
NUMAlloc: A Faster NUMA Memory Allocator
Hanmei Yang

University of Massachusetts Amherst
USA

hanmeiyang@umass.edu

Xin Zhao
University of Massachusetts Amherst

USA
zhao@umass.edu

Jin Zhou
University of Massachusetts Amherst

USA
jinzhou@umass.edu

Wei Wang
University of Texas at San Antonio

USA
wei.wang@utsa.edu

Sandip Kundu
University of Massachusetts Amherst

USA
kundu@umass.edu

Bo Wu
Colorado School of Mines

USA
bwu@mines.edu

Hui Guan
University of Massachusetts Amherst

USA
huiguan@umass.edu

Tongping Liu
University of Massachusetts Amherst

USA
tongping@umass.edu

Abstract
The NUMA architecture accommodates the hardware trend
of an increasing number of CPU cores. It requires the coop-
eration of memory allocators to achieve good performance
for multithreaded applications. Unfortunately, existing allo-
cators do not support NUMA architecture well. This paper
presents a novel memory allocator – NUMAlloc, that is de-
signed for the NUMA architecture. NUMAlloc is centered on
a binding-based memory management. On top of it, NUMAl-
loc proposes an “origin-aware memory management” to
ensure the locality of memory allocations and deallocations,
as well as a method called “incremental sharing” to balance
the performance benefits and memory overhead of using
transparent huge pages. According to our extensive evalua-
tion, NUMAlloc has the best performance among all evaluated
allocators, running 15.7% faster than the second-best allo-
cator (mimalloc), and 20.9% faster than the default Linux
allocator with reasonable memory overhead. NUMAlloc is
also scalable to 128 threads and is ready for deployment.

CCS Concepts: • Software and its engineering→ Mem-
ory management.

Keywords: Memory Allocation, NUMA Architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ISMM ’23, June 18, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0179-5/23/06. . . $15.00
https://doi.org/10.1145/3591195.3595276

ACM Reference Format:
Hanmei Yang, Xin Zhao, Jin Zhou, Wei Wang, Sandip Kundu, Bo
Wu, Hui Guan, and Tongping Liu. 2023. NUMAlloc: A Faster NUMA
Memory Allocator. In Proceedings of the 2023 ACM SIGPLAN In-
ternational Symposium on Memory Management (ISMM ’23), June
18, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3591195.3595276

1 Introduction
Non-UniformMemory Access (NUMA) is the de-facto design
for modern many-core machines to address the scalability
issues of increasing hardware cores. In NUMA architecture,
each processor (or called node/socket interchangeably) has
its ownmemory, allowing threads running on different nodes
to access their own memory concurrently. Unfortunately, it
is challenging to achieve the expected scalability. One noto-
rious performance issue is caused by remote accesses that a
task accesses the memory of a remote node (called remote
memory), since a remote access has much higher latency
than accessing the memory from the local node (or a local
access) [10]. Although many profiling tools are proposed to
identify NUMA issues of applications [29, 37, 43, 49, 58, 63,
64], they typically focus on issues inside a memory object,
while still requiring memory allocators to ensure the locality
of memory allocations/deallocations.
In order to reduce remote accesses, some NUMA-aware

allocators [31, 35, 62] have been proposed in the past. Kamin-
ski built the first NUMA-aware memory allocator on top of
TCMalloc in 2008 [31], called TCMalloc-NUMA in the re-
mainder of this paper, which has been integrated into the
modern TCMalloc [34]. TCMalloc-NUMA adds a freelist and
page-span for each NUMAnode, and binds the physical mem-
ory to a physical node explicitly. TCMalloc-NUMA improves
the locality by allocating objects from the per-node list/page-
span that a thread is running on. mimalloc [41] proposes
per-page (e.g., 64K) freelists that are typically allocated/used
by a single thread, which increases the locality.

https://doi.org/10.1145/3591195.3595276
https://doi.org/10.1145/3591195.3595276

ISMM ’23, June 18, 2023, Orlando, FL, USA Hanmei Yang, Xin Zhao, Jin Zhou, Wei Wang, Sandip Kundu, Bo Wu, Hui Guan, and Tongping Liu

However, existing designs are not sufficient to eliminate
remote accesses: (1) although in theory an allocator can al-
ways check a thread’s physical node (e.g., via the system
call) so that a thread only allocates the memory from its
local node, that is unfortunately too expensive due to the
high overhead of the system call (around 10, 000 cycles for
getting the node of the memory); (2) Some common practice
of existing allocators also weakens the locality guarantee:
each thread typically tracks objects deallocated by itself, and
prefers the available memory in its local cache upon memory
allocations. However, there is no guarantee that an object
deallocated by a thread is originally from the thread’s local
physical node; (3) Threads can be migrated by the underlying
operating system from one node to another, where the migra-
tion will turn all of a thread’s local accesses to remote ones.
(4) Existing allocators do not take advantage of the location
relationship between threads and memory when handling
memory allocations/deallocations, initializing metadata, and
sharing huge pages.
To address these issues, we propose a novel binding-

based allocator, called NUMAlloc. NUMAlloc performs thread-
binding and memory-binding inside the allocator at the same
time. The thread-binding provides the following benefits: (1)
it enables NUMAlloc to obtain the origin (or the physical
node) of threads with few instructions without using expen-
sive system calls, as threads are always staying at the same
node; (2) Thread binding eliminates remote accesses caused
by the above-mentioned thread migrations. Note that NUMAl-
loc’s thread-binding binds a thread to a specific node, instead
of a particular core. It does not exclude OS-based schedul-
ing, where the OS could still schedule based on the changed
resource. By default, NUMAlloc takes the node-interleaved
binding that binds continuous threads to different nodes in
an interleaved way so that every node will have a similar
number of threads. Given such a node balanced binding, we
argue that NUMAlloc can be also employed in the server en-
vironment with thread-pool design. Further, NUMAlloc could
also support node-saturate binding or any explicit binding
provided by users, allowing users to provide more control.
The combination of thread-binding and memory-binding
inside the allocator provides a clear relationship between
threads and memory. Therefore, it enables more advanced
memory management discussed as follows, addressing the
other two above-mentioned issues.

Based on memory and thread binding, NUMAlloc ensures
the full locality of memory allocations with its origin-aware
memory management. NUMAlloc guarantees that each
thread will always allocate the memory from the same physi-
cal node that the thread is running on. Since NUMAlloc binds
the virtual memory to physical nodes explicitly and main-
tains the mapping relationship internally, it could always
infer the origin of each object. During deallocations, NUMAl-
loc guarantees that a freed object will be always placed into
a freelist with the same origin as the allocating thread. In

particular, an object is returned to the deallocating thread
only if the object is originated from the same node as the
current thread; otherwise, it will be returned to its original
node (e.g., per-node freelist). In addition, NUMAlloc ensures
that all heap metadata exists on the same local node, such as
the metadata of tracking the size of objects.
Based on thread-binding, NUMAlloc proposes a new in-

cremental sharing mechanism to take advantage of the
Transparent Huge Pages (THP) of modern hardware [13].
Huge pages are expected to significantly reduce Translation
Lookaside Buffer (TLB) misses, as each page table entry cov-
ers a larger range of virtual addresses (e.g., 2MB instead of
4KB). However, most existing allocators [3, 8, 40] do not sup-
port huge pages, or even require to disable huge pages [4].
Allocators supporting huge pages have their own shortcom-
ings: LLAMA [45] allocates objects from huge pages based
on the liveness of objects, but requires expensive analysis
and profiling; TEMERAIRE [28] does not share huge pages
between different threads, since mistakenly letting two re-
mote threads share the same huge page may impose some
performance degradation. In contrast, NUMAlloc’s thread
binding makes it possible to share the huge pages between
threads running on the same node. We call it “incremental
sharing” as each thread only fetches the amount of memory
it needs from the current page at a time, instead of the entire
page. Therefore, NUMAlloc combines the best of both worlds
that it takes the performance advantage of huge pages but
does not deteriorate the memory consumption.

We have performed an extensive evaluation on synthetic
and real applications, with 25 applications in total. We com-
pared NUMAlloc with popular allocators, such as the default
Linux allocator, TCMalloc [24], jemalloc [20], Intel TBB [53],
Scalloc [3], and mimalloc [41]. NUMAlloc is running around
16% faster than the second-best allocator (mimalloc), achiev-
ing around 21% speedup comparing to the default Linux
allocator. For the best case, NUMAlloc runs up to 5.3× and
4.6× faster than the default allocator and mimalloc. At the
same time, NUMAlloc’s memory consumption is compara-
ble to industrial-level allocators, such as TCMalloc, jemalloc,
and mimalloc. NUMAlloc is muchmore scalable than all other
allocators based on our evaluation. NUMAlloc shows promis-
ing potential for production deployment, due to its high
performance and good scalability. Overall, this paper makes
the following contributions:

• It proposes the first binding-based memory man-
agement to support the NUMA architecture.

• It proposes an origin-aware memory management
to ensure the full locality of memory allocations.

• It proposes an incremental sharing to achieve a bet-
ter balance between the performance and memory
consumption for huge pages.

• Experimental results show that applications with NU-
MAlloc achieves better performance and scalability
than all widely-used commercial allocators.

NUMAlloc: A Faster NUMA Memory Allocator ISMM ’23, June 18, 2023, Orlando, FL, USA

2 Background
This section discusses the NUMA architecture, existing OS
support and common design of memory allocators.

2.1 NUMA Architecture and OS Support
The Non-Uniform Memory Access (NUMA) architecture is
designed to solve the scalability issue, due to its decentral-
ized nature. Instead of making all cores wait for the same
memory controller, the NUMA architecture typically is in-
stalled with multiple memory controllers, where a group of
CPU cores has its memory controller (called a node). Due to
multiple memory controllers, the contention for the memory
controller is largely reduced and therefore the scalability
can be improved correspondingly. However, applications
running on the NUMA architecture may suffer from remote
accesses [10], where a thread accesses the memory in a re-
mote node. Further, when multiple threads are accessing
the memory in the same node, it may cause interconnect
congestion and node imbalance [10].
Operating Systems already support the NUMA architec-

ture, especially on task scheduling and physical memory
allocation. For task scheduling support, the OS provides
some system calls that allow users to bind a task to a spe-
cific node. For memory allocation, the OS provides system
calls (e.g., mbind) to change memory allocation policy for
a range of memory or for the whole process [18, 38]. How-
ever, those system calls still require programmers to specify
the policy explicitly, which cannot, therefore, automatically
provide the performance improvements. NUMAlloc relies on
these existing system calls to manage memory allocations,
as further described in Section 3, but without the need of
changing user programs explicitly. Similar to NUMAlloc, the
NUMA programming library libnuma [6] also utilizes these
system calls to offer a user-friendly interface for data place-
ment and thread binding policies. NUMAlloc differs from it
in pioneering adoption of these ideas inside the allocator
and we will see the benefits of it in Section 4. Linux also
supports Automatic NUMA balancing (AutoNUMA) [26],
which characterizes the memory accesses of each thread and
migrates the threads or memory pages to improve the mem-
ory access locality. However, AutoNUMA may degrade the
performance due to its unmap of the memory frequently [7],
which cannot replace the NUMA-aware memory allocator.

2.2 Common Designs of Memory Allocators
Memory allocators share some common designs. First, most
allocators manage objects differently based on the size of ob-
jects. For big objects, allocators may request objects from the
OS directly and return them to the OS directly upon deallo-
cation [8]. On the other hand, small objects will be tracked in
freelists based on size classes. Managing small objects can be
further classified into multiple categories, such as sequential,
BiBOP and region-based, where region-based allocators do

not belong to general-purpose allocators [23, 50]. For sequen-
tial allocators, subsequent memory allocations are satisfied
in a continuous memory block [5]. BiBOP-style allocators,
which stands for “Big-Bag-of-Pages” [27], utilize one or mul-
tiple continuous pages as a “bag” that holds objects of the
same size class. Currently many performance-oriented allo-
cators [3, 20, 24], and most secure allocators [21, 50, 55, 56],
belong to this category. Second, to support multithreaded
applications, modern allocators (e.g., TCMalloc) often imple-
ment the “per-thread heap” that tracks deallocated objects
from the current thread [31], where allocating objects from
per-thread heaps do not need to acquire locks. Therefore,
the per-thread heap is expected to reduce the contention
between threads. When the number of objects or the size of
freed objects of a per-thread heap is larger than a threshold,
it will return objects to a common heap shared by multi-
ple threads. NUMAlloc borrows these common designs in its
implementation.

3 Design and Implementation
NUMAlloc is designed as a replacement memory allocator. It
intercepts all memory allocation/deallocation invocations
via the preloading mechanism, and redirects them to NUMAl-
loc’s implementation. Therefore, there is no need to change
the source code of applications, and there is no need to use
a custom OS or hardware. In the following, we first discuss
NUMAlloc’s basic heap layout, and then discuss multiple com-
ponents that separate it from existing allocators.

3.1 Basic Heap Layout

Figure 1. Overview of NUMAlloc’s heap layout.

NUMAlloc’s heap layout is designed as Figure 1. Initially,
NUMAlloc requests a large and continuous block of mem-
ory from the underlying OS, and then divides it evenly into
multiple regions based on the number of hardware nodes.
Each region is bound to a different physical node via mbind
system call. In particular, the first region is bound to the
first node, the second one is bound to the second node, and

ISMM ’23, June 18, 2023, Orlando, FL, USA Hanmei Yang, Xin Zhao, Jin Zhou, Wei Wang, Sandip Kundu, Bo Wu, Hui Guan, and Tongping Liu

so on. This design enables us to compute the physical node
quickly from a memory address: we could compute the in-
dex of the physical node by dividing the heap offset by the
region size. Each node’s memory region will be further di-
vided into two sub-regions, one for small objects, and the
other one for big objects. The bpSmall pointer is utilized
to track never-allocated memory for small objects, and the
bpBig pointer tracks the position of big objects. Similar to
existing allocators, NUMAlloc manages small and big objects
differently. For small objects (< 512KB), each request will be
satisfied from a particular size class and NUMAlloc utilizes
the well-known BiBOP style that all objects in the same bag
(32KB by default) will have the same size class. Big object
allocation will be satisfied in a sequential manner and their
sizes are aligned to the size of one bag.

To support the NUMAarchitecture, a per-node heap (PerN-
odeHeap in Figure 1) is proposed that has one freelist for
each size class and one common freelist for all big objects
from the current node. To reduce the contention, NUMAlloc
adopts a per-thread heap (PerThreadHeap in Figure 1) that
maintains a freelist for each size class, which requires no lock
protection since each thread has its own per-thread heap.
However, this may introduce memory blowup [8] that freed
objects of a per-thread heap cannot be utilized for future
allocations from other threads, which will be addressed in
Section 3.5. NUMAlloc tracks the small objects’ size infor-
mation in a separate area called PerBagSizeInfo, while the
big objects utilize a linked list called PerBigObjectSizeInfo
to store the size and availability information, which allows
coalescing multiple continuous big objects into a bigger one
upon deallocations.

Overall, NUMAlloc includes a novel layout that can quickly
compute the physical node (with the memory binding) and
a per-node heap to support node-aware allocations. This
design allows it to perform origin-aware memory manage-
ment and incremental sharing efficiently, as discussed in the
following sections.

3.2 Binding-Based Memory Management
As described in Section 1, thread migration will cause multi-
ple performance issues for the NUMA architecture. There-
fore, NUMAlloc binds each thread to a node specifically to
avoid thread migration across different nodes. NUMAlloc cur-
rently supports two types of binding, node-interleaved bind-
ing and node-saturate binding. Node-interleaved binding
binds continuous threads to different nodes in an interleaved
way so that every node will have a similar number of threads.
That is, the first thread will be bound to the node that it is
scheduled to run by the OS, and the second thread will be
bound to its next node, and so on. Instead, the node-saturate
binding will bind sufficient threads to a node first before
binding to a different node. For node-saturate binding, the
threads to be assigned will be the same as the number of
hardware cores. NUMAlloc uses node-interleaved binding by

default but users can switch to the node-saturate binding
by controlling the environment variable. As evaluated in
Section 4, even a simple binding policy like node-interleaved
binding can provide significant performance improvement
for most applications. Further, users can provide their cus-
tomized binding via a configuration file to fit the workload.

Note that NUMAlloc only binds a thread to a node, instead
of a core, which still allows the scheduling initiated by the
OS. To perform the binding correctly, NUMAlloc obtains the
hardware topology in the initialization phase via the numa_-
node_to_cpus API, which tells the relationship between
each CPU core and each node. Then it intercepts all thread
creations in order to bind a newly-created thread to a specific
node.
In addition to thread binding, NUMAlloc also includes

memory binding, which bindsmemory regions to eachNUMA
node, as discussed in Section 3.1. With both bindings, NUMAl-
loc can quickly obtain the physical node where a heap object
is located, as well as the node where the thread is running,
without the need for expensive system calls, which makes
more advanced memory management possible. In summary,
NUMAlloc’s memory management is based on bindings and
we are the first to show how much performance improve-
ment can be obtained if bindings are considered within the
allocator.

3.3 Origin-Aware Memory Management
As described in Section 3.1, NUMAlloc includes an origin-
computable design that could quickly determine the origin
of each heap object via the computation. On top of it, NUMAl-
loc proposes an origin-aware deallocation that will always
return a freed object to a freelist with the same origin. In
particular, if a freed object originated from a different node,
it is returned to its original node’s freelist. Otherwise, a small
object is returned to the current thread’s freelist and a big
object is returned to the current node’s freelist. Compared
to node-based freelists, there is no need to acquire a lock
when operating on the per-thread freelist. Different from
all existing work, NUMAlloc may return a freed object into
the per-thread list or its original node’s freelist, instead of
simply putting it into the per-thread list. That is, NUMAlloc
considers the origination of objects for deallocations.

NUMAlloc also ensures node-local memory allocations.
For small objects, the allocation follows this order: (1) The
per-thread’s freelist will be checked first, since there is no
need to acquire any lock and objects may be still hit in the
cache (as they are just accessed by the thread). (2) If the per-
thread freelist does not have available objects, NUMAlloc tries
to allocate from the current node’s freelist. As mentioned
above, a node’s freelist holds objects originating from this
node. (3) If the previous two steps fail, we will allocate the
memory from the current node’s un-allocated region, as
shown by bpSmall in Figure 1. For big objects, allocation will
be satisfied from per-node freelists or un-allocated region

NUMAlloc: A Faster NUMA Memory Allocator ISMM ’23, June 18, 2023, Orlando, FL, USA

(pointed by bpBig pointer in Figure 1) of the current node,
indicating the allocation locality.

3.4 Incremental Sharing
When Transparent Huge Page (THP) is enabled, the OS
prefers to allocate huge pages if a program touches a contin-
uous memory region with a size larger than a huge page (e.g.,
2MB). Since NUMAlloc allocates a large region initially (as
shown in Figure 1), huge pages will be employed by the OS
correspondingly. However, it is important to reduce mem-
ory fragmentation, as one allocation from a memory block
will be assigned to a huge page. NUMAlloc makes multiple
threads (from the same node) share the same huge page,
instead of having a separate superblock for each thread as
Scalloc [3] and TEMERAIRE [28]. That is, when a thread is
running out of memory, it obtains only multiple objects at a
time (currently 32KB for one bag) from the corresponding
memory block, instead of getting few megabytes for each
per-thread heap. For small objects larger than 32KB (but less
than 512KB), each thread will get only one object at a time,
by aligning to 32KB as well. This is why it is called “incre-
mental sharing”. NUMAlloc allows objects with different size
classes to share the same huge page, to further reduce the
memory fragmentation.

In the evaluation, we observe that NUMAlloc actually will
utilize huge pages for metadata, which may introduce un-
necessary memory overhead since it only needs 8 bytes for
“PerBagSizeInfo” used internally by NUMAlloc. To get rid of
this overhead, we leverage the madvise system call to make
the metadata memory allocate from normal pages. These
are the basic reasons that NUMAlloc has much less memory
consumption than Scalloc, as evaluated in Section 4.2.

Figure 2. Per-thread freelist and per-node freelist design to
achieve efficient object movement.

3.5 Efficient Object Movement
NUMAlloc requires moving freed objects between per-thread
and per-node freelists frequently to reduce memory blowup.

On the one hand, when a per-thread freelist has too many
freed objects, some of them should be moved to the per-node
freelist so that other threads could re-utilize these freed ob-
jects. On the other hand, each per-thread freelist needs to
obtain freed objects from its per-node heap, when a thread is
running out of memory. Therefore, an efficient mechanism
is required to support frequent movement. Existing alloca-
tors, such as TCMalloc [24], traverse the freelist to collect
a specified number of objects, and then move all of them
at a time, which unfortunately has the following issues: (1)
traversing a freelist will bring some unnecessary data to the
cache when an allocator is reusing freed objects from the
freelist. This loading wastes the cache resources and evicts
cache lines with useful content in the future. (2) Existing
allocators typically move recently-freed objects (and hot in
cache) to other freelist, which is not good for performance.
(3) The traversal of the shared list (per-node heap) may in-
troduce significant lock contention, if multiple threads are
waiting to fetch objects from the shared list.

NUMAlloc proposes an efficient mechanism with the fol-
lowing data structures to avoid these issues. First, each per-
thread freelist maintains two pointers that point to the least
recently used objects (shown as the Tail pointer) and the𝑛𝑡ℎ
pointer (counted from the tail, shown as the nth pointer) in
the upper part of Figure 2. This structure avoids the traverse
of freelist during the movement, and allows the movement of
the least recently used objects (between (𝑛+1)𝑡ℎ and𝑇𝑎𝑖𝑙) to
the per-node freelist. After the movement, the Tail pointer
will be set to the original 𝑛𝑡ℎ object. Second, NUMAlloc also
proposes a circular array shown in the bottom part of Figure 2
that helps move objects from the shared per-node freelist to
per-thread freelists. Each per-node freelist actually consists
of many sub-lists, where a Head pointer and a Tail pointer
point to the header and the tail of each sub-list. When a
thread is moving multiple objects from the per-node freelist,
it will move all objects in a sub-list (pointed by a pair of
Head and Tail pointers) at a time. Therefore, there is no
need to traverse the whole list to obtain these objects for the
movement, which reduces the contention.

4 Experimental Evaluation
This section aims to answer the following questions:

• Performance: How is NUMAlloc’s performance, com-
paring to existing general allocators and NUMA-aware
allocators? (Section 4.1)

• Memory Consumption: What is the memory con-
sumption of NUMAlloc? (Section 4.2)

• Scalability: How is the scalability of NUMAlloc? (Sec-
tion 4.3)

• Impact of Design Choices: What is the impact of
each design choice on the performance of NUMAlloc?
(Section 4.4)

ISMM ’23, June 18, 2023, Orlando, FL, USA Hanmei Yang, Xin Zhao, Jin Zhou, Wei Wang, Sandip Kundu, Bo Wu, Hui Guan, and Tongping Liu

Experimental Setup: NUMAlloc was evaluated on an Intel
Xeon(R) Platinum 8153 machine with 8 nodes, where each
node has 16 cores. 8 nodes are divided into two groups, where
the four nodes of each group are fully connected, and there
are four links between the two groups. Any two nodes are
less than or equal to 2 hops, where the latency of one hop
and two hops is 2.1× and 3.1× of local accesses, respectively.
The machine is installed with 512GB memory. The under-
lying OS is Linux Debian 10 and the compiler is GCC-8.3.0.
In the evaluation, transparent huge page, AutoNUMA and
hyperthreading are enabled unless otherwise specified.
Compared Allocators: We compare NUMAlloc with the de-
fault Linux allocator (Glibc-2.28) [44], TCMalloc [34], TCMalloc-
NUMA [31], jemalloc-5.2.1 [20], Intel TBB-2021.5 [32], Scalloc-
1.0.0 [3], and mimalloc-1.6.7 [41]. Note that we are compar-
ing against TCMalloc’s and TBB’s NUMA awareness version.
The evaluated TCMalloc already includes TEMERAIRE [28]’s
huge page support. We do not include Hoard [8] as it is not
the state-of-art anymore [3, 41].
Evaluated Applications: We evaluated the PARSEC ap-
plications [9], five OpenMP/MPI applications AMG, LAMMPS,
Nekbone, QMCPACK, and Quicksilver from CORAL-2 Bench-
marks [1], and real applications including Aget, Apache
httpd-2.4.35, Memcached-1.4.25, MySQL-5.7.15, Pbzip2,
Pfscan and SQLite-3.12.0. PARSEC applications are us-
ing native inputs [9]. We utilize 128 threads, which is the
same as the number of cores of the evaluated machine. For
Apache, we use the ab script to send 1,000,000 requests [22].
For MySQL, we use sysbench with 128 threads separately,
each issuing 100,000 requests. For Memcached, the python-
memcached is used to evaluate it with 3000 loops to get the
sufficient runtime [52]. Aget is tested by downloading a 30-
MB file, and Pfscan is tested by searching a keyword in a
500MB data. In terms of Pbzip2, we test it by compressing
10 files with 30MB each. Finally, SQLite is tested through a
program called threadtest3 [16]. For OpenMP/MPI appli-
cations, we use a hybrid MPI + OpenMP mode with one MPI
process per node and 16 OpenMP threads per process.

4.1 Performance Evaluation
Figure 3 shows the performance of PARSEC, OpenMP/MPI
and real applications with different allocators (separated by
one empty column). The runtime of each allocator is nor-
malized to that of Linux’s default one. Overall, NUMAlloc
has the best performance among these allocators. In particu-
lar, NUMAlloc is 15.7% faster than the second-best allocator
(mimalloc) and 20.9% faster than the default Linux allocator.
For the best case (e.g., fluidanimate), NUMAlloc is running
up to 5.3× faster than the default Linux allocator, and 4.6×
faster than mimalloc. On average, NUMAlloc is 18.4%, 18.2%,
and 20.7% faster than TCMalloc [34], TCMalloc-NUMA [31],
Intel TBB [33], all of which are NUMA-aware allocators. Con-
sidering only real applications, NUMAlloc outperforms both
the default Linux allocator and mimalloc by an average of

8.6% and 7.4%, respectively. We further evaluated a larger
scale version of memcached and NUMAlloc still outperforms
other allocators.
As shown in Figure 3, NUMAlloc has a significant per-

formance improvement (over 25%) in the following appli-
cations, including dedup, fluidanimate, streamcluster,
swaptions, pbzip2, AMG, LAMMPS, and Quicksilver. We fur-
ther examine the number of remote accesses and TLB misses
to confirm whether NUMAlloc significantly reduces them
for these applications. The results are shown in Figure 4,
which includes the runtime performance (black line), remote
accesses (blue line), and TLB misses plus remote accesses
(red line) together for a better comparison. Overall, NUMAl-
loc significantly reduces the number of remote accesses for
the evaluated applications. In particular, NUMAlloc has 9×
fewer remote accesses than the default Linux allocator and
8× fewer than the second-best allocator (mimalloc) on aver-
age. For TLB misses, NUMAlloc reduces it by 18× compared
to the default Linux allocator. We also notice that, as ex-
pected, TCMalloc performs best among allocators other than
NUMAlloc with a low number of TLB misses (about 1.7× of
NUMAlloc) due to its support for huge pages. As can be seen
from Figure 4, NUMAlloc greatly reduces the number of re-
mote accesses for five applications, fluidanimate, Pbzip2,
streamcluster, LAMMPS, and AMG. Let us utilize fluidani-
mate as an example, where NUMAlloc is running 4.8× faster
than TBB and 5.3× faster than the default Linux allocator.
Figure 4 shows that TBB and the default Linux allocator
have 5.9× and 6.2× more remote accesses than NUMAlloc,
which explains why NUMAlloc is the fastest on this appli-
cation. NUMAlloc’s big reduction of remote accesses can be
attributed to the following factors: its thread binding avoids
unnecessary remote accesses; its metadata is placed on the
local node, based on the binding design; its origin-aware
memory allocation ensures locality of memory allocations.

However, for some applications, there is not much differ-
ence in the number of remote accesses compared to some
allocators. Based on our investigation, NUMAlloc is running
faster than others due to the reduction of TLB misses instead.
Taking dedup as an example, compared to TCMalloc-NUMA,
NUMAlloc generates 1.8% more remote accesses, but it has
more than 21× fewer TLB misses, resulting in better per-
formance. This is also true for swaptions compared with
Scalloc and mimalloc. From Figure 4, we notice that mimal-
loc has a surprisingly low number of remote accesses on
swaptions compared to all other allocators. We currently
do not know the exact reason for this. Nevertheless, NUMAl-
loc ended up performing slightly better due to 1.57× fewer
TLB misses. For Quicksilver, although NUMAlloc reduces
the remote accesses and TLB misses by 1.62× and 1.13×
compared to the second-best allocator (mimalloc), the per-
formance is slightly worse. This is because other factors (e.g.
cache misses) dominate the performance. But this is the only
exception across all evaluations. In most cases, fewer remote

NUMAlloc: A Faster NUMA Memory Allocator ISMM ’23, June 18, 2023, Orlando, FL, USA

Figure 3. Performance of different allocators on PARSEC, OpenMP/MPI and real applications,
where all data are normalized to that of the default Linux allocator. Here, a lower bar indicates a better performance.

Note that some applications failed to run with some allocators (mainly due to OOM).

Figure 4. Normalized runtime, remote accesses, and TLB misses of different allocators, where
the remote accesses and TLB misses data are normalized to that of NUMAlloc and runtime data is normalized to
that of the default Linux allocator for better comparison of line trend. All data are finally log-transformed to

limit the range of data distribution. Here, a lower number indicates a better performance.

accesses and TLB misses indicate better performance. If we look at remote accesses plus TLB misses data (red line) in

ISMM ’23, June 18, 2023, Orlando, FL, USA Hanmei Yang, Xin Zhao, Jin Zhou, Wei Wang, Sandip Kundu, Bo Wu, Hui Guan, and Tongping Liu

Figure 4, NUMAlloc always performs the best among all eval-
uated allocators. Meanwhile, we observe that the remote
accesses plus TLB misses (red line) generally has a positive
correlation with application performance (black line). To
summarize, NUMAlloc has fewer remote accesses and fewer
TLB misses, which are the reasons that it outperforms other
allocators.

4.2 Memory Consumption
We also measure the memory consumption of different allo-
cators on PARSEC benchmark [9] and real applications, as
shown in Table 1. Overall, the default Linux allocator has the
smallest memory consumption, and Intel TBB is the second-
best one. NUMAlloc’s total memory consumption is around
17.6% more than that of the default Linux allocator, but it is
similar to TCMalloc and 1.63× better than the second fastest
allocator (mimalloc).
The memory consumption of NUMAlloc is almost 4.5×

lower than that of Scalloc with huge page support. Similar to
NUMAlloc, Scalloc allocates a big region of virtual memory
from the underlying OS initially, which will be backed by
huge pages physically. While the huge pages can improve
the performance of an application, they can also lead to a
significant increase in memory usage. For example, an ap-
plication will use 2MB of physical memory even if it only
allocates a small object (e.g., 8 bytes). Compared to Scalloc,
NUMAllocmakes threads (with different size classes) running
on the same node share the same huge page, as described
in Section 3.4, which effectively reduces its memory con-
sumption. That is why the total memory consumption of
NUMAlloc is far better than Scalloc. Interestingly, we observe
that the memory consumption of NUMAlloc is similar to that
of TCMalloc (TEMERAIRE [28]), which is a state-of-the-art
allocator optimized specifically for huge pages. We expect
that NUMAlloc’s memory consumption can be further re-
duced by utilizing some complicated mechanisms proposed
by TEMERAIRE.
We further confirmed the memory consumption when

transparent huge page support is disabled, which can be
seen as the “w/o THP” column in Table 1. In this case, NU-
MAlloc’s total memory overhead is actually comparable to
the default Linux allocator and TBB, where the total mem-
ory consumption is decreased from 15938 MB to 13622 MB.
That is, NUMAlloc imposes a low memory overhead when
not using huge pages.

4.3 Scalability
To validate the scalability of NUMAlloc, we use four synthetic
applications from Hoard [8], including threadtest, lar-
son [39], cache-scratch and cache-slash, which is also
employed by existing work [3]. We do not use the PARSEC
applications, as they are not scalable by design. For instance,
raytrace has no performance difference when running with
16 threads or 40 threads. In the evaluation, we maximize the

number of threads on each node for NUMAlloc. For instance,
32 threads will use 2 nodes, as each node has 16 cores. For
other allocators, we only specify the number of threads, and
it is up to the OS to determine the scheduling.
Figure 5 demonstrates how the performance speedup of

various allocators changes as the number of threads increases.
All data are normalized to the runtime of Linux’s default al-
locator under one thread. Overall, NUMAlloc has the best
performance when the number of threads is 128. Its aver-
age speedup is 88×, compared to Linux’s allocator with one
thread, while the second-best allocator – mimalloc – has a
75× speedup. In contrast, the default Linux allocator only has
a speedup of 49×. That is, NUMAlloc has the best scalability
compared to other allocators.
Among these applications, cache-scratch and cache-

thrash test false sharing issues that can be introduced by
allocators, where multiple threads access different objects in
the same cache line. When false sharing occurs, threads ac-
cessing seemingly unrelated data will invalidate each other
when performing writes, resulting in performance degra-
dation. cache-scratch tests passive false sharing, which is
introduced upon deallocations, where a freed object can be
utilized by another thread. cache-thrash tests active false
sharing, which in contrast is introduced during the initial
allocations, where multiple continuous objects sharing the
same cache line are allocated to different threads. Based
on our understanding, NUMAlloc will not introduce active
false sharing, since each thread will get a page of objects
initially. Although NUMAlloc might introduce some passive
false sharing due to its per-thread cache design, it avoids
remote allocations across the node, where other allocators
do not have such mechanisms. We believe that is the major
reason for NUMAlloc’s better performance.

In these four applications, NUMAlloc only performs worse
than mimalloc for larson with 128 threads. larson simu-
lates a multithreaded server that can respond to requests
from different clients. In this application, each thread is given
a set of objects, and they perform random deallocations and
allocations on these objects within a round, and finally pass
the objects to the next thread before terminating. Unlike
other applications, larson runs for a fixed time and we use
a throughput metric (the number of memory allocations per
second) to measure the performance. Remote deallocations
are quite common for this application, as local objects can be
passed to other remote threads. Therefore, the performance
of larson is sensitive to the memory recycling mechanisms
of the allocator, as observed in the existing work [3, 54]. As
discussed in Section 3.3, the remote object’s deallocation is
managed by the original node’s freelist to ensure the locality.
This freelist is shared among all threads running on this
node, which can become a bottleneck when serving multi-
ple deallocations at the same time. Nevertheless, NUMAlloc
still performs better than most allocators on larson and can

NUMAlloc: A Faster NUMA Memory Allocator ISMM ’23, June 18, 2023, Orlando, FL, USA

Table 1.Memory consumption of different allocators.

Apps
Memory Usage (MB)

default Linux NUMAlloc TCMalloc TCMalloc-NUMA jemalloc TBB Scalloc mimallocallocator w/ THP w/o THP
blackscholes 615 779 615 635 622 633 615 631 622
bodytrack 35 95 46 129 43 566 35 2019 46
canneal 888 825 770 884 757 1286 889 9323 891
dedup 907 1200 1097 1111 1005 1397 910 10228 1592
facesim 2630 3428 2726 2973 2742 3540 2630 9102 3177
ferret 211 319 220 348 213 652 182 3424 647
fluidanimate 470 543 342 492 482 480 470 5371 476
freqmine 1877 1433 1342 1913 2658 1899 1859 1870 3084
raytrace 1287 1445 1627 1115 1414 1287 1288 9177 1392
streamcluster 112 132 111 160 123 127 113 195 138
swaptions 41 182 19 111 22 547 41 1817 14
vips 225 487 287 451 268 776 225 3666 983
x264 2856 3019 2721 3480 3064 3720 2860 5433 4094
Aget 8 53 5 38 47 94 42 122 44
Apache 4 4 4 10 19 10 4 42 4
Memcached 16 28 18 25 54 41 18 305 32
Mysql 282 429 243 327 609 854 282 975
Pbzip2 525 898 823 1088 859 1161 534 5413 7213
Pfscan 522 526 523 537 528 535 522 554 524
Sqlite3 45 113 83 119 75 143 46 686 109
Geomean 1.00 1.56 0.99 1.57 1.40 2.30 1.09 7.47 1.72
Total 13556 15938 13622 15946 15604 19748 13565 69378 26057

scale to 128 threads. All of these data indicate that NUMAlloc
is scalable to 128 cores.

4.4 Design Choices
This section further confirms NUMAlloc’s multiple design
choices.

4.4.1 Choices of Thread Binding. NUMAlloc’s memory
management is based on binding, including thread binding
and memory binding. We believe such bindings benefit the
performance and open up other design opportunities, such as
origin-aware memory management, metadata allocation and
incremental sharing. The combination of all design choices
makes NUMAlloc a faster and more efficient allocator. There-
fore, we cannot evaluate the impact of thread binding by
directly disabling it on NUMAlloc since other designs depend
on it. To overcome this problem, we implement a thread
binding library that allows other allocators to enable bind-
ing. Figure 6(a) shows the impact of thread binding on two
allocators, default Linux allocator and TCMalloc. The re-
sults are normalized to the data with thread binding of each
allocator, respectively, so we omit the ones with thread bind-
ing. Thus, this figure can be considered to show how much
slower it would run without thread binding. Here we use
the node-interleaved binding. As shown in Figure 6(a), the
thread binding improves the performance significantly for
some applications. For instance, fluidanimate runs around
4.45× faster on default Linux allocator and 3.66× faster on

TCMalloc with the node-interleaved thread binding. Simi-
larly, streamcluster runs around 20% and 30% faster than
the corresponding one without the binding. We further use
perf [2] to analyze the reasons for the significant perfor-
mance improvement of these two applications. The results
confirm that remote accesses are significantly reduced with
thread binding, mainly due to the elimination of thread mi-
gration. Interestingly, the cache miss rate also decreases with
thread binding. Overall, thread binding will benefit the per-
formance of most applications without hurting others, which
should be included in the memory allocator by default.

We also compare the performance of two types of thread
binding: node-interleaved and node-saturate thread binding.
In node-saturate binding, we bind the maximum possible
number of threads (same as the number of cores) to a node
and then switch to the next node. As shown in Figure 6(b), the
node-interleaved thread binding is almost always better than
node-saturate thread binding, except for vips. On average,
node-interleaved binding is around 19% faster than node-
saturate one for these evaluated applications. This indicates
that people should use node-interleaved binding, if they
would like to employ all hardware cores. However, if they
onlywant to use partial cores, then the node-saturate binding
could be a better choice. Furthermore, NUMAlloc allows users
to adjust the binding option according to their requirements.

4.4.2 Impact of Origin-aware Deallocation. NUMAlloc
adopts an origin-aware memory management to ensure the

ISMM ’23, June 18, 2023, Orlando, FL, USA Hanmei Yang, Xin Zhao, Jin Zhou, Wei Wang, Sandip Kundu, Bo Wu, Hui Guan, and Tongping Liu

Figure 5. Scalability evaluation of different allocators.
All data are normalized to the runtime of the default Linux allocator with one thread.

locality of memory allocations and deallocations, as dis-
cussed in Section 3.3. Some NUMA-aware allocators take
locality into consideration during allocation, but neglect
to handle the remote deallocation, resulting in remote ac-
cesses when reusing the memory. Instead, NUMAlloc pro-
poses origin-aware deallocation which guarantees that a
freed object will always return to its original node’s heap.
We further verified the effect of this design and the results
are shown in Figure 7, where the data is normalized to the
runtime with origin-aware deallocation. According to the
Figure 7, all evaluated applications benefit from origin-aware
deallocation and applications that have more remote deal-
locations, such as canneal, streamcluster and vips, achieve
significant performance improvements. Overall, NUMAlloc
runs 3.8% slower if we do not consider the origin of freed
objects.

4.4.3 Impact of Incremental Sharing. As discussed in
Section 3.4, it is beneficial to embrace the transparent huge
page support in modern systems. We evaluate the perfor-
mance impact of transparent huge pages. The results are
shown in Figure 8. When integrating with transparent huge

pages, NUMAlloc achieves significantly better performance
for vips, where it is running 16% faster. On average, trans-
parent huge pages improve the performance by about 2.62%.
There are no applications that run slower with huge pages.
This clearly indicates that it is beneficial to enable transpar-
ent huge pages for the NUMA architecture, especially when
NUMAlloc is used. Although using huge pages may increase
the memory overhead, our incremental sharing mechanism
helps to reduce the memory fragmentation. In our experi-
ments with the PARSEC benchmark, we observed an average
savings of 10.1% inmemory overheadwhen incremental shar-
ing is enabled. As shown in Table 1, the memory overhead of
NUMAlloc is still acceptable, given the comparison of other
mainstream allocators and the hardware trend of increasing
memory capacity.

5 Discussion
This section describes some limitations of NUMAlloc. First,
NUMAllocmay consumemore memory than some popular al-
locators, especially when transparent huge pages are enabled.
NUMAlloc currently allocates a big chunk (larger than a huge

NUMAlloc: A Faster NUMA Memory Allocator ISMM ’23, June 18, 2023, Orlando, FL, USA

(a) Normalized runtime without thread binding for default Linux
allocator and TCMalloc, where the lower is the better.

(b) Normalized runtime with node-interleaved and node-saturate binding
for NUMAlloc, where the lower is the better.

Figure 6. Performance impact of thread binding.

Figure 7. Normalized runtime with and without
origin-aware deallocation for NUMAlloc.

Figure 8. Normalized runtime with and without THP for
NUMAlloc.

page) from the OS, then the OS will satisfy the memory allo-
cations with huge pages when transparent huge pages are
enabled. Although this method reduces the possible system
call overhead and enjoys the performance benefits caused

by reducing TLB misses, it does introduce more memory
consumption. That is, the whole huge page will be wasted
even if applications only use a small portion of huge pages.
However, we believe that the memory overhead can be fur-
ther reduced by more fine-grained management, such as
TEMERAIRE’s mechanism. We leave this implementation to
our future work.
Second, NUMAlloc is designed with explicit thread bind-

ing, where people may be concerned that it conflicts with
the OS scheduler. In fact, based on our understanding, this
should not be a big issue due to the following reasons. (1)
NUMAlloc’s thread binding does not exclude OS-based sched-
uling, as it only binds a thread to a node rather than a core.
(2) NUMAlloc allows users to adjust the binding flexibly via
a configuration file to meet the needs of different workloads.
(3) Thread binding is even suitable for server applications
with thousands of threads, as NUMAlloc’s binding balances
the workload among different physical nodes.

6 Related Work
This section discusses some related work of NUMAlloc.
General Purpose Allocators. There exists a large number
of allocators [3, 8, 20, 24, 40], but they are not designed for
the NUMA architecture. Based on the management of small
objects, allocators can be further classified into multiple
types, such as sequential, BiBOP, and region-based alloca-
tors [23, 50]. Region-based allocators are suitable for special
situations where all allocated objects within the same region
can be deallocated at once [23]. For sequential allocators, sub-
sequent memory allocations are satisfied in the continuous
memory area, such as the Linux allocator [40] and Windows
allocator [50]. That is, objects of different sizes can be placed
continuously. For BiBOP-style allocators, one or multiple
continuous pages are treated as a “bag”, holding objects with
the same size class. NUMAlloc also belongs to BiBOP-style
allocators, as do many other high-performance and security-
focused allocators [3, 8, 20, 24, 50]. But NUMAlloc proposes
multiple special designs for the NUMA architecture.
NUMA-aware Allocators. TCMalloc-NUMA adds addi-
tional node-based freelists and free spans to store freed ob-
jects and pages belonging to the same node [31], which is
similar to NUMAlloc. It also invokes the mbind system call
to bind physical memory allocations to the node that the
current thread is running on, which is similar to JArena [62].
But JArena requires the co-design of applications, runtime
system and the underlying OS, which is not transparent to
users [62]. Also, both of them invoke too many mbind system
calls, and do not handle the metadata’s locality. nMART pro-
poses a NUMA-aware memory allocation for soft real-time
systems [35]. It proposes a node-oriented allocation policy
to minimize the access latency, and ensures temporal and
spatial guarantees for real-time systems. nMART requires
the change of the underlying OS, which is different from

ISMM ’23, June 18, 2023, Orlando, FL, USA Hanmei Yang, Xin Zhao, Jin Zhou, Wei Wang, Sandip Kundu, Bo Wu, Hui Guan, and Tongping Liu

NUMAlloc. nMART also has a different target as NUMAlloc
that tries to meet the time requirement of real-time systems,
and NUMAlloc focuses more on the performance. mimalloc
also supports NUMA memory management [41]. It records
the associated NUMA node for each segment, and tries to ob-
tain a segment from the same node when reusing segments
between threads. mimalloc proposes a page-based freelist
that could only serve a thread at a time [41], where all ob-
jects will be returned to the same page-based freelist upon
deallocations. By allocating the physical memory of each
page locally, mimalloc has achieved some level of locality.
However, mimalloc cannot ensure local allocations when a
thread is migrated. NUMAlloc overcomes these issues, and
further balances the memory accesses from different nodes
via its node-interleaved thread binding.
NUMA-Aware Java Heap Management. Some approaches
focus on improving the performance of Java applications,
but they are not general-purpose memory allocators. Oga-
sawara et al. focus on finding the preferred node location for
JAVA objects during the garbage collection and memory allo-
cations [51], via thread stack, synchronization information,
and object reference graph. Tikir et al. propose to employ
hardware performance counters to collect the runtime infor-
mation of Java applications, and then migrate an object to
the closet node with most accesses [57]. NumaGiC reduces
remote accesses in garbage collection phases with a mostly
distributed design so that each GC thread will mostly collect
memory references locally, and utilize a work-stealing mode
only when no local references are available [25].
Combination of Task Scheduling and Memory Manage-
ment. Redline integrates task scheduling and memory man-
agement inside the OS level [61], to support interactive ap-
plications. Majo et al. propose to consider both data locality
and cache contention to achieve better performance for the
NUMA applications [46].Wagle observed that dynamicmem-
ory allocations, thread placement and scheduling, memory
placement policies, OS configurations may help improve the
query performance of in-memory databases [59]. Majo et
al. propose to set task-to-thread affinity, and pin threads to
specific cores to achieve a better performance [48]. Diener
proposes a new kernel framework to combine task manage-
ment and memory management together to achieve better
performance [17]. Debes et al. propose the combination of
enhanced work-pushing and deferred allocation together to
improve the performance for data-parallel tasks, but focus
on special programming models [19]. They inspire NUMAl-
loc’s binding-based memory management. But NUMAlloc is
the first work that exploits the benefits of binding inside a
memory allocator.
Huge Page Support of Memory Allocators. SuperMal-
loc [36] is possibly the first allocator that supports huge
pages. To reduce memory waste, it only utilizes huge pages
for large objects. LLAMA [45] allocates memory objects

with a similar expiration time to the same huge pages, and
utilizes machine learning to identify the lifetime of mem-
ory objects from each callsite. That is, LLAMA requires the
profiling to adjust its memory allocations for each applica-
tion, which could be expensive or inconvenient to do so.
TEMERAIRE [28], which is the default setting of TCMal-
loc, maximizes the usage of huge pages. It allocates big ob-
jects from huge pages, and also allocates small objects from
partially-filled huge pages. However, based on our investiga-
tion, TEMERAIRE does not allow different threads to share
the same huge page, possibly caused by the reason that TC-
Malloc is not a binding-based allocator, thenmaking different
threads share the same huge page could potentially introduce
toomany remote accesses. Instead, NUMAlloc allows the shar-
ing of huge pages from different threads, which helps reduce
the internal memory fragmentation. It is worth noting that
NUMAlloc did not utilize some sophisticated mechanisms
(such as TEMERAIRE or LLAMA) to manage huge pages,
but achieved a similar memory overhead with TCMalloc.
NUMAlloc could be further improved by borrowing some
sophisticated mechanisms of LLAMA and TEMERAIRE in
the future.
NUMA Libraries. Cantalupo et al. propose multiple APIs
that allow users to manage their memory in fine granularity
by combining with multiple existing system calls [12]. How-
ever, they are not targeting a general-purpose allocator, since
it requires programmers to manage the memory explicitly.
Majo et al. propose multiple source-code based algorithmic
changes in order to improve data sharing and memory access
patterns for NUMA architectures [47]. Williams et al. pro-
pose to group data structures that can be migrated together
with arenas [60]. Shoal also proposes a set of APIs that allow
the user to specify memory access patterns [30]. But both of
them need significant manual effort to employ this.
Reactive Systems for NUMA Architecture. Some systems
migrate tasks or physical pages reactively based on mem-
ory access patterns or other hardware characteristics [10,
11, 14, 15, 42]. NUMAlloc belongs to a proactive approach
that does not require explicit and page migration, which is
complementary to these reactive systems.

7 Conclusion
NUMAlloc is a memory allocator that is specially designed for
the NUMA architecture. Applications can be linked to NUMAl-
loc directly, without the change of code and recompilation.
NUMAlloc is different from existing memory allocators, as
it is the first binding-based allocator. On top of it, it further
proposes origin-aware memory management and incremen-
tal sharing to improve the locality and exploit huge pages.
Based on our extensive evaluation, NUMAlloc achieves a sig-
nificantly better performance than other popular allocators
on the NUMA architecture, which is running 15.7% faster
(and up to 4.6× faster) than the second-best allocator.

NUMAlloc: A Faster NUMA Memory Allocator ISMM ’23, June 18, 2023, Orlando, FL, USA

References
[1] 2017. CORAL-2 Benchmarks. https://asc.llnl.gov/coral-2-benchmarks.
[2] 2020. perf: Linux profiling with performance counters. https://perf.

wiki.kernel.org/index.php/Main_Page.
[3] Martin Aigner, Christoph M. Kirsch, Michael Lippautz, and Ana

Sokolova. 2015. Fast, Multicore-scalable, Low-fragmentation Memory
Allocation Through Large Virtual Memory and Global Data Struc-
tures. In Proceedings of the 2015 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Ap-
plications (Pittsburgh, PA, USA) (OOPSLA 2015). 451–469. https:
//doi.org/10.1145/2814270.2814294

[4] Martin Aigner, Christoph M. Kirsch, Michael Lippautz, and Ana
Sokolova. 2016. scalloc. https://github.com/cksystemsgroup/scalloc.

[5] Periklis Akritidis. 2010. Cling: A Memory Allocator to Mitigate Dan-
gling Pointers. In 19th USENIX Security Symposium, Washington, DC,
USA, August 11-13, 2010, Proceedings. 177–192. http://www.usenix.org/
events/sec10/tech/full_papers/Akritidis.pdf

[6] Andreas Kleen at SUSE LINUX. 2012. "A NUMA API for LINUX".
http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-
fv1.pdf.

[7] Avi Kivity . 2016. Automatic NUMA balancing may reduce perfor-
mance. https://github.com/scylladb/scylla/issues/1120.

[8] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R.
Wilson. 2000. Hoard: a scalable memory allocator for multithreaded
applications. In ASPLOS-IX: Proceedings of the ninth international con-
ference on Architectural support for programming languages and op-
erating systems (Cambridge, Massachusetts, United States). 117–128.
https://doi.org/10.1145/378993.379232

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (Toronto, Ontario,
Canada) (PACT ’08). 72–81. https://doi.org/10.1145/1454115.1454128

[10] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexan-
dra Fedorova. 2011. A Case for NUMA-aware Contention Manage-
ment on Multicore Systems. In Proceedings of the 2011 USENIX Con-
ference on USENIX Annual Technical Conference (Portland, OR). 1–1.
http://dl.acm.org/citation.cfm?id=2002181.2002182

[11] W. Bolosky, R. Fitzgerald, and M. Scott. 1989. Simple but Effective
Techniques for NUMA Memory Management. In Proceedings of the
Twelfth ACM Symposium on Operating Systems Principles (SOSP ’89).
Association for Computing Machinery, 19–31. https://doi.org/10.1145/
74850.74854

[12] Christopher Cantalupo, Vishwanath Venkatesan, Jeff Hammond,
Krzysztof Czurlyo, and Simon David Hammond. 2015. memkind: An
Extensible Heap Memory Manager for Heterogeneous Memory Platforms
and Mixed Memory Policies. (No. SAND2015-1862C). Technical Report.
Sandia National Lab.(SNL-NM), Albuquerque, NM.

[13] William Cohen. 2014. Examining Huge Pages or Transparent Huge
Pages performance. https://developers.redhat.com/blog/2014/03/10/
examining-huge-pages-or-transparent-huge-pages-performance.

[14] Jonathan Corbet. 2012. AutoNUMA: The Other Approach to NUMA
Scheduling. https://lwn.net/Articles/488709/.

[15] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud,
Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth.
2013. Traffic Management: A Holistic Approach to Memory Place-
ment on NUMA Systems. In Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Houston, Texas, USA) (ASPLOS ’13). 381–394.
https://doi.org/10.1145/2451116.2451157

[16] SQL Developers. 2019. How SQLite Is Tested. "https://www.sqlite.org/
testing.html".

[17] Matthias Diener. 2015. Automatic task and data mapping in shared
memory architectures. (2015).

[18] Matthias Diener, Eduardo HMCruz, and Philippe OANavaux. 2015. Lo-
cality vs. Balance: Exploring data mapping policies on NUMA systems.
In 2015 23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. IEEE, 9–16.

[19] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and
Nathalie Drach. 2016. Scalable Task Parallelism for NUMA: A Uniform
Abstraction for Coordinated Scheduling and Memory Management. In
Proceedings of the 2016 International Conference on Parallel Architectures
and Compilation, PACT 2016, Haifa, Israel, September 11-15, 2016, Ayal
Zaks, Bilha Mendelson, Lawrence Rauchwerger, andWen-mei W. Hwu
(Eds.). ACM, 125–137. https://doi.org/10.1145/2967938.2967946

[20] Jason Evans. 2011. Scalable memory allocation using jemal-
loc. "https://www.facebook.com/notes/facebook-engineering/scalable-
memory-allocation-using-jemalloc/480222803919/".

[21] OpenBSD Foundation. 2012. "OpenBSD". "https://www.openbsd.org".
[22] The Apache Software Foundation. 2020. ab - Apache HTTP server

benchmarking tool. "https://httpd.apache.org/docs/2.4/programs/ab.
html".

[23] David Gay and Alexander Aiken. 1998. Memory Management with
Explicit Regions. In Proceedings of the ACM SIGPLAN ’98 Conference on
Programming Language Design and Implementation (PLDI), Montreal,
Canada, June 17-19, 1998. 313–323. https://doi.org/10.1145/277650.
277748

[24] Sanjay Ghemawat and Paul Menage. 2007. "TCMalloc : Thread-
Caching Malloc". "http://goog-perftools.sourceforge.net/doc/tcmalloc.
html".

[25] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan
Nguyen. 2015. NumaGiC: A Garbage Collector for Big Data on Big
NUMA Machines. In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages and Oper-
ating Systems (Istanbul, Turkey) (ASPLOS ’15). ACM, New York, NY,
USA, 661–673. https://doi.org/10.1145/2694344.2694361

[26] Mel Gorman. 2012. Foundation for automatic NUMA balancing. "https:
//lwn.net/Articles/523065/".

[27] David R Hanson. 1980. A portable storage management system for
the Icon programming language. Software: Practice and Experience 10,
6 (1980), 489–500.

[28] A.H. Hunter, Chris Kennelly, Paul Turner, Darryl Gove, Tipp Moseley,
and Parthasarathy Ranganathan. 2021. Beyond malloc efficiency to
fleet efficiency: a hugepage-aware memory allocator. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 21).
USENIX Association, 257–273. https://www.usenix.org/conference/
osdi21/presentation/hunter

[29] Intel Corporation. [n. d.]. Intel VTune Performance Analyzer. http:
//www.intel.com/software/products/vtune.

[30] Stefan Kaestle, Reto Achermann, Timothy Roscoe, and Tim Har-
ris. 2015. Shoal: Smart Allocation and Replication of Memory for
Parallel Programs. In Proceedings of the 2015 USENIX Conference
on Usenix Annual Technical Conference (Santa Clara, CA) (USENIX
ATC ’15). USENIX Association, Berkeley, CA, USA, 263–276. http:
//dl.acm.org/citation.cfm?id=2813767.2813787

[31] Patryk Kaminski. 2012. NUMA aware heap memory man-
ager. http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/
2012/10/NUMA_aware_heap_memory_manager_article_final.pdf.

[32] Alex Katranov and Anton Potapov. 2021. oneAPI Threading Building
Blocks. https://github.com/oneapi-src/oneTBB.

[33] Alex Katranov and Michael Voss. 2020. Optimize Intel oneAPI
Threading Building Blocks for NUMA Architectures. https:
//www.intel.com/content/www/us/en/developer/videos/onetbb-
optimizing-for-numa-architectures.html.

[34] Chris Kennelly and Paul Burton. 2021. TCMalloc: Implement
NUMA awareness. https://github.com/google/tcmalloc/commit/
ef7a3f8d794c42705bf4327ca79fa17186904801.

https://asc.llnl.gov/coral-2-benchmarks
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1145/2814270.2814294
https://doi.org/10.1145/2814270.2814294
https://github.com/cksystemsgroup/scalloc
http://www.usenix.org/events/sec10/tech/full_papers/Akritidis.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Akritidis.pdf
http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf
http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf
https://github.com/scylladb/scylla/issues/1120
https://doi.org/10.1145/378993.379232
https://doi.org/10.1145/1454115.1454128
http://dl.acm.org/citation.cfm?id=2002181.2002182
https://doi.org/10.1145/74850.74854
https://doi.org/10.1145/74850.74854
https://developers.redhat.com/blog/2014/03/10/examining-huge-pages-or-transparent-huge-pages-performance
https://developers.redhat.com/blog/2014/03/10/examining-huge-pages-or-transparent-huge-pages-performance
https://lwn.net/Articles/488709/
https://doi.org/10.1145/2451116.2451157
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html
https://doi.org/10.1145/2967938.2967946
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919/
https://www.openbsd.org
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://doi.org/10.1145/277650.277748
https://doi.org/10.1145/277650.277748
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://doi.org/10.1145/2694344.2694361
https://lwn.net/Articles/523065/
https://lwn.net/Articles/523065/
https://www.usenix.org/conference/osdi21/presentation/hunter
https://www.usenix.org/conference/osdi21/presentation/hunter
http://www.intel.com/software/products/vtune
http://www.intel.com/software/products/vtune
http://dl.acm.org/citation.cfm?id=2813767.2813787
http://dl.acm.org/citation.cfm?id=2813767.2813787
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/NUMA_aware_heap_memory_manager_article_final.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/NUMA_aware_heap_memory_manager_article_final.pdf
https://github.com/oneapi-src/oneTBB
https://www.intel.com/content/www/us/en/developer/videos/onetbb-optimizing-for-numa-architectures.html
https://www.intel.com/content/www/us/en/developer/videos/onetbb-optimizing-for-numa-architectures.html
https://www.intel.com/content/www/us/en/developer/videos/onetbb-optimizing-for-numa-architectures.html
https://github.com/google/tcmalloc/commit/ef7a3f8d794c42705bf4327ca79fa17186904801
https://github.com/google/tcmalloc/commit/ef7a3f8d794c42705bf4327ca79fa17186904801

ISMM ’23, June 18, 2023, Orlando, FL, USA Hanmei Yang, Xin Zhao, Jin Zhou, Wei Wang, Sandip Kundu, Bo Wu, Hui Guan, and Tongping Liu

[35] Seyeon Kim. 2013. Node-oriented dynamic memory management for
real-time systems on ccNUMA architecture systems. Ph. D. Dissertation.
University of York.

[36] Bradley C Kuszmaul. 2015. SuperMalloc: a super fast multithreaded
malloc for 64-bit machines. In Proceedings of the 2015 International
Symposium on Memory Management. 41–55.

[37] Renaud Lachaize, Baptiste Lepers, and Vivien Quéma. 2012. MemProf:
A Memory Profiler for NUMA Multicore Systems. In Proceedings of
the 2012 USENIX Conference on Annual Technical Conference (Boston,
MA) (USENIX ATC’12). USENIX Association, Berkeley, CA, USA, 5–5.
http://dl.acm.org/citation.cfm?id=2342821.2342826

[38] Christoph Lameter. 2013. Numa (non-uniform memory access): An
overview. Queue 11, 7 (2013), 40–51.

[39] Per-Åke Larson and Murali Krishnan. 1998. Memory Allocation for
Long-Running Server Applications. SIGPLAN Not. 34, 3 (Oct. 1998),
176–185. https://doi.org/10.1145/301589.286880

[40] Doug Lea. 1988. The GNU C Library. "http://www.gnu.org/software/
libc/libc.html".

[41] Daan Leijen. 2020. mimalloc. https://github.com/microsoft/mimalloc.
[42] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. 2015. Thread

and Memory Placement on NUMA Systems: Asymmetry Matters. In
Proceedings of the 2015 USENIX Conference on Usenix Annual Technical
Conference (Santa Clara, CA) (USENIX ATC ’15). USENIX Associa-
tion, Berkeley, CA, USA, 277–289. http://dl.acm.org/citation.cfm?id=
2813767.2813788

[43] Xu Liu and John Mellor-Crummey. 2014. A Tool to Analyze the Perfor-
mance of Multithreaded Programs on NUMAArchitectures. In Proceed-
ings of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (Orlando, Florida, USA) (PPoPP ’14). ACM, New
York, NY, USA, 259–272. https://doi.org/10.1145/2555243.2555271

[44] Sandra Loosemore, Richard M. Stallman, Roland McGrath, Andrew
Oram, and Ulrich Drepper. 2019. The GNUC Library ReferenceManual.
https://www.gnu.org/software/libc/manual/2.28/pdf/libc.pdf.

[45] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi
Javanmard, Kathryn S. McKinley, and Colin Raffel. 2020. Learning-
based Memory Allocation for C++ Server Workloads. In ASPLOS
’20: Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, March 16-20, 2020. 541–556. https:
//doi.org/10.1145/3373376.3378525

[46] Zoltan Majo and Thomas R. Gross. 2011. Memory Management in
NUMA Multicore Systems: Trapped Between Cache Contention and
Interconnect Overhead. In Proceedings of the International Symposium
on Memory Management (San Jose, California, USA) (ISMM ’11). ACM,
New York, NY, USA, 11–20. https://doi.org/10.1145/1993478.1993481

[47] Zoltan Majo and Thomas R. Gross. 2013. (Mis)understanding the
NUMA memory system performance of multithreaded workloads.
In 2013 IEEE International Symposium on Workload Characterization
(IISWC). 11–22. https://doi.org/10.1109/IISWC.2013.6704666

[48] Zoltan Majo and Thomas R. Gross. 2015. A Library for Portable and
Composable Data Locality Optimizations for NUMA Systems. In Pro-
ceedings of the 20th ACMSIGPLAN Symposium on Principles and Practice
of Parallel Programming (San Francisco, CA, USA) (PPoPP 2015). ACM,
New York, NY, USA, 227–238. https://doi.org/10.1145/2688500.2688509

[49] C. McCurdy and J. Vetter. 2010. Memphis: Finding and fixing NUMA-
related performance problems on multi-core platforms. In 2010 IEEE
International Symposium on Performance Analysis of Systems Software
(ISPASS). 87–96. https://doi.org/10.1109/ISPASS.2010.5452060

[50] Gene Novark and Emery D. Berger. 2010. DieHarder: securing the
heap. In Proceedings of the 17th ACM conference on Computer and
communications security (Chicago, Illinois, USA) (CCS ’10). ACM, New
York, NY, USA, 573–584. https://doi.org/10.1145/1866307.1866371

[51] Takeshi Ogasawara. 2009. NUMA-aware Memory Manager with
Dominant-thread-based Copying GC. In Proceedings of the 24th ACM

SIGPLAN Conference on Object Oriented Programming Systems Lan-
guages and Applications (Orlando, Florida, USA) (OOPSLA ’09). ACM,
New York, NY, USA, 377–390. https://doi.org/10.1145/1640089.1640117

[52] Sean Reifschneider. 2013. "Pure python memcached client". "https:
//pypi.python.org/pypi/python-memcached".

[53] Kirill Rogozhin. 2014. Controlling memory consumption with
Intel® Threading Building Blocks (Intel® TBB) scalable allocator.
"https://software.intel.com/content/www/us/en/develop/articles/
controlling-memory-consumption-with-intel-threading-building-
blocks-intel-tbb-scalable.html".

[54] Scott Schneider, Christos D. Antonopoulos, andDimitrios S. Nikolopou-
los. 2006. Scalable Locality-Conscious Multithreaded Memory Allo-
cation. In Proceedings of the 5th International Symposium on Mem-
ory Management (Ottawa, Ontario, Canada) (ISMM ’06). Associa-
tion for Computing Machinery, New York, NY, USA, 84–94. https:
//doi.org/10.1145/1133956.1133968

[55] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping
Liu. 2017. FreeGuard: A Faster Secure Heap Allocator. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017.
2389–2403. https://doi.org/10.1145/3133956.3133957

[56] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping Liu.
2018. Guarder: An Efficient Heap Allocator with Strongest and Tun-
able Security. In Proceedings of The 27th USENIX Security Symposium
(Security’18).

[57] M.M. Tikir and J. K. Hollingsworth. 2005. NUMA-Aware JavaHeaps for
Server Applications. In 19th IEEE International Parallel and Distributed
Processing Symposium. 108b–108b. https://doi.org/10.1109/IPDPS.2005.
299

[58] François Trahay, Manuel Selva, Lionel Morel, and Kevin Marquet.
2018. NumaMMA: NUMA MeMory Analyzer. In Proceedings of the
47th International Conference on Parallel Processing (Eugene, OR, USA)
(ICPP 2018). Association for Computing Machinery, New York, NY,
USA, Article 19, 10 pages. https://doi.org/10.1145/3225058.3225094

[59] Mehul Wagle, Daniel Booss, Ivan Schreter, and Daniel Egenolf. 2015.
NUMA-aware memory management with in-memory databases. In
Technology Conference on Performance Evaluation and Benchmarking.
Springer, 45–60.

[60] Sean Williams, Latchesar Ionkov, Michael Lang, and Jason Lee. 2018.
Heterogeneous Memory and Arena-Based Heap Allocation. In Pro-
ceedings of the Workshop on Memory Centric High Performance Com-
puting, MCHPC@SC 2018, Dallas, TX, USA, November 11, 2018. 67–71.
https://doi.org/10.1145/3286475.3286568

[61] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan, and
J. Eliot B. Moss. 2008. Redline: first class support for interactivity
in commodity operating systems. In Proceedings of the 8th USENIX
conference on Operating systems design and implementation (San Diego,
California) (OSDI’08). USENIX Association, Berkeley, CA, USA, 73–86.
http://dl.acm.org/citation.cfm?id=1855741.1855747

[62] Zhang Yang, Aiqing Zhang, and Zeyao Mo. 2019. JArena: Partitioned
Shared Memory for NUMA-awareness in Multi-threaded Scientific
Applications. arXiv preprint arXiv:1902.07590 (2019).

[63] Xin Zhao, Jin Zhou, Hui Guan, Wei Wang, Xu Liu, and Tongping Liu.
2021. NumaPerf: Predictive NUMA Profiling. In Proceedings of the
ACM International Conference on Supercomputing (Virtual Event, USA)
(ICS ’21). ACM, 52–62. https://doi.org/10.1145/3447818.3460361

[64] L. Zhu, H. Jin, and X. Liao. 2016. A Tool to Detect Performance
Problems of Multi-threaded Programs on NUMA Systems. In 2016
IEEE Trustcom/BigDataSE/ISPA. 1145–1152. https://doi.org/10.1109/
TrustCom.2016.0187

Received 2023-03-03; accepted 2023-04-24

http://dl.acm.org/citation.cfm?id=2342821.2342826
https://doi.org/10.1145/301589.286880
http://www.gnu.org/software/libc/libc.html
http://www.gnu.org/software/libc/libc.html
https://github.com/microsoft/mimalloc
http://dl.acm.org/citation.cfm?id=2813767.2813788
http://dl.acm.org/citation.cfm?id=2813767.2813788
https://doi.org/10.1145/2555243.2555271
https://www.gnu.org/software/libc/manual/2.28/pdf/libc.pdf
https://doi.org/10.1145/3373376.3378525
https://doi.org/10.1145/3373376.3378525
https://doi.org/10.1145/1993478.1993481
https://doi.org/10.1109/IISWC.2013.6704666
https://doi.org/10.1145/2688500.2688509
https://doi.org/10.1109/ISPASS.2010.5452060
https://doi.org/10.1145/1866307.1866371
https://doi.org/10.1145/1640089.1640117
https://pypi.python.org/pypi/python-memcached
https://pypi.python.org/pypi/python-memcached
https://software.intel.com/content/www/us/en/develop/articles/controlling-memory-consumption-with-intel-threading-building-blocks-intel-tbb-scalable.html
https://software.intel.com/content/www/us/en/develop/articles/controlling-memory-consumption-with-intel-threading-building-blocks-intel-tbb-scalable.html
https://software.intel.com/content/www/us/en/develop/articles/controlling-memory-consumption-with-intel-threading-building-blocks-intel-tbb-scalable.html
https://doi.org/10.1145/1133956.1133968
https://doi.org/10.1145/1133956.1133968
https://doi.org/10.1145/3133956.3133957
https://doi.org/10.1109/IPDPS.2005.299
https://doi.org/10.1109/IPDPS.2005.299
https://doi.org/10.1145/3225058.3225094
https://doi.org/10.1145/3286475.3286568
http://dl.acm.org/citation.cfm?id=1855741.1855747
https://doi.org/10.1145/3447818.3460361
https://doi.org/10.1109/TrustCom.2016.0187
https://doi.org/10.1109/TrustCom.2016.0187

	Abstract
	1 Introduction
	2 Background
	2.1 NUMA Architecture and OS Support
	2.2 Common Designs of Memory Allocators

	3 Design and Implementation
	3.1 Basic Heap Layout
	3.2 Binding-Based Memory Management
	3.3 Origin-Aware Memory Management
	3.4 Incremental Sharing
	3.5 Efficient Object Movement

	4 Experimental Evaluation
	4.1 Performance Evaluation
	4.2 Memory Consumption
	4.3 Scalability
	4.4 Design Choices

	5 Discussion
	6 Related Work
	7 Conclusion
	References

