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and Distributed Algorithms

Anton Bernshteyn
In this article we shall explore a fascinating area called
descriptive combinatorics and its recently discovered con-
nections to distributed algorithms—a fundamental part of
computer science that is becoming increasingly important
in the modern era of decentralized computation. The
interdisciplinary nature of these connections means that
there is very little common background shared by the re-
searchers who are interested in them. With this in mind,
this article was written under the assumption that the
reader would have close to no background in either de-
scriptive set theory or computer science. The reader will
judge to what degree this endeavor was successful.

The article comprises two parts. In the first part we give
a brief introduction to some of the central notions and
problems of descriptive combinatorics. The second part is
devoted to a survey of some of the results concerning the
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interactions between descriptive combinatorics and dis-
tributed algorithms, as well as a few open problems.

1. A Brief Introduction to Descriptive
Combinatorics

1.1. Basic notions of descriptive set theory.
1.1.1. Countable computation and Borel sets. Descriptive
combinatorics is an area that emerged quite recently
(about two decades ago) as the result of a symbiosis be-
tween combinatorics (especially graph theory) and descrip-
tive set theory. For excellent surveys of this subject, see
[KM20] by Kechris and Marks and [Pik21] by Pikhurko. In
addition to combinatorics and descriptive set theory, de-
scriptive combinatorics has close connections to numer-
ous other branches of mathematics, such as ergodic the-
ory, topological dynamics, probability theory, and model
theory, to name a few.

To motivate the questions studied in descriptive combi-
natorics, it will be beneficial to first briefly discuss descrip-
tive set theory more abstractly.

One way (out of many) of thinking about descriptive
set theory is that it provides a versatile framework for
gauging the inherent difficulty of mathematical problems

1496 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 9



inputs 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 …

𝚊𝚗𝚍 𝚊𝚗𝚍 𝚊𝚗𝚍 𝚊𝚗𝚍 𝚊𝚗𝚍 𝚊𝚗𝚍 …

𝚘𝚛

output 𝚗𝚘𝚝

Figure 1. A countable circuit that outputs 1 if the input bit
string does not contain two consecutive 1s.

pertaining to countable structures, in a manner analogous
to how computational complexity theory gauges the in-
herent difficulty of finite problems. To pursue this anal-
ogy further, we can naturally present the basic concepts of
descriptive set theory using a particular model of compu-
tation, namely Boolean circuits. An example of an infinite
Boolean circuit is shown in Fig. 1. It is a network consist-
ing of nodes, also called gates, joined by directed edges, or
wires. The bottom layer comprises the input nodes. Each in-
put node receives a bit value—0 or 1. The values then prop-
agate through the network along the wires, with every gate
computing a particular Boolean function of the values that
feed into it: not, and, or or. Finally, one or more nodes
are designated as the outputs. Thus, a Boolean circuit can
be used to compute a function {0, 1}In → {0, 1}Out, where
In and Out are the sets of the input and the output nodes
respectively. For example, the circuit in Fig. 1 computes
the function {0, 1}ℕ → {0, 1} that equals 1 if and only if the
input string does not contain two consecutive 1s.

There is one technical issue that we must make explicit
here. Not every directed network can be used to perform
well-defined computation. For instance, if a network in-
volves a directed cycle of nodes, such as 𝑣0 ← 𝑣1 ← 𝑣2 ←
⋯ ← 𝑣0, then the computational process wouldn’t even
be able to start. More generally, a Boolean circuit must be
well-founded, meaning that it must not contain an infinite
descending sequence of nodes such as 𝑣0 ← 𝑣1 ← 𝑣2 ←
𝑣3 ← ⋯. It is not hard to show that well-foundedness
is the only necessary requirement: any well-founded net-
work of gates implements a well-defined function.

An important part of computational complexity theory
is circuit complexity, which studies how large a (finite) cir-
cuit needs to be to compute a given function 𝑓∶ {0, 1}𝑛 →
{0, 1}𝑚. In descriptive set theory we are similarly interested
in functions that can be computed by countable circuits:

Definition 1.1 (Borel subsets of {0, 1}ℕ). A subset 𝐴 ⊆
{0, 1}ℕ is Borel if its characteristic function can be computed
by a countable Boolean circuit. We let𝔅({0, 1}ℕ) denote the
family of all Borel subsets of {0, 1}ℕ.

While Definition 1.1 applies to subsets of {0, 1}ℕ, it can
naturally be extended to sets of other types, as long as
their members can be somehow encoded by infinite bit
strings. For example, a countable graph 𝐺 with vertex set
𝑉 = {𝑣0, 𝑣1, 𝑣2, …} can be represented by its adjacency matrix
𝑀𝐺, i.e., a countable table of 0s and 1s whose entry in row
𝑖 and column 𝑗 is 1 if and only if 𝑣𝑖 and 𝑣𝑗 are adjacent
in 𝐺. We can then call a set 𝐴 of countable graphs Borel
if there is a countable Boolean circuit that decides, given
the matrix 𝑀𝐺, whether 𝐺 is in 𝐴 or not. For instance, the
following sets of countable graphs are Borel:

{𝐺 ∶ 𝐺 is connected};
{𝐺 ∶ 𝐺 is bipartite};
{𝐺 ∶ 𝐺 is 3-colorable}.

(The last one may be a bit surprising, since deciding
whether a finite graph is 3-colorable is believed to be a
computationally difficult problem. The difficulty miracu-
lously disappears in the countable world, however.) On
the other hand, the following set can be shown to not be
Borel:

{𝐺 ∶ 𝐺 has an infinite clique}.
In fact, this set is complete analytic, which is a notion some-
what analogous to NP-completeness from computational
complexity, with the added benefit that in descriptive set
theory it is a theorem (due to Suslin from 1917) that com-
plete analytic sets cannot be Borel. In general, most subsets
of {0, 1}ℕ are not Borel: {0, 1}ℕ has 22ℵ0 subsets but only 2ℵ0
of them are Borel (this result follows by enumerating all
countable Boolean circuits).
1.1.2. Borel sets in Polish spaces. A useful (and more clas-
sical) perspective on Borel sets is provided by topological
considerations. We can define the distance between two
infinite bit strings 𝑥, 𝑦 ∈ {0, 1}ℕ by the formula

dist(𝑥, 𝑦) ≔
∞
∑
𝑛=0

1
2𝑛+1 |𝑥𝑛 − 𝑦𝑛|.

(This can be thought of as a weighted version of the Ham-
ming distance.) The coefficients 1/2𝑛+1 are chosen so that
the series ∑∞

𝑛=0 1/2𝑛+1 converges (and hence the metric
dist is bounded, in this case by 1), but otherwise they
are arbitrary. In particular, using a different convergent
series with positive terms would yield a different metric,
but the resulting topology on the space {0, 1}ℕ would be
the same—namely, it is the product topology arising from
viewing {0, 1}ℕ as the product of countably many copies of
the discrete space {0, 1}. Actually, it is not hard to explic-
itly describe this topology without referring to the metric:
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a set 𝐴 ⊆ {0, 1}ℕ is open if and only if for every sequence
𝑥 = (𝑥0, 𝑥1, 𝑥2, …) ∈ 𝐴, the membership of 𝑥 in 𝐴 can be
confirmed by looking at only finitely many entries of 𝑥.
More formally, 𝐴 is open if for each 𝑥 ∈ 𝐴, there is some
𝑛 ∈ ℕ such that every infinite bit string whose first 𝑛 entries
are (𝑥0, 𝑥1, … , 𝑥𝑛−1) belongs to 𝐴.

Now, it turns out that Borel subsets of {0, 1}ℕ can be de-
scribed in purely topological terms and without any refer-
ence to Boolean circuits as follows: 𝔅({0, 1}ℕ) is the small-
est family of subsets of {0, 1}ℕ that includes all open sets
and is closed under countable Boolean operations (i.e.,
complements, countable unions, and countable intersec-
tions). And this characterization can be taken as the defi-
nition of Borel subsets of any topological space:

Definition 1.2 (Borel sets in topological spaces). Let 𝑋 be
a topological space. We let 𝔅(𝑋) be the smallest family of
subsets of 𝑋 that includes all open sets and is closed under
countable Boolean operations. A subset 𝐴 ⊆ 𝑋 is Borel if it
is a member of 𝔅(𝑋).

Although Definition 1.2 makes sense for an arbitrary
topological space 𝑋 , descriptive set theory is mostly con-
cerned with so-called Polish spaces. Formally, a topolog-
ical space is Polish if it is second-countable (i.e., it has
a countable basis) and completely metrizable (i.e., the
topology is generated by a complete metric). A particu-
larly compelling reason for focusing on Polish spaces is
that the points of a Polish space can be encoded by infi-
nite bit strings in a “well-behaved” way. This statement is
made precise by the following remarkable theorem:

Theorem 1.3 (Borel Isomorphism Theorem). If 𝑋 is an
uncountable Polish space, then there is a bijection

𝖼𝗈𝖽𝖾 ∶ 𝑋 → {0, 1}ℕ

such that a set 𝐴 ⊆ 𝑋 is Borel in 𝑋 if and only if the set
{𝖼𝗈𝖽𝖾(𝑥) ∶ 𝑥 ∈ 𝐴} is Borel in {0, 1}ℕ.

In other words, the computational definition of Borel
subsets of {0, 1}ℕ given in Definition 1.1 can also be used
to identify, via an appropriate coding, Borel sets in any un-
countable Polish space. This is a powerful observation be-
causemany natural examples of topological spaces are Pol-
ish, for instance ℝ and, more generally, ℝ𝑛 for 𝑛 ∈ ℕ, the
infinite-dimensional spaceℝℕ, the Baire spaceℕℕ, the unit
intervals [0, 1], (0, 1), and [0, 1), the unit circle𝕊1 and,more
generally, any second-countable topological manifold, all
compact metric spaces, all separable Banach spaces, etc.
Furthermore, it is possible to parameterize various classes
of mathematical structures by points in suitably defined
Polish spaces. We have already seen how to use adjacency
matrices to form a Polish space of countable graphs. In
a similar vein, one can assemble, e.g., a Polish space of
countable groups. There are also natural Polish spaces

of continuous functions, measure-preserving transforma-
tions, separable Banach spaces, etc. It is even possible to
define a Polish space of all Polish spaces!1

1.1.3. Other classes of sets in descriptive set theory. In addi-
tion to Borel sets, there are various other classes of sets that
play an important role in descriptive set theory. In this sec-
tion we briefly introduce three such classes.

Let us temporarily return to the space {0, 1}ℕ of infinite
bit strings. Recall that a set 𝐴 ⊆ {0, 1}ℕ is Borel if the mem-
bership in 𝐴 can be decided by a countable Boolean cir-
cuit. Sometimes it makes sense to inquire whether a set
is not just Borel but open. As mentioned in §1.1.2, a set
𝐴 ⊆ {0, 1}ℕ is open if for every sequence 𝑥 ∈ 𝐴, the mem-
bership of 𝑥 in 𝐴 can be confirmed by looking at only
finitely many bits of 𝑥. Of course, we can also investigate
open sets in any other Polish space.

On the other hand, sometimes a set we areworkingwith
may not be Borel and yet be “almost” Borel in a certain
suitable sense. For instance, a set 𝐴 ⊆ {0, 1}ℕ is measur-
able if there is a countable Boolean circuit that correctly
decides the membership in 𝐴 for a random input point
𝑥 ∈ {0, 1}ℕ. More precisely, 𝐴 is measurable if there is a
countable Boolean circuit 𝐶 with the following property.
Let 𝟏𝐴 denote the characteristic function of 𝐴. Sample a
sequence 𝑥 = (𝑥0, 𝑥1, 𝑥2, …) ∈ {0, 1}ℕ randomly by making
each 𝑥𝑖 be 0 or 1 independently with probability 1/2. Then
𝐶(𝑥) = 𝟏𝐴(𝑥)with probability 1; in other words, 𝐶may fail
to correctly determine 𝑥’s membership in𝐴, but the proba-
bility of failure is 0. We can similarly studymeasurable sets
in any Polish space 𝑋 , provided that it is equipped with a
Borel probability measure 𝜇.2 In many applications, sets
of measure 0 may be safely ignored, and thus measurabil-
ity is often a “good enough” substitute for Borelness.

Finally, we also often consider the so-called Baire-
measurable sets. The notion of Baire-measurability is anal-
ogous to measurability, but it is typically easier to work
with. Furthermore, it is defined purely topologically, with-
out reference to a measure or any other additional struc-
ture. The role of sets of measure 0 is played by the so-called
meager sets, i.e., countable unions of nowhere dense sets.
We think of meager sets as “topologically negligible.” A
set 𝐴 is Baire-measurable if there is a Borel set 𝐴′ such that

1For the interested reader, we sketch the construction of the Polish space of Pol-
ish spaces. First, it turns out that every Polish space is homeomorphic to a closed
subset of ℝℕ. Now, let (𝑈𝑛)𝑛∈ℕ be a countable basis for the topology of ℝℕ.
To each closed set 𝑋 ⊆ ℝℕ, we assign a code 𝖼𝗈𝖽𝖾𝑋 ∈ {0, 1}ℕ as follows:
𝖼𝗈𝖽𝖾𝑋 (𝑛) = 1 if and only if 𝑋 ∩𝑈𝑛 ≠ ∅. Let 𝔛 ⊆ {0, 1}ℕ be the set of all codes
of closed subsets of ℝℕ. One can show that 𝔛 is Polish in the relative topology
inherited from {0, 1}ℕ. Thus, all Polish spaces are parameterized by the points
of the Polish space 𝔛.
2We should point out that the class of measurable sets varies with the choice
of the measure 𝜇. For simplicity, we shall assume throughout this article that
whenever we speak of measurable sets, it is with respect to some implicitly fixed
probability measure.
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the symmetric difference 𝐴 ▵ 𝐴′ is meager—informally, 𝐴
and 𝐴′ are “topologically almost equal.” The area studying
meager and Baire-measurable sets is called Baire category
theory (owing to the older term “sets of first category” for
meager sets). For a detailed comparison of measure and
Baire category, see the excellent book [Oxt80] by Oxtoby.
1.2. Borel graphs and their combinatorics. As men-
tioned earlier, descriptive combinatorics investigates clas-
sical combinatorial problems—such as graph coloring,
matching, etc.—from the perspective of descriptive set the-
ory. The central notion here is that of a Borel graph:

Definition 1.4 (Borel graphs). A Borel graph is a graph 𝐺
whose vertex set 𝑉(𝐺) is a Polish space and whose edge set
𝐸(𝐺) is a Borel subset of 𝑉(𝐺) × 𝑉(𝐺).

In this section, we describe some examples of Borel
graphs and highlight a few of their properties that are of
interest in descriptive combinatorics.
1.2.1. The hypercube. For our first example, let 𝐻 be the
graph with vertex set {0, 1}ℕ in which two bit strings 𝑥 =
(𝑥0, 𝑥1, 𝑥2, …), 𝑦 = (𝑦0, 𝑦1, 𝑦2, …) ∈ {0, 1}ℕ are adjacent if
and only if they differ in exactly one coordinate, i.e., if
there is a unique index 𝑛 ∈ ℕ such that 𝑥𝑛 ≠ 𝑦𝑛. We call𝐻
the infinite-dimensional hypercube (it can be viewed as the in-
verse limit of finite-dimensional hypercubes, the first few
of which are shown in Fig. 2). The graph 𝐻 is Borel, since
it is easy to construct a countable Boolean circuit which,
given two infinite bit strings 𝑥 and 𝑦, determines if they
are adjacent in 𝐻.

Note that the vertex set of 𝐻 has cardinality 2ℵ0 . This
is typical for graphs studied in descriptive combinatorics,
since their vertex sets usually are uncountable Polish
spaces.

Next, we observe that, somewhat surprisingly and in
contrast to finite-dimensional Boolean cubes, the graph
𝐻 is disconnected. To see this, recall that the connected
component of a vertex 𝑥 in a graph 𝐺 is the smallest set
[𝑥]𝐺 ⊆ 𝑉(𝐺) that contains 𝑥 and such that there are no
edges joining [𝑥]𝐺 to 𝑉(𝐺)⧵ [𝑥]𝐺. Equivalently, [𝑥]𝐺 is the
set of all vertices reachable from 𝑥 in 𝐺 by a finite path.
A graph is connected if it has a single connected compo-
nent. Now take any vertex 𝑥 ∈ {0, 1}ℕ in 𝐻. A moment’s
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Figure 2. 1-, 2-, and 3-dimensional hypercubes. In contrast to
the infinite-dimensional hypercube, these graphs are
connected.

thought reveals that the connected component [𝑥]𝐻 is the
set of all sequences 𝑦 ∈ {0, 1}ℕ that differ from 𝑥 in only
finitely many coordinates. For instance, if 𝑥 = (0, 0, 0, …),
then [𝑥]𝐻 is the set of all bit strings with finitelymany 1s. It
follows that every connected component of𝐻 is countable,
which implies that 𝐻 has 2ℵ0 -many components. This is
also a typical feature of graphs studied in descriptive com-
binatorics.

One of the most important parameters studied in graph
theory is the chromatic number of a graph:

Definition 1.5 (Chromatic numbers). Let 𝐺 be a graph. A
subset 𝐼 ⊆ 𝑉(𝐺) is 𝐺-independent if no edge of 𝐺 joins two
vertices in 𝐼. The chromatic number 𝜒(𝐺) of𝐺 is the smallest
cardinal 𝜅 such that 𝑉(𝐺) can be partitioned into 𝜅-many
𝐺-independent sets.

Let us compute the chromatic number of 𝐻:

Proposition 1.6. We have 𝜒(𝐻) = 2.
Proof. Clearly, 𝜒(𝐻) ≥ 2. To prove that 𝜒(𝐻) ≤ 2, we
need to partition {0, 1}ℕ into two 𝐻-independent sets. To
this end, choose an arbitrary representative from every con-
nected component of 𝐻. For 𝑥 ∈ {0, 1}ℕ, let 𝗋𝖾𝗉(𝑥) be the
representative from [𝑥]𝐻 . Since 𝑥 and 𝗋𝖾𝗉(𝑥) belong to the
same component of 𝐻, they differ in finitely many coordi-
nates. Thus, we can let 𝛿(𝑥) be the number of coordinates
where 𝑥 and 𝗋𝖾𝗉(𝑥) differ and define

𝐴 ≔ {𝑥 ∈ {0, 1}ℕ ∶ 𝛿(𝑥) is even},
𝐵 ≔ {𝑥 ∈ {0, 1}ℕ ∶ 𝛿(𝑥) is odd}.

If 𝑥 and 𝑦 are neighbors in 𝐻, then 𝗋𝖾𝗉(𝑥) = 𝗋𝖾𝗉(𝑦), and
hence |𝛿(𝑥) − 𝛿(𝑦)| = 1. Therefore, the sets 𝐴 and 𝐵 are
𝐻-independent and partition {0, 1}ℕ, as desired. □

Since we know that 𝜒(𝐻) = 2, it makes sense to ask the
following question:

Can the set {0, 1}ℕ be partitioned into two Borel 𝐻-
independent sets?

This is a special case of the following general problem:

Definition 1.7 (Borel chromatic numbers). Let 𝐺 be a
Borel graph. The Borel chromatic number 𝜒𝖡(𝐺) of 𝐺 is the
smallest 𝜅 ∈ {0, 1, 2, … , ℵ0, 2ℵ0 } such that 𝑉(𝐺) can be par-
titioned into 𝜅-many Borel 𝐺-independent sets.3 The mea-
surable and Baire-measurable chromatic numbers 𝜒𝖬(𝐺) and
𝜒𝖡𝖬(𝐺) are defined analogously.

It turns out that, although the chromatic number of 𝐻
is 2, its Borel chromatic number is uncountable!

3Note that, by definition, if 𝜒𝖡(𝐺) is uncountable, then 𝜒𝖡(𝐺) = 2ℵ0 . This
convention is motivated by the fact that every uncountable Polish space has car-
dinality 2ℵ0 . However, it may still be meaningful to ask whether 𝑉(𝐺) can be
partitioned into 𝜅-many Borel 𝐺-independent sets for some ℵ0 < 𝜅 < 2ℵ0 . This
issue will not play a major role in this article, since we shall be mostly interested
in the case when 𝜒𝖡(𝐺) is finite.
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Proposition 1.8. The set {0, 1}ℕ cannot be partitioned into
countably many Borel 𝐻-independent sets. In other words,
𝜒𝖡(𝐻) = 2ℵ0 .

Actually, we even have 𝜒𝖬(𝐻) = 𝜒𝖡𝖬(𝐻) = 2ℵ0 (and,
of course, both 𝜒𝖬(𝐻) and 𝜒𝖡𝖬(𝐻) are lower bounds for
𝜒𝖡(𝐻)). To prove this, one shows that every measur-
able 𝐻-independent set must have measure 0, while ev-
ery Baire-measurable 𝐻-independent set must be mea-
ger. Since countable unions of measure-0/meager sets
are still measure-0/meager, it is impossible to cover the
entire space {0, 1}ℕ by countably many measurable/Baire-
measurable 𝐻-independent sets.

One interpretation of Proposition 1.8 is that there is no
“explicit” partition of the vertex set of𝐻 into two—or even
countably many—𝐻-independent sets. What makes the
construction in the proof of Proposition 1.6 “inexplicit” is
the very first step, namely choosing a single vertex in each
connected component of 𝐻. This step implicitly invokes
the so-called Axiom of Choice:

Axiom 1.9 (Choice). If ℱ is a family of nonempty sets, then
there is a way to pick one element from each set in ℱ. Formally,
there is a function 𝖼𝗁𝗈𝗂𝖼𝖾 that assigns to each𝐴 ∈ ℱ an element
𝖼𝗁𝗈𝗂𝖼𝖾(𝐴) ∈ 𝐴.

The Axiom of Choice is part of the axiom system ZFC
(Zermelo–Fraenkel set theory with the Axiom of Choice) and
plays a crucial role in the foundations of mathematics.
While most other axioms of ZFC assert the existence of
concrete sets, such as the powerset 𝒫(𝐴) of a given set 𝐴,
the Axiom of Choice postulates the existence of a choice
function without actually describing how the choice is to
be made. In this sense, the Axiom of Choice is non-
constructive—so much so that in the past it was viewed
with deep suspicion by many mathematicians. After all,
how canwe assert that something exists without being able
to provide even a single example? Although by now the
controversy around the Axiom of Choice has largely died
down andmostmathematicians use it without reservation,
it is still true that the Axiom of Choice—and hence our
proof of Proposition 1.6 based on it—is inherently non-
constructive. From this perspective, Proposition 1.8 says
that it is impossible to come up with an alternative, con-
structive argument—at least if by “constructive” we mean
“Borel.”4

1.2.2. Translation and rotation. In the remainder of this ar-
ticle we shall be concerned with Borel graphs 𝐺 of bounded
degree, meaning that there is a natural number 𝑑 ∈ ℕ such
that every vertex of 𝐺 has at most 𝑑 neighbors. A typical

4This is not the only way in which the Axiom of Choice affects chromatic num-
bers of graphs. For instance, the following remarkable fact was established by
Galvin and Komjáth: the statement that the chromatic number is well-defined
for every graph 𝐺 is equivalent to the Axiom of Choice.

. . . . . .
−3 −2 −1 0 1 2 3

Figure 3. A partition of ℝ into two Borel 𝐺tr-independent sets
(indicated by the colors).

. . .
0 1𝛼 2𝛼 3𝛼

Figure 4. A partition of [0, 1) into three Borel 𝐺rot-independent
sets (indicated by the colors).

example is the graph 𝐺tr with vertex set ℝ in which ver-
tices 𝑥 and 𝑦 are adjacent if and only if |𝑥 − 𝑦| = 1. In
other words, each 𝑥 ∈ ℝ has precisely two neighbors in
𝐺tr: 𝑥 − 1 and 𝑥 + 1. It follows that every connected com-
ponent of 𝐺tr is a bi-infinite path i.e., a path infinite in both
directions. In particular, just like the hypercube graph 𝐻
from §1.2.1, 𝐺tr has 2ℵ0 -many countable connected com-
ponents. (This fact can also be observed directly, since the
vertices in the half-open interval [0, 1) belong to distinct
components.) Clearly, 𝜒(𝐺tr) = 2. In contrast to the graph
𝐻 from §1.2.1 however, we can explicitly describe a parti-
tion of 𝐺tr into two independent sets 𝐴 and 𝐵: for every
integer 𝑛 ∈ ℤ, put the points in the interval [𝑛, 𝑛 + 1) in 𝐴
if 𝑛 is even and in 𝐵 if 𝑛 is odd (see Fig. 3). This yields

𝐴 = ⋃
𝑘∈ℤ

[2𝑘, 2𝑘 + 1) and 𝐵 = ⋃
𝑘∈ℤ

[2𝑘 − 1, 2𝑘).

These sets are Borel, so we in fact have 𝜒𝖡(𝐺tr) = 2.
Next we fix a number 𝛼 ∈ (0, 1) ⧵ ℚ and define a graph

𝐺rot as follows. The vertex set of 𝐺rot is the half-open unit
interval [0, 1). Two vertices 𝑥, 𝑦 ∈ [0, 1) are adjacent in𝐺rot
if and only if 𝑦−𝑥 = ±𝛼 (mod 1). Again, every vertex 𝑥 has
precisely two neighbors, namely 𝑥 + 𝛼 (mod 1) and 𝑥 − 𝛼
(mod 1). (Another way of thinking about this graph is by
“wrapping” the unit interval around a circle, which turns
adding 𝛼 modulo 1 into rotation by the angle 2𝜋𝛼.) Since
𝛼 is irrational, it is not hard to see that 𝐺rot has 2ℵ0 -many
connected components, each of which is a bi-infinite path.
In other words, the graphs 𝐺rot and 𝐺tr are isomorphic. In
particular, 𝜒(𝐺rot) = 2. But canwe describe a bipartition of
𝐺rot explicitly? An attempt to adapt the construction used
for 𝐺tr fails, although it does yield a partition of 𝐺rot into
three Borel independent sets (see Fig. 4). In fact, it turns
out that no explicit bipartition of 𝐺rot exists. This statement
is made precise by the following proposition:

Proposition 1.10. We have 𝜒𝖡(𝐺rot) = 3. Furthermore,
𝜒𝖬(𝐺rot) = 𝜒𝖡𝖬(𝐺rot) = 3 as well.

In other words,𝐺tr and𝐺rot are two graphs that are com-
binatorially isomorphic, but the topological structures on
their vertex sets affect their Borel, measurable, and Baire-
measurable chromatic numbers in different ways.
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1.2.3. Locally checkable labeling problems. In the above ex-
amples, we have been interested in chromatic numbers of
graphs as well as in their Borel, measurable, etc. analogs.
Naturally, there are many other combinatorial concepts
we may want to study. Many of them fall into the general
framework of locally checkable labelling (LCL) problems (also
known as local coloring problems). In an LCL problemΠ, we
are asked to assign labels from a finite set Λ to the vertices
of a graph 𝐺 in such a way that certain constraints are satis-
fied. The constraints must be “local” in the sense that they
can be checked by looking at the labels of each vertex and
its neighbors. For a formal (and somewhat more general)
definition, see, e.g., [Ber20, §2.A.1]. For our purposes, it
will suffice to give a few examples that illustrate what sort
of problems fall into this category.

The prototypical example is the 𝑘-coloring problem: as-
sign the labels Λ = {1, … , 𝑘}, referred to as “colors,” to the
vertices of 𝐺 so that the label of each vertex is distinct from
the labels of its neighbors. Note that this is a “local” con-
straint in the sense described above: it only involves com-
paring the label of a vertex to those of its neighbors. By
definition, the set of all vertices receiving a particular label
in a 𝑘-coloring must be a 𝐺-independent set, and hence 𝐺
admits a 𝑘-coloring if and only if 𝜒(𝐺) ≤ 𝑘.

Another well-studied problem is the Maximal Indepen-
dent Set (MIS) problem: find an independent set 𝐼 ⊆ 𝑉(𝐺)
that ismaximal under inclusion. This can be interpreted as
an LCL problem as follows. We can encode a set 𝐼 ⊆ 𝑉(𝐺)
by its characteristic function, which assigns the labels Λ =
{0, 1} to the vertices of 𝐺. It is easy to see that 𝐼 is an MIS
if and only if this labelling satisfies the following “local”
constraint:

If a vertex is labeled 1, then all its neighbors are labeled
0, while if a vertex is labeled 0, then at least one of its
neighbors is labeled 1.

As our last example, consider the perfect matching prob-
lem: find a set of edges 𝑀 ⊆ 𝐸(𝐺) such that every vertex is
incident to exactly one edge in 𝑀. If 𝑥𝑦 is an edge in 𝑀,
then we say that the vertices 𝑥 and 𝑦 are matched to each
other. Thus, a perfect matching splits 𝑉(𝐺) into pairs of
matched vertices. To place the perfect matching problem
into the LCL framework, let us assume that 𝐺 is a graph
of bounded degree; more precisely, suppose that every ver-
tex of 𝐺 has at most 𝑑 neighbors, for some 𝑑 ∈ ℕ. For
each 𝑥 ∈ 𝑉(𝐺), we fix an arbitrary ordering of the neigh-
bors of 𝑥. (If 𝐺 is a Borel graph, it is possible to fix such
an ordering “in a Borel way,” in the sense that for each 𝑖,
the set {(𝑥, 𝑦) ∈ 𝑉(𝐺) × 𝑉(𝐺) ∶ 𝑦 is the 𝑖-th neighbor of 𝑥}
is Borel.) Then we can identify a perfect matching with a
labeling of 𝑉(𝐺) using the labels Λ = {1, … , 𝑑} such that
a vertex is given the label 𝑖 when it is matched to its 𝑖-th
neighbor. Such labeling encodes a perfect matching if and
only if the following constraint holds:

Let 𝑥 be a vertex labeled 𝑖 and let 𝑦 be the 𝑖-th neighbor
of 𝑥. If 𝑦’s label is 𝑗, then 𝑥 is the 𝑗-th neighbor of 𝑦.

In other words, if 𝑥 is matched to 𝑦, then 𝑦 must be
matched to 𝑥. This constraint is again “local,” which
makes the perfect matching problem an LCL problem (at
least on bounded degree graphs).

In descriptive combinatorics, we are interested in Borel
solutions to LCL problems:

Definition 1.11 (Borel solutions to LCL problems). Let Π
be an LCL problem with label set Λ and let 𝐺 be a Borel
graph. A labeling of the vertices of 𝐺 by the labels from Λ
is a Borel solution to Π if it fulfills all the constraints of the
problem Π and, additionally, for each label 𝜆 ∈ Λ, the set
of all vertices labeled 𝜆 is Borel.

Measurable and Baire-measurable solutions to Π are de-
fined analogously.

By applying Definition 1.11 to specific LCL problems,
we obtain, as special cases, Borel 𝑘-colorings, Borel maxi-
mal independent sets, and Borel perfect matchings. In gen-
eral, a lot of research in descriptive combinatorics can be
seen as addressing the following comprehensive question:

Question 1.12 (Descriptive complexity of LCL problems).
Given a class 𝔾 of Borel graphs, which LCL problems Π
admit Borel/measurable/etc. solutions on the graphs in𝔾?

As stated, this question may seem way too general to
say anything meaningful about. However, rather surpris-
ingly, some recent work has led to significant progress to-
ward a complete answer! The key to this new work is the
discovery of an intimate connection between the answer
to Question 1.12 and the complexity of solving the prob-
lem Π on finite graphs using a distributed algorithm. The
second part of this paper is dedicated to a survey of this
connection.

2. Connections to Distributed Computing
2.1. The 𝖫𝖮𝖢𝖠𝖫 model of distributed computation. The
area of distributed computing studies computational pro-
cesses performed by decentralized groups of independent
agents. There are several different models of distributed
computation that emphasize various aspects of it, such
as fault-tolerance, communication bandwidth, etc. For
our purposes, the relevant model is called 𝖫𝖮𝖢𝖠𝖫 and was
formally introduced by Linial in 1992 [Lin92] (although
some related results had already been established some-
what earlier). For a comprehensive introduction to this
model, see the book [BE13] by Barenboim and Elkin. We
now briefly describe the key elements of this model.

The 𝖫𝖮𝖢𝖠𝖫 model operates on an 𝑛-vertex graph 𝐺.
(Note that, in contrast to the examples discussed in §1.2,
the graph 𝐺 here is finite.) We think of 𝐺 as representing a
decentralized communication network where each vertex
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plays the role of a processor and edges represent communi-
cation links. The computation proceeds in rounds. During
each round, the vertices first perform some local compu-
tations and then synchronously broadcast messages to all
their neighbors. After a number of rounds, every vertex
must generate its own part of the output of the algorithm.
For example, if the goal of the algorithm is to solve some
LCL problem, then each vertex must eventually decide on
its own label. The efficiency of such an algorithm is mea-
sured by the number of communication rounds required
to produce the output. In particular, there are no restric-
tions on the complexity of the local computations that the
vertices perform during each round (we imagine that the
computational resources available to the vertices are infi-
nite) or on the length of themessages that the vertices send
to each other.

An important feature of the 𝖫𝖮𝖢𝖠𝖫 model is that every
vertex of 𝐺 is executing the same algorithm. Therefore, to
make this model nontrivial, there must be a way to distin-
guish the vertices from each other. There are two standard
symmetry-breaking approaches, leading to the distinction
between deterministic and randomized 𝖫𝖮𝖢𝖠𝖫 algorithms:

• In the deterministic version of the 𝖫𝖮𝖢𝖠𝖫 model, each
vertex 𝑥 ∈ 𝑉(𝐺) is assigned, as part of its input, an
identifier Id(𝑥), which is a string of Θ(log 𝑛) bits. It
is guaranteed that the identifiers assigned to different
vertices are distinct. Subject to this guarantee, the al-
gorithm must always output a correct solution to the
problem, regardless of the specific assignment of the
identifiers.

• In the randomized version of the 𝖫𝖮𝖢𝖠𝖫 model, each
vertex may generate an arbitrarily long finite sequence
of independent uniformly distributed random bits.
The algorithm may fail to produce a correct solution
to the problem, but the probability of failuremust not
exceed 1/𝑛.

We remark that the randomized version of the model
is more computationally powerful than the deterministic
one. This is because a deterministic 𝖫𝖮𝖢𝖠𝖫 algorithm can
be simulated by a randomized one: each vertex can sim-
ply generate a random sequence of ⌈3 log2 𝑛⌉ bits and use
it as its identifier—the probability that two identifiers gen-
erated in this way coincide is easily seen to be less than
1/𝑛.

If 𝑥 and 𝑦 are two vertices whose graph distance in 𝐺
(i.e., the length of the shortest 𝑥𝑦-path) is 𝑇, then no in-
formation from 𝑦 can reach 𝑥 in fewer than 𝑇 communi-
cation rounds (this explains the name “𝖫𝖮𝖢𝖠𝖫” given to
the model). Conversely, in 𝑇 rounds every vertex can col-
lect all the data present at the vertices at distance at most 𝑇
from it. Thus, a 𝑇-round 𝖫𝖮𝖢𝖠𝖫 algorithm may be con-
strued simply as a function that, given the structure of
the radius-𝑇 ball around 𝑥 (including all the additional

𝑥 𝑦 𝑧

even

odd

same color different colors

switch!

Figure 5. An illustration for the proof of Proposition 2.1. The
three marked intervals are of length 2𝑇 = 𝑜(𝑛).

information, such as the assignment of the identifiers or
random bit sequences to its vertices), decides on 𝑥’s out-
put. In other words, the complexity of a 𝖫𝖮𝖢𝖠𝖫 algorithm
measures how far in the graph an individual vertex should
be allowed to “see” in order to be able to produce its own
output. Naturally, if every vertex is allowed to “see” the
entire graph, then the model trivializes. Thus, we are inter-
ested in algorithms that only allow each vertex to access a
relatively small part of the graph.

As an illustration, let us consider a simple example. Sup-
pose that 𝐺 is an 𝑛-vertex path. Of course, 𝜒(𝐺) = 2. How
fast can a 2-coloring of 𝐺 be computed by a 𝖫𝖮𝖢𝖠𝖫 algo-
rithm? Obviously, 𝑂(𝑛) rounds suffice (because in that
many rounds each vertex will have access to the entire
graph). On the other hand, it is fairly easy to show that
𝑜(𝑛) rounds are not enough:

Proposition 2.1. There is no 𝑜(𝑛)-round 𝖫𝖮𝖢𝖠𝖫 algorithm
(either deterministic or randomized) that finds a 2-coloring of
an 𝑛-vertex path.

Proof. We give an argument in the deterministic case (leav-
ing the randomized case as a nice exercise to the reader).
Suppose that there is a 𝑇-round deterministic 𝖫𝖮𝖢𝖠𝖫 algo-
rithm 𝒜 for 2-coloring an 𝑛-vertex path, where 𝑇 ≪ 𝑛. We
can pick three vertices 𝑥, 𝑦, 𝑧 such that the distance be-
tween 𝑥 and 𝑦 is even, while the distance between 𝑥 and
𝑧 is odd, and, furthermore, all the pairwise distances be-
tween 𝑥, 𝑦, and 𝑧 exceed 2𝑇 (see Fig. 5). Fix any assign-
ment of identifiers and let 𝑐(𝑥), 𝑐(𝑦), 𝑐(𝑧) be the colors
given by the algorithm 𝒜 to 𝑥, 𝑦, and 𝑧 respectively. In
a 2-coloring of a path, the two colors alternate, so we must
have 𝑐(𝑥) = 𝑐(𝑦) ≠ 𝑐(𝑧). Without loss of generality, say
𝑐(𝑥) = 𝑐(𝑦) = 1 and 𝑐(𝑧) = 2. Now let us exchange the as-
signments of the identifiers in the interval of length 2𝑇 cen-
tered around 𝑦 with those in the interval centered around
𝑧 and let 𝑐′(𝑥), 𝑐′(𝑦), 𝑐′(𝑧) be the colors given to 𝑥, 𝑦, and
𝑧 by the algorithm 𝒜 with this new assignment of identi-
fiers. Since the output of𝒜 at a vertex is determined by the
identifiers in the interval of length 2𝑇 centered around it,
we have 𝑐′(𝑥) = 𝑐′(𝑧) = 1 and 𝑐′(𝑦) = 2. This is a contradic-
tion since the colors of 𝑥 and 𝑦 must be the same, while
the colors of 𝑥 and 𝑧 must be different. □
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2.2. A sample of results. The first hint of the connection
between distributed algorithms and descriptive combina-
torics can be obtained by comparing some known results
in the two areas. For example, consider the following prob-
lem:

Fix a natural number 𝑑 ∈ ℕ. What is the minimum
𝑘 = 𝑘(𝑑) such that a 𝑘-coloring of a graph of maxi-
mum degree 𝑑 can be found efficiently?

Here the maximum degree of a graph is the maximum num-
ber of neighbors of a vertex. If we interpret the word “ef-
ficiently” to mean “with a fast 𝖫𝖮𝖢𝖠𝖫 algorithm,” then we
have the following result:

Theorem 2.2 (Goldberg–Plotkin–Shannon [BE13, §3]).
There exists a deterministic 𝖫𝖮𝖢𝖠𝖫 algorithm that finds a
(𝑑 + 1)-coloring of an 𝑛-vertex graph of maximum degree 𝑑
in 𝑂(log∗ 𝑛) rounds.5

In the statement of Theorem 2.2, log∗ 𝑛 is the iterated
logarithm of 𝑛, i.e., the number of times the logarithm func-
tion must be iteratively applied to 𝑛 before the result be-
comes at most 1. This is an extremely slow-growing func-
tion. In particular—and most importantly for us—it is
asymptotically of order 𝑜(log 𝑛). In a graph of maximum
degree 𝑑, a vertex can “see” at most 𝑑𝑇 other vertices in 𝑇
rounds of the 𝖫𝖮𝖢𝖠𝖫 model. Therefore, if 𝑇 = 𝑜(log 𝑛), a
vertex will definitely not have access to the entire graph. In
this sense, 𝑜(log 𝑛) rounds is a natural threshold for “truly
local” algorithms.

Can we reduce the number of colors to 𝑑? An obvious
obstacle is that 𝐺 may contain a clique on 𝑑 + 1 vertices,
all of which would have to receive different colors. On the
other hand, the so-called Brooks’s theorem in graph theory
asserts that if 𝑑 ≥ 3 and 𝐺 is a graph of maximum degree 𝑑
without a (𝑑+1)-clique, then 𝜒(𝐺) ≤ 𝑑, i.e., a 𝑑-coloring of
𝐺 exists. Nevertheless, it turns out that no efficient deter-
ministic 𝖫𝖮𝖢𝖠𝖫 algorithm can find such a coloring, even if
𝐺 has no cycles:

Theorem 2.3 (Chang–Kopelowitz–Pettie [CKP19]). There
is no deterministic 𝖫𝖮𝖢𝖠𝖫 algorithm that finds a 𝑑-coloring
of an 𝑛-vertex acyclic graph of maximum degree 𝑑 in 𝑜(log 𝑛)
rounds.

In contrast to Theorem 2.3, it is possible to reduce the
number of colors using a randomized algorithm:

Theorem 2.4 (Ghaffari–Hirvonen–Kuhn–Maus
[Gha+18]). There exists a randomized 𝖫𝖮𝖢𝖠𝖫 algorithm that
finds a 𝑑-coloring of an 𝑛-vertex graph 𝐺 of maximum degree
𝑑 in 𝑂((log log 𝑛)2) rounds, provided that 𝑑 ≥ 3 and 𝐺 has no
(𝑑 + 1)-cliques.

5Here and in the sequel we treat 𝑑 as a constant, meaning that the implied fac-
tors in the 𝑂(⋅) notation may depend on 𝑑.

Now let us turn to the descriptive combinatorics side
of the picture. How many colors do we need for a Borel
coloring of a Borel graph of maximum degree 𝑑? The first
result parallels Theorem 2.2:

Theorem 2.5 (Kechris–Solecki–Todorcevic [KST99]). If 𝐺
is a Borel graph of maximum degree 𝑑, then 𝜒𝖡(𝐺) ≤ 𝑑 + 1.

On the other hand, reducing the number of colors to 𝑑
is impossible even for graphs with no cycles:

Theorem 2.6 (Marks [Mar16]). For any 𝑑 ∈ ℕ, there is an
acyclic Borel graph 𝐺 of maximum degree 𝑑 such that 𝜒𝖡(𝐺) >
𝑑.

However, if we only want a measurable or Baire-
measurable coloring, then 𝑑 colors suffice:

Theorem 2.7 (Conley–Marks–Tucker-Drob [CMTD16]).
If 𝐺 is a Borel graph of maximum degree 𝑑, then both 𝜒𝖬(𝐺)
and 𝜒𝖡𝖬(𝐺) are at most 𝑑, provided that 𝑑 ≥ 3 and 𝐺 has no
(𝑑 + 1)-cliques.

Theorems 2.2–2.4 and 2.5–2.7 clearly mirror each
other. It seems that deterministic 𝖫𝖮𝖢𝖠𝖫 algorithms some-
how correspond to Borel constructions, while randomized
algorithms—to measurable and Baire-measurable ones. It
turns out that, indeed, this is not a coincidence and one
can prove some general connections of this form.
2.3. Efficient distributed algorithms yield descriptive re-
sults. In [Ber20], the following general result is estab-
lished:

Theorem 2.8 (Bernshteyn [Ber20]). Let 𝔾 be a class of finite
graphs closed under adding isolated vertices and let 𝐺 be a Borel
graph of bounded degree all of whose finite induced subgraphs
are in 𝔾. Fix an LCL problem Π.

(a) IfΠ can be solved on 𝑛-vertex graphs from𝔾 by an 𝑜(log 𝑛)-
round deterministic 𝖫𝖮𝖢𝖠𝖫 algorithm, then 𝐺 admits a
Borel solution to Π.

(b) IfΠ can be solved on 𝑛-vertex graphs from𝔾 by an 𝑜(log 𝑛)-
round randomized 𝖫𝖮𝖢𝖠𝖫 algorithm, then 𝐺 admits both
a measurable and a Baire-measurable solution to Π.

In short, efficient deterministic algorithms yield Borel
solutions, while efficient randomized algorithms yield
measurable and Baire-measurable solutions. The follow-
ing implications are special cases of Theorem 2.8:

Theorem 2.2 ⟹ Theorem 2.5,
Theorem 2.4 ⟹ Theorem 2.7,
Theorem 2.6 ⟹ Theorem 2.3.

In addition to its theoretical significance, Theorem 2.8
has a number of applications to specific problems. For in-
stance, if we already know an efficient 𝖫𝖮𝖢𝖠𝖫 algorithm
for some LCL problem, we can then use it to derive cor-
responding results in descriptive combinatorics. Several
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instances of this are given in [Ber20]. For example, Theo-
rem 2.8, together with known distributed algorithms due
to Chung, Pettie, and Su, is used in [Ber20, §3.B] to obtain
asymptotically optimal upper bounds on the measurable
chromatic number of Borel graphs without short cycles. In
the opposite direction, impossibility results in descriptive
combinatorics yield lower bounds on the running time of
distributed algorithms. In a recent paper [Bra+21], Brandt
et al. used this idea to derive new lower bounds for dis-
tributed algorithms via a version of the so-called determi-
nacy method that was originally developed by Marks to
prove Theorem 2.6.

Let us now say a few words about the proof of Theo-
rem 2.8. The proof of part (a) is actually not too difficult:

Proof of Theorem 2.8(a) (sketch). Suppose that Π is solved
on 𝑛-vertex graphs from 𝔾 by an 𝑜(log 𝑛)-round determin-
istic 𝖫𝖮𝖢𝖠𝖫 algorithm 𝒜. The idea is to simulate the exe-
cution of the algorithm 𝒜 on the given Borel graph 𝐺 by
“pretending” that 𝐺 is finite.

Let 𝑑 be the maximum degree of 𝐺 (which is finite by
assumption). Take a very large natural number 𝑛 and let
𝑇 ≪ log 𝑛 be the running time of𝒜 on 𝑛-vertex graphs. Let
𝑆 be the set of all bit strings of length ⌈log2 𝑛⌉.
Claim. There is a Borel labeling Id∶ 𝑉(𝐺) → 𝑆 such that
Id(𝑥) ≠ Id(𝑦) whenever 𝑥 ≠ 𝑦 and the graph distance be-
tween 𝑥 and 𝑦 is at most 2𝑇 + 2.
Proof of the claim. Define an auxiliary graph 𝐺′ with the
same vertex set as 𝐺 where distinct vertices 𝑥 and 𝑦 are ad-
jacent if and only if their graph distance in 𝐺 is at most
2𝑇 + 2. It is not hard to see that the graph 𝐺′ is Borel.
Since |𝑆| ≥ 𝑛, we just need to find a Borel 𝑛-coloring of 𝐺′.
The maximum degree of 𝐺′ is at most 𝑑2𝑇+2, which is less
than 𝑛 since 2𝑇 + 2 ≪ log 𝑛. Therefore, by Theorem 2.5,
𝐺′ has a Borel 𝑛-coloring, as desired. ⊣

We treat the bit string Id(𝑥) as a substitute for an iden-
tifier of 𝑥. By construction, although there may be other
vertices with the same identifier, they are far from 𝑥 in 𝐺.
In particular, if 𝑥 explores its radius-𝑇 ball in 𝐺, it will
only see distinct identifiers. Since the algorithm𝒜 applied
on 𝑛-vertex graphs doesn’t allow a vertex to see outside its
radius-𝑇 ball, wemay run𝒜 on𝐺 for 𝑇 rounds (as if𝐺 had
𝑛 vertices) using the function Id in place of the identifier
assignment. The output labeling will then be a solution to
Π, and, since Id is a Borel assignment, one can show that
the output will also be Borel. □

Arguments similar to the above proof sketch are com-
mon in distributed computing theory. For example, an
analogous approach was used by Chang, Kopelowitz, and
Pettie in [CKP19] to prove that no LCL problem can have
deterministic 𝖫𝖮𝖢𝖠𝖫 complexity in the interval between
𝜔(log∗ 𝑛) and 𝑜(log 𝑛).

The proof of Theorem 2.8(b) is quite a bit more in-
volved, and we won’t venture to explain it here. Let us
just mention one interesting feature of it. The key tool
used to prove Theorem 2.8(b) is the measurable version
of the Local Lemma, which is also established in [Ber20].
The Local Lemma is a well-known powerful tool in prob-
abilistic combinatorics that is often used to show that a
given LCL problemhas a solution. Themeasurable version
of this lemma additionally guarantees that the solution is
measurable. And here we encounter another point of inter-
action between descriptive combinatorics and distributed
computing: the proof of the measurable Local Lemma in
[Ber20] crucially relies on the efficient randomized 𝖫𝖮𝖢𝖠𝖫
algorithm for the Local Lemma developed by Fischer and
Ghaffari [FG17].
2.4. Perfect harmony between the two worlds: the case
of continuous solutions. Theorem 2.8 allows one to turn
efficient distributed algorithms into results in descriptive
combinatorics. It is natural to ask if some sort of converse
to Theorem 2.8 also holds, i.e., if we can obtain efficient
algorithms from descriptive results. While in general this
question remains widely open, there is one salient case
in which an exact correspondence between the descriptive
and the distributed worlds has been established. This case
concerns continuous solutions to LCL problems.

Definition 2.9 (Continuous solutions to LCL problems).
Let Π be an LCL problem with label set Λ and let 𝐺 be a
Borel graph. A labeling of the vertices of 𝐺 by the labels
from Λ is a continuous solution to Π if it fulfills all the con-
straints of the problem Π and, additionally, for each label
𝜆 ∈ Λ, the set of all vertices labeled 𝜆 is open.

Note that the set of all vertices receiving a given label
in a continuous solution must be both open and closed—
clopen, in short. Hence, it is only interesting to study con-
tinuous solutions to LCL problems on graphs 𝐺 such that
the space 𝑉(𝐺) has many clopen subsets. Specifically, we
focus on zero-dimensional spaces, i.e., spaces whose topol-
ogy is generated by clopen sets. Even though familiar
spaces such as ℝ do not have any nontrivial clopen sets,
zero-dimensional spaces are rather common. For example,
the space {0, 1}ℕ is zero-dimensional. Another example of
a zero-dimensional Polish space is ℝ ⧵ ℚ. Also, given any
Polish space 𝑋 , it is possible to refine the topology on 𝑋 to
make it zero-dimensional without changing the Borel sets.

The main result we want to describe in this section says,
roughly, that an LCL problem can be solved continuously
if and only if it can be solved via an efficient determinis-
tic distributed algorithm. To make this statement precise,
we need to specify a particular graph or a class of graphs
on which we attempt to solve the problem. While it is
possible to make the statement somewhat more general, it
will be convenient to consider classes of graphs that look
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very symmetric, such as regular trees or multi-dimensional
grids. The following general definition includes these ex-
amples as special cases:

Definition 2.10 (Γ-graphs). Let Γ be a group generated by
a fixed finite symmetric6 set 𝑆 ⊆ Γ.

The Cayley graph Cay(Γ) of Γ corresponding to 𝑆 is the
graph with vertex set Γ that includes, for every 𝛾 ∈ Γ and
𝜎 ∈ 𝑆, an edge from 𝛾 to 𝜎𝛾. To be precise, we view Cay(Γ)
as an edge-labeled graph, where the label of the edge (𝛾, 𝜎𝛾)
is 𝜎, but the reader may safely ignore this technicality.

A Γ-graph is a graph (with edge labels) in which every
connected component is isomorphic to Cay(Γ).

For instance, the Cayley graph of the additive group ℤ
with generating set 𝑆 = {1, −1} is a bi-infinite path. Sim-
ilarly, the Cayley graph of ℤ𝑑 with respect to an appro-
priately chosen generating set is an infinite 𝑑-dimensional
square grid. On the other hand, the Cayley graph of the
free group 𝔽𝑑 of rank 𝑑 is an infinite 𝑑-regular tree.

Given any group Γwith a finite symmetric generating set
𝑆, there is a canonical way to define a particular Γ-graph 𝐒Γ
on a zero-dimensional vertex set, called the shift graph of Γ.
The shift graph 𝐒Γ is an extremely important example that
plays a central role not only in descriptive combinatorics,
but also in such areas as ergodic theory and topological
dynamics. Before giving the general definition, it will be
instructive to consider the special case Γ = ℤ, with gener-
ating set 𝑆 = {1, −1}. For a subset 𝐴 ⊆ ℤ and an element
𝑛 ∈ ℤ, we write

𝐴 + 𝑛 ≔ {𝑚 + 𝑛 ∶ 𝑚 ∈ 𝐴}.

The set 𝐴 + 𝑛 can naturally be seen as a “shift” of 𝐴 by 𝑛
(hence the term “shift graph”). We say that a set 𝐴 ⊆ ℤ is
aperiodic if 𝐴 + 𝑛 ≠ 𝐴 for every non-zero 𝑛 ∈ ℤ. This is
equivalent to saying that the characteristic function 𝟏𝐴 of
𝐴 is not periodic, i.e., there is no integer 𝑛 ≠ 0 such that
𝟏𝐴(𝑚) = 𝟏𝐴(𝑚+𝑛) for all𝑚 ∈ ℤ. The shift graph 𝐒ℤ is the
graph whose vertices are the aperiodic subsets of ℤ and in
which every aperiodic set 𝐴 has two neighbors: 𝐴 + 1 and
𝐴 − 1. Thus, the connected component of 𝐴 in 𝐒ℤ is the
following infinite path:

⋯ — (𝐴 − 2) — (𝐴 − 1) — (𝐴)— (𝐴 + 1) — (𝐴 + 2) — ⋯

(Since 𝐴 is aperiodic, all the vertices on this path are dis-
tinct.) In particular, every component of 𝐒ℤ is isomorphic
to the Cayley graph of ℤ, so it is indeed a ℤ-graph.

Now for the general construction. Let Γ be a group with
a finite symmetric generating set 𝑆. For a set 𝐴 ⊆ Γ and an
element 𝛾 ∈ Γ, let

𝛾𝐴 ≔ {𝛾𝛼 ∶ 𝛼 ∈ 𝐴}.

6A subset 𝑆 ⊆ Γ is symmetric if for all 𝛾 ∈ 𝑆, 𝛾−1 ∈ 𝑆 as well.

A subset 𝐴 ⊆ Γ is aperiodic if 𝛾𝐴 ≠ 𝐴 for all non-identity
elements 𝛾 ∈ Γ. The vertices of 𝐒Γ are the aperiodic sub-
sets 𝐴 ⊆ Γ. For every 𝐴 ∈ 𝑉(𝐒Γ) and 𝜎 ∈ 𝑆, 𝐒Γ includes
an edge from 𝐴 to 𝜎𝐴 labeled 𝜎. By construction, for each
𝐴 ∈ 𝑉(𝐒Γ), the mapping 𝛾 ↦ 𝛾𝐴 establishes an isomor-
phism between Cay(Γ) and the connected component of
𝐴 in 𝐒Γ (the fact that 𝐴 is aperiodic guarantees that this
mapping is injective). Thus, 𝐒Γ is a Γ-graph. Furthermore,
by identifying each subset of Γ with its characteristic func-
tion, we can view 𝑉(𝐒Γ) as a subset of {0, 1}Γ, which makes
𝐒Γ a Borel graph on a zero-dimensional Polish space.

We now have the following result, obtained indepen-
dently by Bernshteyn [Ber21] and Seward (unpublished):

Theorem 2.11 (Bernshteyn [Ber21]/Seward). Let Γ be a
group generated by a finite symmetric set 𝑆 ⊆ Γ. For every
LCL problem Π, the following statements are equivalent:

(i) 𝐒Γ admits a continuous solution to Π.
(ii) There is an 𝑜(log 𝑛)-round deterministic 𝖫𝖮𝖢𝖠𝖫 algorithm

that solves Π on 𝑛-vertex subgraphs of the Cayley graph
Cay(Γ).

The implication (ii) ⟹ (i) of Theorem 2.11 is proved
in a manner analogous to the proof of Theorem 2.8(a)
sketched in §2.3. The implication (i) ⟹ (ii) is signif-
icantly more difficult and involves a careful analysis of
the structure of continuous functions on 𝑉(𝐒Γ). Inter-
estingly, this analysis again relies, among other things,
on tools from computer science such as the so-called
method of conditional probabilities. It also builds on
earlier work of Gao–Jackson–Seward [GJS16], Seward–
Tucker-Drob [STD16], and Elek [Ele18].

Theorem 2.11 explains the analogies between known
results in continuous combinatorics and distributed com-
puting. For example, in the case Γ = ℤ𝑑, the contin-
uous combinatorics of the shift graph have been stud-
ied in detail by Gao et al. [Gao+18]. Similarly, Brandt
et al. [Bra+17] investigated the LCL problems that can
be solved on 𝑑-dimensional square grids by efficient dis-
tributed algorithms. The results obtained by these two
groups of researchers—independently and using different
methods—perfectly parallel each other, exactly as Theo-
rem 2.11 predicts.
2.5. Baire-measurable solutions to LCL problems on
trees. The last result we would like to mention is a very
recent theorem that establishes a perfect equivalence be-
tween yet another pair of facets of the worlds of descriptive
combinatorics and distributed computing:

Theorem 2.12 (Brandt et al. [Bra+21]). Fix 𝑑 ∈ ℕ. For
every LCL problem Π, the following statements are equivalent:

(i) Every Borel graph𝐺 in which every component is an infinite
𝑑-regular tree admits a Baire-measurable solution to Π.

(ii) There is an𝑂(log 𝑛)-round deterministic 𝖫𝖮𝖢𝖠𝖫 algorithm
that solves Π on 𝑛-vertex trees of maximum degree 𝑑.

OCTOBER 2022 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1505



𝖣𝖾𝗍𝖫𝖮𝖢𝖠𝖫(𝑜(log 𝑛))

𝖢𝖮𝖭𝖳𝖨𝖭𝖴𝖮𝖴𝖲 𝖡𝖮𝖱𝖤𝖫 𝖬𝖤𝖠𝖲𝖴𝖱𝖠𝖡𝖫𝖤 𝖡𝖠𝖨𝖱𝖤 𝖬𝖤𝖠𝖲𝖴𝖱𝖠𝖡𝖫𝖤

𝖣𝖾𝗍𝖫𝖮𝖢𝖠𝖫(𝑂(log 𝑛))𝖱𝖺𝗇𝖽𝖫𝖮𝖢𝖠𝖫(𝑜(log 𝑛))

=

⊂ ⊂ ⊂
=⊈

⊉

⊂

Figure 6. Known equalities and inequalities between classes of LCL problems on 𝑑-regular trees. Here 𝖣𝖾𝗍𝖫𝖮𝖢𝖠𝖫(𝑇(𝑛)) and
𝖱𝖺𝗇𝖽𝖫𝖮𝖢𝖠𝖫(𝑇(𝑛)) denote the classes of LCL problems solvable by a 𝑇(𝑛)-round determinisitic (respectively, randomized) 𝖫𝖮𝖢𝖠𝖫
algorithm. The symbol “⊂” indicates strict inclusion.

This is a truly inspiring result, which highlights how
deep the connections between descriptive combinatorics
and distributed computing lie. What makes it different
from Theorems 2.8 and 2.11 is that the complexity bound
on the distributed algorithm here is 𝑂(log 𝑛), not 𝑜(log 𝑛).
Note that in 𝑂(log 𝑛) rounds, a vertex of an 𝑛-vertex tree of
maximum degree 𝑑 ≥ 3 is guaranteed to discover a vertex
of degree less than 𝑑—and hence this algorithm cannot be
directly used on a 𝑑-regular graph 𝐺. Unsurprisingly, the
proof of the implication (ii)⟹ (i) in Theorem2.12 is con-
siderably more difficult than the proof of Theorem 2.8(a).
In fact, both implications in Theorem 2.12 are highly non-
trivial. The high-level idea of the argument is to isolate a
certain combinatorial property of LCL problems and show
that this property is equivalent to each of (i), (ii) separately
(the former equivalence was established by Bernshteyn
(unpublished), the latter—by Brandt et al. [Bra+21]).
2.6. Final thoughts and open problems. The intimate
interactions between descriptive combinatorics and dis-
tributed computing have only very recently been discov-
ered, and most questions about them remain open. Per-
haps the central open problem is this:

Question 2.13. Is there a version of Theorem 2.11 for
Borel solutions to LCL problems? In other words, is there
a precise algorithmic counterpart to the notion of a Borel
solution (similar to how 𝑜(log 𝑛)-round 𝖫𝖮𝖢𝖠𝖫 algorithms
are equivalent to continuous solutions)?

The same questions for measurable and (except for
graphs with no cycles) Baire-measurable solutions are also
open. Even on graphs as simple as 𝑑-regular trees, many
open questions remain. The diagram in Fig. 6 summarizes
our knowledge regarding the complexity of LCL problems
on 𝑑-regular trees. In particular, we know that there are
LCL problems that admit Borel solutions but cannot be
solved by an 𝑜(log 𝑛)-round randomized algorithm, but
there are also LCL problems that can be solved by such an
algorithm but do not admit Borel solutions. Therefore, a
new algorithmic framework seems to be needed to capture
the notion of a Borel solution precisely.

On classes of graphs other than trees, our knowledge is
even scanter. For example, the following basic question is
open:

Question 2.14. Fix an integer 𝑑 ≥ 2. Does there exist
an LCL problem Π such that the shift graph 𝐒ℤ𝑑 admits
a measurable solution to Π but not a Borel one? What
about Baire-measurable solutions?

Another area with close ties to distributed computing
and descriptive combinatorics is the study of so-called fini-
tary factors of i.i.d. processes. This is a class of particularly
well-behaved random processes on networks of great inter-
est in probability theory. Finitary factors of i.i.d. processes
can be used to create a complexity hierarchy of LCL prob-
lems, and Grebı́k and Rozhoň recently discovered that in
many cases this hierarchy parallels the one arising from
considering descriptive and 𝖫𝖮𝖢𝖠𝖫 complexity. For more
details on this exciting connection, see the papers [GR21]
by Grebı́k and Rozhoň and [Bra+21] by Brandt et al.

In spite of all the open problems mentioned above, it
really does appear that the combination of tools from de-
scriptive set theory and distributed computing is the key
to attaining a deep understanding of the behavior of LCL
problems under various “effectiveness” requirements. Ex-
citing discoveries await, and they will surely enrich descrip-
tive combinatorics and distributed computing alike.
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V. Rozhoň, and Z. Vidnyánszky, Local problems on trees from
the perspectives of distributed algorithms, finitary factors, and
descriptive combinatorics, 2021, https://arxiv.org/abs
/2106.02066.

1506 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 9

https://arxiv.org/abs/2106.02066
https://arxiv.org/abs/2106.02066
http://www.ams.org/mathscinet-getitem?mr=3184899


[Bra+17] S. Brandt, J. Hirvonen, J. H. Korhonen, T. Lempiäi-
nen, P. R. J. Östergård, C. Purcell, J. Rybicki, J. Suomela,
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