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Cellular processes such as stress response1,2 and morpho-
genesis3 are orchestrated by genetic regulatory networks 
(GRNs)3,4 that continuously consume energy5,6 to operate 

far-from-equilibrium. Energy dissipation allows GRNs to repeat-
edly produce adaptive, dynamic chemical responses to environ-
mental stimuli that change over time. Genes in a GRN typically 
have nonlinear, often excitable, input–output responses in which 
small changes in the level of an input induce large changes in the 
amount of output produced. These properties allow GRNs to effi-
ciently propagate signals7 and, in principle, to orchestrate arbitrarily 
complex dynamic responses using networks which couple a suf-
ficient number of modular genes8. Synthetic chemistries9–20 with 
these same properties could be used for programming time-varying 
chemical signals5,6, directing pattern formation21–23 or regulating 
nanostructure assembly or reconfiguration24,25.

Cellular GRNs that direct complex cellular processes often 
comprise 10–100 genes. A key step toward emulating the complex 
dynamics of these cellular GRNs in synthetic chemical networks is 
to scale up the number of circuit nodes that can operate together3,4. 
Such scale-up has been performed by adding newly designed nodes 
to existing circuits14,26,27. However, iterative design cycles are often 
required to find nodes that work as desired within an existing net-
work. And nodes created specifically to add to existing networks 
often cannot be interchanged or rearranged to form new networks, 
meaning that building a new type of network can require starting 
such cycles of component and network design anew. As electronic 
circuit design methods suggest, a library of orthogonal nodes with 
standard input–output characteristics could make it possible to 
use a model-driven approach to rapidly construct many different 
networks from the same set of interchangeable units (Fig. 1a). For 
example, a range of complex chemical logic circuits can be routinely 
assembled with standardized biomolecular gates28–32.

We sought to develop such a method for building far-from- 
equilibrium chemical networks composed of short transcriptional 
templates, called genelets12,16,19,20,25,27,33. Each genelet has an input 
(I) domain, which combines a DNA activator binding site and an 
incomplete T7 RNA polymerase (T7 RNAP) promoter site, and an 
output (O) domain, which encodes an RNA transcript. A genelet’s 
output is transcribed when a DNA activator is bound to the genelet’s 
input domain, that is, an activated (ON) state (Fig. 1b). Genelets 
regulate one another by transcribing RNAs that control the ability 
of other nodes’ DNA activators to bind their respective genelets. A 
regulating RNA (rR or rC) changes a genelet’s state when its concen-
tration is higher than the concentration of its corresponding DNA 
regulator (an activator dA or blocker dB). DNA regulators are pres-
ent in excess of their genelets, facilitating nonlinear, excitable input–
output behaviour12,19 akin to the sigmoidal response commonly 
used for nodes of artificial neural networks34. RNA is degraded by 
RNase H, enabling signal turnover, and thereby sustaining a net-
work’s far-from-equilibrium operation (Fig. 1c–e). However, it has 
been challenging to build large genelet networks with predictable 
behaviour because of spurious side reactions between components 
and differences in the response characteristics of nodes with differ-
ent sequences12,27.

Here we develop a scalable method for building genelet net-
works by constructing a library of interchangeable genelets with 
similar performance, that is, input–output behaviour and response 
times. We identify >15 standardized circuit elements, or regulatory 
domains, and show that these domains can each be combined into 
genelets that activate and/or repress one another. With this library 
we rapidly engineer a suite of reliable feedforward and feedback 
modules and then integrate these modules into mesoscale networks 
that produce pulses with tunable amplitudes and delays or act as 
switchable memories. Network design is informed by a general 
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model of genelet behaviour that reliably predicts network dynam-
ics. Finally, we expand the library of standardized domains using 
a standard protocol. These results suggest a reliable and predictive 
way of constructing chemical networks exhibiting a broad range of 
dynamic responses to time-varying chemical inputs. Such networks 
could potentially regulate self-assembly, biochemical synthesis or 
reactions, and orchestrate chemical detection or recognition.

Results
A modular design for bidirectionally regulated genelets. We 
sought to create a library of interchangeable and predictable genelet 

nodes with similar performance that could be bidirectionally regu-
lated. We hypothesized that such a library would allow us to use a 
general model of genelet behaviour to rapidly design and implement 
regulatory networks with diverse dynamics. To build this standard 
library, we first sought to develop a genelet design that would mini-
mize the impacts of unintended side reactions and genelet crosstalk. 
We began with a genelet design that sequesters most of each node’s 
long input domain within a hairpin (hairpin clamp (HPC)). Hiding 
most of the recognition sequence within a hairpin minimizes 
crosstalk and permits the design of multiple modular units19,27. 
HPC nodes are repressed by upstream transcripts that react with a  
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Fig. 1 | The hairpin clamp (HPC5) genelet toolbox. a, Network engineering workflow. b, Node states and species. Each genelet consists of an input (I) 
domain (G1 here), which controls transcription activity, and an output (O) domain, S1 here. The T7 RNAP promoter sequence (pink) of a genelet is not 
fully double-stranded, so little transcription occurs (OFF). Transcription occurs from a genelet–activator complex (ON) because the activator completes 
the promoter sequence. A DNA blocker prevents both transcription and DNA activator binding (BLK). Throughout this work, output domains that repress 
input domain i are labelled Ri and those that coactivate input domain i are labelled Ci, where i = 1, 2,…, N. DNA species are depicted with solid lines and 
have d prefixes; RNA species are depicted as dashed lines and have r prefixes. Fluorophore (F) and quencher (Q) modifications are used to measure 
genelet state. c, Node state transitions. Upstream transcripts reverse activation (repression) or blocking (coactivation). Coactivation passes through OFF 
to get to ON. d,e, An RNA repressor turns a node OFF. The DNA blocker was omitted but it could displace the activator if free (d). An RNA coactivator 
removes the blocker to allow activator binding, which turns a node ON (e). Both repression and coactivation are reversed via degradation of RNA bound to 
a DNA activator or blocker by RNase H. Regulation pathways in the presence of both free activators and blockers are shown in Supplementary Fig. 2.
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genelet–activator complex via a 3′ ssDNA toehold (the repressor  
toehold (RTH)) to remove the DNA activator from the complex. 
However, the 3′ ssDNA overhang can facilitate promoter-independent 
transcription by T7 RNAP, which can lead nodes to spuriously 
turn off by themselves, a phenomenon termed autoinhibition27. To 
build genelets without this autoinhibition behaviour, we moved the 
ssDNA RTH domain of the HPC design to the 5′ end of the activa-
tor to create the HPC5o design (Supplementary Information, sec-
tion 2 and Supplementary Fig. 1).

We then sought to modify the HPC5o design to allow upstream 
transcripts to activate downstream genelets in addition to repress-
ing them. We first considered a design in which a genelet is off 
when its DNA activator is sequestered in a double-stranded DNA 
(dsDNA) complex12,16,25. An upstream RNA transcript could then 
release the DNA activator from this complex to turn the genelet on 
(Supplementary Information, section 3.1). However, a transcript that 
could release the DNA activator must share sequence elements with 
that activator; we found that these transcripts also competed with 
the activators to bind to the genelets, thereby preventing activation 
(Supplementary Fig. 7 and Supplementary Information, section 3.1).

We thus devised an alternative scheme for bidirectional regula-
tion, the HPC5 design, in which a DNA blocker strand binds more 
strongly than a DNA activator to a genelet’s input domain (Fig. 1b). 
Transcription can occur from a genelet bound to an activator, but 
not from a genelet bound to a blocker. Upstream RNA signals then 
downregulate genelet transcription by sequestering DNA activators 
and upregulate genelet transcription by sequestering DNA blockers 
(Fig. 1c–e). We confirmed that a DNA blocker prevented a DNA 
activator from binding to a genelet’s input domain and that DNA 
and RNA coactivators could both facilitate genelet coactivation. 
We also verified that coactivation could be reversed by degrading 
the RNA coactivator or adding blocker in excess of the coactivator 
(Supplementary Information, section 3.2). Finally, we validated that 
HPC5 genelet transcription could be rapidly turned on by adding 
coactivators and off by adding repressors, and that the fraction of 
genelet in the ON state, measured via fluorescence (Fig. 1b), corre-
lated linearly with transcription rate (promoter activity), as seen in 
previous studies19 (Supplementary Information, section 3.4).

Standardized, interchangeable regulatory domains. Using the 
HPC5 design, we sought to create a library of modular genelet 
input and output sequences that could be interchangeably assem-
bled into networks. We used NUPACK 3.2.235 to design sequences 
for 36 genelet input–output sequences predicted to both be ther-
modynamically stable in their designed hairpin structures and 
have minimal non-designed interactions with one another or with 
the G1 HPC5 node (Supplementary Information, section 4.1). In 
addition to orthogonality, we also sought sequences that could be 
fully activated and/or repressed at similar rates, such that a gen-
eral model of genelet behaviour, which assumes the same reac-
tion rates for every node, could reliably guide network design. 
DNA activators and/or blockers are used in excess of their respec-
tive genelets, so full activation or blocking is expected. The speed 
of genelet regulation should be governed by the rates of four-way 
branch migration. Previously reported rate constants for four-way 
branch migration36,37 range from 103 to 104 M−1 s−1, suggesting 
that >0.9 fraction of 25 nM genelet should activate in response to 
150 nM of DNA activator in 15–100 min. Thus, we sought to iden-
tify sequences that each activated to >0.9 fraction ON in <1 h. We 
reasoned that this criterion represented the distribution of rates for 
different sequences, and that sequences that switched at these rates 
would be similar enough to follow the predictions of our general 
genelet model. Because four-way branch migration rates have not 
been extensively studied for diverse sequences, we first tested the 
assumption that four-way branch migration rates for HPC5 genel-
ets would generally occur within the expected range. We developed 

a quick and inexpensive screening assay to measure the activation 
rates of our 36 designed genelets with excess of their DNA activa-
tors (Supplementary Information, section 4.2). Surprisingly, many 
activator sequences reacted with their genelets either incompletely 
or much more slowly than predicted: only 16 reached >0.9 fraction 
ON in <1 h (Fig. 2b and Supplementary Fig. 20). Incomplete or slow 
activation of a genelet–activator pair might be caused by undesired 
secondary structures within a genelet or activator or the existence 
of reactions other than the designed four-way branch migration 
activation process, and we deemed such sequences unreliable for 
network construction. To explore sequence criteria that led to 
incomplete or abnormally slow activation, we designed chimeric 
activators by swapping subdomains of fast and slow sequences and 
measured their activation rates with cognate genelets. These experi-
ments indicated that the hairpin stem sequence of the activators was 
important in determining reaction rate (Supplementary Fig. 21) but 
we were not able to identify specific sequence patterns that reliably 
indicated a slow-activating sequence (Supplementary Fig. 22).

We next tested the coactivation and repression kinetics of 
the 16 nodes that passed DNA activation screening (Fig. 2c and 
Supplementary Information, section 4.3). We monitored this switch 
by adding DNA coactivator or repressor in excess of their DNA 
blocker or activator, so that these factors should completely switch 
their target nodes ON/OFF. All 16 nodes reached >0.9 fraction ON/
OFF in <1 h when switched by DNA coactivators and repressors. 
When we monitored the rate of switching in response to the tran-
scription of RNA coactivators or repressors, however, we found that 
many nodes switched incompletely or at least 2-fold more slowly 
than in response to the corresponding DNA sequence. We found 
six of these nodes could be switched >0.9 fraction ON and OFF 
in <1 h in response to transcribed RNA regulators and five could 
be rapidly regulated in one direction but not the other (Fig. 2d and 
Supplementary Information, section 4.4). Varying the concentra-
tion of the RNA regulator transcription template did not speed up 
the regulation of slow nodes, suggesting that incomplete RNA tran-
scription or RNA misfolding38, rather than differences in transcrip-
tion rates, caused slow regulation (Supplementary Fig. 26).

To test whether the input and output domains (Fig. 1b) of the 
11 nodes we identified could be used interchangeably, we measured 
the rates at which 28 unique input–output combinations coacti-
vated or repressed downstream reporting genelets. Twenty-seven of 
these combinations took <1 h to switch their targets to >0.9 ON/
OFF, suggesting the choice of input domain did not greatly influ-
ence the rate of downstream regulation (Fig. 2e and Supplementary 
Information, section 4.5). In these experiments, regulation is the 
result of coupled transcription and strand displacement. To charac-
terize the variation in transcription rate across different nodes, we 
measured the transcription rates of nodes with two different input 
domains, G1 and G4, and found the transcription rates were within 
a factor of two of one another (Supplementary Information, section 
3.4). A limitation of the HPC design is that four-way branch migra-
tion is slower than three-way branch migration with similar toehold 
lengths39. However, we found a 10-fold higher genelet concentra-
tion could reduce switching time 4-fold; this is comparable to the 
speed-up predicted to occur if one increased these strand displace-
ment rate constants by two orders of magnitude (Supplementary 
Information, section 4.6).

Engineering temporal genelet expression programs. We next 
investigated whether the standardized nodes we identified could be 
integrated into regulatory networks whose dynamics could be pre-
dicted and programmed using a general model of genelet dynamics. 
The model consisted of ordinary differential equations describing 
the mass action kinetics of the designed genelet reactions for a given 
network architecture and assumed the kinetic rate constants were 
the same for each node (Supplementary Information, section 5).
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We first used the model to design incoherent type 1 feedforward 
loop (IFFL)3,4,40 modules that produce pulses of genelet activation via 
coordinated coactivation and repression. In a genelet IFFL (Fig. 3a), 
an output node (in IFFL1, G1) should pulse in response to the acti-
vators of the input nodes (in IFFL, dA2). Simulations indicated that 
the relative rates and strengths of G1 coactivation and repression 
determine pulse shape and timing (Supplementary Information, 
section 6.1), which we verified in experiments by varying the con-
centrations of IFFL components (Supplementary Fig. 37).

However, we found that the BLK G3R1 node in IFFL1 turned on 
even without an input, which was not predicted by our model. In 
isolation, BLK G3R1 also turned itself on, a phenomenon we called 
autoactivation. Autoactivation occurred at a rate proportional to its 
blocker (dB3) concentration, suggesting dB3 could be transcribed 
via promoter-independent transcription41. A dB3 strand with a 

single-stranded 3′ end composed of 2′ methylated RNA rather than 
DNA42, which should prevent promoter-independent transcription  
initiated at the 3′ end, eliminated BLK G3R1 autoactivation (Supple
mentary Fig. 40). An IFFL with methylated dB3 produced pulses 
whose heights and durations could be reliably tuned by varying DNA 
activator concentrations according to model predictions (Fig. 3b).  
After identifying G3 autoactivation, we tested the propensity for 
autoactivation of other nodes and found that G8 and G10 nodes also 
exhibited autoactivation. We also eliminated this autoactivation by 
replacing the single-stranded DNA at the 3′ ends of their blockers 
with methylated RNA (Supplementary Information, section 7).

To test whether genelet nodes could be interchanged in IFFLs, 
we built two additional IFFL modules using other genelet domains 
from our library and measured their pulse dynamics using the same 
concentrations as in IFFL1. All three modules (IFFL1, IFFL2 and 
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IFFL3) exhibited pulse dynamics in agreement with model predic-
tions (Fig. 3b–d).

We next asked whether we could connect multiple IFFL modules 
into a composite network that our model predicted would produce 
sequential pulses1,4 (IFFL1_2, Fig. 3e,f). As a step toward con-
structing this network, we connected IFFL2 to an upstream node 
(G3C5). The resulting network, G3C5_IFFL2, produced a pulse in 
the absence of an input. We hypothesized this spurious pulsing was 

caused by leak transcription from the BLK G5 genelets, possibly due 
to transient DNA activator binding (Supplementary Information, 
section 8.3). Incorporating a 5% leak transcription rate from BLK 
G5 nodes in the model recapitulated the G3C5_IFFL2’s spontaneous 
activation. Guided by this model, we eliminated spurious activation 
by increasing the IFFL2 blocker concentrations, which serves as a 
threshold for upstream transcriptional leak (Supplementary Figs. 43 
and 44), and built an IFFL1_2 network that generated sequential 
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f, Normalized IFFL1_2 node activation levels predicted by the general genelet model (left) and from experiments (right). g, Normalized activation levels of 
IFFL1_2 network nodes with different concentrations of G3C5. Detailed methods are in Supplementary Information, sections 6.2 and 8.2. IFFL1, IFFL2, IFFL3 
and IFFL1_2 design notes and sequences are in Supplementary Information, sections 6.3, 6.5, 6.6 and 8.1.
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IFFL pulses (Fig. 3f). We further found we could use the general 
genelet model (Supplementary Fig. 45) to devise multiple means to 
delay the second pulse: decreasing the G3C5 concentration (Fig. 3g) 
or increasing the dB5 concentration (Supplementary Fig. 46).

Engineering multistability with mutually repressive networks. 
We next investigated whether standard genelet domains could be 

reorganized into feedback networks with predictable behaviour. 
We chose to construct multistable memory networks in which 
transient signals can induce sustained changes in signal expres-
sion1,2,4. Memory is a hallmark of far-from-equilibrium networks, 
as a continuous energy supply is required to keep a network in one 
of several stable steady states3,4. A mutually repressive feedback net-
work can be multistable3,4 so long as the feedback strength of all  
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connections is fairly uniform (Supplementary Figs. 50–52). 
Simulations predict that as the number of mutually repressive 
states increases, feedback strengths must become more and more 
uniform to achieve multistability. Thus, nodes with standardized 
performance are critical for constructing large multistable net-
works (Supplementary Figs. 50 and 51). Many synthetic GRN ana-
logues14,19,43, including genelets19,27, have implemented switchable, 
mutually repressive bistable modules. To test the interchangeability 
and predictability of our standardized nodes, we sought to engineer 
a switchable tristable network (TSN).

We designed a TSN composed of three interlocked mutually 
repressive bistable modules (BSM1–3) (Fig. 4a and Supplementary 
Information, section 9.1) that simulations predicted could main-
tain each of three stable states after being initialized in them 
(Supplementary Figs. 52–54). Consistent with these predictions, 
the network maintained each initial state for over 8 h in experi-
ments (Fig. 4b). To demonstrate switchable memory, we designed 
inducer RNAs that bound to 16 bases of their target RNA repres-
sors27 (Supplementary Information, section 9.1). Simulations indi-
cated these inducer RNAs could switch network state by turning a 
repressed node ON, which would subsequently shut off the active 
nodes of the initial state (Supplementary Figs. 55–56 and Fig. 4c). 
The inducers triggered all six possible single state changes (Fig. 4d), 
and sequential inducer additions orchestrated two (Fig. 4e) and 
three (Supplementary Fig. 58) state changes.

Scalable network engineering through module integration. We 
next asked whether we could integrate feedforward and feedback 
modules into larger composite networks whose dynamics were 
predicted by the behaviours of their component modules. We first 
designed a network in which the two different outputs of a bistable 
module (BSM4) triggered different IFFL pulses1,2 (Fig. 5a,b), termed 
BS_IFFL1|2. When initialized in each of its two states, BS_IFFL1|2 
produced output pulses similar to those produced by IFFL1 and 
IFFL2 in isolation (Figs. 5c and 3). The BS_IFFL1|2 network’s state 
could be switched by standard inducer RNAs (Fig. 5d), at rates simi-
lar to BSM4 alone (Supplementary Fig. 60).

We next incorporated upstream and downstream connections 
into the BS_IFFL1|2 network (Fig. 5e). We first added an induction 
module27 (IM) composed of two nodes that produce the inducer 
RNAs that switch the BSM4 state (Supplementary Fig. 61). We then 
introduced a second output node (G1C9) into IFFL1. This second 
output produces a coactivator that triggers the IM to switch BSM4 
from state 1 to state 2 (Fig. 5f). We termed the resulting network 
I_BS_IFFL1|2_FB1. Using simulations, we identified G1C9 and IM 
node concentrations predicted to cause I_BS_IFFL1|2_FB1 initial-
ized in state 1 to transiently activate G9I8, which induces a switch 
into state 2 (Supplementary Fig. 62). In experiments, the pulsing 
and switching occurred as predicted (Fig. 5g), with the timing of the 
autonomous switch out of state 1 closely matching model predic-
tions. The time at which each IFFL’s output pulse reached its maxi-
mum height deviated from model predictions by ∼40 min (Fig. 5g 
and Supplementary Fig. 63). We also tuned the time spent in state 
1 by changing the G1C9 concentration (Supplementary Fig. 64). 

These results provide compelling evidence for the orthogonality of 
individual nodes and larger modules.

The I_BS_IFFL1|2_FB1 network used 10 of the 11 standardized 
nodes identified during screening. To expand the node library, we 
followed our screening workflow (Fig. 2) to identify six additional 
standardized domains (Supplementary Information, section 11.1). 
We used three of these domains to successfully construct an IFFL4 
module (Supplementary Information, section 11.2).

Discussion
Integration and recombination of parts with standard performance 
makes it possible to engineer powerful and dynamic behaviour into 
physical systems. For example, computers are composed of inte-
grated electrical circuits assembled from such parts. Here we cre-
ate standardized parts for building dynamic biochemical networks 
by designing against undesired interactions between components 
(crosstalk, autoinhibition, and autoactivation) and selectively 
screening for sequences with similar regulatory behaviour. Modules 
could be rapidly assembled from genelet library nodes and net-
works could be rapidly assembled from modules without extensive 
characterization of new connections. We expect that new node and 
module combinations would also behave reliably, as each of the 42 
input–output combinations we tested (Supplementary Information, 
section 12) met our screening criteria.

This standardized far-from-equilibrium network engineering 
toolbox should markedly expand the frontier of autonomous chem-
ical systems by enabling the construction of mesoscale networks 
that rival smaller viral GRNs in complexity and function44. The 
I_BS_IFFL1|2_FB1 network could select or switch between mul-
tiple synthesis pathways in response to environmental cues, emulat-
ing the responsive chemical regulation of cellular metabolism, and 
sequential IFFL modules could be used to orchestrate hierarchical 
chemical synthesis45. Genelet networks might also be compartmen-
talized to create artificial cells23 that could autonomously process 
and transmit chemical information to organize, maintain or trans-
form chemical reaction–diffusion patterns21,23.

To facilitate the assembly of other networks, we developed an 
open-source Python package for simulating networks with dif-
ferent topologies, initial conditions and species concentrations 
that automatically generates the appropriate standardized genelet 
sequences for a given topology46. We tested this software by design-
ing a range of far-from-equilibrium networks, such as oscillators, 
persistence detectors, and logic gates, that could be assembled using 
our genelet library (Supplementary Information, section 13). To 
facilitate the transfer of network designs from simulations to exper-
iments, we also compiled an experimental troubleshooting guide 
(Supplementary Information, section 14).

Previous estimates of the number of non-interacting HPC 
genelet domains27, combined with the screening success we 
observed here, suggest the possibility of building a library of 30–50 
non-interacting sequences with similar regulatory behaviour 
(Supplementary Information, section 15). While these innova-
tions greatly increase the sizes of circuits that can be assembled—
the I_BS_IFFL1|2_FB1 is 5-fold larger than any genelet network 

Fig. 5 | Engineering mesoscale networks by integrating modules and programming additional interactions. a, Schematic of a network in which 
different pulses are triggered after the network enters each of two stable states. b, The BS_IFFL1|2 network, which implements the circuit in a, consists 
of a bistable module (BSM4) coupled to two feedforward loops (IFFL1 and IFFL2). Asterisks denote HPC5o genelet nodes, which lack blockers and 
BTH domains (Supplementary Information, section 1.1). c,d, Normalized activation levels of BS_IFFL1|2 network reporting nodes after initialization of 
the network in its two stable states (c) and when there are state changes (d). Inducer RNAs were added (green arrows) to a final concentration of 
10 µM. The activation of G1S1 in state 2 may be due to G7 nodes not staying fully repressed (c). e, The I_BS_IFFL1|2_FB1 network. IFFL1 feeds back to 
an induction module (IM) to trigger a change to state 2. f, Desired I_BS_IFFL1|2_FB1 behaviour. g, Normalized activation levels of I_BS_IFFL1|2_FB1 
reporting nodes predicted by the general genelet model (left) and measured in experiments (right) after the network is initialized in state 1. BS_IFFL1|2 
and I_BS_IFFL1|2_FB1 design notes and sequences are in Supplementary Information, sections 10.1 and 10.2, respectively. Experimental methods are in 
Supplementary Information, section 10.3.

Nature Chemistry | VOL 14 | November 2022 | 1224–1232 | www.nature.com/naturechemistry1230

http://www.nature.com/naturechemistry


ArticlesNaTurE CHEMiSTry

developed without the HPC design14,25–27—other chemistries, 
regulation mechanisms or innovations such as compartmental-
ization23,47 or localization48 will be required to build networks  
the size seen in cellular genomes (Supplementary Information,  

section 15). Critical challenges to realizing such large networks are 
waste accumulation12,19 and loss of enzyme activity27, both of which 
limit the number of cycles a far-from-equilibrium system can 
undergo in batch reactions. These challenges scale with increasing 
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network size. Thus, the design of systems such as continuous-flow 
reactors or compartments11,47,49 that can replenish or manage chem-
ical fuel will be required before we can meaningfully construct  
synthetic networks that reach these scales.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41557-022-01001-3.

Received: 16 February 2021; Accepted: 16 June 2022;  
Published online: 4 August 2022

References
	1.	 Schultz, D., Wolynes, P. G., Jacob, E. B. & Onuchic, J. N. Deciding fate in 

adverse times: sporulation and competence in Bacillus subtilis. Proc. Natl 
Acad. Sci. USA 106, 21027–21034 (2009).

	2.	 Oppenheim, A. B., Kobiler, O., Stavans, J., Court, D. L. & Adhya, S. Switches 
in bacteriophage lambda development. Annu. Rev. Genet. 39, 409–429 (2005).

	3.	 Peter, I. S. & Davidson, E. H. Assessing regulatory information in 
developmental gene regulatory networks. Proc. Natl Acad. Sci. USA 114,  
5862 (2017).

	4.	 Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. 
Genet. 8, 450–461 (2007).

	5.	 van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. 
Chem. Soc. Rev. 46, 5474–5475 (2017).

	6.	 van Roekel, H. W. H. et al. Programmable chemical reaction networks: 
emulating regulatory functions in living cells using a bottom-up approach. 
Chem. Soc. Rev. 44, 7465–7483 (2015).

	7.	 Ferrell, J. E.Jr & Ha, S. H. Ultrasensitivity part III: cascades, bistable switches, 
and oscillators. Trends Biochem. Sci. 39, 612–618 (2014).

	8.	 McAdams Harley, H. & Shapiro, L. Circuit simulation of genetic networks. 
Science 269, 650–656 (1995).

	9.	 Ackermann, J., Wlotzka, B. & McCaskill, J. S. In vitro DNA-based predator–
prey system with oscillatory kinetics. Bull. Math. Biol. 60, 329–354 (1998).

	10.	Montagne, K., Plasson, R., Sakai, Y., Fujii, T. & Rondelez, Y. Programming an 
in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 
7, 466 (2011).

	11.	Semenov, S. N. et al. Rational design of functional and tunable oscillating 
enzymatic networks. Nat. Chem. 7, 160–165 (2015).

	12.	Kim, J. & Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. 
Biol. 7, 465 (2011).

	13.	Montagne, K., Gines, G., Fujii, T. & Rondelez, Y. Boosting functionality of 
synthetic DNA circuits with tailored deactivation. Nat. Commun. 7,  
13474 (2016).

	14.	Padirac, A., Fujii, T. & Rondelez, Y. Bottom-up construction of in vitro 
switchable memories. Proc. Natl Acad. Sci. USA 109, E3212–E3220 (2012).

	15.	Helwig, B., van Sluijs, B., Pogodaev, A. A., Postma, S. G. J. & Huck, W. T. S. 
Bottom-up construction of an adaptive enzymatic reaction network. Angew. 
Chem. Int. Ed. 57, 14065–14069 (2018).

	16.	Subsoontorn, P., Kim, J. & Winfree, E. Ensemble Bayesian analysis of 
bistability in a synthetic transcriptional switch. ACS Synth. Biol. 1,  
299–316 (2012).

	17.	Postma, S. G. J., te Brinke, D., Vialshin, I. N., Wong, A. S. Y. & Huck, W. T. S. 
A trypsin-based bistable switch. Tetrahedron 73, 4896–4900 (2017).

	18.	Genot, A. J. et al. High-resolution mapping of bifurcations in nonlinear 
biochemical circuits. Nat. Chem. 8, 760 (2016).

	19.	Kim, J., White, K. S. & Winfree, E. Construction of an in vitro bistable circuit 
from synthetic transcriptional switches. Mol. Syst. Biol. 2, 68 (2006).

	20.	Kim, J., Khetarpal, I., Sen, S. & Murray, R. M. Synthetic circuit for exact 
adaptation and fold-change detection. Nucleic Acids Res. 42, 6078–6089 (2014).

	21.	Zadorin, A. S. et al. Synthesis and materialization of a reaction–diffusion 
French flag pattern. Nat. Chem. 9, 990 (2017).

	22.	Gines, G. et al. Microscopic agents programmed by DNA circuits. Nat. 
Nanotechnol. 12, 351 (2017).

	23.	Dupin, A. & Simmel, F. C. Signalling and differentiation in emulsion-based 
multi-compartmentalized in vitro gene circuits. Nat. Chem. 11, 32–39 (2019).

	24.	Green, L. N. et al. Autonomous dynamic control of DNA nanostructure 
self-assembly. Nat. Chem. 11, 510–520 (2019).

	25.	Franco, E. et al. Timing molecular motion and production with a synthetic 
transcriptional clock. Proc. Natl Acad. Sci. USA 108, E784–E793 (2011).

	26.	Meijer, L. H. H. et al. Hierarchical control of enzymatic actuators using 
DNA-based switchable memories. Nat. Commun. 8, 1117 (2017).

	27.	Schaffter, S. W. & Schulman, R. Building in vitro transcriptional regulatory 
networks by successively integrating multiple functional circuit modules. Nat. 
Chem. 11, 829–838 (2019).

	28.	Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA 
strand displacement cascades. Science 332, 1196–1201 (2011).

	29.	Song, T. et al. Fast and compact DNA logic circuits based on single-stranded 
gates using strand-displacing polymerase. Nat. Nanotechnol. 14,  
1075–1081 (2019).

	30.	Kishi, J. Y., Schaus, T. E., Gopalkrishnan, N., Xuan, F. & Yin, P. 
Programmable autonomous synthesis of single-stranded DNA. Nat. Chem. 10, 
155–164 (2017).

	31.	Shah, S. et al. Using strand displacing polymerase to program chemical 
reaction networks. J. Am. Chem. Soc. 142, 9587–9593 (2020).

	32.	Chen, Z. et al. De novo design of protein logic gates. Science 368, 78 (2020).
	33.	Franco, E., Giordano, G., Forsberg, P.-O. & Murray, R. M. Negative 

autoregulation matches production and demand in synthetic transcriptional 
networks. ACS Synth. Biol. 3, 589–599 (2014).

	34.	Kim, J., Hopfield, J. & Winfree, E. in Advances in Neural Information 
Processing Systems 17 (eds Saul, L. K., Weiss, Y. & Bottou, L.) 681–688 (MIT 
Press, 2005).

	35.	Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems.  
J. Comput. Chem. 32, 170–173 (2011).

	36.	Dabby, N. Synthetic Molecular Machines for Active Self-assembly: Prototype 
Algorithms, Designs, and Experimental Study. PhD thesis, California Institute 
of Technology (2013).

	37.	Groves, B. et al. Computing in mammalian cells with nucleic acid strand 
exchange. Nat. Nanotechnol. 11, 287–294 (2016).

	38.	Isambert, H. The jerky and knotty dynamics of RNA. Methods 49,  
189–196 (2009).

	39.	Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics 
using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

	40.	Mangan, S. & Alon, U. Structure and function of the feed-forward loop 
network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003).

	41.	Krupp, G. RNA synthesis: strategies for the use of bacteriophage RNA 
polymerases. Gene 72, 75–89 (1988).

	42.	Lapham, J. & Crothers, D. M. RNase H cleavage for processing of in vitro 
transcribed RNA for NMR studies and RNA ligation. RNA 2, 289–296 (1996).

	43.	Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle 
switch in Escherichia coli. Nature 403, 339–342 (2000).

	44.	Mahmoudabadi, G. & Phillips, R. A comprehensive and quantitative 
exploration of thousands of viral genomes. eLife 7, e31955 (2018).

	45.	O’Reilly, R. K., Turberfield, A. J. & Wilks, T. R. The evolution of 
DNA-templated synthesis as a tool for materials discovery. Acc. Chem. Res. 
50, 2496–2509 (2017).

	46.	Schaffter, S. W. General Genelet Model (2020); https://github.com/sschaff6/
general-genelet-model.git

	47.	Dubuc, E. et al. Cell-free microcompartmentalised transcription–translation 
for the prototyping of synthetic communication networks. Curr. Opin. 
Biotechnol. 58, 72–80 (2019).

	48.	Chatterjee, G., Dalchau, N., Muscat, R. A., Phillips, A. & Seelig, G. A spatially 
localized architecture for fast and modular DNA computing. Nat. 
Nanotechnol. 12, 920–927 (2017).

	49.	 Laohakunakorn, N. et al. Bottom-up construction of complex biomolecular 
systems with cell-free synthetic biology. Front. Bioeng. Biotechnol. 8, 213 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2022,  
corrected publication 2022 

Nature Chemistry | VOL 14 | November 2022 | 1224–1232 | www.nature.com/naturechemistry1232

https://doi.org/10.1038/s41557-022-01001-3
https://doi.org/10.1038/s41557-022-01001-3
https://github.com/sschaff6/general-genelet-model.git
https://github.com/sschaff6/general-genelet-model.git
http://www.nature.com/naturechemistry


ArticlesNaTurE CHEMiSTry

Methods
Oligonucleotides, enzymes and other reagents. DNA and RNA sequences for 
all networks and network elements are listed in the Supplementary Information. 
All oligonucleotides were purchased from Integrated DNA Technologies (IDT). 
Most genelet DNA strands used in the final networks were HPLC purified by 
IDT, unless otherwise stated in the Supplementary Information. Synthetic RNA 
oligonucleotides were ordered from IDT unpurified. Ribonucleotide triphosphates 
(NTPs) were purchased from ThermoFisher Scientific. T7 RNAP was purchased 
in bulk (300,000 U) from Cellscript (200 U µl−1, C-T7300K). Yeast inorganic 
pyrophosphatase was purchased from New England Biolabs (NEB) (0.1 U µl−1). 
RNase H was purchased from ThermoFisher Scientific (5 U µl−1). Bovine serum 
albumin (BSA) was purchased from Sigma Aldrich (catalogue number A3858). 
All genelets were annealed (held at 90 °C for 5 min and then cooled to 20 °C at 
1 °C per min) in NEB RNAPol reaction buffer (catalogue number M0251S) with 
non-template and template strands at equimolar concentrations. For initially 
blocked genelets, the DNA blocker strand was present at 1.5× the concentration 
of the non-template strand. Supplementary Information, section 1 presents the 
11 standardized input and output genelet sequences and describes the method for 
assembling new network connections using these domains.

Reaction conditions and data acquisition. Unless otherwise stated, network 
reactions were conducted at 37 °C in NEB RNAPol reaction buffer supplemented 
with MgCl2 (final concentration, 30 mM), NTPs (ATP, UTP, CTP, GTP; final 
concentration, 7.5 mM each), and BSA (final concentration, 0.1 mg ml−1). BSA was 
included in the transcription mix to prevent the other enzymes from sticking to 
the walls of the reaction tubes. In addition to T7 RNA polymerase and RNase H, 
yeast inorganic pyrophosphatase was also included in reactions (1.35 × 10−3 U μl−1) 
to extend the duration of the transcription reactions50. To minimize the need for 
recalibration due to batch-to-batch variation in enzyme activity12,19,25, T7 RNAP 
was purchased in bulk from Cellscript and three batches were used throughout the 
study. The bulk batches of T7 RNA polymerase were split into smaller aliquots (each 
aliquot was enough for 20–30 experiments) to minimize enzyme degradation from 
repeated removal from the freezer. Concentrations of the DNA components and 
enzymes used are tabulated in the experimental methods sections for each network 
in the Supplementary Information. All kinetic data was obtained in a quantitative 
polymerase chain reaction machine (Agilent Mx3005P) equipped with the standard 
filters: FAM/SYBR Green I (492–516 nm), HEX/JOE/VIC (535–555 nm), Cy3 (545–
568 nm), ROX/Texas Red (585–610 nm), Cy5 (635–665 nm). TYE665 and Cy5 were 
measured with the Cy5 filter, HEX with the HEX filter, TEX615 with the ROX filter, 
and FAM with the FAM filter. Fluorescence measurements were taken every minute 
during the reactions. See Supplementary Information, section 16 for details on 
fluorescence data normalization procedures for all the different network experiments.

Data availability
The data associated with this manuscript are available at: https://doi.org/10.7281/
T1/UBSZF1.

Code availability
The general genelet model code, including scripts for the main text simulations, is 
available at: https://github.com/sschaff6/general-genelet-model.git.
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