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Standardized excitable elements for scalable
engineering of far-from-equilibrium
chemical networks

Samuel W. Schaffter, Kuan-Lin Chen’, Jackson O'Brien?, Madeline Noble', Arvind Murugan? and
Rebecca Schulman®'34%

Engineered far-from-equilibrium synthetic chemical networks that pulse or switch states in response to environmental signals
could precisely regulate the kinetics of chemical synthesis or self-assembly. Currently, such networks must be extensively
tuned to compensate for the different activities of and unintended reactions between a network's various chemical compo-
nents. Modular elements with standardized performance could be used to rapidly construct networks with designed functions.
Here we develop standardized excitable chemical regulatory elements, termed genelets, and use them to construct complex
in vitro transcriptional networks. We develop a protocol for identifying >15 interchangeable genelet elements with uniform
performance and minimal crosstalk. These elements can be combined to engineer feedforward and feedback modules whose
dynamics match those predicted by a simple kinetic model. Modules can then be rationally integrated and organized into net-
works that produce tunable temporal pulses and act as multistate switchable memories. Standardized genelet elements, and

the workflow to identify more, should make engineering complex far-from-equilibrium chemical dynamics routine.

genesis’ are orchestrated by genetic regulatory networks

(GRNs)** that continuously consume energy>® to operate
far-from-equilibrium. Energy dissipation allows GRNs to repeat-
edly produce adaptive, dynamic chemical responses to environ-
mental stimuli that change over time. Genes in a GRN typically
have nonlinear, often excitable, input-output responses in which
small changes in the level of an input induce large changes in the
amount of output produced. These properties allow GRNs to effi-
ciently propagate signals’ and, in principle, to orchestrate arbitrarily
complex dynamic responses using networks which couple a suf-
ficient number of modular genes®. Synthetic chemistries’** with
these same properties could be used for programming time-varying
chemical signals®®, directing pattern formation*~* or regulating
nanostructure assembly or reconfiguration***.

Cellular GRNs that direct complex cellular processes often
comprise 10-100 genes. A key step toward emulating the complex
dynamics of these cellular GRNs in synthetic chemical networks is
to scale up the number of circuit nodes that can operate together™*.
Such scale-up has been performed by adding newly designed nodes
to existing circuits'**>?”. However, iterative design cycles are often
required to find nodes that work as desired within an existing net-
work. And nodes created specifically to add to existing networks
often cannot be interchanged or rearranged to form new networks,
meaning that building a new type of network can require starting
such cycles of component and network design anew. As electronic
circuit design methods suggest, a library of orthogonal nodes with
standard input-output characteristics could make it possible to
use a model-driven approach to rapidly construct many different
networks from the same set of interchangeable units (Fig. 1a). For
example, a range of complex chemical logic circuits can be routinely
assembled with standardized biomolecular gates-*2.

( :ellular processes such as stress response” and morpho-

We sought to develop such a method for building far-from-
equilibrium chemical networks composed of short transcriptional
templates, called genelets'>'®>?*?52%33 Each genelet has an input
(I) domain, which combines a DNA activator binding site and an
incomplete T7 RNA polymerase (T7 RNAP) promoter site, and an
output (O) domain, which encodes an RNA transcript. A genelet’s
output is transcribed when a DNA activator is bound to the genelet’s
input domain, that is, an activated (ON) state (Fig. 1b). Genelets
regulate one another by transcribing RNAs that control the ability
of other nodes’ DNA activators to bind their respective genelets. A
regulating RNA (1R or rC) changes a genelet’s state when its concen-
tration is higher than the concentration of its corresponding DNA
regulator (an activator dA or blocker dB). DNA regulators are pres-
ent in excess of their genelets, facilitating nonlinear, excitable input-
output behaviour'>"” akin to the sigmoidal response commonly
used for nodes of artificial neural networks*. RNA is degraded by
RNase H, enabling signal turnover, and thereby sustaining a net-
work’s far-from-equilibrium operation (Fig. 1c-e). However, it has
been challenging to build large genelet networks with predictable
behaviour because of spurious side reactions between components
and differences in the response characteristics of nodes with differ-
ent sequences'>”’.

Here we develop a scalable method for building genelet net-
works by constructing a library of interchangeable genelets with
similar performance, that is, input-output behaviour and response
times. We identify >15 standardized circuit elements, or regulatory
domains, and show that these domains can each be combined into
genelets that activate and/or repress one another. With this library
we rapidly engineer a suite of reliable feedforward and feedback
modules and then integrate these modules into mesoscale networks
that produce pulses with tunable amplitudes and delays or act as
switchable memories. Network design is informed by a general
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Fig. 1| The hairpin clamp (HPC5) genelet toolbox. a, Network engineering workflow. b, Node states and species. Each genelet consists of an input (1)
domain (G1 here), which controls transcription activity, and an output (O) domain, S1 here. The T7 RNAP promoter sequence (pink) of a genelet is not
fully double-stranded, so little transcription occurs (OFF). Transcription occurs from a genelet-activator complex (ON) because the activator completes

the promoter sequence. A DNA blocker prevents both transcription and DN
input domain i are labelled Ri and those that coactivate input domain i are la

A activator binding (BLK). Throughout this work, output domains that repress
belled Ci, where i=1, 2,..., N. DNA species are depicted with solid lines and

have d prefixes; RNA species are depicted as dashed lines and have r prefixes. Fluorophore (F) and quencher (Q) modifications are used to measure
genelet state. ¢, Node state transitions. Upstream transcripts reverse activation (repression) or blocking (coactivation). Coactivation passes through OFF
to get to ON. d,e, An RNA repressor turns a node OFF. The DNA blocker was omitted but it could displace the activator if free (d). An RNA coactivator
removes the blocker to allow activator binding, which turns a node ON (e). Both repression and coactivation are reversed via degradation of RNA bound to

a DNA activator or blocker by RNase H. Regulation pathways in the presenc

model of genelet behaviour that reliably predicts network dynam-
ics. Finally, we expand the library of standardized domains using
a standard protocol. These results suggest a reliable and predictive
way of constructing chemical networks exhibiting a broad range of
dynamic responses to time-varying chemical inputs. Such networks
could potentially regulate self-assembly, biochemical synthesis or
reactions, and orchestrate chemical detection or recognition.

Results
A modular design for bidirectionally regulated genelets. We
sought to create a library of interchangeable and predictable genelet
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e of both free activators and blockers are shown in Supplementary Fig. 2.

nodes with similar performance that could be bidirectionally regu-
lated. We hypothesized that such a library would allow us to use a
general model of genelet behaviour to rapidly design and implement
regulatory networks with diverse dynamics. To build this standard
library, we first sought to develop a genelet design that would mini-
mize the impacts of unintended side reactions and genelet crosstalk.
We began with a genelet design that sequesters most of each node’s
long input domain within a hairpin (hairpin clamp (HPC)). Hiding
most of the recognition sequence within a hairpin minimizes
crosstalk and permits the design of multiple modular units'>*".
HPC nodes are repressed by upstream transcripts that react with a
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genelet-activator complex via a 3’ ssDNA toehold (the repressor
toehold (RTH)) to remove the DNA activator from the complex.
However,the3’ ssDNA overhangcanfacilitatepromoter-independent
transcription by T7 RNAP, which can lead nodes to spuriously
turn off by themselves, a phenomenon termed autoinhibition?. To
build genelets without this autoinhibition behaviour, we moved the
ssDNA RTH domain of the HPC design to the 5 end of the activa-
tor to create the HPC50 design (Supplementary Information, sec-
tion 2 and Supplementary Fig. 1).

We then sought to modify the HPC50 design to allow upstream
transcripts to activate downstream genelets in addition to repress-
ing them. We first considered a design in which a genelet is off
when its DNA activator is sequestered in a double-stranded DNA
(dsDNA) complex'>'*. An upstream RNA transcript could then
release the DNA activator from this complex to turn the genelet on
(Supplementary Information, section 3.1). However, a transcript that
could release the DNA activator must share sequence elements with
that activator; we found that these transcripts also competed with
the activators to bind to the genelets, thereby preventing activation
(Supplementary Fig. 7 and Supplementary Information, section 3.1).

We thus devised an alternative scheme for bidirectional regula-
tion, the HPC5 design, in which a DNA blocker strand binds more
strongly than a DNA activator to a genelet’s input domain (Fig. 1b).
Transcription can occur from a genelet bound to an activator, but
not from a genelet bound to a blocker. Upstream RNA signals then
downregulate genelet transcription by sequestering DNA activators
and upregulate genelet transcription by sequestering DNA blockers
(Fig. 1c—e). We confirmed that a DNA blocker prevented a DNA
activator from binding to a genelet’s input domain and that DNA
and RNA coactivators could both facilitate genelet coactivation.
We also verified that coactivation could be reversed by degrading
the RNA coactivator or adding blocker in excess of the coactivator
(Supplementary Information, section 3.2). Finally, we validated that
HPCS5 genelet transcription could be rapidly turned on by adding
coactivators and off by adding repressors, and that the fraction of
genelet in the ON state, measured via fluorescence (Fig. 1b), corre-
lated linearly with transcription rate (promoter activity), as seen in
previous studies'’ (Supplementary Information, section 3.4).

Standardized, interchangeable regulatory domains. Using the
HPC5 design, we sought to create a library of modular genelet
input and output sequences that could be interchangeably assem-
bled into networks. We used NUPACK 3.2.2% to design sequences
for 36 genelet input-output sequences predicted to both be ther-
modynamically stable in their designed hairpin structures and
have minimal non-designed interactions with one another or with
the G1 HPC5 node (Supplementary Information, section 4.1). In
addition to orthogonality, we also sought sequences that could be
fully activated and/or repressed at similar rates, such that a gen-
eral model of genelet behaviour, which assumes the same reac-
tion rates for every node, could reliably guide network design.
DNA activators and/or blockers are used in excess of their respec-
tive genelets, so full activation or blocking is expected. The speed
of genelet regulation should be governed by the rates of four-way
branch migration. Previously reported rate constants for four-way
branch migration’” range from 10° to 10*M™'s™!, suggesting
that >0.9 fraction of 25nM genelet should activate in response to
150nM of DNA activator in 15-100 min. Thus, we sought to iden-
tify sequences that each activated to >0.9 fraction ON in <1 h. We
reasoned that this criterion represented the distribution of rates for
different sequences, and that sequences that switched at these rates
would be similar enough to follow the predictions of our general
genelet model. Because four-way branch migration rates have not
been extensively studied for diverse sequences, we first tested the
assumption that four-way branch migration rates for HPC5 genel-
ets would generally occur within the expected range. We developed
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a quick and inexpensive screening assay to measure the activation
rates of our 36 designed genelets with excess of their DNA activa-
tors (Supplementary Information, section 4.2). Surprisingly, many
activator sequences reacted with their genelets either incompletely
or much more slowly than predicted: only 16 reached >0.9 fraction
ON in <1h (Fig. 2b and Supplementary Fig. 20). Incomplete or slow
activation of a genelet-activator pair might be caused by undesired
secondary structures within a genelet or activator or the existence
of reactions other than the designed four-way branch migration
activation process, and we deemed such sequences unreliable for
network construction. To explore sequence criteria that led to
incomplete or abnormally slow activation, we designed chimeric
activators by swapping subdomains of fast and slow sequences and
measured their activation rates with cognate genelets. These experi-
ments indicated that the hairpin stem sequence of the activators was
important in determining reaction rate (Supplementary Fig. 21) but
we were not able to identify specific sequence patterns that reliably
indicated a slow-activating sequence (Supplementary Fig. 22).

We next tested the coactivation and repression kinetics of
the 16 nodes that passed DNA activation screening (Fig. 2c and
Supplementary Information, section 4.3). We monitored this switch
by adding DNA coactivator or repressor in excess of their DNA
blocker or activator, so that these factors should completely switch
their target nodes ON/OFE. All 16 nodes reached >0.9 fraction ON/
OFF in <1h when switched by DNA coactivators and repressors.
When we monitored the rate of switching in response to the tran-
scription of RNA coactivators or repressors, however, we found that
many nodes switched incompletely or at least 2-fold more slowly
than in response to the corresponding DNA sequence. We found
six of these nodes could be switched >0.9 fraction ON and OFF
in <1h in response to transcribed RNA regulators and five could
be rapidly regulated in one direction but not the other (Fig. 2d and
Supplementary Information, section 4.4). Varying the concentra-
tion of the RNA regulator transcription template did not speed up
the regulation of slow nodes, suggesting that incomplete RNA tran-
scription or RNA misfolding™, rather than differences in transcrip-
tion rates, caused slow regulation (Supplementary Fig. 26).

To test whether the input and output domains (Fig. 1b) of the
11 nodes we identified could be used interchangeably, we measured
the rates at which 28 unique input-output combinations coacti-
vated or repressed downstream reporting genelets. Twenty-seven of
these combinations took <1h to switch their targets to >0.9 ON/
OFF, suggesting the choice of input domain did not greatly influ-
ence the rate of downstream regulation (Fig. 2e and Supplementary
Information, section 4.5). In these experiments, regulation is the
result of coupled transcription and strand displacement. To charac-
terize the variation in transcription rate across different nodes, we
measured the transcription rates of nodes with two different input
domains, G1 and G4, and found the transcription rates were within
a factor of two of one another (Supplementary Information, section
3.4). A limitation of the HPC design is that four-way branch migra-
tion is slower than three-way branch migration with similar toehold
lengths®. However, we found a 10-fold higher genelet concentra-
tion could reduce switching time 4-fold; this is comparable to the
speed-up predicted to occur if one increased these strand displace-
ment rate constants by two orders of magnitude (Supplementary
Information, section 4.6).

Engineering temporal genelet expression programs. We next
investigated whether the standardized nodes we identified could be
integrated into regulatory networks whose dynamics could be pre-
dicted and programmed using a general model of genelet dynamics.
The model consisted of ordinary differential equations describing
the mass action kinetics of the designed genelet reactions for a given
network architecture and assumed the kinetic rate constants were
the same for each node (Supplementary Information, section 5).
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Fig. 2 | Design and screening protocol for identifying sequences for standardized HPC5 genelet domains. a, A library of genelet node sequences, termed
HTT variants, are designed computationally (using NUPACK?*) by minimizing undesired secondary structure interactions between library sequences.

b, HTT genelet variants that reach >0.9 fraction ON in <1h after addition of their DNA activators (in the absence of enzymes) are identified from the
designed library. ¢, The rates of coactivation and repression by transcribed RNA regulators of HTT variants identified in b are then measured using
constitutively active transcription templates for RNA coactivators and repressors (solid lines). HTT genelet variants that can reach >0.9 fraction ON in
<1h are selected as node sequences. Dashed curves show rates of coactivation/repression in response to DNA coactivators/repressors. d, The number of
nodes that passed each stage of the screening protocol. Supplementary Information, section 4 contains detailed descriptions of screening protocols. e, The
standardized HPC5 genelet input and output domains can be interchanged without notable changes in regulatory kinetics. See Supplementary Information,

section 4.5 for individual kinetic trajectories, experimental conditions, and a

We first used the model to design incoherent type 1 feedforward
loop (IFFL)>** modules that produce pulses of genelet activation via
coordinated coactivation and repression. In a genelet IFFL (Fig. 3a),
an output node (in IFFL1, G1) should pulse in response to the acti-
vators of the input nodes (in IFFL, dA2). Simulations indicated that
the relative rates and strengths of G1 coactivation and repression
determine pulse shape and timing (Supplementary Information,
section 6.1), which we verified in experiments by varying the con-
centrations of IFFL components (Supplementary Fig. 37).

However, we found that the BLK G3R1 node in IFFL1 turned on
even without an input, which was not predicted by our model. In
isolation, BLK G3R1 also turned itself on, a phenomenon we called
autoactivation. Autoactivation occurred at a rate proportional to its
blocker (dB3) concentration, suggesting dB3 could be transcribed
via promoter-independent transcription*. A dB3 strand with a
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dditional input and output domain combinations.

single-stranded 3’ end composed of 2’ methylated RNA rather than
DNA*, which should prevent promoter-independent transcription
initiated at the 3’ end, eliminated BLK G3R1 autoactivation (Supple-
mentary Fig. 40). An IFFL with methylated dB3 produced pulses
whose heights and durations could be reliably tuned by varying DNA
activator concentrations according to model predictions (Fig. 3b).
After identifying G3 autoactivation, we tested the propensity for
autoactivation of other nodes and found that G8 and G10 nodes also
exhibited autoactivation. We also eliminated this autoactivation by
replacing the single-stranded DNA at the 3’ ends of their blockers
with methylated RNA (Supplementary Information, section 7).

To test whether genelet nodes could be interchanged in IFFLs,
we built two additional IFFL modules using other genelet domains
from our library and measured their pulse dynamics using the same
concentrations as in IFFL1. All three modules (IFFL1, IFFL2 and
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Fig. 3 | IFFLs orchestrate temporal pulses in genelet activation. a, The IFFL1 module. Here and elsewhere, a yellow star on a node indicates that the node
was fluorescently modified to measure its activation levels during experiments. b, Normalized activation levels of IFFL1 nodes predicted by the general
genelet model (left) and in experiments (right) for networks with 125, 250 or 500 nM dA1. Dashed curves in plots show activation levels when dA2 was
not added. The general genelet model is described in Supplementary Information, section 5. ¢,d, Two IFFL modules, IFFLT (¢) and IFFL2 (d), assembled from
different nodes (above plots). Normalized activation levels of network nodes with 125, 250 or 500 nM of the pulsing node's activator. Dashed curves in
plots show activation levels when dA5 (¢) and dA9 (d) were not added. e, The IFFL1_2 network, consisting of IFFLT and IFFL2 modules connected in series.
f, Normalized IFFL1_2 node activation levels predicted by the general genelet model (left) and from experiments (right). g, Normalized activation levels of
IFFL1_2 network nodes with different concentrations of G3C5. Detailed methods are in Supplementary Information, sections 6.2 and 8.2. IFFL1, IFFL2, IFFL3
and IFFL1_2 design notes and sequences are in Supplementary Information, sections 6.3, 6.5, 6.6 and 8.1.

IFFL3) exhibited pulse dynamics in agreement with model predic-
tions (Fig. 3b-d).

We next asked whether we could connect multiple IFFL modules
into a composite network that our model predicted would produce
sequential pulses"* (IFFL1_2, Fig. 3ef). As a step toward con-
structing this network, we connected IFFL2 to an upstream node
(G3C5). The resulting network, G3C5_IFFL2, produced a pulse in
the absence of an input. We hypothesized this spurious pulsing was
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caused by leak transcription from the BLK G5 genelets, possibly due
to transient DNA activator binding (Supplementary Information,
section 8.3). Incorporating a 5% leak transcription rate from BLK
G5 nodes in the model recapitulated the G3C5_IFFL2’s spontaneous
activation. Guided by this model, we eliminated spurious activation
by increasing the IFFL2 blocker concentrations, which serves as a
threshold for upstream transcriptional leak (Supplementary Figs. 43
and 44), and built an IFFL1_2 network that generated sequential
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Fig. 4| A TSN composed of three mutually repressive BSMs. a, The TSN architecture. G1D, G3D and G4D are reporting nodes that monitor network
state. As all TSN interactions are repressive, DNA blockers were omitted and HPC5o0 genelets (denoted with *), which lack blocking toeholds (BTH in

Fig. 1c), were used. b, Normalized activation levels of reporting nodes after TSN initialization in each of its three stable states. ¢, Schematic of the six
possible TSN single state changes and how they can be triggered by inducer RNAs that inhibit specific RNA repressors. rl1, rI3 and rl4 direct switches to
states 1, 2 and 3, respectively. d, Normalized activation levels of reporting nodes during each possible state change. Inducer RNAs were added after 1h in
the initial state (green arrows) to final concentrations of 10 uM. Switching into state 2 occurs faster than predicted in simulations, possibly due to a high
rR3 degradation rate or to rI3 actively removing rR3 from dA3. e, Normalized activation levels of reporting nodes during sequential state changes. Inducer
RNA concentrations are in Supplementary Information, section 9.2. TSN network design notes and sequences are in Supplementary Information, section
9.1. Experimental methods are in Supplementary Information, section 9.2.

IFFL pulses (Fig. 3f). We further found we could use the general reorganized into feedback networks with predictable behaviour.
genelet model (Supplementary Fig. 45) to devise multiple means to We chose to construct multistable memory networks in which
delay the second pulse: decreasing the G3C5 concentration (Fig. 3g)  transient signals can induce sustained changes in signal expres-
or increasing the dB5 concentration (Supplementary Fig. 46). sion»!. Memory is a hallmark of far-from-equilibrium networks,

as a continuous energy supply is required to keep a network in one
Engineering multistability with mutually repressive networks. of several stable steady states**. A mutually repressive feedback net-
We next investigated whether standard genelet domains could be ~ work can be multistable** so long as the feedback strength of all

NATURE CHEMISTRY | VOL 14 | NOVEMBER 2022 | 1224-1232 | www.nature.com/naturechemistry 1229


http://www.nature.com/naturechemistry

ARTICLES

NATURE CHEMISTRY

connections is fairly uniform (Supplementary Figs. 50-52).
Simulations predict that as the number of mutually repressive
states increases, feedback strengths must become more and more
uniform to achieve multistability. Thus, nodes with standardized
performance are critical for constructing large multistable net-
works (Supplementary Figs. 50 and 51). Many synthetic GRN ana-
logues''**, including genelets'>”’, have implemented switchable,
mutually repressive bistable modules. To test the interchangeability
and predictability of our standardized nodes, we sought to engineer
a switchable tristable network (TSN).

We designed a TSN composed of three interlocked mutually
repressive bistable modules (BSM1-3) (Fig. 4a and Supplementary
Information, section 9.1) that simulations predicted could main-
tain each of three stable states after being initialized in them
(Supplementary Figs. 52-54). Consistent with these predictions,
the network maintained each initial state for over 8h in experi-
ments (Fig. 4b). To demonstrate switchable memory, we designed
inducer RNAs that bound to 16 bases of their target RNA repres-
sors” (Supplementary Information, section 9.1). Simulations indi-
cated these inducer RNAs could switch network state by turning a
repressed node ON, which would subsequently shut off the active
nodes of the initial state (Supplementary Figs. 55-56 and Fig. 4c).
The inducers triggered all six possible single state changes (Fig. 4d),
and sequential inducer additions orchestrated two (Fig. 4e) and
three (Supplementary Fig. 58) state changes.

Scalable network engineering through module integration. We
next asked whether we could integrate feedforward and feedback
modules into larger composite networks whose dynamics were
predicted by the behaviours of their component modules. We first
designed a network in which the two different outputs of a bistable
module (BSM4) triggered different IFFL pulses'? (Fig. 5a,b), termed
BS_IFFL1|2. When initialized in each of its two states, BS_IFFL1|2
produced output pulses similar to those produced by IFFL1 and
IFFL2 in isolation (Figs. 5¢ and 3). The BS_IFFL1|2 networK’s state
could be switched by standard inducer RNAs (Fig. 5d), at rates simi-
lar to BSM4 alone (Supplementary Fig. 60).

We next incorporated upstream and downstream connections
into the BS_IFFL1|2 network (Fig. 5¢). We first added an induction
module”” (IM) composed of two nodes that produce the inducer
RNAs that switch the BSM4 state (Supplementary Fig. 61). We then
introduced a second output node (G1C9) into IFFL1. This second
output produces a coactivator that triggers the IM to switch BSM4
from state 1 to state 2 (Fig. 5f). We termed the resulting network
I_BS_IFFL1|2_FB1. Using simulations, we identified G1C9 and IM
node concentrations predicted to cause I_BS_IFFL1|2_FBI initial-
ized in state 1 to transiently activate G918, which induces a switch
into state 2 (Supplementary Fig. 62). In experiments, the pulsing
and switching occurred as predicted (Fig. 5g), with the timing of the
autonomous switch out of state 1 closely matching model predic-
tions. The time at which each IFFLs output pulse reached its maxi-
mum height deviated from model predictions by ~40min (Fig. 5g
and Supplementary Fig. 63). We also tuned the time spent in state
1 by changing the G1C9 concentration (Supplementary Fig. 64).

These results provide compelling evidence for the orthogonality of
individual nodes and larger modules.

The I_BS_IFFL1|2_FBI1 network used 10 of the 11 standardized
nodes identified during screening. To expand the node library, we
followed our screening workflow (Fig. 2) to identify six additional
standardized domains (Supplementary Information, section 11.1).
We used three of these domains to successfully construct an IFFL4
module (Supplementary Information, section 11.2).

Discussion

Integration and recombination of parts with standard performance
makes it possible to engineer powerful and dynamic behaviour into
physical systems. For example, computers are composed of inte-
grated electrical circuits assembled from such parts. Here we cre-
ate standardized parts for building dynamic biochemical networks
by designing against undesired interactions between components
(crosstalk, autoinhibition, and autoactivation) and selectively
screening for sequences with similar regulatory behaviour. Modules
could be rapidly assembled from genelet library nodes and net-
works could be rapidly assembled from modules without extensive
characterization of new connections. We expect that new node and
module combinations would also behave reliably, as each of the 42
input-output combinations we tested (Supplementary Information,
section 12) met our screening criteria.

This standardized far-from-equilibrium network engineering
toolbox should markedly expand the frontier of autonomous chem-
ical systems by enabling the construction of mesoscale networks
that rival smaller viral GRNs in complexity and function*. The
I_BS_IFFL1|2_FB1 network could select or switch between mul-
tiple synthesis pathways in response to environmental cues, emulat-
ing the responsive chemical regulation of cellular metabolism, and
sequential IFFL modules could be used to orchestrate hierarchical
chemical synthesis*. Genelet networks might also be compartmen-
talized to create artificial cells* that could autonomously process
and transmit chemical information to organize, maintain or trans-
form chemical reaction-diffusion patterns®-*.

To facilitate the assembly of other networks, we developed an
open-source Python package for simulating networks with dif-
ferent topologies, initial conditions and species concentrations
that automatically generates the appropriate standardized genelet
sequences for a given topology*. We tested this software by design-
ing a range of far-from-equilibrium networks, such as oscillators,
persistence detectors, and logic gates, that could be assembled using
our genelet library (Supplementary Information, section 13). To
facilitate the transfer of network designs from simulations to exper-
iments, we also compiled an experimental troubleshooting guide
(Supplementary Information, section 14).

Previous estimates of the number of non-interacting HPC
genelet domains”, combined with the screening success we
observed here, suggest the possibility of building a library of 30-50
non-interacting sequences with similar regulatory behaviour
(Supplementary Information, section 15). While these innova-
tions greatly increase the sizes of circuits that can be assembled—
the I_BS_IFFL1|2_FBI is 5-fold larger than any genelet network

>
>

Fig. 5 | Engineering mesoscale networks by integrating modules and programming additional interactions. a, Schematic of a network in which
different pulses are triggered after the network enters each of two stable states. b, The BS_IFFL1|2 network, which implements the circuit in a, consists
of a bistable module (BSM4) coupled to two feedforward loops (IFFLT and IFFL2). Asterisks denote HPC50 genelet nodes, which lack blockers and
BTH domains (Supplementary Information, section 1.1). ¢,d, Normalized activation levels of BS_IFFL1|2 network reporting nodes after initialization of
the network in its two stable states (¢) and when there are state changes (d). Inducer RNAs were added (green arrows) to a final concentration of

10 uM. The activation of G1S1in state 2 may be due to G7 nodes not staying fully repressed (c). e, The I_BS_IFFL1|2_FB1 network. IFFL1 feeds back to
an induction module (IM) to trigger a change to state 2. f, Desired |_BS_IFFL1|2_FB1 behaviour. g, Normalized activation levels of |_BS_IFFL1|2_FB1
reporting nodes predicted by the general genelet model (left) and measured in experiments (right) after the network is initialized in state 1. BS_IFFL1|2
and I_BS_IFFL1|2_FB1 design notes and sequences are in Supplementary Information, sections 10.1 and 10.2, respectively. Experimental methods are in

Supplementary Information, section 10.3.
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developed without the HPC design'***—other chemistries, section 15). Critical challenges to realizing such large networks are
regulation mechanisms or innovations such as compartmental- waste accumulation'>"” and loss of enzyme activity”’, both of which
ization®"” or localization” will be required to build networks limit the number of cycles a far-from-equilibrium system can
the size seen in cellular genomes (Supplementary Information, undergo in batch reactions. These challenges scale with increasing
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network size. Thus, the design of systems such as continuous-flow
reactors or compartments'>** that can replenish or manage chem-
ical fuel will be required before we can meaningfully construct
synthetic networks that reach these scales.

Online content

Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41557-022-01001-3.
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Methods

Oligonucleotides, enzymes and other reagents. DNA and RNA sequences for
all networks and network elements are listed in the Supplementary Information.
All oligonucleotides were purchased from Integrated DNA Technologies (IDT).
Most genelet DNA strands used in the final networks were HPLC purified by
IDT, unless otherwise stated in the Supplementary Information. Synthetic RNA
oligonucleotides were ordered from IDT unpurified. Ribonucleotide triphosphates
(NTPs) were purchased from ThermoFisher Scientific. T7 RNAP was purchased
in bulk (300,000 U) from Cellscript (200 U pl~!, C-T7300K). Yeast inorganic
pyrophosphatase was purchased from New England Biolabs (NEB) (0.1 U pl™).
RNase H was purchased from ThermoFisher Scientific (5Upl™). Bovine serum
albumin (BSA) was purchased from Sigma Aldrich (catalogue number A3858).
All genelets were annealed (held at 90 °C for 5min and then cooled to 20°C at
1°Cper min) in NEB RNAPol reaction buffer (catalogue number M0251S) with
non-template and template strands at equimolar concentrations. For initially
blocked genelets, the DNA blocker strand was present at 1.5X the concentration
of the non-template strand. Supplementary Information, section 1 presents the

11 standardized input and output genelet sequences and describes the method for
assembling new network connections using these domains.

Reaction conditions and data acquisition. Unless otherwise stated, network
reactions were conducted at 37°C in NEB RNAPol reaction buffer supplemented
with MgCl, (final concentration, 30 mM), NTPs (ATP, UTP, CTP, GTP; final
concentration, 7.5mM each), and BSA (final concentration, 0.1 mgml™"). BSA was
included in the transcription mix to prevent the other enzymes from sticking to

the walls of the reaction tubes. In addition to T7 RNA polymerase and RNase H,
yeast inorganic pyrophosphatase was also included in reactions (1.35x 10U pl™")
to extend the duration of the transcription reactions™. To minimize the need for
recalibration due to batch-to-batch variation in enzyme activity'>'>**, T7 RNAP

was purchased in bulk from Cellscript and three batches were used throughout the
study. The bulk batches of T7 RNA polymerase were split into smaller aliquots (each
aliquot was enough for 20-30 experiments) to minimize enzyme degradation from
repeated removal from the freezer. Concentrations of the DNA components and
enzymes used are tabulated in the experimental methods sections for each network
in the Supplementary Information. All kinetic data was obtained in a quantitative
polymerase chain reaction machine (Agilent Mx3005P) equipped with the standard
filters: FAM/SYBR Green I (492-516 nm), HEX/JOE/VIC (535-555nm), Cy3 (545-
568 nm), ROX/Texas Red (585-610nm), Cy5 (635-665nm). TYE665 and Cy5 were
measured with the Cy?5 filter, HEX with the HEX filter, TEX615 with the ROX filter,
and FAM with the FAM filter. Fluorescence measurements were taken every minute
during the reactions. See Supplementary Information, section 16 for details on
fluorescence data normalization procedures for all the different network experiments.

Data availability

The data associated with this manuscript are available at: https://doi.org/10.7281/
T1/UBSZF1.
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Code availability
The general genelet model code, including scripts for the main text simulations, is
available at: https://github.com/sschaff6/general-genelet-model.git.
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