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Abstract. Motifs are small subgraph patterns that play a key role
towards understanding the structure and the function of biological and
social networks. The current de facto approach towards assessing the sta-
tistical significance of a motif M relies on counting its occurrences across
the network, and comparing that count to its expected count under some
null generative model. This approach can be misleading due to combi-
natorial artifacts. That is, there may be a large count for a motif due
to multiple copies sharing many vertices and edges connected to a sub-
graph, such as a clique, that completes the multiple copies of the motif.

In this work we introduce the novel concept of an (f, q)-spanning motif.
A motif M is (f, q)-spanning if there exists a q-fraction of the nodes that
induces an f -fraction of the occurrences of M in G. Intuitively, when f is
close to 1, and q close to 0, most of the occurrences of M are localized in
a small set of nodes, and thus its statistical significance is likely to be due
to a combinatorial artifact. We propose efficient heuristics for finding the
maximum f for a given q and minimum q for a given f for which a motif
is (f, q)-spanning and evaluate them on real-world datasets. Our methods
successfully identify combinatorial artifacts that otherwise go undetected
using the standard approach for assessing statistical significance.

Finally, we leverage the motif structure of a network to design Motif-
Scope, an algorithm that takes as input a graph and two motifs M1,M2,
and finds subgraphs of the graph where M1,M2 occur infrequently and
frequently respectively. We show that a good selection of M1,M2 allows
us to find anomalies in large networks, including bipartite cliques in social
graphs, and subgraphs rated with distrust in Bitcoin markets.
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1 Introduction

Network motifs, or small induced subgraph patterns, are known to play a key
role in understanding the structure and function of various real-world networks,
especially biological [28,40], and social networks [47]. For example the feed-
forward loop (FFL) is one of the most significant subgraphs in the transcription
network of the bacteria Escherichia coli. The FFL has three nodes corresponding
to transcription factors. The transcription factor X regulates a second transcrip-
tion factor Y, and together they bind the regulatory region of a target gene Z,
jointly modulating its transcription rate [27]. In social networks, triangles (K3s)
are known to appear frequently despite the edge sparsity of the network [49].
Ugander, Backstrom, and Kleinberg [47] showed that on the other hand social
networks have very few cycles of length 4 (C4s). This sheer contrast in the counts
of K3s and C4s relates to human nature. Specifically, friends of friends are typi-
cally friends themselves, thus introducing edges that create K3s but remove C4s
[49]. An FFL and a C4 are shown in Fig. 1(a).

Fig. 1. (a) A feed-forward loop (FFL, top) and a C4 (bottom). (b) Figure source [17]:
the subgraph M on the left appears to be statistically significant in the network G on
the right due to the presence of a large independent set, and a large clique in G. The
independent set creates

(
12
3

)
stars with three leaves, while the large clique creates

(
9
4

)

smaller cliques of order 4, resulting in a total count of
(
12
3

) × (
9
4

)
occurrences, leading

to the misleading conclusion that M is a statistically significant motif. We refer to this
phenomenon as a combinatorial artifact, see also [17,32].

The de facto current approach towards assessing the statistical significance
of a motif M involves two steps: (i) counting the occurrences of M in the input
graph, and (ii) comparing that count to the expected number of occurrences of
M under a null generative model. This approach has been widely used in the
literature since the early 2000s [28,40], but nonetheless has significant drawbacks.
The proper choice of the null model is a concern that was raised soon after the
publication of the seminal work of Milo et al. [28], see the comment by Artzy et
al. [1]. A suitable null model should generate networks similar to the input graph,
as otherwise there is a danger of incorrectly assessing a motif as statistically
significant (or not) due to an ill-posed null hypothesis. Also importantly, the
current approach suffers from combinatorial artifacts. As observed originally
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by Lior Pachter in his blog [32], as well as by Grochow and Kellis [17], the
existence of large independent sets and large cliques can obfuscate the relevance
of the count of a motif. Consider the motif M with fifteen nodes corresponding
to proteins shown in Fig. 1(b) on the left as originally shown in [17]. A node
connected with a line to a set of nodes enclosed by a circle/oval denotes that the
node is connected to all the nodes within that set. The closed circle/oval shows
the topology of the set of nodes within it. For example, we observe that the node
in the middle left is connected to three isolated nodes, whereas the two nodes
in the middle (both left and right) are connected to four nodes that form a K4.
Figure 1(b) on the right shows the input network. Due to the existence of a large
independent set, and a large clique, the number of occurrences of M is equal to(
12
3

) × (
9
4

)
. Such a high count may lead to the misleading assessment that M is

statistically significant. Indeed, combinatorial artifacts occur frequently in real-
world networks, which often contain large cliques and independent sets, similar
to Fig. 1(b).

In this work we contribute towards understanding the motif structure of a
network (directed or undirected) in the following ways:

• We propose the novel concept of an (f, q)-spanning motif. Specifically, a motif
is (f, q)-spanning if there exists a subset of nodes S that induces an f -fraction
of the motifs, while being a q-fraction of the node set V . Intuitively, if f is close
to 1, and q is close to 0, the motif is likely to be a combinatorial artifact. Based
on dense subgraph discovery tools [15], we propose a heuristic algorithm that
allows us to test in near-linear time whether a motif is (f, q)-spanning.

• We propose MotifScope, a novel framework that leverages frequently and
infrequently appearing motifs to find anomalies in real-world networks. Our
framework uses heuristics to find a subgraph that induces many copies of a
motif M2 and few copies of a motif M1. We show that our framework allows
us to find anomalies in social and trust networks.

• We perform an extensive experimental evaluation of various classical and
state-of-the-art generative models as null models for assessing statistical sig-
nificance, which highlights their similarities and differences, as well as the
importance of choosing the models.

2 Related Work

Motifs. A motif is typically a subgraph of constant size. The goal of understand-
ing the motif structure of a network spans numerous disciplines, ranging from
systems biology [51] to social network analysis [47] and socio-economics [55], as
it sheds light into the building blocks of networks [28]. Motifs have found vari-
ous algorithmic and machine learning applications, under the umbrella of higher
order methods [2,23,46,52].

Assessing the Statistical Significance of a Motif. The de facto approach for decid-
ing if a motif M is statistically significant or not relies on comparing its frequency
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fM to its expected frequency in a null random graph model [28]. While other
approaches to assessing the statistical significance of motifs have been proposed,
e.g., [4]; in this work we focus on the prevalent approach as introduced by Milo
et al. [28]. Given the null model, one samples a large number of networks with
the same number of nodes, and counts the frequency of M; let f̄M, σM be
the average number of occurrences of M and the sample standard deviation,
respectively. The z-score is defined as

z-score(M) = zM =
fM − f̄M

σM
.

Observe that the z-score of a motif can be negative; motifs that have a large
negative score, and thus appear less often than expected, are sometimes referred
in the literature as anti-motifs [28,29].

An important issue is the choice of the null model. A common choice is
the configuration model, or one of its variants [5,10,14]. This family of models
generates a random (di)graph with a given (in-, out-)degree sequence(s). The
configuration model was used in the influential works of Milo et al. [28,29].
However, their approach has received valid critique for a variety of reasons, such
as the lack of spatial characteristics [1,20].

The densest subgraph problem aims to find the subgraph with the maximum
average degree over all possible subgraphs [8,16]. Higher-order extensions have
been recently proposed that maximize the average density of a small motif such
as a triangle [30,44]. For this problem, as long as the number of nodes in the
small subgraph is constant, there exist both efficient polynomial time exact algo-
rithms [44], and faster greedy approximation algorithms [6,8].

Graph-based Anomaly Detection is an intensively active area of graph mining
[31], with diverse industrial and scientific applications. We discuss related works
in greater detail in the Appendix.

3 How to Address Combinatorial Artifacts?

Problem Definition. As discussed in Fig. 1(b), the significance of the motif on the
left hand side does not truly represent statistically significant recurring indepen-
dent motifs, but rather this motif arises because of a combinatorial artifact [32].
It appears around 30 000 times in a PPI network of S. cerevisiae, while its occur-
rences are concentrated into less than 30 nodes. To help clarify such situations,
we provide the following definition.

Definition 1. A motif M is (f, q)-spanning in graph G(V,E) if there
exists a set of nodes S ⊆ V such that |S| ≤ q|V | and the induced subgraph
G[S] contains an (at least) f -fraction of the occurrences of M in G.
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We will (loosely) say the statistical significance of a motif M according to
some null generative model is a combinatorial artifact if it is an (f, q)-spanning
motif in G(V,E) with q � 1, and f close to 1.1

Our definition of an (f, q)-spanning motif naturally introduces the following
optimization problem.

Problem 1. Given a motif M and a graph G(V,E), what is the largest
possible fraction f of occurrences of M among all subgraphs with (at
most) q|V | nodes for a given value of q?

We implicitly assume that the motif M appears frequently in the graph,
and has been assessed statistically significant according to some null generative
model; our goal is to understand whether its (apparent) significance is due to a
combinatorial artifact or not.

Hardness. Problem 1 is NP-hard, and this holds both when we require S ⊆ V
to have exactly k = q|V | nodes, and at most k nodes. The reduction is straight-
forward, and we omit all details. The idea of the proof is that if we could solve
Problem 1, then by setting the motif M to be a simple undirected edge, we would
be able to solve densest-k-subgraph (DkS) problem, and the densest-at-most-k-
subgraph (DamkS) problems respectively. Furthermore, we know that these two
problems are close in terms of approximation guarantees: if there exists an α-
approximation algorithm for the DamkS problem, then there exists an O(α2)
approximation algorithm for the DkS problem. The best known approximation
factor for the DkS is O(n−1/4) due to Bhaskara et al. [3].

Theorem 1. Problem 1 is NP-hard.

We also provide a formulation which aims to optimize q for a given f , stated
as the next problem.

Problem 2. Given a motif M with m(V ) total occurrences in a graph
G(V,E), what is the smallest possible size q|V | of the union of a set of
f · m(V ) occurrences for a given value of f?

The results of Chlamtač et al. [9] yield the following corollary.

1 It is worth outlining that forcing f = 1, and thus simplifying the definition above to
a (1, q)- or just q-spanning motif is not a robust in the following sense. Consider a
graph that is the union of a linear number of node disjoint triangles, and a clique of
order

√
n. Each node in the graph participates in a triangle, and thus when f = 1,

then q = 1. However, notice that most of the triangle occurrences appear in the

small clique, i.e., O(
√
n)3) = O(n3/2) � O(n). Thus for f = O( n3/2

n+n3/2 ) = 1 − o(1),

q suddenly becomes O(
√

n
n

) = o(1). Similarly, a graph could have multiple distinct
smaller combinatorial artifacts, in which case f might be a constant further from 1
(e.g., 3 small subgraphs with each around 1/3 of the motif copies).
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Corollary 1 (Theorem 1.1 [9]). Problem 2 is NP-hard. Furthermore, there
exists an O(

√
m(V ))-approximation algorithm that runs in polynomial time.

This corollary relates to their results for the minimum p-union prob-
lem (MpU). Consider a hypergraph where each hyperedge corresponds to an
occurrence of a motif. Problem 2 can be restated as a minimum p-union
problem (MpU), with p = f · m(V ). However, their approximation algo-
rithm is not practical for our purposes as it relies on computing maximum
flows or solving linear programs, and we are interested in motifs with a
large number of occurrences. We therefore propose a more efficient heuristic
that works for both problem variants.

Algorithm 1: CombArt(G(V,E),M, f)

1 Initialize S∗
f = ∅ ;

2 Count the total number m of occurrences of M in G;
3 while m(S�

f )/m < f ∧ m(V ) > 0 do
4 S ← GreedyPeeling(G,M);
5 S�

f ← S�
f ∪ S;

6 E ← E\E[S∗
f ] ;

7 Update the motif count m(V );
8 Compute m(S�

f );

9 / ∗ E[S�
f ] is the set of edges in the induced subgraph G[S�

f ] ∗ / ;
10 q ← |S�

f |/|V | ;
11 return q ;

Proposed Heuristic. Our heuristic is based on the polynomially time solv-
able higher-order extension of the densest subgraph problem (DSP) due to
Tsourakakis et al. [30,44]. Our algorithm is shown in pseudocode as Algorithm 1.
The algorithm2 runs as a black-box a greedy peeling algorithm until an f -fraction
of the motif occurrences in the graph have been covered by the subgraph S�

f . In
each round, the greedy algorithm provides a 1

|V (M)| -approximation to the opti-

mization problem ρ� = maxS⊆V
m(S)
|S| , see Appendix for its pseudocode. Here,

m(S) is the number of induced occurrences of motif M in S. Once the algorithm
has covered an f -fraction of M-occurrences in G, we compute q as |S�

f |/n where
n is the number of nodes in G.

4 MotifScope: Anomaly Detection via Motif Contrasting

A reason statistical significance of motifs is considered a worthwhile issue for
study is because it gives us important information about graph structure. Indeed,
2 While it aims to solve Problem 2, with minor changes it becomes a heuristic for

Problem 1.
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the existence of subgraphs that occur either frequently or infrequently can have
interesting algorithmic implications and applications. Here we consider the prob-
lem of using motif counts to determine anomalies in a graph structure, such as
a social network. Our results utilize the following natural problem.

Problem 3 Given a frequent motif M1, and an occurring but infrequent
motif M2 in a graph G, find the subset of nodes S ⊆ V that maximizes
the average density difference

max
S⊆V

m2(S)
|S| − m1(S)

|S| .

Intuitively, an induced subgraph G[S] that contains many induced copies of
M2, but few induced copies of M1 differs significantly from the global network
G with respect to those two motifs, and therefore possibly in other interesting
ways. To solve Problem 3, we use the dense subgraph discovery framework of
Tsourakakis et al. [45] with negative weights. We provide an extension of this
approach for contrast of motif structures as follows: each node v is associated
with a score score(v) that is equal to m2(v) − m1(v). Intuitively, we want to
remove nodes that have a large negative score, and keep nodes with a high
positive score. The pseudocode is shown in Algorithm 2. Assuming a method
MotifCount with time complexity f(M) for motif M, our algorithm runs in
O(n log n + m + f(M)) time in the standard RAM model.

Algorithm 2: MotifScope (G,M1,M2)

1 mi(v) =# motifs of type Mi node v is contained in (i = 1, 2, v ∈ V (G));
2 n ← |V |;
3 Hn ← G;
4 for i ← n to 2 do
5 Let v be the vertex of Gi of minimum score, i.e.,

score(v) = m2(v) − m1(v) (break ties arbitrarily);
6 Hi−1 ← Hi\v;
7 Update counts m1(v),m2(v) for all v ∈ V ;

8 return Hj that achieves maximum average density m2(S)−m1(S)
|S| among

His, i = 1, . . . , n.;

Implications and Applications. As a specific and important example of the
MotifScope algorithm, we explain how it can be used to find dense (near)-
bipartite subgraphs. In general, the problem of detecting a dense bipartite sub-
graph in a graph is NP-hard [25]. Finding such subgraphs is important in prac-
tice since large bipartite subgraphs in social and trust networks are known to be
rare, and frequently correspond to anomalies, such as a collection of manufac-
tured accounts for illicit uses such as money laundering [33,43]. To attack this
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problem using MotifScope we leverage the fact that a bipartite subgraph does
not contain any triangles (K3s), which are otherwise common in social networks,
but will probably contain several induced cycles of length 4 (C4s), which are oth-
erwise rare in social networks [47]. Therefore we set M1 = K3 and M2 = C4.
While our approach is not guaranteed to output a bipartite graph (or even a
near-bipartite graph), we show that on real data optimizing for minimizing K3s
while maximizing C4s often yields a bipartite subgraph in practice. As a rule-of-
thumb for using MotifScope for anomaly detection applications, we propose
either using prior knowledge of important subgraphs (such as with the K3 and
C4 example above), or by choosing M1 to be one of the motifs with high z-score
and M2 to be one of the motifs with low z-score.

5 Experiments

Datasets and Code. Table 1 summarizes the datasets that we use. We use pub-
licly available datasets from a variety of domains, including biological, social,
power, and trust networks. The code was written in Python3. We provide both
the code and the datasets anonymously at https://github.com/tsourakakis-lab/
motifscope.

Table 1. Summary of datasets.

Dataset |V | |E| Description Directed

S. cerevisiae [54] 759 1 593 PPI ×
C. elegans-PPI [54] 2 018 2 930 PPI ×
C. elegans-brain [51] 219 2 416 Connectome �
hamsterster [36] 2 426 1 593 Social ×
Eris1176 [36] 1 176 18 552 Power ×
Bitcoin-OTC [22] 5 881 35 592 Trust �
Bitcoin-Alpha [21] 3 783 24 186 Trust �
LastFM [38] 7 624 27 806 Social ×
Twitch-EN [37] 7 126 35 324 Social ×

Experimental Setup. The experiments are performed on a single machine, with
an Intel i7-10850H CPU @ 2.70 GHz and 32 GB of main memory. The motif list-
ing algorithm we use is due to Wernicke [50]. We focus on small-sized subgraphs.
Figure 2 presents the 13 possible directed motifs of order 3; we shall refer to
each motif with their id, for example motif13 is the triangle with all six possible
directed edges.

5.1 Combinatorial Artifacts

Table 2 summarizes the performance of CombArt algorithm on five different
networks. The second column of the table visualizes a motif of interest M. We

https://github.com/tsourakakis-lab/motifscope
https://github.com/tsourakakis-lab/motifscope
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Fig. 2. There exist 13 possible directed motifs of order 3.

use a similar notation as [17], where a large node annotated as S − c (K − c)
represents an independent set (clique) with c nodes. We observe that real-world
networks typically contain large cliques and independent sets, and thus there
exist various motifs whose significance will be a combinatorial artifact. The third
column summarizes the subgraph which causes the combinatorial artifact, while
the fourth and fifth columns show the motif count which happens to be also the
global count (f = 1), and the (f, q) values. As we observe, our novel definition
sheds light into assessing the significance of those motifs, by noting that f = 1
and q is a small fraction of the node set. In contrast, the FFL motif, which
is known to play a biological role, is (0.8, 0.61)-spanning, indicating statistical
significance is not due to a combinatorial artifact. We believe these examples
show our proposed method can be a significant enhancement to the current
approach of assessing the statistical significance of motifs.

5.2 MotifScope Case Studies

We show two case studies of MotifScope. The first is an algorithmic application
that attacks an NP-hard problem using prior knowledge about the appearance
of motifs M1,M2, while the second application first analyzes the network to
choose M1,M2.

Bipartite Subgraphs in Social Networks. As we mentioned in Sect. 4, we
run MotifScope using M1 = K3,M2 = C4, aiming to find a subgraph that
induces many cycles of length 4, and few triangles. Our results are summarized
in Table 3 for four datasets. We report the total number of induced edges, and
the number of nodes in the bi-partition (L,R) of the output node set. Even
though our method is not guaranteed to output bipartite subgraphs, the output
subgraphs here were in fact all bipartite, i.e., all reported edges having one
endpoint in L and one in R.

Anomaly Detection in Trust Networks. We use the Bitcoin-OTC net-
work to illustrate the use of MotifScope for anomaly detection on real-world
networks. In the Appendix we provide additional results for the Bitcoin-alpha
network and camouflage behaviors discovered by MotifScope. Since we have
no prior knowledge about the motifs in Bitcoin-OTC, we consider all motifs of
order 3, and we compute their z-scores. Figure 3a shows the z-scores of all 13
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Table 2. Motifs that are statistically significant from different networks due to com-
binatorial artifacts. Subgraphs the motifs are clustered in are also listed together with
other statistics.

Table 3. Bipartite subgraph found by contrasting C4 and K3.

Dataset # edges # nodes in L # nodes in R

LastFM 124 21 37

Bitcoin-Alpha 24 5 9

Bitcoin-OTC 31 6 10

Twitch-EN 61 7 23

motifs. We observe that motif 3 has the most negative z-score indicating that it
appears significantly less often than what we would expect in the directed con-
figuration model. On the contrary, motifs 11, and 13 appear significantly more
often. Thus, we use each of motifs 11 and 13 for M1, and motif 3 for M2.

The whole Bitcoin-OTC network contains 11% negative edges, which denote
distrust. Figure 3b shows the precision and recall for MotifScope, and popu-
lar graph anomaly detection methods that use dense subgraph discovery meth-
ods, including Core-A and Truss-A from Corescope [41], EigenSpokes [34], Holo-
scope [26], and Fraudar [18]. Here, we measure the quality of a subgraph S,
using: (i) the precision, namely the fraction of negative edges induced by S over
the total number of edges in S, and (ii) the recall, namely the fraction of negative
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Fig. 3. Results on the Bitcoin-OTC network. (a) When no prior knowledge is available,
we use the z-scores. Here, we show the z-scores of the 13 motifs of order 3. (b) Preci-
sion and recall for various anomaly detection methods and MotifScope (MS) using
as (M1,M2) motifs (motif11,motif3), and (motif13,motif3), see Fig. 2 for the actual
motifs. (c) Subgraph found by MotifScope for (motif11,motif3). Distrust relations
are colored red, and trust relations are colored green. (Color figure online)

edges in S over the number of negative edges in the whole graph. We observe
that our method outperforms competitors, finding subgraphs that induce a lot
of distrust. Figure 3c visualizes one such subgraph. It is worth noting that motifs
11 and 13 are strongly connected, indicating that in this dataset reciprocal edges
correlate with trust, whereas motif 3 is a directed chain that lacks reciprocity
and correlates with distrust.

Running Times. Since our graphs are small to medium size, the main computa-
tional bottleneck comes from computing motifs on a large ensemble of sampled
graphs from the null models. For instance, for Bitcoin-OTC, listing all motifs of
order 3 takes around 20 s per sampled graph, and the dense subgraph discovery
process (greedy peeling [8]) takes around 17 s.

6 Motif Significance and Null Models

As we have seen, the calculation of statistical significance depends on an under-
lying null model. In this section we study the following questions, to better
understand similarities and differences among frequently used null models.

Q1. How robust is the significance (or lack thereof) of a given motif M across
different null models? Is there a consensus between different null models
on whether a motif is significant or not?

Q2. What are the sets of motifs that are statistically significant for different
null models, and how do these sets compare to each other? How similar
are they with respect to ranking motifs according to their z-scores?

Q3. How many samples do we need to generate from a null model, in order to
obtain a concentrated estimate of the expected motif count? Is this sample
size motif-dependent?
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In looking at these questions, We consider seven null models summarized in
Table 4 and all 13 motifs of order three in Fig. 2. The answer for Q3 is provided in
the Appendix due to space constraints. We compare the null models to the well
studied C. elegans connectome. The network consists of 219 neurons and 2 416
synapses that are represented as nodes and edges respectively, see also Table 1.
The network we use corresponds to the adulthood of the C. elegans, and was
obtained via high-resolution electron microscopy by [51]. All seven generative
models we use are well-established in the literature, and they span a period of
time from the origins of random graph theory to the most recent advances that
involve deep-learning inspired models. Furthermore, we use graph models with
independent edge probabilities and dependent edge probabilities. Considering
both types of models is important as it was recently shown that random graph
models where each edge is added to the graph independently with some proba-
bility are inherently limited in their ability to generate graphs with high triangle
and other subgraph densities [7]. Furthermore, for any sparse graph, the config-
uration model is unlikely to generate a large clique. In contrast, it is known that
biological networks tend to contain cliques and independent sets [32]. For this
reason, we also use state-of-the-art non-independent models including the pre-
scribed k-core model (KC) [48], and GraphRNN [53]. For a detailed description
of the models, see the Appendix (supplementary material).

Table 4. Null models used in our experiments, along with their abbreviation. The
first five models are edge independent, i.e., each edge {i, j} exists independently from
the rest with some probability pij , while KC and GRNN are not.

Null Models

Directed Erdős-Rényi model (ER) [13]

Edge swap configuration model (ES) [19]

Chung-Lu model (CL) [11]

Partially directed configuration model (PD) [42]

Stochastic Kronecker graphs (KG) [24]

Prescribed k-core model (KC) [48]

GraphRNN (GRNN) [53]

Is there Consensus Among Null Models? Mostly no. We use the de facto app-
roach as described in Sect. 2 to test whether a motif M appears more often than
expected (i.e., M is a statistically significant motif), or less often than expected
(i.e., M is a statistically significant anti-motif) with respect to each of the seven
null models. For each null model, we ensure that we have obtained enough sam-
ples for a concentrated estimate of the expectation of each motif M in Fig. 2,
by requiring that the coefficient of variation CV 2 = σ2

M
f̄M

is at most 10−2; the
weak law of large numbers guarantees concentration, and is a direct application
of Chebyshev’s inequality.
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Fig. 4. (a) Histogram of models report each subgraph of size 3 as motif or anti-motif.
(b)-(h) Motif significance with respect to z-score by different random graph models.
Plots are clipped at a max value of 40. (i) Pairwise Spearman’s correlation coefficient
of motif z-scores of seven models.

For each motif motifi, i = 1, . . . , 13 we compute the percentage of the null
models that assess it as a statistically significant motif (type A), and anti-motif
(type B) respectively. Figure 4(a) summarizes our results. For example, motif
11 is assessed as a type A motif by one model, and similarly as type B by one
model. According to the five other models, it is not statistically significant in
either sense. Figures 4(b)–(g) provide a detailed overview of the assessment of
each model. Perhaps surprisingly, motif 8 is the single motif that is assessed
as statistically significant by all seven models. Previous research on other C.
elegans datasets have identified motif 8 as statistically significant in both the
male and hermaphrodite sexes [12]. One can construct motif 8 from motif 4,
the feedforward loop (FFL), by introducing one reciprocal connection. Analysis
of several species has shown that reciprocal connections are over-represented
in connectomes [39]. Interestingly, we do not find feedforward loops [28] being
statistically significant by several null models, and this can serve as a criterion for
the quality of null models but with caution. The absence of several motor neurons
in the analyzed connectomes could in part explain the reduced significance of
FFLs. There is a general hierarchy of neurons in C. elegans with sensory neurons
often connecting to interneurons and interneurons often connecting to motor
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neurons. Although prior research finds the significance of FFLs within each layer,
many of the FFLs did contain one neuron of each type [35].

Do Null Models’ Rankings Agree? Figure 4(i) shows Spearman’s correlation coef-
ficient of the z-scores respectively for all pairs of null models. The results are
illustrated as a heatmap with the similarity scale on the right. We see that the
partially directed configuration model is distinctively different from the rest of
the 6 models. We explain this difference due to the fact that C. elegans has
lots of reciprocal directed arcs, i.e., undirected edges, and thus it can model
this aspect better than other models in sparse graphs. We observe that variants
of the configuration model are not necessarily similar, a point raised by [14].
GraphRNN produces qualitatively similar results to the partially directed con-
figuration model, but the z-scores are larger due to the fact that the directed
version does not capture the frequency of reciprocal edges, despite the wide
search of hyperparameters we performed (all details are included in the code).

In a nutshell, caution is required when choosing a null model. Non-
independent models, such as the KC and GRNN models, can possibly model
complex dependencies that create independent sets and cliques, as described
in [7]. GraphRNN seems to be a promising null model for modeling connec-
tomes, although it may not scale well to larger graphs.

7 Conclusion

Understanding the importance of motifs in networks is a key problem in connec-
tomics, with a wide range of applications ranging from social network analysis
to machine learning. In this work we introduce the novel concept of an (f, q)-
spanning motif that addresses the major issue of combinatorial artifacts. We
show that determining the smallest value of q for which there exists a node set
of cardinality (at most) q|V | that induces an f fraction of the motifs is NP-
hard, and we design an efficient heuristic based on dense subgraph discovery
methods. Furthermore, we provide new insights into the importance of the null
model choice by an extensive empirical analysis of classic and state-of-the-art
generative models. Finally, we design the MotifScope framework that uses the
motif structure of a graph to detect anomalies.

Our work opens several interesting directions. What are the best non-
independent edge models as a null model choice? There is an ongoing line of
research, with graph RNNs being a recent example [7,53]. Can we develop new
generative models that leverage motifs for C. Elegans and model its temporal
evolution, see also [47]?
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