are not synchronized to the
cloud. We veri�ed that even after the owner revoked our access
permission/role from �"⇠ , and later physically removes our BLE
bonding from the lock, we can still use the previously installed
access code to unlock the lock. This is because the o�ine access
codes are entered through physical keypads (which are separate
from the BLE bonding). A benign owner will need to query the list
of access codes through BLE and then remove them.

5 RISKS IN POLICY SYNCHRONIZATION
In modern IoT usage scenarios (e.g., remote Airbnb/hospitality
management), the cloud and device in MaaG IoT have to rely on
guest/untrusted users’ phones as gateways to communicate and
synchronize access policies. That is, MaaG IoT essentially is fea-
tured with network partition and weak consistency. Hence, another
key challenge in MaaG IoT is the design of proper mechanism to
synchronize access policies between the cloud and device to reach a
su�cient level of consistency. The “su�ciency” and corresponding
security assumptions are yet to be well understood. Notably, even
though the classic “eventual consistency” model [69] has been pro-
posed as a potential solution in similar contexts [36], it is not clear
how to properly achieve it in the context of MaaG IoT. As we show
in this section, real-world vendors and stakeholders failed to fully

understand and come up with a su�cient consistency model be-
tween the MaaG cloud and device, leaving signi�cant opportunities
for new attacks.

5.1 Weakness 3: Inadequately De�ned Causal
Consistency in Access Policy
Synchronization

In MaaG IoT, when there is a policy update on the cloud (e.g., the
owner/administrator uses the mobile app to grant/revoke permis-
sions for a user), the cloud needs to synchronize the policy update
to the device, so that the device can enforce the up-to-date policies
when a user attempts to operate the device.

m1 = (u1, p1) m3 = (u1, R)m2 = (u1, p2) m5 = (u2, R)m4 = (u2, p3)

Level App

Level Cloud

Level Lock

Figure 3: Level Lock’s Policy Synchronization Messages

Take the Level lock as an example (Figure 3). The on-device poli-
cies in �"⇡ maintain a set of <user, permission> records and the
cloud sends policy-sync messages to the device as “updates” to the
device, e.g., to report the fact that a new user is created. For each
Level user account, a public/private key pair is recorded in the Level
app. As an example, a device owner may grant a “guest” permission,
?1, to a user D1 (aiming that the user can lock/unlock the lock but
cannot con�gure the lock or invite other users), and correspond-
ingly the Level cloud sends the policy update as a message,<1, to
the device:<1, signed by the cloud, includes the public key of D1
and the permission ?1. Note that in the design of Level and other
eventual consistency models [26], the app of any authorized user, if
physically near the device, serves as the Internet gateway to relay
the messages. After <1 is received by the lock, the lock records
the public key of D1. Thus, when the user D1 uses his Level app to
operate the lock, the app signs the commands with his private key,
which can then be recognized by the lock. Additionally, the owner
may grant the same user D1 another permission ?2 (e.g., for lock
con�guration such as adding access code, see policy-sync message
<2 in Figure 3), and then revoke all his permissions by removing
the user D1 (see policy-sync message<3). Additionally, the owner
might bestow another user D2 access to the device and revoke his
permission later (see<4,<5).

In real-world scenarios, policy-sync messages (e.g.,<1,<2) to ar-
rive at the device may be disordered. For example, if<2 is received
after<3 (e.g., due to unintended network partitions/interruptions
or intentionally manipulated reordering, see our PoC attack below)
— with the order denoted as (<1,<3,<2) — the eventual policy

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

state in the device will include (D1, ?2), which violates the secu-
rity expectation. Traditional distributed systems often leverage
temporal-order causal relation between messages to handle the
nondeterministic order of message arrivals to ensure that an older
version of a data object, if received later than a newer version of the
data, will not overwrite the newer data [46]. Using a state-of-the-art
causal relation model based on vector clock [31, 49, 53] (adopted by
AWS DynamoDB, an industry-leading distributed database [26]),
for example, the messages are labeled with temporal information
by the sender and messages such as<1, if received later than<2,
should be dropped by the receiver (<1 is created earlier than<2
and the recipient should not replace<2 with<1).2

The proper synchronization of policies between the cloud and
MaaG IoT devices bears greater logical complexity and cannot
directly adopt the prior, industry-testi�ed temporal-order causal
consistency models. Following the previous example, despite the
temporal order (<1,<2,<3) with which the messages are created,
both<1 and<2 are important to keep regardless of their orders
to arrive (<1 received later than<2 should also be kept). Hence, it
appears that the causal relation between policy-sync messages in
MaaG must bear a “loose” causal relation such that regardless of
the order to receive, for example,<1 and<2, both messages should
be processed to update the access policy in the device. However,
the order to receive<3 relative to<1 and<2 is security-critical
(see above). This is because<3 is causally related to both<1 and
<2, although<1 and<2 are logically independent with each other.
Further, the relative order between the two groups of messages
<1,<2,<3 and<4,<5 may not be security sensitive (they are con-
cerning security policies of two separate users); however, if the
cloud issues a message <6 to remove all users (or users with a
particular role concerning both D1 and D2), the order to process<6
(on the device) relative to the �ve messages (<1 to<5) is security-
critical (e.g., processing<6 then<4 will leave the user D2 on the
device). Hence, the design here needs to clearly de�ne the relative
logical relations between multiple policy-sync messages, and the
prior temporal causal models are insu�cient for the security of
MaaG IoT access policy synchronization.

In the absence of an in-depth security analysis and properly
designed mechanism for MaaG policy-sync, our study indicates
that real-world MaaG vendors and systems failed to appreciate
the essential logical relations between the policy-sync messages,
leaving opportunities for practical attacks. Further complicating a
proper design of the MaaG policy sync is goals to ensure the cloud’s
awareness of the latest device-side policy states, since an IoT user
would naturally rely on the cloud to understand/manage status
of her device (e.g., using the mobile app as a control console, see
2In a distributed system, multiple storage/computing nodes maintain the same data
objects (as replicas for high availability) and when any one node has/receives an
updated version of the data, it tries to send out the data to other nodes, aiming that all
nodes eventually have consistent, latest version of the data (also known as eventual
consistency [69]). To this end, in the prior models, a sender node should label temporal-
order version information (called version-clock) along with the data (e.g., based on
vector clock [31, 49, 53] adopted by AWS DynamoDB, an industry-leading distributed
database [26]), and the version-clock can indicate causal relation between multiple
copies of a data object. For example, a sender node=>34_1 sends out multiple versions
of a data object >1 9 it received, with each version accompanied with the version-clock
(=>34_1, E4AB8>=_1) , (=>34_1, E4AB8>=_2) , etc. Although the multiple versions of
the data object may not arrive at other nodes strictly following the temporal order (e.g.,
due to network partition or failure), a node that receives the data with temporally newer
version-clock can disregard a later received copy with temporally older version-clock.

Section 1). In the case of Level (Figure 3), when the lock receives a
policy-sync message (e.g.,<1,<2), it replies to the cloud (through
the mobile as the Internet-gateway) a response message indicating
that the particular message (e.g.,<1,<2) has been received and pro-
cessed on the device. Again, such a response message, aiming that
the cloud is noti�ed about the policy status on the device, cannot
reliably reach the cloud based on the order they are generated due
to the network partition nature in MaaG. For example, a response
message to<2 might arrive at the cloud later than the response
message to<3 (because the device fundamentally lacks a reliable
Internet connection in MaaG IoT), even if<2 and<3 arrive at the
device in the right temporal order. In such a situation, it is non-
trivial for the cloud to know the order of<2 and<3 processed at
the device and thus the real policy states on the lock. We �nd that,
for the Level lock, a malicious user (e.g., an authorized employee,
tenant, guest) could manipulate the order of <2 and <3, or the
response messages of<2 and<3, such that the policy state on the
device will be di�erent from the one on the cloud.
PoC attacks. Due to inadequately de�ned causal consistency, an
attacker, acting as a malicious invited guest, can reorder or re-
transmit messages when forwarding them from the cloud to the
device using the attacker’s smartphone. This can lead to various
unexpected states at the Level lock — in this case, the attacker can
retain its access even after it is revoked by the owner. We �rst did
a trivial experiment as follows: when the cloud issues an initial
remote invitation message that grants the attacker access, denoted
as<033� and later a revocation message<A4E� removing the at-
tacker’s access, an attacker can simply reorder the two messages if
both are forwarded through the attacker’s smartphone. It would
then cause the<A4E� to apply �rst, which e�ectively does nothing
at the lock, and then the<033� message will allow the attacker to
gain access subsequently. However, a more likely scenario is that
<033� and<A4E� are sent some time apart, e.g., a guest stays for
a few days in a rental property and then leave. In such a scenario,
we show that an attacker can �rst apply the initial<033� and still
retain access after<A4E� . What the attacker has to do is to save a
copy of the original<033� while forwarding it to the lock. Later
on, the attacker simply re-sends it after<A4E� is applied (possibly
by another benign user), re-allowing the attacker access. It’s worth
mentioning that these messages do have timestamps and the lock
can see that the re-sent message<033� is an older one compared
to<A4E� . Nevertheless, because of the unreliable nature of message
delivery in MaaG IoT, the device cannot expect to see messages
arrive in order and would therefore still accept an older message,
enabling the attack.
Discussion. Notably, a quite related work [36] proposed adopting
eventual consistencymodel thatmay apply toMaaG scenarios when
the cloud needs to synchronize policies to the device. However, the
approach, based on a few key assumptions, is di�cult to work in
modern MaaG architecture, and has not been adopted in any of the
devices we studied. Above all, it assumed completely equivalent
access models between the cloud and device. In Section 3, we show
that real-world MaaG cloud needs to maintain more complicated
access models than the device; for example, the device may not
be able to authenticate the user or directly maintain the user ID,
and in reality needs an AMT process, which is critical but was not
considered in [36]. Second, [36] is based on relatively simple access

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

4. E(key, r3|r4), sn

1. r1, r2
2. E(key, r1|r2), sn

7. Session encrypted with
key r1|r2|r3|r4

3. E(key, r1|r2), sn

HTTPS BLE

5. E(key, r3|r4), sn

6. r3, r4 August/Yale Lock

AMT1

AMT2August/Yale Cloud

Legend: Keyadmin, sn = 0 Keyguest, sn = 254

Figure 4: August Online Authentication Protocol

models (access control list) compared to those in real devices and
assumed that when there is a policy update on the cloud, the cloud
sends its entire policy to the device, which can be cumbersome for
IoT with limited resources/power and is not the case in real MaaG
IoT systems we observed.

5.2 Weakness 4: Lack of Con�ict Identi�cation
in Access Policy Synchronization

Our study �nds that in the absence of a reliable, standard mech-
anism to synchronize access policies, there are a variety of possi-
bilities in the design space of MaaG IoT that can be leveraged by
attackers to cause con�icts of access policies between the cloud and
devices. When the con�ict is indeed introduced, there lacked the
proper understanding and techniques to identify the con�icts, not
to mention adequately reconcile them without serious impacts on
availability and usability.

The August Smart Lock [1] and the Yale Smart Lock [11], among
the most popular in the U.S. market of smart locks, come with a
relatively complicated interaction protocol between the cloud and
locks leveraging the mobile phone as the gateway (based on their
US Patent No. 2016/0189454A1 [42] and a third-party analysis [41]).
The protocol o�ers multiple advanced capabilities. In particular,
two o�ine access features are provided: (1) in-app o�ine access
(even if the cloud is temporarily down or the app loses Internet
access, authorized admin users’ app can still operate the lock), and
(2) o�ine access code (used for unlocking without the app, see
Section 2). We �nd that the sophisticated access control features
in modern MaaG IoT can easily go wrong and lead to intractable
access-policy inconsistencies between the cloud and devices.

Figure 4 outlines the patented access management protocol in-
volving the August/Yale cloud service, mobile app, and lock. Each
lock comes with two built-in, persistent secrets pre-shared with
the cloud under the factory setting, namely :4~03<8= and :4~6D4BC
(recorded at two logical slots, slot 0 and slot 254 respectively in
�"⇡). At a high level, a legitimate user can fetch a token C= en-
crypted by the cloud with the key corresponding to her role (admin
or guest), so the device receiving the token can determine her le-
gitimacy and role based on the key needed to decrypt the token.
More speci�cally, the app sends two random numbers A1 and A2
(step 1); the cloud service encrypts them to obtain token C= and
sends C= to the lock (step 2 and 3); the lock decrypts C= to obtain A1,
A2, knows the user’s role based on the decryption key needed, and
encrypts two new random numbers A3 and A4 using the same key,
and sends the result AC to the cloud (step 4 and 5); the cloud decrypts

AC to obtain A3 and A4 and release them to the app (step 6). From
this point of time, the app and lock both know the four random
numbers and concatenate them to form a 128-bit value A1 |A2 |A3 |A4
as a session key. The app can then send commands corresponding
to the user’s role (e.g., locking, unlocking, con�guring) encrypted
with the session key.
Exploiting o�line access features. Since a session can expire
soon (after tens of seconds), to support sophisticated fault tolerance
(e.g., the app works even when the cloud is temporarily down [12],
see above), the August/Yale lock supports two o�ine-access fea-
tures. We found that supporting such features unwittingly bestows
the mobile gateway excessive trust. Exploiting the trust, we iden-
ti�ed at least two practical opportunities for a malicious user to
manipulate the interaction process and introduce inconsistent pol-
icy states between the cloud and device. First, to enable the o�ine
app (either the app lost Internet access or the cloud is down) to
access the device, based on an established, valid session, the app
can add a new key, such as :4~> 5 5 ;8=4 , to the lock (by calling a
lock API), recorded at a logical slot in the device �"⇡ (with a slot
number between 1 to 253, in parallel to the two built-in keys at
slot 0 and 254 discussed above). When the app lost connection to
the cloud (and thus cannot establish a fresh session), :4~> 5 5 ;8=4 ,
known to both the app and lock, is used to derive a new session key
between the app and lock similar to the process in Figure 4. A fun-
damental problem here is that, in modern MaaG IoT contexts, the
mobile gateway is not always honest (e.g., a guest or more generally
delegatee user) and after the :4~> 5 5 ;8=4 is added to the lock, there
lacks a reliable protocol for the cloud to fully monitor the addition,
existence, or revocation of the :4~> 5 5 ;8=4 . As a consequence, when
the August/Yale device owner removes the authorized user from the
cloud, she could not track any :4~> 5 5 ;8=4 left by the user or identify
any inconsistent policy states between the cloud and the lock.

Second, the August/Yale locks support o�ine access code whose
states are not reliably synchronized between the cloud and device.
Speci�cally, based on an established, valid admin session, the user
app can add an o�ine access code to the lock. The user app is
supposed to synchronize such a policy to the cloud (by calling the
cloud API to record the same o�ine code to the cloud), but it does
not have to do so possibly because August/Yale favors the o�ine
support or fault tolerance. Consequently, even if the owner removes
the invited user from the cloud-side policy, the user retains access
to the lock with the o�ine access code.
PoC attacks.We, acting as an attacker with owner (August’s/Yale’s
terminology equivalent to admin) privilege, could inject a malicious

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

o�ine key into the August and Yale Smart Lock without having the
o�ine key recognized / recorded at the cloud. Speci�cally, we �rst
allow the attacker’s app to complete its handshake with the lock
(see Figure 4), so that the app is authenticated to the lock as owner
and can add new o�ine keys to the lock. By design, when a benign
user attempts to add an o�ine key via app GUI, the app will check
whether the o�ine key has been successfully added to the lock
via BLE, and subsequently inform the cloud about the success or
failure. However, an attacker can simply change the app’s behavior
(again using dynamic instrumentation as mentioned in other PoCs)
and omit the last step of informing the cloud. This means that the
cloud will never be aware of the fact the o�ine key is successfully
installed on the lock. Even after another honest owner user revoked
the attacker’s cloud-side access and then physically synchronized
the lock with the cloud, the attacker could still retain access to the
lock (e.g., to lock/unlock the smart lock) using the “hidden” o�ine
key. This is because the lock itself does not have a way to report its
current policy state to the cloud.

6 SUMMARY AND DISCUSSION OF FLAWS
AND ATTACKS IN ALL MAAG IOT DEVICES

For the sake of clarity, we do not go into the details of all ten MaaG
IoT devices which we analyzed. However, we summarize all the
results in Table 2, which shows that not a single MaaG IoT device is
free of the vulnerabilities we discovered. As we can see, weakness
1 is the most common �aw that is observed in �ve smart locks and
two item trackers, showing the generality of the weaknesses that we
have found. For example, Ultraloq, Honeywell, Schlage, Geon�no,
Tile, Chipolo all implement access sharing/revocation by sharing
static keys that never change/rotate to untrusted users/invitees.
Once the keys are known to the untrusted users/invitees, they can
always dynamically instrument the companion apps to control the
IoT devices. We have developed PoCs for all of these devices, show-
casing that an attacker can retain unfettered access with the static
keys, even after their accesses being “revoked”. Since these attacks
are straightforward to understand, we omit the details. Vulnerabili-
ties of this style is categorized as weakness 1 (semantic loss in the
AMT process) because the static key (after the AMT) does not retain
any of the original information in �"⇠ , e.g., user id, permissions,
access time. Interestingly, even though some smart locks share the
same weakness (e.g., weakness 1), they can lead to di�erent attack
consequences. This is because the underlying �aws sharing the
weakness may di�er. The next most common weakness is weakness
4, a�ecting three smart locks.

Generality of the �aws. We have showcased the �aws in 8
smart lock devices and 2 other IoT devices. We believe the �aws
we identify are general across an even a wider range of MaaG IoT
devices, as long as they have the notion of access sharing. We see
that it is the de facto standard that the IoT cloud will maintain
a primary copy of the access control policy to facilitate remote
management. On the other hand, the IoT device itself needs to
be able to enforce the policy in some way, and it needs to do so
independent of the cloud due to the o�ine access requirement. This
implies that they will need some version of the policy from the
cloud. As such, access model translation and synchronization are
natural concerns for these MaaG IoT devices. In addition, there is a

Table 2: Summary of Measurement Results

MaaG IoT device Weakness Consequence Google Play Installation

Level [8] 3 (a) 10k+
August [1] 4 (a) 1,000k+
Yale [11] 4 (a) 100k+

Ultraloq [10] 1,4 (a) 100k+
Kwikset Aura [2] 1,2 (a),(c) 100k+
Honeywell [6] 1 (a),(b) 1,000k+
Schlage [9] 1 (a) 100k+
Geon�no [5] 1 (a),(b) 100k+

Tile [4] 1 (a),(b) 5M+
Chipolo [3] 1 (a),(b) 500k+

(a) allowing a temporary user retaining permanent access to the MaaG IoT device;
(b) allowing a temporary user to share the access to other unauthorized users;
(c) allowing a temporary user to escalate her privilege.

trend of IoT devices becoming more and more multi-user friendly.
For example, we have seen a number of recent studies (described
in related work) covering a variety of IoT devices that allow device
sharing across users [36, 39, 50].

7 MITIGATING VULNERABILITIES IN MAAG
IOT ACCESS CONTROL

In this section, we �rst present the security goals of a secure MaaG
IoT access control system. Then, we design a novel protocol that
satis�es all the security goals and defends against all identi�ed
MaaG IoT attacks. After that, we perform formal security analyses
that can provide security guarantees for the proposed protocol.
Finally, we implement the protocol end-to-end to show that it is
practical in the real world.

7.1 Security Goals
The security goals of our design are the following: (1) only currently
and explicitly authorized users according to the access policy on the
cloud can access the IoT device, subject to a bounded delay (con�g-
urable) that allows users to retain access for some limited time, (2)
permanent users (e.g., owners) can enjoy “o�ine availability” [50]
with an extended period of time (con�gurable).

7.2 Secure Protocol Design
High-level Design. A key principle in our design is that we force
the user app to help synchronize the cloud-side policy to the IoT device
while authenticating to the IoT device. To implement this, we require
some form of “credentials” the app has to acquire through the
cloud when interacting with the IoT device. During the process of
acquiring the credentials, the app has to also relay the most recent
device-side access policy to the cloud service for it to perform any
appropriate access model translation and achieve cloud-to-device
synchronization. The credentials have limited lifetime of validity
which is con�gurable depending on the privilege level and the
desired trade-o� between security and usability. The longer the
lifetime, the more convenient and o�ine accessibility it provides.
On the other hand, longer lifetime also means that an attacker
can potentially retain longer access (if the IoT device does not get
synchronized with the cloud through other channels, e.g., a benign
user app). Below we detail the design of our Secure Access Policy
Synchronization (SAPS) Protocol.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

Untrusted
Mobile Device

Benign
Cloud Service

Benign
IoT Device

3.
{nonce, On_Device_Policy}

2. {nonce, On_Device_Policy}

1. Pre-authentication token

4.
[{nonce, Policy_Delta},

session_key, encrypted_session_key]

5.
{nonce, Policy_Delta}

DCKeyLegend:
Figure 5: Secure Access Policy Synchronization (SAPS) Protocol

Design Regarding Access Model Translation. As mentioned in
§4.1, we allow the cloud service to deploy expressive access control
and dynamically translate access models for MaaG IoT devices,
which enable lighter weight access control. For example, the cloud
can combine role-based access control with proper permission cas-
cading (i.e., revoking permissions automatically and cascadingly).
We require the MaaG IoT devices to use at a minimum the cre-
dentials associated with attributes to authenticate user apps. The
attributes should contain allowed operations (e.g., to lock/unlock,
to add a new access code, to factory-reset). Additionally, we require
the attributes to contain a con�gurable timeout, determining the
lifetime of credentials as mentioned above. The timeout can be set
by the cloud depending on the role of each user (an owner can have
an unlimited lifetime). The device does not have to be aware of the
various user roles and only needs to enforce the timeout instead.

In addition, our design speci�es that the credentials endorsed by
the cloud should be tightly coupled (generated along) with access
model translation. Finally, our design requires that the creden-
tials be cross-cutting across all parties — cloud, app, and device.
This means that the credentials must be delivered from the cloud,
through the app (which stores the credentials), and then to the
device. This e�ectively can prevent the semantic loss problem in
access model translation (described in §4.1).
Design Regarding Access Policy Synchronization. As men-
tioned earlier, the key intuition is that we force apps (benign or
malicious) to participate in the synchronization of access policies.
In particular, given that a malicious user tends to have less privi-
leges, unlike the owner, their credentials will timeout and be forced
to participate in the synchronization protocol. With the correctly
designed synchronization protocol (to be detailed next), we can
then ensure the freshness of the policy without relying exclusively
on benign users (as is the case in the design of August/Yale locks,
etc.). This means that if the malicious user’s access is revoked at
the cloud, it can retain the (o�ine) access only for a limited time
window. We will reason about the security property of our protocol
in §7.3 and show how it can defend all attacks described previously.
Details of the SAPS Protocol.We assume the IoT device and cloud
service pre-share (1) a symmetric encryption key (Device-Cloud
Key, or DCKey in short) and a symmetric encryption/decryption
algorithm (this is fairly standard and adopted by current smart
lock vendors already), (2) a message authentication code (MAC)
algorithm, (3) an app-to-device session key encryption key (SKEK).
Note that DCKey and SKEK are never exposed to other entities
(never transmitted over the network and not observable by an

untrusted app being a MitM) and are the trust anchors our design
relies on. The usages of these keys are described later.

The cloud service dynamically translates access models and re-
leases endorsed, fresh access policy (i.e., in the form of (cr, Attr) as
mentioned in §4.1) and user-speci�c credentials to user apps. The
fresh access policy to be applied to the device is cryptographically
protected so that the app cannot tamper with it.

Authorized user apps have to follow the secure access policy
synchronization protocol in Figure 5 to access the device. Autho-
rized user apps can obtain the physical (MAC) address of the IoT
device from the cloud service beforehand to discover the device. We
require the app to initially authenticate to the IoT device through an
unauthenticated connection (e.g., BLE Just Works local link). Specif-
ically, we require the smartphone to obtain a pre-authentication
token from the cloud to initiate the authentication process with
the IoT device. This is necessary because otherwise any user physi-
cally adjacent to the device can initiate the entire protocol, which
can be quite expensive, and lead to DoS attacks. We reuse the pre-
authentication token generation method described in [60], which
is based on monotonically increasing counters. The device, see-
ing a valid pre-authentication token, starts the policy synchro-
nization. It generates a nonce to guarantee freshness [45, 60] and
concatenates it with all the on-device access-policy identi�ers (i.e.,
On_Device_Policy). Then, the nonce and the On_Device_Policy
are encrypted with DCKey, and a message authentication code
(MAC) is calculated for the encrypted payload to guarantee mes-
sage integrity. Finally, the payload and the MAC are transmitted to
the user app (step 2 in Figure 5).

Then, the app accepts the encrypted payload and directly for-
wards it to the cloud service to obtain the fresh access policy and
the access credentials session_key and encrypted_session_key.
When receiving the encrypted payload, the cloud performs AMT.
It �rst checks if the user is an authorized user of the device. If
that is the case, the cloud generates a random session_key for
the upcoming app-to-device encrypted connection, and encrypts
{session_key, user_ID} using the session key encryption key (SKEK),
outputting encrypted_session_key. If the user is a guest user,
the cloud assigns guest permissions and a very short session key
validity, such as 30 seconds, to session_key. If the user is an owner
user, the cloud assigns owner permissions and a con�gurable ses-
sion key validity set by the IoT device manufacturer. After perform-
ing AMT for the current user, the cloud service also performs AMT
for other users of the same device, generating a fresh access-policy
to be synchronized to the device. Then, the cloud service veri�es

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

the MAC and decrypts the encrypted payload from the app. If the
MAC is correct, the cloud calculates the delta between the fresh
access-policy and On_Device_Policy, generating Policy_Delta.
The cloud does not modify the nonce because the nonce is a primi-
tive for the IoT device to guarantee access-policy freshness [45, 60].
The nonce’s space should be large enough, e.g., we used 64 bits in
our implementation. The cloud then encrypts the payload {nonce,
Policy_Delta} with DCKey, and calculates a MAC for the en-
crypted payload. The cloud sends back the encrypted payload to
the app along with encrypted_session_key, session_key, and
other attributes (such as the session key validity) through secure
tunnels (in our implementation HTTPS).

The app then knows the session_key is valid within a time
window, and forwards the encrypted, fresh access policy to the
device. The device veri�es the MAC, decrypts the payload, and
applies Policy_Delta only when (1) the nonce in the returned
payload matches the nonce originally generated by the device itself,
and (2) the MAC is correct.

We borrow a part of Needham–Schroeder protocol [55] to let
the app initialize an encrypted session with the IoT device in
order to authenticate to the IoT device. The app �rst sends its
encrypted_session_key to the device. If the device �nds the en-
closed user_ID in its on-device access-policy, the device encrypts
a nonce Nonce_D with the enclosed session_key and sends it
to the app. If the app can return Nonce_D - 1 encrypted with
session_key, the device grants the mobile phone’s physical ad-
dress the permissions of user_ID. The app can encrypt device
commands using session_key to operate the device when that
user’s session key is still valid (i.e., within the session key’s validity
time window).

For simplicity, we allow only one ongoing session at a time. For
each session, we set a timeout for protocol to complete (where we
consider nonce to be fresh). If the session is not completed within
the timeout, the protocol will abort. This means that the if an at-
tacker drops messages or do not participate fully in the protocol, it
will simply cause the session to abort and no policy update will oc-
cur. If the attack tampers with any messages, it will cause the MAC
check to fail and the protocol will abort the session immediately.
De�nitions and properties. Directly based on the design of the
protocol, we de�ne the following properties held by SAPS.

(1) Property of “nonce expiration” (NE):)= is a time window (e.g.,
20 seconds in our implementation) for the nonce (step 2) to expire.
Based on the protocol de�nition, once the nonce expires, the device
will not respond to step 5.)= is con�gured by the system.

(2) Property of “one-time use nonce” (OUN): For any round A3G
of protocol execution with nonce =G , once the step 5 is successfully
�nished (the device has accepted the message with =G in step 5),
A3G is �nished and the device drops =G .

(3) Property of “device-side policy expiration” (DPE):)? is a time
window speci�ed in policy updates regarding records of temporary
users, it is a minimum of (1) the pre-con�gured value (30 seconds
in our implementation) and (2) the absolute timeout in the record
on the cloud-side policy %2 .)? e�ectively determines when the
device-side policy %3 will expire (we assume all records in %3 share
the same)? and expire together for ease of discussion), and it most
likely is determined by the pre-con�gured value as it is typically
much smaller than the longer-term timeout on %2 . Based on the

protocol de�nition, %3 , if not empty, expires after)? if %3 is not
updated until expiration.

(4) Property of “At-most One Round of Protocol Execution at
a Time” (AOR): The execution of step 1 - 5 sequentially is called
one round of protocol execution. After step 1 is accepted by the
device, one round starts and the device generates a nonce and
starts to count down for the nonce to expire. Based on the protocol
de�nition, at any time t, once one round has started, if the round
has not successfully �nished and its nonce has not expired, the
device does not start another round of protocol execution (i.e. the
device does not accept step 1 in another round).

7.3 Security Analysis
In this section, we elaborate the formal security guarantees of
the proposed defense (the SAPS protocol) based on generalized
theorems and corresponding formal proofs.
Assumption. According to our threat model, the device and cloud
are honest and always respond to requests based on the protocol
(step 1, step 3, step 5 being requests made by the phone/user; step
2 and step 4 being responses to their prior steps); the cloud al-
ways responds using the latest policy it has; the user/phone can be
malicious and might not follow the protocol.
Def. 1: IoT operations $3 . We consider all IoT operations (e.g.,
to switch on/o�, to reset) supported by the device as a �nite set
$3 . Intuitively, in contrast, there can be operations managed by the
cloud, such as permission delegation, that may not be supported
by the IoT device.
Def. 2: No semantic loss. We consider the device-side access
policy %3 has no semantic loss from the cloud-side access policy
%2 , denoted as %3 k %2 (also called %3 is a no-loss translation from
%2), if both of the following conditions hold:

(1) For any policy record A as a tuple <D83, %4A<8BB8>=B, C8<4>DC, . . .>,
A 2 %2 , A is uniquely mapped to a policy record A 0, A 0 2 %3 .

(2) For any record A 0 as a tuple <2A ,�CCA (%4A<8BB8>=B0, C8<4>DC 0, . . .)>,
A 0 2 %3 , for each ? 2 %4A<8BB8>=B in the corresponding policy
record in %2 , if ? relates to any operation supported on the IoT de-
vice (? 2 $3), we must have ? 2 %4A<8BB8>=B0. Also, C8<4>DC 0 must
be)? as assigned by the system (see de�nition in §7.2). Note that
%4A<8BB8>=B0 is a subset of %4A<8BB8>=B in A because there may be
permissions related to operations that are supported on the cloud
only (beyond the ones in $3).
Def. 3: Fresh policy. A cloud-side policy %2 is fresh at time C if %2
is the latest policy of the cloud at time C .
Def. 4: Expired policy. A device-side policy %3 is expired if the
corresponding timeout)? is triggered. This means that the policy
is no longer e�ective on-device.

T������ 1. Considering any state or time C with the cloud 2 , the
device3 , and an arbitrary userD in the protocol (Fig. 5), the device-side
policy %3 is in one of the three states (1) %3 is empty; (2) %3 is expired;
(3) %3 is a no-loss translation of the cloud-side policy %2 , where %2 is
fresh at a time C 0 earlier than C where the time di�erence is bounded
by C �C 0 )? +)= (see de�nition of)? and)= in the previous section).

Intuitively, Theorem 1 says, at any time t, the device-side policy
%3 is either an empty/expired policy (by default denying any access)
or a no-loss translation of the cloud-side policy %2 , and %2 is fresh at
least at a recent time point C 0. We consider all three cases acceptable

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

with regards to our security guarantee because the worst that can
happen is that a malicious user has a prolonged (bounded by)?)
access due to case (3), which matches our goal outlined in §7.1.

P����. Case 1: %3 is empty at time C , if no phone/user has exe-
cuted the protocol successfully until C .

Case 2: If no phone/user successfully executes (�nishes) the
protocol between time (C �)? , C), based on Lemma 2, %3 is expired
or empty at time C .

Case 3: If any phone/user successfully executes (�nishes) the
protocol between time (C �)? , C), based on Lemma 1 and Lemma 2
(see below), %3 is a no loss translation of the cloud policy %2 .

In Case 3, let the round of protocol execution that yields %3 on
the device (from %2 on the cloud) be A3 . Because A3 �nishes as
early as C �)? , A3 starts and executes as early as after C �)? �)=
(otherwise, the nonce of A3 expires and A3 cannot �nish). Hence,
%2 (used in step 4 of A3) is fresh at time C 0, and the time di�erence
between C and C 0 is bounded: C � C 0 <=)? +)= . ⇤

L���� 1. Consider any state with the cloud c, the device d and an
arbitrary user u in the protocol (Fig. 5), immediately after u success-
fully carries out any one round of the protocol (step 1 to 5), the policy
of the device %3 k %2 , where %2 is the cloud policy used in this round
(i.e., %2 is used to generate %>;82~_⇡4;C0 in step 4).

P����. We consider all operations (e.g., to switch on/o�, to reset)
supported by the device as a �nite set$3 without loss of generality.

Let the round of protocol execution be A3 and A3 starts at time
C without loss of generality. Let the time when A3 successfully
�nishes be C 0. Once A3 starts, based on the property of AOR, A3 is
not interrupted by any other round of protocol execution until C 0.

At step 4 of A3 , the cloud policy %2 is used to generate a %>;82~_⇡4;C0.
%2 is based on the access model �"⇠ and each record A , A 2 %2 ,
denoted as (D83, %4A<8BB8>=B, 4G?8A8=6_C8<4BC0<?, . . .), includes
(1) a unique user identity (D83), (2) all permissions of the user de-
noted as a set %4A<8BB8>=B , (3) an 4G?8A8=6_C8<4BC0<? value for
%4A<8BB8>=B .

Case 1: If the device-side policy is empty or expired at time C , in-
dicating that$=_⇡4E824_%>;82~ in step 2 is empty, %>;82~_⇡4;C0 is
a set, and for each A , A 2 %2 , there is a unique A 0 2 %>;82~_⇡4;C0 de-
noted as (D83,�CCA (%4A<8BB8>=B0, A4;0C8E4_C8<4>DC 0, . . .)), where
%4A<8BB8>=B0 ⇢ %4A<8BB8>=B , and for each ? 2 %4A<8BB8>=B , if
? 2 $3 , ? 2 %4A<8BB8>=B0. A4;0C8E4_C8<4>DC 0 is)? or set by the
cloud based on 4G?8A8=6_C8<4BC0<? . After step 5 (at time C 0), %3 is
a copy of %>;82~_⇡4;C0. %3 is a no-loss translation of %2 (at time C 0).

Case 2: if the device-side policy is neither empty nor expired
at time C , indicating that $=_⇡4E824_%>;82~ in step 2 is not empty,
$=_⇡4E824_%>;82~ will be transmitted to the cloud representing
the on-device policy at time C . Let %G be a no-loss translation of %2 .
In step 4 of A3 , %>;82~_⇡4;C0 = %G �$=_⇡4E824_%>;82~. After step
5 of A3 , %3 = $=_⇡4E824_%>;82~ + %>;82~_⇡4;C0 = %G .

With both Case 1 and Case 2, the lemma is proved. ⇤

L���� 2. Consider any state or time C with the cloud 2 , the device
3 (with policy %3), and an arbitrary user D in the protocol (Fig. 5). If
one round of protocol execution starts (at time t) and fails to �nish
until the nonce expires (by time C +)=), at time C +)= , the device-side
policy %3 is not changed (except to expire).

P����. Let the round that starts at time C be A3 . Based on the
property of AOR, once A3 starts, the device blocks any other rounds
unless A3 successfully �nishes or it is after time C +)= . No round of
protocol execution successfully �nishes by time C +)= . Hence, the
device-side policy is not changed between time (C, C +)=) except
that it can expire. ⇤

T������ 2. For arbitrary two %>;82~_⇡4;C0 messages (step 5 in
the protocol)<1 and<2 accepted by the device, if<2 is accepted after
<1, then<2 is generated by the cloud after<1 (<2 is a newer policy
than<1 based on the cloud-side policy).

P����. Let the round of protocol execution that includes <1
be A31, with nonce =1. Let the round of protocol execution that
includes <2 be A32, with nonce =2. Because the device accepted
both<1 and<2, based on the property of OUN, =1 < =2. Hence,
A31 is not A32.

Let the time when<1 is accepted be C<1 . Then A31 �nishes at
C<1 . Let the time when<2 is accepted be C<2 . Then A32 �nishes at
C<2 .

Let the execution period of A31 be (C1, C<1). Let the execution
period of A32 be (C2, C<2). Based on the property of AOR, either
C<2 < C1 (A31 is after A32) or C<1 < C2 (A31 is before A32) is true.

Case 1 (C<2 < C1): because C<1 < C<2 , we get C<1 < C1, a contra-
diction.

Case 2 (C<1 < C2): because of the contradiction with Case 1, Case
2 is true and thus A31 is before A32.

Hence,<2 is generated by the cloud after<1 and the theorem is
proved. ⇤

Defeating the attacks with Weaknesses 1 - 4. First, the original
attacks with Weakness 1 succeeded because of semantic loss in
AMT, speci�cally due to the loss of user identities, permissions and
expiration control in the device-side policies (§4.1). Based on Theo-
rem 1, at any time, the device-side policy is either empty/expired
(by default denying any access) or is a no-loss translation of the
cloud-side policy (including the user identities, user-speci�c per-
missions and permission expiration time). All the attacks discussed
in §4.1 can not succeed based on our design.

Second, Weakness 2 also relates to AMT and comes with two
key causes: (1) part of the on-device policy (e.g., o�ine access code)
does not expire; (2) part of the on-device policy is not invalidated
(removed) if the corresponding user is removed from the cloud-side
policy. These problems/attacks are defeated in SAPS based on (1)
Theorem 1: any on-device policy record is related to a user identity
known to the cloud, and after any round of protocol execution,
removed user from the cloud policy will lead to the removal of the
user’s policy record in the device; and (2) the DPE property: even
without any new round of protocol execution, all on-device policies
expire after time)? .

Third, the attacks with Weakness 3 rely on the reordering of the
policy messages (e.g.,<1 to<3 in Fig. 3) in the absence of otherwise
clearly de�ned causal relations between those messages (e.g., what
message order is right/wrong to process on the device). Such attacks
are defeated based on Theorem 2: policy messages (%>;82~_⇡4;C0
messages in SAPS) are always processed by the device based on the
order the messages are created by the cloud.

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Last, the key problem with Weakness 4 is that at any time t, if
the device and cloud have inconsistent policies (e.g., the device
maintains a :4~> 5 5 ;8=4 for user A while A has been removed from
the cloud, see §5.2), the inconsistency persists and there lacked a
mechanism to audit and identify such a con�ict. SAPS e�ectively
defeated the attack based on the DPE property: all on-device policies
expire after time)? . SAPS further addressed the problem with
a new auditing capability: after step 3 of any round of protocol
execution, the cloud can audit the $=_⇡4E824_%>;82~ and check if
it is inconsistent with the on-cloud policy.
Discussion of limitation. Although SAPS achieves key security
goals and e�ectively defeats the MaaG attacks, we acknowledge
a few limitations. In particular, at any time t, although Theorem 1
guarantees that the device-side policy, if not empty/expired, is a no-
loss translation of a quite fresh version of the cloud-side policy, the
cloud-side policy can still evolve (e.g., immediately after a recent
round of protocol execution). Hence, it is not possible to ensure
the device always has the latest policy (although this is expected
because otherwise it will require constant/reliable communication
with the cloud, which is not always possible for the MaaG architec-
ture). Second, for simplicity and increased level of security, SAPS
currently does not support the potentially complicated causal re-
lations between policy messages, and leverages Theorem 2 to guar-
antee their correct order of processing (�rst created, �rst applied).

7.4 Evaluation
We implemented the protocol end-to-end to show its practicability.
We deployed the MaaG IoT �rmware written in Node.js on Rasp-
berry Pi 4B (2GB RAM). We used the Cordova mobile application
development framework and Flask server framework to implement
the app and the cloud server respectively. We deployed the app
on Google Pixel 6. We deployed the cloud server on Amazon EC2
(U.S. West). The response time of the cloud-to-IoT access policy
synchronization on average is 6.8 seconds out of 10 rounds. As a
comparison, the August/Yale online authentication protocol has an
average end-to-end time of 3.1 seconds out of 10 rounds (where
their cloud server is deployed in a similar location, with a similar
RTT). Our implementation has signi�cant room for optimization.
Currently, a bottleneck lies in the app-to-device BLE communica-
tion where the throughput it achieves is much lower than industry
benchmark. In addition, our implementation uses scripting lan-
guages (e.g., Node.js and python) which also contributes to the
time cost.

8 RELATEDWORK
Access Model/Policy Translation. Previous work [14, 21, 28,
47, 80] explored access control policy translation. This is driven
by the requirement of interoperability between di�erent systems.
While it is easy to do such translation in trusted, resource-rich
environments, how such translation can be done right in malicious,
resource-constrained environments needs further research.
IoT Access Control. IoT generally su�ers from weaker access
control, often due to its unique resource constraints and design
paradigms [36–39, 50, 76]. [36, 50] discovered limited forms of state
inconsistency problems between IoT devices and cloud under the
DGC architecture. Although our paper has a similar threat model,

our contribution is that we distill the problems into access model
translation and access policy synchronization. This fundamental
understanding and modeling of the problem allowed us to not only
discover many more root causes that can lead to state inconsis-
tencies but also develop much stronger attacks. [39] discovered
that di�erent management channels of an IoT device might not
have well-aligned security policy enforcement and lead to interfer-
ence that harms security. Our paper, however, demonstrates that
even the single authoritative management channel (i.e., through
the companion app) can lead to insecure access controls.

On the other hand, many e�orts have been devoted to improve
IoT access control security [17, 38, 40, 44, 65]. [40] proposed a �ne-
grained context-based access control system for appi�ed IoT plat-
forms. [72] introduced P-Veri�er, a formal veri�cation tool that can
automatically verify cloud-based IoT access-control policies. While
these work take constructive steps, our work speci�cally addresses
the cloud service and IoT devices’ access model discrepancies and
faulty access policy synchronization in the real world.
Smart Lock Security. [75] revealed that compromised mobile
devices can leak an August smart lock’s o�ine keys. In contrast,
we are able to �nd protocol-level vulnerabilities in the August
smart lock. [33] analyzed the security policy and the session key
generation method of the August smart lock and failed to identify
any weaknesses. Our research, on the other hand, �nds that August
smart lock’s handshake key/o�ine key synchronization process
was vulnerable, again due to our systematic modeling of the access
model translation and synchronization.
Wireless Protocol Security. Much prior work has shown that
wireless protocols are vulnerable to attacks from di�erent lay-
ers. [18, 19, 63, 83] demonstrated that Bluetooth has weaknesses,
allowing eavesdropping, packet injection and device spoo�ng. [67]
demonstrated that malicious co-located apps can harm access con-
trol of BLE devices. These �ndings have motivated IoT manufactur-
ers to develop ad-hoc application-layer encryption for IoT autho-
rization/authentication [27]. This paper discovers that MaaG IoT
access control systems based on application-layer encryption could
fail in practice due to insecure co-operations of system components.

9 CONCLUSION
This paper systematically investigates security risks in Mobile-as-a-
Gateway (MaaG) IoT, by distilling the problems into access model
translation (AMT) and access policy synchronization. This has al-
lowed us to understand the fundamental challenges in MaaG IoT
and identify a variety of root causes that can lead to vulnerabilities
in real-world systems. Our study demonstrates that real world man-
ufacturers have failed to orchestrate the security responsibilities
of MaaG IoT system components, which allows tremendous space
for practical attacks. To mitigate the risks, we designed a coherent,
secure access policy synchronization protocol and access control
model to protect MaaG IoT devices from unauthorized access.

ACKNOWLEDGMENTS
This work is supported in part by NSF CNS-1652954, CNS-2145675,
CCF-2124225, and Indiana University’s FRSP-SF, REF, and IAS Col-
laborative Research Award.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

REFERENCES
[1] 2022. August Smart Lock. https://august.com/products/august-smart-lock-3rd-

generation.
[2] 2022. Aura Bluetooth Smart Door Lock | Kwikset. https://www.kwikset.com/aura.
[3] 2022. Chipolo ONE 4 Pack. https://chipolo.net/en-us/products/chipolo-one-4-

pack.
[4] 2022. Find Your Lost Phone, Keys, or Anything with Tile’s Bluetooth Tracker |

Tile. https://www.thetileapp.com/en-us/store/tiles/pro.
[5] 2022. Geon�no Smart Lock. https://www.amazon.com/dp/B0957PSMBJ/.
[6] 2022. Honeywell Bluetooth Enabled Deadbolt Door Lock With Keypad, Satin

Nickel | Honeywell Store. https://www.honeywellstore.com/store/products/
honeywell-bluetooth-enabled-entry-deadbolt-nickel-8812309s.htm.

[7] 2022. Kwikset Aura Product Documents. https://www.kwikset.com/support/
productdetail/aura-bluetooth-enabled-smart-lock#documents

[8] 2022. Level | Level Lock - The Smallest and Most Advanced Smart Lock Ever.
https://level.co/products/lock.

[9] 2022. Schlage Sense™ Smart Deadbolt with Camelot trim. https://www.schlage.
com/en/home/products/BE479CAMFFF.html.

[10] 2022. Ultraloq U-Bolt Pro Smart Lock | World’s Most Versatile Smart Lock –
U-tec. https://store.u-tec.com/products/ultraloq-u-bolt-pro-bluetooth-enabled-
�ngerprint-and-keypad-smart-lock.

[11] 2022. Yale Assure Lock Touchscreen, Standalone - Yale Home.
https://shopyalehome.com/collections/keypad-locks/products/yale-assure-
lock-touchscreen-standalone?variant=39341912162436.

[12] Giuseppe Aceto, Alessio Botta, Pietro Marchetta, Valerio Persico, and Antonio
Pescapé. 2018. A comprehensive survey on internet outages. Journal of Network
and Computer Applications 113 (2018), 36–63.

[13] Tahir Ahmad, Umberto Morelli, and Silvio Ranise. 2020. Deploying Access
Control Enforcement for IoT in the Cloud-Edge Continuum with the help of
the CAP Theorem. In Proceedings of the 25th ACM Symposium on Access Control
Models and Technologies. 213–220.

[14] Apu Kapadia Jalal Al-muhtadi. 2000. IRBAC 2000: Secure interoperability using
dynamic role translation. In In Proceedings of the 1st International Conference on
Internet Computing. 231–238.

[15] Gianluca Aloi, Giuseppe Caliciuri, Giancarlo Fortino, Ra�aele Gravina, Pasquale
Pace, Wilma Russo, and Claudio Savaglio. 2016. A mobile multi-technology
gateway to enable IoT interoperability. In 2016 IEEE �rst international conference
on internet-of-things design and implementation (IoTDI). IEEE, 259–264.

[16] Florian Alt and Stefan Schneegass. 2022. Beyond Passwords—Challenges and
Opportunities of Future Authentication. IEEE Security & Privacy 20, 1 (2022),
82–86.

[17] Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John Kolb,
Hyung-Sin Kim, David E Culler, and Raluca Ada Popa. 2019. {WAVE}: A de-
centralized authorization framework with transitive delegation. In 28th USENIX
Security Symposium (USENIX Security 19). 1375–1392.

[18] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2020. BIAS:
Bluetooth ImpersonationAttackS. In 2020 IEEE Symposium on Security and Privacy
(SP). 549–562. https://doi.org/10.1109/SP40000.2020.00093

[19] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen. 2019. The
KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation
Of Bluetooth BR/EDR. In 28th USENIX Security Symposium (USENIX Security
19). USENIX Association, Santa Clara, CA, 1047–1061. https://www.usenix.org/
conference/usenixsecurity19/presentation/antonioli

[20] Z Berkay Celik, Gang Tan, and Patrick D McDaniel. 2019. IoTGuard: Dynamic
Enforcement of Security and Safety Policy in Commodity IoT.. In NDSS.

[21] Somchai Chatvichienchai, Mizuho Iwaihara, and Yahiko Kambayashi. 2003. Se-
cure Interoperability between Cooperating XML Systems by Dynamic Role Trans-
lation. In Database and Expert Systems Applications, Vladimír Mařík, Werner
Retschitzegger, and Olga Štěpánková (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 866–875.

[22] Jiongyi Chen, Chaoshun Zuo, Wenrui Diao, Shuaike Dong, Qingchuan Zhao,
Menghan Sun, Zhiqiang Lin, Yinqian Zhang, and Kehuan Zhang. 2019. Your
IoTs Are (Not) Mine: On the Remote Binding Between IoT Devices and Users. In
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 222–233. https://doi.org/10.1109/DSN.2019.00034

[23] Yunang Chen, Mohannad Alhanahnah, Andrei Sabelfeld, Rahul Chatterjee, and
Earlence Fernandes. 2022. Practical Data Access Minimization in {Trigger-
Action} Platforms. In 31st USENIX Security Symposium (USENIX Security 22).
2929–2945.

[24] Yunang Chen, Amrita Roy Chowdhury, Ruizhe Wang, Andrei Sabelfeld, Rahul
Chatterjee, and Earlence Fernandes. 2021. Data privacy in trigger-action systems.
In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 501–518.

[25] Haotian Chi, Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2022. Delay Wreaks
Havoc on Your Smart Home: Delay-based Automation Interference Attacks. In
2022 IEEE Symposium on Security and Privacy (SP). IEEE, 285–302.

[26] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.
ACM SIGOPS operating systems review 41, 6 (2007), 205–220.

[27] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
2013. An empirical study of cryptographic misuse in android applications. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 73–84.

[28] Csilla Farkas, Andrei Stoica, and Parag Talekar. 2003. APTA: An automated
policy translation architecture. In Int. Conf. Computer, Communication and Control
Technologies. Citeseer.

[29] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security Analysis of
Emerging Smart Home Applications. In 2016 IEEE Symposium on Security and
Privacy (SP). 636–654. https://doi.org/10.1109/SP.2016.44

[30] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. 2018. De-
centralized action integrity for trigger-action IoT platforms. In Proceedings 2018
Network and Distributed System Security Symposium.

[31] Colin J Fidge. 1987. Timestamps in message-passing systems that preserve the
partial ordering. (1987).

[32] Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2021. {HAWatcher}:{Semantics-
Aware} Anomaly Detection for Appi�ed Smart Homes. In 30th USENIX Security
Symposium (USENIX Security 21). 4223–4240.

[33] Megan Fuller, Madeline Jenkins, and Katrine Tjølsen. 2019. Security Analysis of
the August Smart Lock. en. In:() (2019), 17.

[34] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Ear-
lence Fernandes, and Blase Ur. 2018. Rethinking Access Control and Authentica-
tion for the Home Internet of Things ({{{{{IoT}}}}}). In 27th USENIX Security
Symposium (USENIX Security 18). 255–272.

[35] Yi He, Zhenhua Zou, Kun Sun, Zhuotao Liu, Ke Xu, Qian Wang, Chao Shen,
Zhi Wang, and Qi Li. 2022. RapidPatch: Firmware Hotpatching for Real-Time
Embedded Devices. In 31th USENIX Security Symposium (USENIX Security 22).

[36] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and
David Wagner. 2016. Smart locks: Lessons for securing commodity internet of
things devices. In Proceedings of the 11th ACM on Asia conference on computer
and communications security. 461–472.

[37] Blake Janes, Heather Crawford, and TJ OConnor. 2020. Never ending story:
Authentication and access control design �aws in shared iot devices. In 2020 IEEE
Security and Privacy Workshops (SPW). IEEE, 104–109.

[38] Yan Jia, Luyi Xing, Yuhang Mao, Dongfang Zhao, XiaoFeng Wang, Shangru
Zhao, and Yuqing Zhang. 2020. Burglars’ IoT Paradise: Understanding and
Mitigating Security Risks of General Messaging Protocols on IoT Clouds. In 2020
IEEE Symposium on Security and Privacy (SP). 465–481. https://doi.org/10.1109/
SP40000.2020.00051

[39] Yan Jia, Bin Yuan, Luyi Xing, Dongfang Zhao, Yifan Zhang, XiaoFeng Wang,
Yijing Liu, Kaimin Zheng, Peyton Crnjak, Yuqing Zhang, et al. 2021. Who’s In
Control? On Security Risks of Disjointed IoT Device Management Channels. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 1289–1305.

[40] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
ZhuoqingMorleyMao, Atul Prakash, and SJ Unviersity. 2017. ContexloT: Towards
Providing Contextual Integrity to Appi�ed IoT Platforms.. In NDSS, Vol. 2. San
Diego, 2–2.

[41] Jmaxxz. 2016. Backdooring the Front Door. https://media.defcon.org/DEF%
20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-
%20Jmaxxz-Backdooring-the-Frontdoor-UPDATED.pdf.

[42] Jason Johnson, Rolf Rando, Siddharth Gidwani, and Christopher Dow. 2021.
Intelligent door lock system in communication with mobile device that stores
associated user data. US Patent 10,993,111.

[43] Magne Jorgensen and Martin Shepperd. 2006. A systematic review of software
development cost estimation studies. IEEE Transactions on software engineering
33, 1 (2006), 33–53.

[44] Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E.
Culler. 2019. JEDI: Many-to-Many End-to-End Encryption and Key Delegation
for IoT. In 28th USENIX Security Symposium (USENIX Security 19). USENIX As-
sociation, Santa Clara, CA, 1519–1536. https://www.usenix.org/conference/
usenixsecurity19/presentation/kumar-sam

[45] Kwok-yan Lam and Dieter Gollmann. 1992. Freshness assurance of authentication
protocols. In European Symposium on Research in Computer Security. Springer,
261–271.

[46] Edward A. Lee, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and Chris-
tian Menard. 2021. Quantifying and Generalizing the CAP Theorem.
arXiv:2109.07771 [cs.DC]

[47] Gregory Leighton and Denilson Barbosa. 2011. Access control policy translation,
veri�cation, and minimization within heterogeneous data federations. ACM
Transactions on Information and System Security (TISSEC) 14, 3 (2011), 1–28.

[48] Xiaopeng Li, Qiang Zeng, Lannan Luo, and Tongbo Luo. 2020. T2pair: Secure
and usable pairing for heterogeneous iot devices. In Proceedings of the 2020 acm
sigsac conference on computer and communications security. 309–323.

[49] Barbara Liskov and Rivka Ladin. 1986. Highly available distributed services and
fault-tolerant distributed garbage collection. In Proceedings of the �fth annual

https://august.com/products/august-smart-lock-3rd-generation
https://august.com/products/august-smart-lock-3rd-generation
https://www.kwikset.com/aura
https://chipolo.net/en-us/products/chipolo-one-4-pack
https://chipolo.net/en-us/products/chipolo-one-4-pack
https://www.thetileapp.com/en-us/store/tiles/pro
https://www.amazon.com/dp/B0957PSMBJ/
https://www.honeywellstore.com/store/products/honeywell-bluetooth-enabled-entry-deadbolt-nickel-8812309s.htm
https://www.honeywellstore.com/store/products/honeywell-bluetooth-enabled-entry-deadbolt-nickel-8812309s.htm
https://www.kwikset.com/support/productdetail/aura-bluetooth-enabled-smart-lock#documents
https://www.kwikset.com/support/productdetail/aura-bluetooth-enabled-smart-lock#documents
https://level.co/products/lock
https://www.schlage.com/en/home/products/BE479CAMFFF.html
https://www.schlage.com/en/home/products/BE479CAMFFF.html
https://store.u-tec.com/products/ultraloq-u-bolt-pro-bluetooth-enabled-fingerprint-and-keypad-smart-lock
https://store.u-tec.com/products/ultraloq-u-bolt-pro-bluetooth-enabled-fingerprint-and-keypad-smart-lock
https://shopyalehome.com/collections/keypad-locks/products/yale-assure-lock-touchscreen-standalone?variant=39341912162436
https://shopyalehome.com/collections/keypad-locks/products/yale-assure-lock-touchscreen-standalone?variant=39341912162436
https://doi.org/10.1109/SP40000.2020.00093
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://doi.org/10.1109/DSN.2019.00034
https://doi.org/10.1109/SP.2016.44
https://doi.org/10.1109/SP40000.2020.00051
https://doi.org/10.1109/SP40000.2020.00051
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20Jmaxxz-Backdooring-the-Frontdoor-UPDATED.pdf
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20Jmaxxz-Backdooring-the-Frontdoor-UPDATED.pdf
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20Jmaxxz-Backdooring-the-Frontdoor-UPDATED.pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-sam
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-sam
https://arxiv.org/abs/2109.07771

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

ACM symposium on Principles of distributed computing. 29–39.
[50] Hui Liu, Juanru Li, and Dawu Gu. 2020. Understanding the security of app-in-

the-middle IoT. Computers & Security 97 (2020), 102000.
[51] Lannan Luo, Qiang Zeng, Bokai Yang, Fei Zuo, and JunzheWang. 2021. Westworld:

Fuzzing-Assisted Remote Dynamic Symbolic Execution of Smart Apps on IoT
Cloud Platforms. In Annual Computer Security Applications Conference. 982–995.

[52] Shrirang Mare, Franziska Roesner, and Tadayoshi Kohno. 2020. Smart Devices in
Airbnbs: Considering Privacy and Security for both Guests and Hosts. Proc. Priv.
Enhancing Technol. 2020, 2 (2020), 436–458.

[53] Friedemann Mattern et al. 1988. Virtual time and global states of distributed
systems. Univ., Department of Computer Science.

[54] Muhammad Naveed, Xiao-yong Zhou, Soteris Demetriou, XiaoFeng Wang, and
Carl A Gunter. 2014. Inside Job: Understanding and Mitigating the Threat of
External Device Mis-Binding on Android.. In NDSS.

[55] Roger M. Needham and Michael D. Schroeder. 1978. Using Encryption for Au-
thentication in Large Networks of Computers. Commun. ACM 21, 12 (dec 1978),
993–999. https://doi.org/10.1145/359657.359659

[56] Dang Tu Nguyen, Chengyu Song, Zhiyun Qian, Srikanth V Krishnamurthy,
Edward JM Colbert, and Patrick McDaniel. 2018. IoTSan: Fortifying the safety
of IoT systems. In Proceedings of the 14th International Conference on emerging
Networking EXperiments and Technologies. 191–203.

[57] Christian Niesler, Sebastian Surminski, and Lucas Davi. 2021. HERA: Hotpatching
of Embedded Real-time Applications.. In NDSS.

[58] TJ OConnor, Dylan Jessee, and Daniel Campos. 2021. Through the Spyglass:
Towards IoT Companion App Man-in-the-Middle Attacks. In Cyber Security
Experimentation and Test Workshop. 58–62.

[59] Trevor Pering, Yuvraj Agarwal, Rajesh Gupta, and Roy Want. 2006. CoolSpots:
Reducing the Power Consumption of Wireless Mobile Devices with Multiple
Radio Interfaces (MobiSys ’06).

[60] Adrian Perrig, Robert Szewczyk, Justin Douglas Tygar, Victor Wen, and David E
Culler. 2002. SPINS: Security protocols for sensor networks. Wireless networks 8,
5 (2002), 521–534.

[61] Amir Rahmati, Earlence Fernandes, Kevin Eykholt, and Atul Prakash. 2018. Tyche:
A risk-based permission model for smart homes. In 2018 IEEE Cybersecurity
Development (SecDev). IEEE, 29–36.

[62] Ole André Vadla Ravnås. 2016. Frida-A world-class dynamic instrumentation
framework. URL: https://frida. re (2016).

[63] Mike Ryan. 2013. Bluetooth: With Low Energy Comes Low Security. In
7th USENIX Workshop on O�ensive Technologies (WOOT 13). USENIX Associ-
ation, Washington, D.C. https://www.usenix.org/conference/woot13/workshop-
program/presentation/ryan

[64] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. 1996.
Role-based access control models. Computer 29, 2 (1996), 38–47.

[65] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2018. Situational access control
in the internet of things. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1056–1073.

[66] B SIG. 2016. Bluetooth core speci�cation version 5.0. Speci�cation of the Bluetooth
System (2016).

[67] Pallavi Sivakumaran and Jorge Blasco. 2019. A Study of the Feasibility of
Co-located App Attacks against BLE and a Large-Scale Analysis of the Cur-
rent Application-Layer Security Landscape. In 28th USENIX Security Sympo-
sium (USENIX Security 19). USENIX Association, Santa Clara, CA, 1–18. https:
//www.usenix.org/conference/usenixsecurity19/presentation/sivakumaran

[68] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng
Guo, and Patrick Tague. 2017. {SmartAuth}:{User-Centered} Authorization for
the Internet of Things. In 26th USENIX Security Symposium (USENIX Security 17).
361–378.

[69] Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 (2009), 40–44.
[70] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A Gunter. 2019.

Charting the attack surface of trigger-action IoT platforms. In Proceedings of the
2019 ACM SIGSAC conference on computer and communications security. 1439–
1453.

[71] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and XiaoFeng Wang. 2019. Look-
ing from the Mirror: Evaluating {IoT} Device Security through Mobile Compan-
ion Apps. In 28th USENIX Security Symposium (USENIX Security 19). 1151–1167.

[72] Luyi Xing, Ze Jin, Yiwei Fang, Yan Jia, Bin Yuan, and Qixu Liu. 2022. Under-
standing and Mitigating Security Risks in Cloud-based IoT Access Policies. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security.

[73] Meng Xu, Manuel Huber, Zhichuang Sun, Paul England, Marcus Peinado, Sangho
Lee, Andrey Marochko, Dennis Mattoon, Rob Spiger, and Stefan Thom. 2019.
Dominance as a new trusted computing primitive for the internet of things. In
2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1415–1430.

[74] Wen Xu and Yubin Fu. 2015. Own Your Android! Yet Another Universal Root.
In 9th USENIX Workshop on O�ensive Technologies (WOOT 15). USENIX Associa-
tion, Washington, D.C. https://www.usenix.org/conference/woot15/workshop-
program/presentation/xu

[75] Mengmei Ye, Nan Jiang, Hao Yang, and Qiben Yan. 2017. Security analysis of
Internet-of-Things: A case study of august smart lock. In 2017 IEEE conference on
computer communications workshops (INFOCOM WKSHPS). IEEE, 499–504.

[76] Bin Yuan, Yan Jia, Luyi Xing, Dongfang Zhao, XiaoFeng Wang, and Yuqing
Zhang. 2020. Shattered Chain of Trust: Understanding Security Risks in Cross-
Cloud IoT Access Delegation. In 29th USENIX Security Symposium (USENIX Secu-
rity 20). USENIX Association, 1183–1200. https://www.usenix.org/conference/
usenixsecurity20/presentation/yuan

[77] Thomas Zachariah, Neal Jackson, and Prabal Dutta. 2022. The internet of things
still has a gateway problem. In Proceedings of the 23rd Annual International
Workshop on Mobile Computing Systems and Applications. 109–115.

[78] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins, Neal
Jackson, and Prabal Dutta. 2015. The internet of things has a gateway problem.
In Proceedings of the 16th international workshop on mobile computing systems
and applications. 27–32.

[79] Eric Zeng and Franziska Roesner. 2019. Understanding and Improving Security
and Privacy in Multi-User Smart Homes: A Design Exploration and In-Home
User Study. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 159–176. https://www.usenix.org/conference/
usenixsecurity19/presentation/zeng

[80] Aijuan Zhang, Jingxiang Gao, Jiuyun Sun, and Cheng Ji. 2013. Declaration and
Translation of Spatial Access Control Policy. J. Softw. 8, 5 (2013), 1132–1139.

[81] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick,
Zhuoqing Morley Mao, and Lei Yang. 2010. Accurate online power estimation
and automatic battery behavior based power model generation for smartphones.
In Proceedings of the eighth IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis. 105–114.

[82] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin
Zhu. 2018. Homonit: Monitoring smart home apps from encrypted tra�c. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 1074–1088.

[83] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. 2020.
Breaking Secure Pairing of Bluetooth Low Energy Using Downgrade Attacks. In
29th USENIX Security Symposium (USENIX Security 20). USENIX Association, 37–
54. https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-
yue

[84] Zheng Zhang, Hang Zhang, Zhiyun Qian, and Billy Lau. 2021. An Investigation
of the Android Kernel Patch Ecosystem. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 3649–3666. https://www.usenix.org/
conference/usenixsecurity21/presentation/zhang-zheng

[85] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and
Yuqing Zhang. 2019. Discovering and Understanding the Security Hazards in
the Interactions between IoT Devices, Mobile Apps, and Clouds on Smart Home
Platforms. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 1133–1150. https://www.usenix.org/conference/
usenixsecurity19/presentation/zhou

https://doi.org/10.1145/359657.359659
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.usenix.org/conference/usenixsecurity19/presentation/sivakumaran
https://www.usenix.org/conference/usenixsecurity19/presentation/sivakumaran
https://www.usenix.org/conference/woot15/workshop-program/presentation/xu
https://www.usenix.org/conference/woot15/workshop-program/presentation/xu
https://www.usenix.org/conference/usenixsecurity20/presentation/yuan
https://www.usenix.org/conference/usenixsecurity20/presentation/yuan
https://www.usenix.org/conference/usenixsecurity19/presentation/zeng
https://www.usenix.org/conference/usenixsecurity19/presentation/zeng
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-zheng
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zhou
https://www.usenix.org/conference/usenixsecurity19/presentation/zhou

	Abstract
	1 Introduction
	2 Background
	2.1 Remote Access Sharing/Revocation and Offline Availability
	2.2 Common Workflow of MaaG IoT

	3 Security Risks in Cooperation of MaaG IoT
	4 Risks in Access Model Translation
	4.1 Weakness 1: Semantic Loss in AMT
	4.2 Weakness 2: Asymmetric and Misplaced Security Responsibilities

	5 Risks in Policy Synchronization
	5.1 Weakness 3: Inadequately Defined Causal Consistency in Access Policy Synchronization
	5.2 Weakness 4: Lack of Conflict Identification in Access Policy Synchronization

	6 Summary and Discussion of Flaws and Attacks in All MaaG IoT Devices
	7 Mitigating Vulnerabilities in MaaG IoT Access Control
	7.1 Security Goals
	7.2 Secure Protocol Design
	7.3 Security Analysis
	7.4 Evaluation

	8 Related Work
	9 Conclusion
	References

