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!e introduction of transient degrees of freedom into a system can lead to novel material
design and training protocols that guide a system into a desired metastable state. In
this approach, some degrees of freedom, which were not initially included in the system
dynamics, are "rst introduced and subsequently removed from the energy minimization
process once the desired state is reached. Using this conceptual framework, we create
stable jammed packings that exist in exceptionally deep energy minima marked by
the absence of low-frequency quasilocalized modes; this added stability persists in the
thermodynamic limit. !e inclusion of particle radii as transient degrees of freedom
leads to deeper and much more stable minima than does the inclusion of particle
sti#nesses. !is is because particle radii couple to the jamming transition, whereas
sti#nesses do not. !us, di#erent choices for the added degrees of freedom can lead
to very di#erent training outcomes.

metamaterials | material training | jamming | degrees of freedom | mechanical stability

Systems with disorder often have a complex and rugged energy landscape whose minima
are determined by the system’s degrees of freedom and constraints. Finding low-lying
states in such a system is a daunting challenge that lies at the heart of many constraint
satisfaction statistical physics problems, ranging from machine learning to population
ecology (1–4). More di!cult is "nding rare minima in such systems that have speci"c
desired properties or functions such as enhanced stability against external perturbations.
Finding a framework for designing a desired function into a complex system in a #exible
and reliable manner is an important goal that could lead to a paradigm shift in material
processing.

$ere is an unappreciated but common feature of many of the protocols that have
recently been proposed to create ground states with special properties. In each case, new
“learning” degrees of freedom, not contained in the original description, are added to the
system. $at is, some constraints are relaxed and allowed to vary according to a set of
dynamical rules. $ese degrees of freedom are then manipulated to produce the desired
behavior before being removed. We term these “free-then-freeze” optimization protocols.

To make this explicit, we give a few examples. For the tuning-by-pruning protocol for
dilution of bonds in an elastic network (5–9), the new degree of freedom is the possibility
of removing a bond. For the directed-aging protocol for evolving function by aging a
material under imposed strains (10–12), the new degree of freedom in this case is the
evolution of the sti%ness or length of each bond. For the swap Monte Carlo protocol for
allowing long-ranged exchange of particles with di%erent sizes (13–17), the new degrees
of freedom are the particle swaps. More generally, neural networks are tuned by varying
node or edge properties to learn tasks.

Introducing new learning degrees of freedom alters the energy landscape and, as some
of these protocols have demonstrated, allows states with rare and desired properties to
be accessed. Moreover, these degrees of freedom are transient: they are accessible during
the system evolution but are subsequently frozen. $ey can be removed either explicitly
(by freezing them after the training has been completed) or implicitly (by noting that a
separation of time scales can appear naturally during evolution so that some relaxations are
no longer possible). We note that this process is akin to learning in the context of machine
learning. $ereby, we can pro"tably think of these newly introduced variables as learning
degrees of freedom.

While similar protocols have been studied in a wide range of networks or thermal
systems, here we focus on athermal particulate materials, which have historically proven
more di!cult to program with speci"c macroscopic properties and functions. $is is
because in such systems, states with desired properties must correspond to local minima.
Such minima are typically separated by rather low barriers that are surmounted via
localized rearrangements that change particle neighbors. $is can lead to long-range elastic
stresses and reorganization within the material via avalanches, making it di!cult to control
"nal properties.

Significance

Many protocols used in material
design and training have a
common theme: they introduce
new degrees of freedom, often by
relaxing away existing constraints,
and then evolve these degrees of
freedom based on a rule that
leads the material to a desired
state at which point these new
degrees of freedom are frozen
out. By creating a unifying
framework for these protocols,
we can now understand that
some protocols work better than
others because the choice of new
degrees of freedom matters. For
instance, introducing particle
sizes as degrees of freedom to the
minimization of a jammed particle
packing can lead to a highly stable
state, whereas particle stiffnesses
do not have nearly the same
impact.
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Jammed particle packings are a paradigmatic category of ather-
mal particulate systems. Jamming here refers to a rigidity tran-
sition in which the system becomes rigid due to compression.
$is occurs at a critical density or packing fraction, φJ . $e
complex landscape of an N -particle packing in d dimensions is
the Nd − 1 dimensional potential energy surface in the Nd space
of translational degrees of freedom associated with the positions
of the particles. Typically, in the thermodynamic limit a jammed
system is only marginally stable to perturbations (18–25); that
is, an in"nitesimal perturbation su!ces to rearrange the packing,
pushing the system into a new local energy minimum. Because
material stability is a key property governing the response of
a material under shear and deformation, such as the transition
from ductile to brittle behavior (26), producing jammed packings
with high mechanical stability has been an active area of interest
(13–17, 27–31).

Some of these works (15, 27) have started to develop organizing
principles to explain how free-then-freeze optimization, speci"-
cally focused on changing particle radii, can drive high stability in
jammed packings. In particular, the swap Monte Carlo protocol
allows changes in the radii of the particles but only to values that
are drawn from a "xed set. $e algorithm that we introduce here
can be generalized to any set of degrees of freedom in a variety
of optimization and annealing processes. It therefore should be a
powerful tool in computational studies of soft materials. In ad-
dition, a broader understanding of which variables are important
to constrain, and why, has remained elusive. Here we introduce a
set of global free-then-freeze protocols and apply them to jammed
packings. We contrast how involving two di%erent sets of learning
degrees of freedom a%ects material stability. We "nd that not
all degrees of freedom are equally useful for evolving a desired
function and show that this can be explained by an analysis of
how the constraints enter into the dynamical equations.

Manipulating learning degrees of freedom in this transient way
accesses local minima that not only have low energy but also
have high-energy barriers preventing escape. By understanding
which variables alter stability the most, we can better understand
the factors that control the e%ectiveness of speci"c preparation
protocols, potentially opening up new avenues for the rational
design and manipulation of materials.

Protocol Details. We study packings of spheres in three dimen-
sions (3D). Particles, labeled by i and j, interact via "nite-range,
repulsive harmonic potentials:

U =
1

2

∑

i,j

εij

(
1 − |Xi − Xj |

Ri + Rj

)2

Θ

(
1 − |Xi − Xj |

Ri + Rj

)
,

[1]
where Xi and Ri are the position and radius of particle i, and
εij = KiKj

Ki+Kj
is the interaction sti%ness between particles i and j.

As is standard, the individual sti%nesses of particles Ki and Kj

are added like springs in series to produce the e%ective interaction
between them. $e Heaviside step function allows only positive
overlaps between particles to contribute.

We generate jammed packings by randomly and uniformly
distributing N soft particles at a given packing fraction, φ (which
is the sum of all particle volumes divided by the volume of the
box), in a cubic box with periodic boundary conditions. $e
initial state will in general not be at a local energy minimum
due to the overlap of particles subject to the energy function
given by Eq. 1. We minimize the energy with respect to the
degrees of freedom to bring the system to a jammed state at
mechanical equilibrium (32, 33). In a conventional packing at

"xed volume, the physical degrees of freedom–particle positions–
are the only degrees of freedom with respect to which the energy
is minimized. Here we consider two additional sets of learning de-
grees of freedom, namely, the particle radii, {Ri}, and sti%nesses,
{Ki}. We minimize the energy with respect to the degrees of
freedom using pyCUDAPacking (19, 34), incorporating a quad-
precision graphics processing unit implementation of the Fast
Inertial Relaxation Engine (FIRE). FIRE is a molecular dynamics–
based minimization algorithm that relies on inertia and uses the
gradient of the energy to bring a system of particles to a local
energy minimum (35).

With either Ri or Ki as learning degrees of freedom, there
are trivial zero-energy minima to which the system can escape.
For example, a su!cient number of the radii can shrink in
order to remove all overlaps, or the sti%ness cost of overlaps can
adjust to zero. To avoid such trivial states, we constrain some of
the moments, m, of the distributions of the newly introduced
variables so that Φχ,m ≡

∑
i χ

m
i are "xed, where χi can be either

Ri or Ki . For χi = Ri , "xing the packing fraction φ∝ ΦR,3

=
∑

i R3
i is not su!cient to prevent some radii from shrinking

to zero. By choosing constraints with both negative and positive
powers of χi , namely, m = {−3,−2,−1, 1, 2, 3, 6}, we are able
to minimize all of the systems presented in this paper without
appreciably altering the radius or sti%ness distributions (Fig. 1).
Note that the packing fraction is "xed since we keep the third
moment of the radii "xed. $e set of constraints used here is
not special, and one can produce similar results with other {m}
similarly including both positive and negative powers of χi . One
can also introduce a larger number of constraints to keep the
initial distributions "xed. In the case of radii, this would lead
to results that are similar to the outcome of the swap Monte
Carlo algorithm, but the minimization becomes subsequently
slower without producing appreciably di%erent results. Here we
report data for 3D packings with log-normal distributions of
initial and "nal polydispersity of 20% in {Ri} or {Ki} (except
in Fig. 1 where multiple polydispersities are reported). Note that
this protocol is not applicable to monodisperse packings since it
is not possible to start with a monodisperse packing, update the
radii, and still retain a monodisperse packing.

To impose the constraints during minimization, we restrict
changes in the newly introduced variables to subspaces in which all
constraints are satis"ed. $e subspace of allowed values is the space
spanned by vectors ∇χ(

∑
i χ

m
i ). We identify the unit vectors,

n̂χ,m that form a complete orthonormal basis for this subspace
and project out force components perpendicular to the subspace:

fχ,{m} = fχ −
∑

m

(fχ · n̂χ,m) n̂χ,m. [2]

$ese forces are used in the FIRE minimizer to update radii and
sti%nesses; particle positions are updated without any constraints.

Measuring Stability. We measure stability in three ways (Fig. 2).
Fig. 2 A and B present the increase in pressure, δP , needed
to destabilize the system (see SI Appendix for details). Fig. 2A
shows that radius-minimized packings (red) require a much larger
change in pressure to become unstable compared to ordinary
packings with the same radius distribution. Note that δP →
constant at low pressure for the radius-minimized packings. $is is
in contrast to δP → 0 as P → 0 for ordinary packings, re#ecting
marginal stability at the jamming transition. Fig. 2B shows that
the pressure change required to destabilize a sti%ness-minimized
packing (blue) is also larger than that of a conventionally prepared
packing with the same distribution of particle sti%nesses (black)
but vanishes as P → 0. $is result shows that the sti%ness degrees
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Fig. 1. Distributions of (Top) radii and (Bottom) stiffnesses before (solid) and
after (dashed) minimization in 3D packings. The different distributions have
different fractional widths about their average value: 1% (blue), 10% (red),
and 20% (black). Each packing has N = 4096 particles and is prepared at a
pressure of p = 10−2.

of freedom become less e%ective in increasing stability as the
pressure decreases. Fig. 2 A and B, Insets, show that for radius- and
sti%ness-minimized packings, δP is independent of system size for
large N at P = 10−4. $is suggests that in the thermodynamic
limit, one can use this protocol to create jammed packings that are
fully stable and therefore energetically rigid (36), not marginally
stable like ordinary jammed packings.

Fig. 2 C and D show the density of vibrational modes D(ω).
Prior work has shown that for jammed packings, the average
energy barriers associated with vibrational modes increase mono-
tonically with mode frequency, ω (37). $is suggests that when
the low-frequency tail of D(ω) shifts to higher values, the system
becomes more stable because the energy barrier heights increase,
preventing the system from easily moving from one local mini-
mum to another.

Fig. 2C shows that when radius degrees of freedom are allowed
to vary, the low-ω modes (magenta data) extend to much lower
frequencies than conventionally prepared packings (black data).
$ese low-frequency modes are coupled to positional degrees of
freedom and create a plateau in the density of states. Once the
radius degrees of freedom are frozen at their equilibrium values

(after the minimization has taken place), the shape of D(ω)
changes dramatically (red data), shifting the low end of the plateau
to much higher frequency.

In contrast, when sti%ness degrees of freedom are allowed, as
shown in Fig. 2D (cyan data), a band of very low-frequency modes
appears. $ese modes are uncoupled to the position variables,
which are responsible for the band of modes at higher frequencies
that is essentially the same as for ordinary jammed packings
(black). Between these two sets of modes there is a pronounced
band gap. When the sti%ness degrees of freedom are frozen after
minimization (blue), however, the low-frequency band disappears,
leaving only a density of states that is very similar to that of a
conventionally prepared packing (black) with the same sti%ness
distribution.

Finally, Fig. 2 E and F show measurements of the crossover
frequency ω∗, marking the low-frequency end of the plateau in
the density of vibrational states, for the radius (red) and sti%ness-
minimized packings (blue), respectively. In the conventionally
prepared jammed packings (black), ω∗ ∝ P1/2 (38). As shown
by the red data in Fig. 2E, ω∗ approaches a constant as pressure
P is lowered for the radius-minimized packings. By contrast,
for the sti%ness-minimized packings (blue), ω∗ ∝ P1/2 as in
conventional packings, albeit with a slightly higher prefactor.
$is behavior again points to a clear distinction between the
radius and sti%ness degrees of freedom. $e radius-minimized
packings behave like conventional packings far above the jamming
threshold (at much higher pressure), while sti%ness-minimized
packings are similar to conventional packings at the same pressure.
Fig. 2 E and F, Insets, show that ω∗ → constant at large N at
P = 10−4, suggesting it is nonzero as N →∞.

Different Types of Learning Degrees of Freedom. Fig. 2 shows
that adding and then freezing either the radius or sti%ness degrees
of freedom leads to enhanced stability in jammed packings. How-
ever, the stability gained from the radii is qualitatively di%erent
from that gained from sti%nesses. $is distinction stems from
a fundamental di%erence in how radius and sti%ness degrees of
freedom a%ect the onset of rigidity in jammed systems.

$is di%erence is shown in Fig. 3, where we plot pressure, P,
vs. the number of contacts per particle, Z, in radius- and sti%ness-
minimized packings as well as conventional ones. Introducing
radii as learning degrees of freedom shifts the critical point from
Zc = 2d to a much higher value Zc = 2(d + 1) (ignoring terms
of order 1/N ), which lies deep within the stable regime (22). By
contrast, sti%ness degrees of freedom do not alter the onset of
rigidity. Particle sti%nesses become irrelevant to the mechanics of
the system as P → 0 when the particles are just in contact and do
not overlap. Fig. 3, Inset, which shows the scaling of pressure with
respect to the number of excess contacts per particle, (Z − Zc),
indicates that the scaling behaviors of the jamming transition do
not change under the free-then-freeze protocol.

$is can be understood from the role that radius and sti%-
ness variables play in the rigidity (compatibility) matrix, C.
$is is the matrix of coe!cients in the linear equations relating
changes in the degrees of freedom to changes in the constraints.
Here most of the constraints punish overlaps between particles
hij = 1 − |Xi−Xj |

Ri+Rj
, meaning that Cij = ∂hij /∂χi , where χi can

be Xi , Ri , or Ki . Maxwell’s constraint count (39) is then derived
using the rank-nullity theorem [for a linear transformation, T, in
an n dimensional space, rank(T ) + nullity (T ) = n] on the rigidity
matrix C and its transpose CT . Since the sti%nesses do not
a%ect which particles overlap, they do not appear as independent
columns in the rigidity matrix. $is means that sti%nesses do
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Fig. 2. The increase in pressure, δP, required to make a packing unstable for (A) radius- (red) and (B) stiffness-minimized (blue) packings as well as conventional
packings (black) with the same distributions of radii and stiffness. Black dashed lines show a power law δP ∝ P2/3, the red dashed line in A is constant (zero
slope), and the blue dashed line in B shows δP ∝ P5/6. (Insets) δP versus system size N at P = 10−4. Black dashed lines indicate δP ∝ P−1/3. Density of states,
D(ω) versus ω, for (C) radius and (D) stiffness-minimized packings near jamming transition at φ $ 0.70 and φ $ 0.64, respectively. The magenta (C) and cyan
(D) curves show D(ω) when radii and stiffnesses are considered as degrees of freedom, while the red (C) and blue (D) curves show D(ω) once radii/stiffnesses
are frozen at their equilibrium values after minimization. The black curves in both plots show the density of states for conventional packings with the same
radii and stiffness distributions. ω∗ versus pressure P for (E) radius (red) and (F) stiffness-minimized (blue) packings. The black data in both panels represent
conventional packings. Black dashed lines in both plots are a power law of ω∗ ∝ P1/2. (Insets) Ensemble averaged ω∗ versus system size, N, for packings at
pressure P = 10−4. The lines have zero slope. Data points in the main plots are averaged over 20 samples each with N = 1024 particles.

not change the rank of the rigidity matrix and therefore cannot
change the number of contacts at the transition point, given by
the Maxwell’s count (see SI Appendix for further details).

Discussion

In this paper, we have shown that introducing particle sizes
and sti%nesses as transient learning degrees of freedom into the
quenching process of jammed packings allows the creation of
particularly stable packings with deep minima and high-energy
barriers against rearrangements. However, not every degree of
freedom is equally e%ective in this process; because they do not
couple to the jamming transition, the sti%nesses do not a%ect
the stability as profoundly as the particle radii do. We also note
that while introducing N extra degrees of freedom (one per
particle), we needed to impose only a few global constraints on
the moments of the radius (or sti%ness) distributions to ensure
that the minimization did not #ow to a di%erent "xed point
where one particle grew (or became sti%er) at the expense of
all the others. For the system sizes considered, N ≤ 4096, we
imposed seven constraints. For smaller systems, we needed to
impose fewer constraints to obtain similar quantitative results. It
is likely that as N increases, more constraints are needed. It would
be interesting to study the importance and number of constraints
on the distributions that are needed in the asymptotically large-N
limit.

We note that our work builds on a previously introduced free-
then-freeze protocol involving “breathing” particles for jammed
packings (15, 27). As in our work, the learning degrees of freedom
are the particle radii. However, in the case of breathing particles,
each of the N radii, or learning degrees of freedom, is subject to

a constraint. In our case, we place the minimal number of con-
straints, far fewer than N, on moments of the learning degrees of
freedom distributions. $is allows us to reach far more stable local
minima, making our free-then-freeze protocol more e%ective.

Fig. 3. Pressure, P, versus coordination, Z, for radius- (red) and stiffness-
(blue) minimized packings in comparison to conventional (black) packings.
The dashed yellow line shows the change in P and Z when a radius-minimized
packing is pushed to higher or lower pressures using positions as the only
allowed degrees of freedom. (Inset) The pressure against distance from critical
point in logarithmic scale. For the red curve, the critical point occurs at
Zc = 2(d + 1), while for the blue and black curves, the critical point occurs
at Zc = 2d.
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$e introduction of transient learning degrees of freedom
provides a unifying conceptual framework for the evolution of
a variety of systems in complex energy or "tness landscapes.
Appropriate training protocols can lead the disordered materials
to occupy desired metastable states with useful properties (5, 8,
10, 12, 40–42). $ese ideas can be generalized to processing
in experimental systems where the learning degrees of freedom
can be ordinary translational ones. For example, with the right
deposition protocol, vapor-deposited glasses have been created
that are exceedingly stable (43–45). In the context of transient
learning degrees of freedom, the particles at a free surface have
more degrees of freedom than those within the bulk. $ese
variables can be considered learning degrees of freedom that freeze
as more particles are deposited and the particles become buried in
the bulk.

As another example, one can interpret aging in supercooled
liquids and glasses in terms of transient learning degrees of free-
dom. Upon aging, the relaxation times increase dramatically so
that these pathways are inaccessible at short times. $e relaxation
itself produces a separation of time scales (46, 47). $e system, as
it ages, limits the possibility of using the degrees of freedom (i.e.,
the relaxation pathways) so that they can also be considered to be
transient learning degrees of freedom. $is raises the possibility
of using them as learning degrees of freedom to introduce desired
properties.

$e concept of additional transient learning degrees of freedom
is useful for thinking about many di%erent protocols that have
been used to create novel function in systems that exist in rugged
landscapes. While in some cases this leads only to a reinterpreta-
tion of what was already known, it serves the important purpose
of allowing one to think about what kinds of new and di%erent
variables would be useful as a means to manipulate matter in new

ways. A particularly interesting possibility to explore would be to
introduce particle shapes as learning degrees of freedom. Because
shape couples strongly to the Maxwell’s count at the jamming
transition, it could therefore lead to a large increase in stability.
$e degrees of freedom studied in this paper can also be used
to train for other functions as distinct from increased stability.
For example, one could consider training for a particular force
network or for creating an allosteric interaction between distant
particles. In this case, it is not clear which newly introduced set of
variables, radii or sti%nesses, would be better at training for this
function. $is question can be generalized to any desired function
and any set of transient learning degrees of freedom. We envision
mapping the free-then-freeze protocol onto a supervised learning
framework that uses explainability tools to identify the best set of
degrees of freedom for any function. Similarly, in materials like
origami (48), "ber networks, or biological tissues (36, 49) that
rigidify by higher-order terms beyond constraint counting, we
speculate that it may be fruitful to examine how di%erent degrees
of freedom a%ect those higher-order constraints.

Data Availability. All study data are included in the article and/or SI Appendix.
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