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ABSTRACT: Janus transition-metal dichalcogenide monolayers
are artificial materials, where one plane of chalcogen atoms is
replaced by chalcogen atoms of a different type. Theory predicts
an in-built out-of-plane electric field, giving rise to long-lived,
dipolar excitons, while preserving direct-bandgap optical tran-
sitions in a uniform potential landscape. Previous Janus studies |z

had broad photoluminescence (>18 meV) spectra obfuscating ||% W% %%" w
their specific excitonic origin. Here, we identify the neutral and —
the negatively charged inter- and intravalley exciton transitions in

Janus W$, monolayers with ~6 meV optical line widths. We

integrate Janus monolayers into vertical heterostructures,

allowing doping control. Magneto-optic measurements indicate that monolayer W§, has a direct bandgap at the K points.
Our results pave the way for applications such as nanoscale sensing, which relies on resolving excitonic energy shifts, and the
development of Janus-based optoelectronic devices, which requires charge-state control and integration into vertical
heterostructures.
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ayered materials are solids with strong intralayer bonds potential landscape due to spatial variations in layer separation
. 23,24

but only weak van der Waals coupling between layers." and twist angle. i,

These materials have a range of electronic,” optic:ell,3’4’5 Janus TMDs (J-TMD) are a class of layered materials™ that

26,27 28,29

promise Rashba splitting; piezoelectric response; and
long-lived, dipolar excitons®” in an intrinsically uniform
potential landscape. To form a Janus 1L, a conventional 1L-
TMD, such as 1L-WSe,, is altered to create 1L-W§, with Se
atoms on one face and S atoms on the other, effectively placing
a WSe, /WS, interface within the 1L. This artificially modified
atomic ordering breaks the out-of-plane crystal symmetry and
results in an in-built electric field,>' which, when experienced

and topological® properties and can be combined in vertical
heterostructures with pristine atomic interfaces, despite
mismatched lattice parameters.”” Direct-bandgap semicon-
ducting transition-metal dichalcogenide (TMD) monolayers
(1Ls) are a class of layered material, which are particularly
interesting due to their optoelectronic properties."’™> Optical
excitation creates excitons, i.e., bound electron—hole pairs, at

the K and K’ direct-bandgap edgeS'B’H while the strong spin— by excitons, displaces the electron and hole wave functions.””
orbit interaction and broken inversion symmetry leads to 1L-Janus were experimentally reported recently in refs 33 and
coupling of spin and valley degrees of freedom."” Hetero- 34. The next steps include the identification and control of
structures comprising two different TMD monolayers can have exciton charge states in J-TMDs. One challenge is the broad
a type-II band exlignment,16’17 which localizes electrons in one

1L and holes in the other."® This charge separation results in Received: October 26, 2022

excitons with a permanent electric dipole moment'” and long Accepted: March 29, 2023

lifetime (up to 0.2 ms),”® due to a reduced overlap of electron Published: April 14, 2023

and hole wave functions.”' While such stacking configurations

enable tunability with layer angle and introduce emergent
.z . 22 . .
moiré physics,” they are also susceptible to an inhomogeneous
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Figure 1. Optical characterization of the Janus 1L-W3, device. (a) Illustration of the device. Janus 1L-W¥, (inset) is encapsulated in ML-hBN
(blue) and electrically contacted by FLG (black). The device is on a n*? Si (purple)/SiO, (orange) substrate. Au contacts (yellow) allow a
voltage to be applied between the FLG and Si. (b) Optical image of the device. 1L-Wg, is outlined in red, the top and bottom ML-hBN in
blue, and FLG in black. (c) Raman map of the device, in the region highlighted by the white box in (b), acquired at room temperature using
2.33 eV optical excitation. The color coding shows the relative intensity between the 1L-WSe, E’ + A; Raman mode (254 cm™"), with 100%
in blue, and the Janus 1L-W§, A} Raman mode (284 cm™"), with 100% in yellow. Regions with no 1L-TMD are shown in black. The arrow
indicates conversion from 1L-WSe, to 1L-W},. Raman spectra from unconverted, partially converted, and fully converted locations are
shown below the Raman map, with the color shading indicating the Raman modes above. (d) PL map of the device in the region highlighted
by the white box in (b), acquired at 4 K using 2.33 eV optical excitation. The color coding shows the relative integrated PL emission
intensity between the 1L-WSe, (1.63 to 1.75 eV), with 100% in blue, and Janus 1L-W$, (1.77 to 1.91 eV), with 100% in yellow, spectral
bands. Regions with no 1L-TMD are shown in black. The arrow indicates conversion from 1L-WSe, to 1L-W$,. Representative normalized
PL spectra from unconverted, partially converted, and fully converted locations are shown below the PL map, with the color shading
indicating the spectral bands above.

18-meV photoluminescence (PL) line shape for the narrowest measure the narrowest emission (5.9 meV line width) reported
reported emission in J-TMDs, achieved via hexagonal boron to-date from J-TMDs. This spectral narrowing is key to solving
nitride (hBN) encapsulation.”> The second challenge is the essential challenge of spectrally resolving and assigning the
feasible integration of J-TMDs into electrically gated devices. optical transitions to specific exciton charge configurations.

Here, we address the above challenges, and identify neutral Furthermore, we provide physical insights into the excitonic
and negatively charged exciton transitions in 1L-Wg, using origin of the different optical transitions, by extracting the g
reflectance contrast (RC) and PL spectroscopy. To confirm factors and trion binding energies. The gate control
the Janus conversion of a 1L exfoliated from flux-grown WSe, demonstrated here is a necessary step for future integration
bulk crystal,”® we perform Raman and PL spectroscopy over into optoelectronic devices and excitonic experiments with J-

the flake. By encapsulating 1L-W3, in hBN, we are able to TMDs.
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RESULTS AND DISCUSSION

Device Characterization. Figure la is an illustration of
one of our Janus devices. The doped Si substrate is used as a
back gate, separated from the 1L-Janus by SiO, and multilayer
hBN (ML-hBN). A parent 1L-WSe, is exfoliated and
subsequently transfered onto the ML-hBN. The 1L-WSe, is
then converted into a Janus 1L-W§, with Se atoms on the
bottom and S atoms on the top, by following a room-
temperature in-situ conversion technique (see Methods and
Supplementary Notes S1, $2).””*® An additional ML-hBN
transferred on top of the converted 1L-W3, encapsulates the
flake, and a top gate of few-layer graphene (FLG) electrically
contacts the 1L-Wg,. Figure 1b shows an optical microscope
image of the device, where the 1L-W$, is outlined in red, the
bottom and top hBN in blue, and the FLG in black.

Figure 1c shows a Raman spectroscopy map of the device,
acquired at room temperature using 2.33 eV optical excitation,
in the region highlighted by the white box in Figure 1b. The
color code indicates the relative intensity between the
characteristic 1L-WSe, E' + A} Raman mode (blue)** and
the Janus 1L-W§, Al Raman mode (yellow),40 with
representative Raman spectra from regions with different
degrees of Janus conversion shown below the Raman map (see
S3). The Raman spectra from the large region (~400 um?®) of
fully converted Janus 1L-W§, evidence that the converted
region is not a disordered alloy.””*"*!

Figure 1d shows a PL map, acquired at a temperature of 4 K
using 2.33 eV optical excitation, in the same region of the
device as in Figure lc. Similar to Figure lc, the color code
shows the relative PL emission intensity between the distinct
1L-WSe, (blue) and Janus 1L-W§, (yellow) spectral bands.*”**
The PL map correlates with the Raman map in Figure Ic,
which validates our assignment of the Janus 1L-Wg, spectral
band. Therefore, we focus on the exciton emission in the
spatial region of full Janus conversion.

Identification of the Neutral Exciton. Encapsulation in
hBN reduces the line widths of PL peaks in conventional 1L-
TMDs, ™ thus allowing for the identification of excitonic
species.%’47 Figure 2a compares a representative PL spectrum
at 4 K from our ML-hBN encapsulated 1L-W§, device (red
curve) to the spectrum from unencapsulated 1L-W§, on a Si/
SiO, substrate (blue curve). The unencapsulated 1L-Wg, has a
broad spectrum, with a full width at half-maximum (FWHM)
on the order 30 meV, on par with the narrowest line width
reported to-date for unencapsulated Janus TMDs.*® In
contrast, encapsulation with hBN allows us to resolve multiple
spectral features with significantly reduced line widths (<10
meV).

The peaks labeled 1, 2, 3, and X0 are present in the 1L-W3,
PL spectra across the whole device (see S3), indicating that
these arise from intrinsic excitonic transitions. Since the
highest-energy PL peak in both 1L-WSe, and 1L-WS, stems
from neutral excitons,” the peak at 1.893 €V is a likely
candidate for the neutral exciton, X°, in 1L-Wg,. To verify this,
we directly probe excitonic absorption resonances using RC
spectroscopy (see Methods)."*

Figure 2b shows a RC spectrum from our 1L-Wg, device
(black curve) and the PL spectrum from the same location
(red curve). The RC signal shows a strong feature at 1.893 eV,
which confirms our assignment of X’. The lowest observed PL
FWHM of the Janus X° transition is 5.9 meV in our device, the
lowest reported to date. The X’ transition is present in both PL
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Figure 2. Photoluminescence and reflectance contrast spectra of
hBN-encapsulated 1L-W§,. (a) PL spectrum from the encapsulated
1L-W§, device (red curve) compared to the PL spectrum from
unencapsulated 1L-W§, (blue curve). The spectra are normalized
to the same peak height. The peaks labeled 1, 2, and 3 are present
across the device. The inset shows the magnified PL spectrum
around X% (b) RC spectrum (black curve, left axis) from the
encapsulated 1L-W$, device compared to the PL spectrum at the
same location (red curve, right axis). The black dashed line
denotes the X° transition energy, 1.893 eV. All spectra were
acquired at 4 K, in the neutral-doping regime, and the PL spectra
under 2.33 eV excitation.

and RC across the fully converted Janus region (see S3), with
an average PL transition energy of 1.890(1) eV and an average
FWHM of 8.4(4) meV over 11 measured locations.

Power-dependent PL measurements (see S4) provide
further evidence that X° is the neutral exciton transition as
its intensity scales linearly with power over the measured range
15 nW to S0 uW (corresponding to 3 Wem™ to 10* Wem™).
We note that in the spectral range 1.750 to 1.825 eV we also
observe PL peaks with linear power dependences at low power
and that saturate in the range SO to S00 nW (10 to 100
Wem™2). This suggests the presence of localized defects
displaying quantum light emission.””***’

Density functional theory (DFT) calculations of the 1L-Wg,
band structure (see SS) show that, similar to conventional W-
based TMDs (1L-WSe, and 1L-WS,),”7>* 1L-W§, is direct-
bandgap at the K points, with a spin ordering such that the
upper valence band is opposite in spin to the lower spin-split
conduction band. The spin ordering in the conduction band
allows for both a negatively charged intervalley trion (Xi..),
with the two electrons in different valleys, and an intravalley
trion (Xj,y.), with the two electrons in the same valley. By
combining DFT and quantum Monte Carlo calculations we
predict the binding energies of the Coulomb-exchange split
Xineer and X, to be 26 and 32 meV, respectively, relative to
the neutral exciton in free-standing 1L-Wg,.

Voltage-Controlled Generation of Charged Excitons.
To measure the charged excitonic transitions of 1L-Wg,, we
tune its doping by applying a voltage V between the 1L-Wg,
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and the Si substrate. Figure 3a shows the RC derivative signal
as we vary the doping density, n (Methods). Similar doping

-d(RC)/dE
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Figure 3. Charge dependence of the reflectance contrast spectrum
of 1L-W§,. (a) RC derivative with varying electron doping density
n (left axis) and applied voltage (right axis) at 4 K. (b) RC
derivative spectra at the voltages corresponding to the dashed
white linecuts in panel (a) at 19, 7, and —10 V. The excitonic
transitions X%, X; ey Xineray and X~ are labeled.

dependence is observed on a second device (see S2). In the
operational range of voltages, only the n-doped regime is
accessible, due to an intrinsic n-doping ~3 X 10'* cm™2 The
previously identified X transition, here at 1.896 eV, dominates
the RC signal between +21 to +17 V, corresponding to charge
neutrality. As we decrease the voltage, and n-dope the 1L-Wg,,
lower energy transitions appear, which are analogous to the
transitions observed in the n-doped regime for 1L-WSe,.**~>*

Figure 3b presents the RC derivative at 19, 7, and —10 V.
The neutral exciton, X°, is shown in the line cut at 19 V.
Between +17 to +5 V, we see a doublet, which we identify as
Xinter and Xi..., in the line cut at 7 V with peaks at 1.864 and

7329

1.857 eV. We find an average binding energy relative to X° of
33.4(5) meV and 39.9(3) meV for X;,,., and X, respectively,
over seven measured locations. We attribute the difference in
binding energies of these trions compared to our calculations
to a difference in dielectric environment caused by ML-hBN
encapsulation.”® The exchange splitting between the negative
trion transitions of 6.4(6) meV is in good agreement with our
calculations.

At increased n-doping, below SV, the Xi .., and X, peaks
vanish and a single peak, labeled X~ in the linecut at —10 V in
Figure 3b, dominates the derivative of the RC spectrum. The
X"’ peak initially appears at 1.845 eV and redshifts by 10 meV
between +5 and —17 V. An excitonic transition with a similar
doping dependence has previously been observed in 1L-
WSe,”"*>*” and attributed to excitons bound to intervalley
plasmons.””*® We expect this peak in 1L-W§, to be similar in
origin, due to the similarity in its behavior with the transition
observed in 1L-WSe,.

Magnetic-Field Dependence of Janus Excitons. We
next probe the exciton g factors by applying an out-of-plane
magnetic field, B, and measuring the Zeeman energy splitting
of the exciton transitions. We send unpolarized light to the
device and detect the RC spectra with both 6" and ¢~ circular
polarizations. The left-aligned panels (a, c, e, and g) in Figure 4
display the RC derivative spectra for each excitonic transition
measured at B = 3 T magnetic field, with the right-circular (¢*)
and left-circular (67) polarizations shown by the blue and red
curves, respectively. The splitting AE as a function of B is
shown in the right-hand panels (b, d, f, and h) of Figure 4.
Linear fits give the magnitude of the exciton transition g
factors, where AE = —gupB (ug = 58 peV T~' is the Bohr
magneton).

Figure 4a presents the RC derivative spectra for X° at 3 T,
showing a well-resolved splitting. Figure 4b shows AE for X° as
a function of magnetic field, for both RC and PL. From the
linear fit we extract similar g factors of 4.5(2) and 4.14(6) for
RC and PL, respectively. For conventional 1L-TMDs, g factors
~4 have typically been assigned to bright excitons in the K and
K’ valleys, with valley, orbital, and spin contributing to the
magnetic moment.’”*” The measured g factors are consistent
with 1L-W¢, having a direct-bandgap at the K points.

The g factors of the negatively charged trions depend
strongly on doping, ranging from 3 to 13 for voltages from 8 to
14 V (see S6). For conventional 1L-TMDs, a similar
dependence and resulting trion g factors greater than 4 have
been attributed to many-body interactions with the Fermi sea
of electrons.””*> We expect a similar origin of the observed
doping-dependent trion g factor in 1L-W§,. Figure 4c—f shows
RC derivative spectra and splittings as a function of magnetic
field for the negative trions at example voltages. We find
example g factors of 5.7(7) for Xi,., and 5.4(6) for X, at the
voltages presented. The X, and X, transitions additionally
show evidence of the thermalization of the excess charge, as
observed in conventional W-based 1L-TMDs.****®* Beyond
~3 T, this leads to only a single polarization being observable
for each negative trion.

Figure 4g shows the polarization-resolved RC derivative
spectrum for the X' transition at 3 T. Figure 4h displays the
RC splitting of X~ as a function of magnetic field, which gives
a g factor ~ 4.1(4), consistent with the interpretation of X' as
the exciton bound to intervalley plasmons and dressed by
many-body interactions.”**>>’
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Figure 4. Magnetic field dependence of the excitonic complexes in 1L-W{,. (a) RC derivative spectrum with 6* (blue) and 6~ (red) polarized
collection at B = 3 T for X° (at 19 V). (b) The energy splitting AE between X’ peaks in 6* and 6~ detected light as a function of magnetic
field. The left panel shows the average splitting measured with RC in the neutral regime (splitting averaged between 18 to 20 V at each
magnetic field). The right panel shows the splitting of X° measured with PL. The solid curve is a linear fit to AE = —guyB, and the g factors
are displayed for both RC and PL. (c) Same measurement as in (a) but for X, at 12.5 V. (d) AE as a function of magnetic field for X, at
12.5 V. (e,f) Same as in (c) and (d) but for X, at 9 V. (g;h) Same as in (c) and (d) but for the X~’ peak at —20 V. All measurements were

carried out at 4 K.

CONCLUSIONS

We identified several excitonic complexes in Janus 1L-Wg,: X°,
Xinter Xintry and X’ and measured their g factors by integrating
a hBN encapsulated 1L-W§, into a charge-control device.
Integrating J-TMDs into vertical heterostructures is key for the
future development of nanoscale optoelectronic devices,”*®®
while resolving few-meV exciton line widths and identifying
the exciton spectrum determines the suitability of J-TMDs for
sensing.°”®” Future work includes identifying the transitions
that give rise to the as-yet unidentified PL peaks as well as
measuring the excitonic spectrum in the positively doped
regime. An immediate next step is measuring the out-of-plane
electric dipole moment of excitons in 1L-Wg, by applying an
out-of-plane electric field in a capacitor-like device structure.
The predicted permanent electric dipole moment of ~0.2 D
for the Janus X**"*® means that the resulting Stark shift ~4
meV at 1 V/nm would be resolved with our ~6 meV line
widths.

METHODS

Fabrication. We build our device by following a multistep
process: first, the bottom ML-hBN is mechanically exfoliated onto a
Si/Si0, (90 nm oxide thickness) substrate. Second, a parent 1L-WSe,
is mechanically exfoliated from a flux-zone grown’® bulk WSe, crystal
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and deposited on the bottom ML-hBN by polydimethylsiloxane
(PDMS) transfer. Third, the 1L-WSe, undergoes AFM flattening®
and subsequent conversion to a Janus 1L-W§, by using the selective
epitaxial atomic replacement (SEAR) method,*” while recording time-
resolved Raman spectroscopy measurements in-situ to achieve
deterministic conversion.”® Fourth, the top ML-hBN and FLG are
sequentially deposited on the 1L-WF, by PDMS transfer, with
annealing to 150 °C and AFM flattening after each layer is deposited.
The FLG is mechanically exfoliated from graphite sourced from HQ
Graphene. Fifth, Au contacts are deposited using standard electron-
beam lithography procedures.

AFM topography (Bruker Icon) is used to confirm the layer
thicknesses, and Raman spectroscopy (Horiba LabRam Evolution) is
used to characterize the various constituents of the heterostructure,
along with confirming the conversion from 1L-WSe, to 1L-W§, (see
S1).

Optical Measurements. All 4 K measurements are taken in a
closed-cycle cryostat (AttoDRY 1000 from Attocube Systems AG),
equipped with an 8 T superconducting magnet.

Excitation and collection light pass through a home-built confocal
microscope in reflection geometry, with a 0.81 numerical aperture
(NA) apochromatic objective (LT-APO/NIR/0.81 from Attocube
Systems AG). The PL measurements use continuous-wave excitation
from a 2.33 eV laser (Ventus 532 from Laser Quantum Ltd.), with the
excitation powers measured on the sample and the optical intensity
calculated from the optical spot size given by the 0.81 NA. The PL
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signal is sent to a 150-line grating spectrometer (Princeton
Instruments Inc.).

The RC measurements use broadband light (Thorlabs mounted
LED M660L4, nominal wavelength 660 nm, FWHM 20 nm). The
reflected light is collected in the confocal microscope discussed above
and the spectra are recorded on the same 150-line grating
spectrometer as for PL. RC is calculated by comparing the spectrum
reflected from the heterostructure in a region with the 1L-W§,, R, and
without 1L-W§,, Ry. RC as a function of emission energy E is then
given by

R(E) — Ry(E)

RCE) = 2B + R(®)

The negative derivative of the RC spectrum, —d(RC)/dE,
highlights the excitonic transitions and suppresses the RC back-
grouncl.54’70‘71 To obtain the derivative RC spectrum, we first smooth
the raw RC spectrum using a spline fit and then take the derivative of
the resultant spline.

Gate-Voltage to Layer-Doping Conversion. The doping
density n (charge per unit area) is calculated from the applied
voltage V (Keithley 2400 SMU), by using the gate capacitance, C

n(V) = n, - (CV/q)

The intrinsic doping, n, is the doping density at zero applied voltage,
and the magnitude of the electron charge is q, = 1.6 X 107" C.

The voltage is applied across both the ML-hBN and SiO, and the
gate capacitance can be derived by combining the dielectric layers of
ML-hBN and SiO, in series

€5i026hBN

C=c¢,
€nndsior T EsioadheN

The relative dielectric constants of SiO, and hBN are g0, = 3.97* and

€y = 3.8, respectively. ¢, = 8.85 X 10" Fm™' is the vacuum

permittivity.

The thickness of SiO, is dgn, = 90 nm and that of hBN is dy gy = 27
nm (see S1). The intrinsic doping density is n; = 3 X 10" cm™,
determined by setting the doping density to n = 0 when the
reflectance contrast signal from the neutral exciton vanishes (17 V),
where positive # indicates electron doping.
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