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ABSTRACT
We consider an immersed elastic body that is actively driven through a structured fluid by a motor or an external force. The behav-
ior of such a system generally cannot be solved analytically, necessitating the use of numerical methods. However, current numerical
methods omit important details of the microscopic structure and dynamics of the fluid, which can modulate the magnitudes and direc-
tions of viscoelastic restoring forces. To address this issue, we develop a simulation platform for modeling viscoelastic media with
tensorial elasticity. We build on the lattice Boltzmann algorithm and incorporate viscoelastic forces, elastic immersed objects, a micro-
scopic orientation field, and coupling between viscoelasticity and the orientation field. We demonstrate our method by characterizing
how the viscoelastic restoring force on a driven immersed object depends on various key parameters as well as the tensorial charac-
ter of the elastic response. We find that the restoring force depends non-monotonically on the rate of diffusion of the stress and the
size of the object. We further show how the restoring force depends on the relative orientation of the microscopic structure and the
pulling direction. These results imply that accounting for previously neglected physical features, such as stress diffusion and the micro-
scopic orientation field, can improve the realism of viscoelastic simulations. We discuss possible applications and extensions to the
method.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0123470

I. INTRODUCTION

When a viscoelastic material responds to an external mechani-
cal perturbation, elasticity gives rise to restoring forces that push the
system back toward its unperturbed configuration while viscosity
dissipates these forces on a material-dependent timescale.1,2 These
dynamics can be exploited to engineer metamaterials with new func-
tionalities3 and energy-absorbing media.4,5 They also underlie a
form of memory: canonical viscoelastic systems such as structured
fluids—dense solutions of interacting particles, such as colloids, sur-
factants, or polymers6—can adapt their microstructure in response
to a shear protocol,7–9 in some cases “learning” multiple frequencies
simultaneously.7

Viscoelasticity is also important in biological contexts. A
fluid’s viscoelastic properties can endow a group of swimming
micro-organisms with a collective orientation and even speed
enhancements.10–13 Within cells, the actin cytoskeleton, a dynamic

network of semiflexible filaments (polymers), cross-linkers, and
motors, enables cells to adapt their structural responses to forces
for various physiological functions.14 The cytoskeleton also governs
the motions of vesicles and other objects that are driven through the
cytoplasm by molecular motors.15,16 The viscoelasticity of the cyto-
plasm has even been shown to guide the positioning of the mitotic
spindle for cell division.17,18 Experimental protocols measuring the
forces on magnetic particles or objects in optical traps are often used
to study the viscoelastic response of the cytoplasm and materials
assembled from its constituents.19–22

If a structured fluid has an anisotropic component, such as a
polymeric network like the actin cytoskeleton,23 then the viscoelastic
forces can have both orientation and timescale dependent character-
istics. Quantitatively describing these characteristics is important for
understanding dynamics in such a medium and interpreting experi-
ments that probe them. However, existing theoretical treatments are
typically limited to isotropic fluids, neglecting the spatial variation of
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microscopic distributions over the solvated molecule’s orientations.
Theoretical treatments of anisotropic structured fluids of which we
are aware24,25 consider only the fluid and thus are not sufficient by
themselves to model the dynamics of immersed objects, such as the
mitotic spindle, vesicles, or probe particles mentioned above.

Several mathematical treatments of the stochastic dynamics
of a Brownian particle immersed in a viscoelastic medium have
been extended to account for confining potentials that bias the
particle’s motion.26–29 However, these studies focus only on the posi-
tion of the particle itself and do not allow one to spatially resolve
the motion of the surrounding medium, which in the cytoplasm
for instance can include nontrivial flow patterns.17 To resolve an
immersed body together with its surrounding medium, it is nec-
essary to use numerical methods to solve the Navier–Stokes equa-
tion. Although techniques have been introduced to address various
aspects of this problem, they have not previously been integrated
to treat the response of a structured fluid with a spatially varying
tensorial response (e.g., due to colloidal or polymeric orientation)
to the movement of an immersed body. Such a tensorial response
can allow for structural memory effects, in which the history of
applied stress on, e.g., a polymer network like the actin cytoskele-
ton creates anisotropic mechanical compliance and even mechanical
hysteresis.9

In this work, we adapt a tensorial model for viscoelasticity with
an explicit microscopic orientation field25 such that it can be simu-
lated efficiently, and we marry it with the lattice Boltzmann (LB)30

and immersed boundary (IB)31–34 approaches to create detailed sim-
ulations of an elastic body being driven through a structured fluid.
We demonstrate this framework’s use for studying physical effects
that were previously neglected in hydrodynamic simulations, such as
the dependence of viscoelastic return on stress diffusion and the con-
tribution of the underlying orientation field to the elastic response.
This framework can be applied in future works to investigate the
interplay between viscoelastic restoring forces, driven immersed
objects, and the dynamics of molecular orientations.

II. METHODS
In Sec. II A, we briefly summarize the lattice Boltzmann (LB)

and immersed boundary (IB) methods, which serve as the founda-
tion of our approach, and we provide further details in Appendix A.
As a first step toward simulating viscoelastic fluids, we consider in
Sec. II B how to incorporate a scalar model of viscoelasticity into the
IB-LB framework. In other words, here we first assume that elastic
effects can be adequately captured by the scalar quantity C repre-
senting the elastic modulus. The methods presented in Sec. II B have
been developed in previous work,38–43 and they form the basis for
our treatment of tensorial elasticity in Sec. II C. There, we general-
ize the model to allow the elastic modulus to be a rank-four tensor
C(P) that depends on the local mean orientation P(r) of an explic-
itly tracked polymer field. For concreteness, in this paper we refer
to the viscoelastic medium as being “polymeric,” but our methods
encompass other structured fluids such as solutions of anisotropic
colloids or worm-like micelles.

A. Immersed boundary-lattice Boltzmann method
We represent a fluid by its local mass density ρ(r, t) and velocity

v(r, t) evolving according to

@tρ + @i(ρvi) = 0, (1)

ρDtvi = −@ip + @jσ v
ij + f i. (2)

In these equations, @t is a partial derivative with respect to time,
Dt = @t + vk@k is the material derivative, p is the hydrostatic pres-
sure, σ v

ij = ηs(@ivj + @jvi) is the viscous stress tensor, ηs is the fluid’s
dynamic viscosity, and fi is a body force density, which in later sec-
tions encompasses additional aspects of the system’s physics. The
indices i and j correspond to Cartesian directions and repeated
indices imply summation. Equation (1) represents conservation of
mass and Eq. (2) is the Navier–Stokes equation.

The standard LB method is a versatile approach to computa-
tional fluid dynamics that numerically solves Eqs. (1) and (2). For
many systems of interest, it has practical advantages over alterna-
tive methods, such as molecular dynamics, lattice gas models, finite
element methods, and dissipative particle dynamics.30 These advan-
tages include comparative ease of implementation, high computa-
tional efficiency for many systems, flexibility in handling complex
boundary geometries and conditions, ability to handle multicompo-
nent and multiphase flows, and a strong physical basis rooted in the
Boltzmann equation.35

The LB method represents a fluid on a regular grid with spacing
�x in terms of its phase space distribution. The macroscopic density
ρ(r, t) and velocity v(r, t) are

ρ(r, t) = NLB�
n=1

hn(r, t), (3)

ρ(r, t)v(r, t) = NLB�
n=1

cnhn(r, t). (4)

The quantities hn(r, t), n = 1, . . . , NLB, denote fluid distribution
functions at position r and time t. The NLB fixed vectors {cn}NLB

n=1
form a discrete set onto which the velocity part of the distribution
function is expanded. The choice of NLB vectors, along with the
system dimensionality d, define the basic lattice structure of the sim-
ulation. In this paper, we take d = 2 and NLB = 9, the so-called d2Q9
lattice.

To simulate the fluid’s dynamics, one iterates between colli-
sion and streaming steps. In the collision steps, the distribution
functions hn(r, t) at each node are relaxed toward their local equi-
librium values to represent the redistribution of fluid velocities. In
the streaming steps, the distribution functions are propagated along
their corresponding velocity vector cn to represent the motion of that
fluid population to a neighboring node. The combined collision and
streaming step can be expressed as

hn(r + cn�t, t + �t) − hn(r, t)= Cn(r, t), (5)

where �t is the simulation time step and Cn(r, t) is the collision
operator. The commonly used Bhatnagar–Gross–Krook form for
this operator is

Cn(r, t) = −�t
τ
�hn(r, t) − h eq

n (r, t)�, (6)
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where τ is the relaxation time, which is related to the kine-
matic viscosity νs and the speed of sound constant for the lattice
cs = �x�√3�t through

νs = c2
s�τ − �t

2
�. (7)

In Eq. (6), h eq
n (r, t) is the local equilibrium distribution, which

depends on the macroscopic density and velocity in Eqs. (3) and (4).
Equation (6) thus couples hn(r, t) to the remaining hm(r, t), m ≠ n.
We omit here the expression for h eq

n (r, t), which can be found for
instance in Ref. 30. It can be shown via Chapman–Enskog analysis
that the “lattice Boltzmann equation,” Eq. (5), recovers Eqs. (1) and
(2) to second order in the Knudsen number of the fluid.

We note that the LB algorithm introduced here assumes that
the fluid is finitely compressible, with an isothermal equation of state
for the pressure given by

p = c2
sρ. (8)

Given that the fluid is compressible, there could be a contribution to
the viscous stress arising from the divergence of the velocity field in
addition to the contribution from the shear viscosity. This bulk vis-
cosity contribution to the stress is, however, not included as a term
in Eq. (2), resulting from the particular choice ηB = (2�3)ηs for the
solvent’s bulk viscosity coefficient.30 Variations of the LB algorithm
are possible that generalize this choice,36 but we do not consider
these here.

The LB method can be extended to simulate an elastic body
interacting with a fluid environment. For this, we use the LB method
to treat the hydrodynamics of the fluid and the immersed boundary
(IB) method to treat the dynamics of the body.31–34 In Appendix A,
we review the IB-LB method, and we refer the readers to Refs. 30
and 37 for detailed descriptions. The IB method is suited to simu-
lating objects that are deformable and permeable to the fluid, such
as an immiscible droplet or vesicle. To simulate rigid and volume
excluding objects such as a bead, alternative numerical methods, like
a moving hard-wall boundary, need to be used. However, the model
of viscoelasticity we present in this work should still be applicable to
treating the fluid.

B. Scalar viscoelastic model
Early implementations of scalar viscoelasticity in LB simula-

tions altered the collision operator in Eq. (6) or introduced addi-
tional fluid density functions to describe polymer orientations.38–40

Both of these approaches require substantial modifications to the
basic LB algorithm and do not easily accommodate varying the vis-
coelastic model, which limits flexibility. More recent studies have
instead favored introducing viscoelastic effects via an additive con-
tribution σp to the total stress tensor.41–43 The divergence of σp is a
force density f p

i = @jσ p
ij that can be included in the force f appear-

ing in Eq. (2). We incorporate this force in the LB algorithm using
the method introduced in Ref. 44. A key benefit of this approach is
that it is highly modular, allowing the dynamics of σp to be specified
independently from the underlying LB algorithm.

In the Jeffreys fluid model, which we use here, the solvent and
viscoelastic systems act in parallel, which implies that their corre-
sponding forces are added together in Eq. (2).2 The viscoelastic part

is further treated using the Maxwell model, in which the elastic and
viscous contributions act in series (Fig. 1). The elastic contribution
to the viscoelastic stress is then the same as the viscous contribution,
which we denote σp. From linear viscoelasticity theory,1,2,45

σ p = 2CΛC = 2ηpΨη, (9)

where C is the elastic modulus and ηp is the polymeric viscosity.
The total deformation field u(r) = uC(r) + uη(r) is the sum of the
elastic and viscous contributions, and it is related to the velocity
field by v(r) = @tu(r). The symmetrized deformation and veloc-
ity gradients appearing in Eq. (9) are ΛC

ij = 1
2�@iuC

j + @juC
i � and

Ψη
ij = 1

2�@ivη
j + @jvη

i �. We further have ΨC = @tΛC and Ψ = ΨC +Ψη,
allowing us to write

@tσ p
ij = 2CΨij − C

ηp
σ p

ij . (10)

This last equation is of the desired form for implementation, as it
relates the total polymeric stress σp to the total strain rate tensor Ψ,
both of which are tracked in simulation.

As a final step, we promote the partial derivative @t to an
operator Dt that is materially objective, in the sense that rigid
transformations of the coordinate system leave the dynamical equa-
tion unchanged.1,2,45 Here, we use the corotational (or Jaumann)
derivative whose action on a tensor X is

DtXij = DtXij +�ikXkj − Xik�kj, (11)

where

�ij = 1
2
(@ivj − @jvi) (12)

represents the local vorticity. Using the corotational derivative in
Eq. (10) yields the Johnson–Segalman model.46,47 An important fea-
ture of spatially extended viscoelastic materials is the diffusion of the
stress σp throughout the system volume.48,49 This effect is captured
in the diffusive Johnson–Segalman model47 described by

Dtσ p
ij = 2CΨij − C

ηp
σ p

ij +Dp@kkσ p
ij , (13)

where @kk represents the Laplacian operator and Dp is a diffusion
constant describing the spreading of stress sustained by the vis-
coelastic medium. We note that this diffusive term can improve

FIG. 1. Circuit diagram of the viscoelastic model used for simulation. The polymeric
elasticity is treated either through a scalar elasticity modulus (C) or an elasticity
tensor (C). The polymeric elasticity acts in series with the polymeric viscosity(ηp), and together, they act in parallel with the solvent viscosity (ηs).
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model stability in some contexts by reducing gradients in the
polymeric stress.43,50,51 We show later that the viscoelastic return of
a dragged droplet depends non-monotonically on Dp.

To numerically integrate Eq. (13), we use a finite difference
predictor–corrector scheme with the same time step �t as the LB
algorithm. Specifically, we implement Heun’s method, also known
as the improved Euler method.85 The viscoelastic stress tensor is
defined on the same fixed grid as the fluid velocity and density.
This scheme—in which additional physical fields are integrated via
finite difference in tandem with the LB algorithm—is known as a
hybrid lattice Boltzmann scheme.52,53 The algorithm described here
is schematically illustrated in Fig. 2. In Sec. II C, we use a simi-
lar hybrid scheme to track the evolution of a polymeric orientation
field P(r), allowing us to progress beyond the scalar viscoelasticity
presented here into a new class of models in which the viscoelastic
forces throughout the fluid depend on the local polymer orientation
through an elasticity tensor C(P).
C. Tensorial viscoelastic model

Because the viscoelastic properties of a structured fluid can
depend on the local configuration of solvated polymers, we extend
the hydrodynamic description of the system to account for the poly-
mer orientation dynamics. Our model of the dynamics builds on
previous work on the hydrodynamics of polar gels.53–55 A common
focus of this literature is on active polymer gels, which contain addi-
tional contributions to the stress tensor arising from chemical energy

consumption. Although our theory could be extended to include
these contributions, we omit them here in order to focus on the
tensorial character of the local elasticity and how the stiffness ten-
sor depends on the polymer orientation, which were not treated
previously.
1. Polymer field dynamics

In this subsection, we summarize the previously established
hydrodynamic equations governing the evolution of the polymer
orientation field P(r, t), primarily following Ref. 53. We then intro-
duce our model, which allows the elasticity tensor C to depend on P,
and we provide an efficient parameterization for C(P).

Let n̂ represent a unit vector pointing along a polymer’s local
tangent. At a coarse-grained level of description in two dimensions,
a point r in space is characterized by a local distribution g(n̂; r) of n̂
over the unit circle. This distribution has a first moment equal to the
local polarization vector

Pi(r) = � 2π

0
n̂ig(n̂; r)dθ, (14)

where n̂ = (cos θ, sin θ) is specified by a polar angle θ. In three
dimensions, this integral would be taken over the unit sphere and
the differential dθ would be replaced by the differential solid angle.
In the hydrodynamic theory, only the local polarization vector P(r)
is tracked, and the full distribution g(n̂; r) is not known. The mag-
nitude P of the polarization vector varies from 0 to 1 as the local
distribution g(n̂) goes from a uniform distribution on the circle to

FIG. 2. Simulation flowchart. We show the various fields tracked during simulation and how they influence each other’s dynamics as well as the numerical methods used to
update the fields from time t to t + �t. The fields ρ and v are updated using the lattice Boltzmann algorithm, whereas the remaining fields Ra, σp, and P are updated using
finite difference methods. A force f entering into the lattice Boltzmann step takes contributions from three fields, and the field v in turn influences the dynamics of those three
fields both directly and through the tensors � and Ψ. Not visualized here is how P also affects the update of σp through the stiffness tensor C(P). Because all fields are
updated using inputs from the previous timestep, the order of updates does not matter.

J. Chem. Phys. 158, 054906 (2023); doi: 10.1063/5.0123470 158, 054906-4

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0123470/16706252/054906_1_online.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

a δ function. The time evolution of field P(r, t) is governed by the
Beris–Edwards equation,53,56 which for this system takes the form

DtPi = −�ikPk + ξΨikPk − Γhi(P). (15)

Here, Ψ and � are the symmetric and antisymmetric parts of the
velocity gradient tensor ∇v, ξ is a scalar flow-alignment parameter,
Γ is a rotational-diffusion constant, and h(P) = δF�δP is the molec-
ular field (not to be confused with the fluid population functions hn
in Section II.A), which is derived from a model-specific free energy
functional F[P]. In this work, we take F[P] to be53,55

F[P] = � dr�α
2
�P�2 + β

4
�P�4 + κ

2
(∇P)2�, (16)

giving rise to the molecular field

hi(P) = �α + βP2�Pi − κ@kkPi. (17)

The coefficients α and β control the isotropic (P = 0) to polar(P > 0) transition, while κ controls the energetic cost of deforma-
tions from the aligned phase. The fluid flow field influences the
dynamics of P via Eq. (15), and P influences the flow field via an
additional contribution to the fluid stress called the Ericksen stress
tensor σE, which for this system is53

σ E
ij = −1

2
(Pihj − hiPj) + ξ

2
(Pihj + hiPj) − @iPk@jPk. (18)

The divergence of this stress tensor is a force density, f E
i = @jσ E

ij ,
which enters on the right-hand side of Eq. (2) and is handled in
simulation similarly to other force contributions described earlier.
In our hybrid LB implementation, the Beris–Edwards equation is
numerically integrated in tandem with the LB algorithm using the
predictor–corrector method.

2. Elasticity tensor of the polymer field
Instead of a scalar elasticity modulus C, we now assume that

the elastic response to deformation is characterized by a rank-four
stiffness tensor C, defined by the relation

σ p
ij = CijklΛ

C
kl, (19)

where σp is the elastic stress tensor experienced in response to a
deformation gradient ΛC. Incorporating this tensorial element into
the Maxwell model, we generalize Eq. (13) as

Dtσ p
ij = CijklΨkl − 1

2ηp
Cijklσ

p
kl +Dp@kkσ p

ij . (20)

In principle, the viscous response of the polymers may also require
a tensorial description ηp,ijkl, causing the second term in Eq. (20)
to depend on a separate tensor formed from the elasticity and
viscosity tensors (Rijkl in Ref. 57). This tensor could be straightfor-
wardly accommodated by our model, but we currently neglect it for
simplicity.

We next describe how to express the dependence of the stiff-
ness tensor C(P) on the local polymer polarization vector P(r). The
method presented here is based partly on the work of Kwon and
co-workers described in Ref. 25, which itself builds on the work of

MacKintosh and co-workers described in Refs. 58–60. The stiffness
tensor is expressed as an integral over the local filament orientation
distribution as follows:

Cijkl = (ρp − ρref)a� 2π

0
g(n̂)Kijkl(n̂)dθ, (21)

where the integral is over the unit circle and K is a separate rank-four
tensor discussed below. The term (ρp − ρref)a, which depends on the
polymer density ρp and two parameters ρref and a, allows for non-
affine deformations of the fluid.25 In the affine case, the expression
for C reduces to the one originally derived by MacKintosh and co-
workers as follows:

Cijkl = ρpK�� 2π

0
g(n̂)n̂in̂jn̂kn̂ldθ, (22)

where K� is the extensional stiffness of the polymer. Thus, in the
affine case, ρref = 0, a = 1, and Kijkl = K�n̂in̂jn̂kn̂l. The physical basis
for Eqs. (21) and (22) is the Irving–Kirkwood formula for the stress
tensor, as detailed in Refs. 25, 59, and 61.

The tensor K(n̂) can be expressed as a rotation of the constant
tensor K x = K(x̂) representing the elastic response of cross-linked
polymers oriented along the unit vector x̂ in the direction of the
x-axis. The nonzero elements of Kx reflect its material symmetry
properties, which we assume here to be transversely isotropic.25 In
this symmetry class, a deformation along x̂ can produce transverse
forces in the ŷ direction through non-affine cross-linking of the
polymers. To gain insight into the meaning of the elements of Kx,
we consider a polymer field oriented purely along the x-axis, so
that C = (ρp − ρref)aK x. We proceed in the Mandel basis, in which
rank-four tensors are expressed as matrices in R3×3 and matrix mul-
tiplication is used to represent contraction over multiple indices.62,63

We denote K in its Mandel basis as K̃ and similarly for other tensors.
The constitutive relation for the aligned polymer field is expressed in
this basis as [cf. Eq. (19)]

σ̃ p
α = (ρp − ρref)aK̃ x

αβΛ̃C
β , (23)

where we use Greek letters as indices in the Mandel basis. Here,
σ̃ p = (σ p

11, σ p
22,
√

2σ p
12)�, Λ̃ C = (ΛC

11, ΛC
22,
√

2ΛC
12)�, and under the

assumption of transverse isotropy, the matrix K̃ x is given as63

K̃ x =
������

K x
1111 K x

1122 0

K x
1122 K x

2222 0

0 0 2K x
1212

������
. (24)

In this representation, one can interpret the elements of K̃ x as
determining the elastic stress in response to various types of defor-
mations: K x

1111 is the longitudinal normal stiffness (along x̂) and
K x

2222 is the transverse normal stiffness (along ŷ). K x
1122 represents the

reciprocal force generated in one direction in response to a deforma-
tion along the orthogonal direction, and K x

1212 represents an elastic
resistance to shearing deformations.

Now, let T(n̂) be the orthogonal tensor that rotates x̂ to n̂,
i.e., n̂i = Tij x̂j; an expression for T(n̂) can be obtained in terms of
the polar coordinate θ of n̂. With this, K(n̂) can be written in the
original basis as (suppressing the dependence on n̂)
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Kijkl = TiITjJTkK TlLK x
IJKL (25)

with summation over repeated capital indices implied. The rotation
tensor T and its inverse T−1 have Mandel basis representations T̃
and T̃−1, for which explicit formulas are available64 [cf. Eq. (B2)]. In
this basis, the rotation in Eq. (25) is equivalent to

K̃αβ(n̂) = T̃αγ(n̂)K̃ x
γδT̃−1

δβ (n̂), (26)

providing an expression for K̃(n̂) in terms of the elastic constants in
K̃ x and the orientation of the polymers n̂.

3. Parameterizing the distribution
of polymer orientations

We next consider the distribution of polymer orientations,
which we now write as a function g(θ) of the polar angle θ of
n̂. Because we track the first moment of this distribution P in the
hydrodynamic model, we wish to find an expression for g(θ) con-
sistent with P to use in Eq. (21). We consider the magnitude P = �P�
and orientation P̂ = P�P separately. We first consider the special
case that P lies along the x-axis (i.e., P̂ = x̂). The polarization P is
then obtained from g(θ) as the mean of the projection along x̂ as
follows:

P = � 2π

0
g(θ) cos(θ)dθ. (27)

Viewing Eq. (27) as a constraint on the possible distributions g(θ),
together with the constraint that it is normalized, we now make the
physically motivated choice that g(θ) should maximize the entropy−∫ 2π

0 g(θ) ln g(θ)dθ. It can be shown that the unique function with
this property is the von-Mises distribution65 given by

g(θ; k) = ek cos θ

2πI0(k) , (28)

where I0(k) is the modified Bessel function of order zero and k > 0 is
a parameter that determines the anisotropy of the distribution. This

FIG. 3. Plot of the function P in Eq. (29). In the inset, a polar plot of the von-Mises
distribution g(θ; k), Eq. (28), is shown for four values of k ranging from 0 to 2. In
the polar plot, the value of g(θ; k) is represented by the distance from the origin
to the curve at the corresponding value of θ.

function is illustrated in the inset of Fig. 3 for different values of k.
To account for the general case when P̂ ≠ x̂, we simply find the polar
angle θP of P̂ and write the density as g(θ − θP; k).

In addition to its physical motivation, there are two key advan-
tages of this choice for g(θ). The first is that it allows the integral
over θ in Eq. (21) to be performed analytically. The second is that
it allows for a one-to-one mapping between P and k, which follows
from the relation

P(k) = � 2π

0
g(θ; k) cos(θ)dθ = I1(k)

I0(k) . (29)

Although this relation (plotted in Fig. 3) cannot be inverted ana-
lytically, k can be readily determined from P numerically. We note
that there is no value of k for which P = 1, but in practice either
the allowed range of P can be restricted to the interval [0, 1), or
one can take the limit k→∞. The equilibrium value of P is deter-
mined by the parameters α and β in Eq. (16). In this paper, we ensure

TABLE I. Parameters for droplet pulling simulations.

General parameters Symbol Value

Length scale Hx 4 × 10−8 m
Timescale Ht 8 × 10−6 s
Density scale Hρ 2 × 107 kg/m3

Number of steps Nsteps 187 500
Collision operator time τ 1.25
Solvent dynamic viscosity ηs 0.001 Pa s
Lattice size Nx, Ny 250, 250

Viscoelastic parameters Symbol Value

Scalar polymeric stiffness C 0.005 Pa
Polymeric viscosity ηp 0.05 Pa s
Stress diffusion constant Dp 10−13 m2/s
Stiffness tensor elementa K x

1111 0.01 Pa
Stiffness tensor elementa K x

1122 0.005 Pa
Stiffness tensor elementa K x

2222 0.005 Pa
Stiffness tensor elementa K x

1212 0.005 Pa

Beris–Edwards parameters Symbol Value

Flow alignment ξ 1.1
Polarization coefficients α, β −0.9, 1.0
Alignment stiffness κ 0.001
Rotational-diffusion constant Γ 1.0

Immersed boundary parameters Symbol Value

IB node distance leq 2 × 10−8 m
Droplet radius R 5 × 10−7 m
Droplet spring stiffness kspring 10−5 N/m
Droplet curvature stiffness εangle 10−20 N m
Maximum trap stiffness ktrap 10−6 N/m
Droplet pulling distance dpull 4 × 10−6 m
Droplet pulling time Tpull 0.2 s
aFor simplicity, the prefactor �ρp − ρref�a appearing in Eq. (21) has been absorbed into
the values shown here.
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FIG. 4. Validation of the viscoelastic LB implementation against analytically solvable channel flows. (a) The normalized velocity vx�v N
x during Poiseuille flow at the channel’s

midpoint as a function of normalized time t�t1, where t1 = η0�ρL2 and L is the channel height. v N
x is the steady-state velocity obtained for a Newtonian, i.e., not viscoelastic,

fluid. Here, λ1 = 3000 and ηs = 1�6, and we vary ηp from 0.05 to 0.5 in increments of 0.05 while the color ranges from blue to red. The analytical solution to this flow is
described in Refs. 66 and 68. (b) The steady-state viscoelastic stress tensor components σ p

xx and σ p
xy during Couette flow. Here, ηp = 0.5 and C takes the values 0.0005,

0.0025, 0.005, 0.025, and 0.05 as the colors range from blue to red. We simultaneously vary the strain rate γ̇ = vtop�L, where v top is the applied velocity at the top of the
channel. The analytical solution to this flow is described in Ref. 69. All quantities in this figure are given in lattice units unless noted otherwise, and L = Nx = Ny = 100.

through our choices of these parameters that the equilibrium value
is less than 1, and we account for the possibility of advection causing
P > 1 by setting a maximal value P = 0.99 when determining k from
Eq. (29).

We provide the full expression for C̃ obtained using this
method in Appendix B. In the isotropic case, when k = 0, the
expression for C̃ reduces to

C̃ =
������

C̃11 C̃12 0

C̃12 C̃11 0

0 0 C̃11 − C̃12

������
, (30)

where

C̃11 = 1
8
(3K x

1111 + 2K x
1122 + 4K x

1212 + 3K x
2222), (31)

C̃12 = 1
8
(K x

1111 + 6K x
1122 − 4K x

1212 + K x
2222). (32)

Equation (30) is the expected isotropic elasticity tensor in the Man-
del basis as described in Ref. 63. Equation (30) enters the fluid
dynamics through Eq. (19), which can be expressed in terms of the
Lamé parameters of an isotropic material as62

σ p
ij = 2 �ΛC

ij + λδijΛC
kk, (33)

where λ = C̃12 and � = (C̃11 − C̃12)�2 are the first and second Lamé
parameters, respectively. The shear modulus of the material is equal

to �, while the bulk modulus is λ + � in two dimensions. By setting
C̃12 to zero through particular choices of the elements of Kx, a single
parameter C̃11 characterizes the elastic response, and we recover the
case of scalar elasticity described in Sec. II B. This simplification of

FIG. 5. The simulation run time for five combinations of simulation features plotted
as a function of the number of grid points Nx × Ny . In the legend, “LB” refers to the
lattice Boltzmann simulator, “IB” refers to the immersed boundary, “SVE” refers to
the scalar viscoelastic model without polymers, “BE” refers to the Beris–Edwards
dynamics for polymers, and “TVE” refers to tensorial viscoelasticity in which C is
computed as a function of P. The dashed line shows linear scaling of run time with
the number of grid points for comparison. These simulations were run serially on
single cores of Intel Xeon Gold 6248R processors.
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Eq. (30) to a diagonal matrix can be viewed as the reduction to zero
of the material’s Poisson ratio ν = λ�(λ + 2 �) through tuning of λ.

In summary, the local polarization vector P(r) = PP̂ deter-
mines the stiffness tensor C̃(P) through the orientation parameter
θP, which depends on P̂, and the anisotropy parameter k, which
depends on P. These together specify the parameterized distribu-
tion g(θ − θP; k), which enters in the integral in Eq. (21). Given the
expression for K̃(n̂) in Eq. (26), the integral can be computed ana-
lytically. The result is then used in Eq. (20), which is numerically
integrated using a finite difference method as described in Secs. II B
and II C.

D. Parameterization
Rheological systems are frequently characterized using sev-

eral numbers that describe the material properties and the degree
of deformation caused by an external force.1,2,66,67 The material
properties are captured by the relaxation time [cf. Eq. (9)] given by

λ1 = ηp

C
, (34)

the total viscosity given by

η0 = ηp + ηs, (35)

and the dimensionless viscosity fraction given by

β = ηp

η0
. (36)

Given a time for observing the system T, the dimensionless Deborah
number is1,2,66,67

De = λ1

T
. (37)

For De� 1, the system flows appreciably over the observation time,
while for De� 1 the system appears nearly elastic. If the system is
driven by an external force, producing a deformation rate U across
a system of size L, the strain rate is defined as

γ̇ = U
L

(38)

and the dimensionless Weissenberg number is

Wi = 2λ1γ̇. (39)

For Wi� 1, the elastic restoring forces far outweigh the viscous
forces. Finally, the relative importance of fluid inertia compared to
viscous forces is captured by the Reynolds number

Re = ρ0UL
η0

, (40)

where ρ0 is the typical density of the system.
By working directly in lattice units, these viscoelastic para-

meters can be prescribed in simulation without setting a physical
scale for the system. In other words, the physical length scale Hx,
timescale Ht , and density scale Hρ are all equal to 1. However, to
simulate a particular system, it is necessary to fix Hx, Ht , and Hρ to
the scale of the system. To convert physical quantities to lattice units,

one divides by the corresponding dimensional combination of these
factors.30

Our primary application of the methods in this paper is to sim-
ulate a lipid droplet being dragged by an optical trap. For this, we
followed the general strategy for parameterizing the LB simulations
described in Ref. 30. We set the solvent viscosity to that of water, but,
following standard practice with LB simulations of microscopic sys-
tems, we set the density to several orders of magnitude larger than
the density of water.55,70–72 This allows increasing the time step �t
(thereby accelerating simulations) while ensuring that the system is
still in the low Reynolds number regime. To explore their effects,
we varied the stress diffusion constant, droplet radius, and pulling
time. The default values of these parameters as well as the vis-
coelastic parameters were chosen to roughly correspond to pulling
a small lipid droplet through the cytoplasm.17 See Appendix A for

FIG. 6. Distance trajectory for several values of (a) the stress diffusion Dp and
(b) the droplet radius R. Insets: the value of the return defined in Eq. (42). The
color ranges from red to blue in each plot as the parameters increase over the
values at which points are plotted in the corresponding insets.
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details on the droplet model. The trap stiffness ktrap was chosen to
be roughly consistent with an optical trap. The droplet’s constitu-
tive parameters kspring and εangle were chosen to give appreciable
resistance to deformation while remaining numerically stable. The
Beris–Edwards parameters are mostly based on previous studies.55

The parameter values used for all simulations, unless otherwise
specified, are given in Table I.

E. Boundary conditions
Several fields make up the system described in this paper,

including ρ, v, {Ra}NIB
a=1, σp, and P, and each requires specifying

boundary conditions at the edge of the simulation volume. The fields
ρ and v are handled by the LB algorithm (see Fig. 2) and typi-
cally have either periodic or Dirichlet boundary conditions, though
Neumann boundary conditions are also possible. In this paper, we

implement Dirichlet boundary conditions through the bounce-back
method, described in detail in Ref. 30. Through an extension of the
bounce-back method, walls can be given a nonzero velocity, which
allows simulating shear flow. The IB points Ra are not prescribed
boundary conditions in this work; we simply ensure that these points
do not cross the boundary during simulation. The remaining fields
σp and P are given either periodic or Neumann boundary conditions
with zero derivative at the boundary, though it would be straightfor-
ward to use Dirichlet or Robin boundary conditions for these fields
as well.73

F. Validation and performance
We validate the scalar viscoelasticity simulation on two types of

channel flow, in which periodic boundary conditions are applied in
the x direction and reflecting (i.e., hard-wall) conditions are applied

FIG. 7. Example responses to a driven body. Simulations with (a) Dp = 0.001 �m2�s and R = 0.5 �m, (b) Dp = 0.1 �m2�s and R = 0.5 �m, (c) Dp = 1 �m2�s and
R = 0.5 �m, (d) Dp = 0.1 �m2�s and R = 0.32 �m, (e) Dp = 0.1 �m2�s and R = 0.72 �m, and (f) Dp = 0.1 �m2�s and R = 1.12 �m. In these images, the color represents
the local vorticity of the fluid flow field @xvy − @y vx , and the arrows, shown at 1�16th of the grid points, are proportional to the local vector ∇ ⋅ σp, which represents
the viscoelastic restoring force at each point. The thick orange curve represents the boundary of the droplet, defined by the points {Ra}NIB

a=1 (cf. Fig. 13), and the three
orange dots represent the initial center of mass, the current center of mass, and the position of a fixed point on the boundary. The thin orange line traces the trajectory
of the center of mass during the pulling protocol. The red dot (which overlaps with the current center of mass) represents the location of the harmonic trap. All snapshots
correspond to the time t = 0.2 s. Multimedia views: (a) https://doi.org/10.1063/5.0123470.1; (c) https://doi.org/10.1063/5.0123470.2; (d) https://doi.org/10.1063/5.0123470.3;
(f) https://doi.org/10.1063/5.0123470.4
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in the y direction. In Poiseuille flow, a spatially uniform external
force in the x direction is applied to the fluid to capture the effect
of a fixed pressure gradient across the channel, and in Couette flow
the top boundary at y = L moves with a fixed speed to shear the
fluid. Analytical solutions66,68,69 of both flows exist for an Oldroyd-B
fluid, which is the fluid described in Eq. (13) upon setting Dp = 0
and replacing the corotational material derivative Dt with the
upper-convected material derivative, whose action on a tensor X is

Duc
t Xij = DtXij − (@kvi)Xkj − (@kvj)Xik. (41)

The analytical solutions apply to incompressible fluids, whereas our
implementation assumes a finitely compressible fluid, but we ensure
that the density variations are sufficiently small when comparing
results. In both cases, we find excellent agreement between simu-
lation and the analytical results as illustrated in Fig. 4. We further
validated our simulation of the Beris–Edwards dynamics by mea-
suring the steady-state angle made by the polymer field with respect
to the shear flow direction. These results also agree with analytical
expressions74 (results not shown).

We implemented the methods described in this paper in cus-
tom Julia75 code. Although the LB algorithm is amenable to paral-
lelization we did not pursue this here. To evaluate the contribution
of the different components of the algorithm to the total run time, we
ran simulations of Couette flow with different combinations of fea-
tures. For each combination, we fixed Ny = Nx and Nsteps = 10 000
and varied Nx. The results indicate an approximately asymptotic lin-
ear scaling of the run time with the system size (slopes of the curves
in Fig. 5). In terms of absolute computation time, the cost for the
tensorial viscoelasticity is comparable to the sum of the cost for the
scalar viscoelasticity and that for the Beris–Edwards dynamics for
the polymers. Much of the computational expense for the tensorial
model is due to evaluating the tensor C(P) for each P(r, t). The
inclusion of an immersed boundary object (consisting here of ∼60
points) adds an overhead that, as expected, does not scale with the
grid size.

III. RESULTS
Here, we describe several test cases demonstrating the physical

features that may be resolved using the simulation methods outlined
above. We simulate an optical trap experiment in which an elastic
droplet is dragged by a harmonic trap through a viscoelastic fluid
over a time Tpull and then released. Throughout this section, the
main metric we use to evaluate the behavior is the return, which is
defined as

return = 1 − dret�dpull, (42)

where dret is the distance from the lipid droplet’s initial center of
mass position to its position at the end of the simulation and dpull is
the length of the harmonic trap pulling protocol. If the droplet fully
returned to its starting position, dret = 0 and return = 1.

The parameters used here are given in Table I. A typical
relaxation time for these simulations is λ1 = 10 s, and by defining
the typical flow rate as U = dpull�Tpull, the strain rate as γ̇ = U�L,
and the observation time as T = Tpull, we have De = 50, Wi = 40,
Re = 0.03, β = 0.98. For this parameter regime, the system behaves
quite elastically and there is significant return of the droplet.

FIG. 8. Effect of stress diffusion on the force distribution. For the values of Dp used
in Fig. 6(a), the x-component of ∇ ⋅ σp is visualized at t = 0.2 s on the vertical
line at x = 2 �m passing through the droplet’s center of mass. The colors range
from red to blue as Dp increases, showing how the force distribution becomes
more spatially inhomogeneous for small Dp. For clarity, only part of the full domain[−5, 5] �m has been visualized.

A. Scalar viscoelasticity results
Several parameters entering the simulation setup are shown

here to have significant effects on the return. In Fig. 6, we show
how the return depends on two such parameters: the droplet radius
R and the stress diffusion constant Dp. The range of Dp is consis-
tent in order of magnitude with the measurements made in Ref. 48

FIG. 9. Distance trajectories for several pulling speeds. The time Tpull over which
the droplet is pulled corresponds to the point at which each trajectory obtains its
maximum (except for the smallest values of Tpull which exhibit some overshoot
due to convective fluid motion).
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FIG. 10. The value of the return, defined in Eq. (42), as a function of the parameters
α, which controls the typical polarization P through P =�−α�β, and θ0, the initial
angle between the aligned polymer field and the +x direction.

on the viscoelastic stress diffusion in a worm-like micellar solution
of CTAB-NaNO3. We observe a non-monotonic dependence of
the return on both R and Dp. In the case of Dp [Fig. 6(a)], this
non-monotonic dependence can be understood as follows: At very
low values of Dp, the viscoelastic restoring force ∇ ⋅ σp has large

gradients and is spatially inhomogeneous. In particular, significant
components of the restoring force do not align with the direction of
return, which diminishes the return. The vector field corresponding
to this case is shown in Fig. 7(a) (Multimedia view). On the other
hand, when Dp is large, the stress diffuses quickly, which dimin-
ishes the magnitude of ∇ ⋅ σp and, in turn, the return; see Fig. 7(c)
(Multimedia view). See Fig. 8 for an illustration of these forces as
Dp is varied. These competing effects cause the optimal return to
occur at intermediate values of Dp. The non-monotonic dependence
on the radius [Fig. 6(b)] is a result of a trade-off between higher drag
on the droplet and larger elastic displacement of the droplet as the
radius increases; see Figs. 7(d)–7(f) (Multimedia view).

In Fig. 9, we show trajectories of the droplet distance as we
vary the time Tpull over which the droplet is pulled the distance
dpull = 4 �m. We see that as the droplet is pulled more quickly, it
returns closer to its original position. This can be attributed to the
reduced amount of time over which the viscous dissipation acts to
diminish the viscoelastic restoring force.

B. Tensorial viscoelasticity results
We now illustrate how using a tensorial description of poly-

mer elasticity can produce anisotropy and spatial asymmetry in the
viscoelastic restoring forces. The stiffness tensor C(P) has entries
depending on the local polymer polarization vector P(r), such that
both the magnitude of the polarization P and the relative angle
between the elastic deformation and the polymer orientation P̂ con-
tribute to the viscoelastic response. To illustrate this, we fix the
direction of pulling along the x-axis and vary both the equilibrium
polarization P and the initial angle θ0 that the aligned polymer
field makes with this direction. The equilibrium polarization can be
found from the free energy [cf. Eq. (16)] as

�−α�β, and we fix β = 1

FIG. 11. The orientation field P(r) at t = 0.2 s with initial orientation angle (a) θ0 = 0 and (b) π�3; α = −0.9. The color indicates the local angle that P(r) makes with the x-
axis, and the arrows are proportional to∇ ⋅ σp. The remaining details of the visualization are the same as in Fig. 7. Note that the tracked point represented by the orange dot
on the droplet’s boundary has rotated off of the line y = 0 �m in panel (b). Multimedia views: (a) https://doi.org/10.1063/5.0123470.1; (b) https://doi.org/10.1063/5.0123470.2
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FIG. 12. The x-component of the force density ∇ ⋅ σp on the line x = 2 �m for (a) θ0 = 0 and (b) π�3 as α ranges from 0 (blue) to −0.9 (red). These plots correspond to
the same simulation and time point as shown in Fig. 11. Note that asymmetries about y = 0 �m develop for θ0 = π�3 when α < 0.

and vary α from 0 to −0.9, causing P to vary from 0 to ∼0.95. The
return as a function of α and θ0 is shown in Fig. 10. We see that,
as expected, when α = P = 0 the system is isotropic [see Eq. (30)]
and there is no dependence of the return on θ0. As P grows, strong
dependencies of the return on θ0 emerge, indicating the onset of
anisotropic viscoelastic response. We observe that this anisotropic
response, as measured by the return parameter, is periodic with
period π and has a reflection symmetry about π�2.

The fluid flow from the dragged droplet distorts the initially
aligned polymer field via the coupling of P(r) to the velocity gradi-
ent tensor [cf. Eq. (15)]. This is visualized in Fig. 11 (Multimedia
view) for two initial orientations: θ0 = 0 and π�3. For θ0 = 0, the
pulling direction and initial polymer orientation are parallel, and the
restoring forces ∇ ⋅ σp are symmetric about the pulling direction.
However, this symmetry is broken when θ0 = π�3, and as a result
the restoring forces push asymmetrically on the droplet. We observe
that this asymmetry causes the droplet to deflect off the axis along
which it was pulled as well as to rotate slightly.

We highlight that in the tensorial model, spatial asymmetries
of the restoring force that are not captured in the scalar model can
now be resolved. This is further illustrated in Fig. 12, where we show
the x-component of ∇ ⋅ σp for a range of values of θ0 and α. For
θ0 = 0, the restoring force is symmetric about y = 0 �m for all values
of α, while for θ0 = π�3 asymmetries develop as α increases. These
unbalanced restoring forces on the top and bottom of the droplet
lead to its deflection and rotation as noted above.

IV. DISCUSSION
Our goal in this work was to develop a method for treating

fluid structure in hydrodynamic simulations of viscoelastic media.

In particular, we introduced a tensorial representation of the elastic
modulus C(P) that depends on the local polarization vector P(r)
of the fluid structure. In the test cases that we presented, this was
shown to cause the viscoelastic return of a dragged lipid droplet to
become strongly anisotropic. In addition, it was shown that, even in
the case that the elastic modulus is a scalar, the viscoelastic return
depends non-monotonically on the droplet’s size and the diffusion
rate of the polymeric stress. We note that, while scalar viscoelas-
ticity has been treated in previous lattice Boltzmann works, we are
not aware of any study on the viscoelastic return accompanying a
pulled droplet as reported here. Furthermore, the tensorial model of
viscoelasticity has not been treated in previous studies. These appli-
cations demonstrate the new physical features that the modeling
approaches developed in this work can resolve.

Several extensions to the work presented here are possible.
First, generalizing these methods to three dimensions rather than
two should be straightforward. One difficulty that can arise is ana-
lytically evaluating the integral of the parameterized distribution
g(n̂; k) over the unit sphere rather than the unit circle [cf. Eq. (21)].
The choice of g(n̂) here as a von-Mises distribution facilitated
computing the stiffness tensor analytically in two dimensions, but
computing the stiffness tensor in three dimensions may require
resorting to numerical methods. Options for this include precom-
puting C on a discretized domain and using a look-up table or a fit of
a function to these data or relying on rejection sampling for numer-
ically evaluating the integral. We also note that the expression for
the elastic stress tensor can be written in a more general setting as
a double integral over a two-body distribution function of polymer
orientations rather than as a single integral over a one-body distri-
bution g(n̂) as in Ref. 76. This approach can allow incorporating
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domain knowledge of the polymeric system being simulated but will
likely complicate the implementation.

Additionally, when the relevant length scales are microscopic,
thermal noise may become important. Fluctuations of the fields
ρ and v could be treated using existing variations of the lattice
Boltzmann algorithm as discussed in Refs. 53, 77, and 78. Alter-
native computational fluid dynamics techniques such as stochastic
rotation dynamics (also known as multiparticle collision dynam-
ics) could also be considered.30,79 To a first approximation, thermal
noise could be introduced solely through these stochastic methods
for solving the Navier–Stokes equation, and the fluctuating v field
would then cause fluctuations in the dynamics of the fields P and
σp through the dependence of these fields on v. However, a phys-
ically rigorous approach for introducing noise consistently in the
dynamics of these different fields would likely require further
theoretical developments.

A useful generalization of the methods presented here would
be to simulate systems with nematic, rather than polar, symmetry. A
polar gel, which we considered here, is described by the order para-
meter P, which we used as the basis for our description of tensorial
elasticity. The right-hand side of Eq. (15) is odd under P̂→ −P̂, but
this symmetry for the dynamics of a polar system can be broken by
including an even self-advection term ∼ P ⋅ ∇P in Eq. (15). Such a
term can represent, for instance, the directed polymerization of actin
polymers.55,80 We note that the elasticity tensor C̃(P) derived here
obeys

C̃(P) = C̃(−P), (43)

which can be seen by observing that the elements C̃αβ (whose expres-
sions are in Appendix B) involve trigonometric functions of even
multiples of θP. This can be traced to the symmetry K̃(n̂) = K̃(−n̂),
which makes the integral of K̃ over the distribution g(θ − θP) equal
to that over g(θ − θP − π). Ultimately, Eq. (43) reflects the assump-
tion of a transversely isotropic material response. Equation (43)
enables one to also apply our simulation framework to a nematic
gel with an order parameter that is the symmetric and traceless ten-
sor Q.53,54 The tensor Q can be expressed in terms of the director
P̂ as follows:

Qij = q�P̂iP̂j − 1
d

δij�, (44)

where d is the dimensionality and q, like P in the polar case, cap-
tures the degree of local alignment. Nematic gels have dynamics
given by a variant of the Beris–Edwards equation, summarized in
Ref. 53. Importantly, like C(P), the order parameter Q is even
under P̂→ −P̂. Adapting the tensorial elastic model presented here
to a nematic gel would thus be straightforward: To compute C̃(Q),
one could first eigen-decompose Q to obtain P̂ and q, from which
θP (modulo π) and the anisotropy parameter k could then be found
as in Sec. II C 3 using q in place of P. The integral expression for the
elements C̃αβ in Eq. (B1) could then be used directly.

Finally, we neglected here the possibility of activity of the vis-
coelastic fluid. Activity can allow relaxation of traditional material
symmetries, which in turn can give rise to “odd” properties;57,81 we
report simulations of odd viscoelasticity in Ref. 82. Activity can also
enable a polymeric network (e.g., the cytoskeleton) to be contractile;

such activity can be included in LB simulations by modifying the
total stress tensor in the Navier–Stokes equation.53 In future work,
we aim to study the interplay between active stresses and the tenso-
rial viscoelastic restoring forces that are the subject of this paper. It
would be interesting to allow the active stresses and elastic stiffness
to depend on the local concentration of bound molecular motors in
a force-dependent manner, capturing the catch bond-like dynamics
of motors such as myosin II.83 Because feedback loops between the
chemistry and mechanics can produce complex energy landscapes,
this should lead to a rich dynamical phase diagram with regions
in which precise memories of the material’s force history can be
encoded.
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APPENDIX A: DETAILS OF THE IMMERSED
BOUNDARY METHOD

The IB method was introduced by Peskin to model the inter-
action of fluids with an elastic boundary.31,32 The boundary is
represented by a set of NIB points Ra that are not confined to the
regular grid of the LB domain but can take any position within the
simulation volume. We use the index a to specify points in the IB. In
the applications that we present, the points Ra represent the one-
dimensional boundary of a two-dimensional droplet. The elastic
properties of the droplet are modeled through a constitutive equa-
tion describing the droplet’s energy as a function of its configuration
as follows:

U�{Ra}NIB
a=1� = NIB�

a=1
�u spring

a + u angle
a � + u trap. (A1)
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The function u spring
a is a harmonic potential that constrains the

separation la = �Ra+1 − Ra� between neighboring points to be close
to an equilibrium value leq,

u spring
a = kspring

2
(la − leq)2. (A2)

The function u angle
a penalizes regions of high curvature by constrai-

ning the angle γa between adjacent edges (as drawn in Fig. 13),

u angle
a = εangle(1 − cos(π − γa)). (A3)

To simulate an optical or magnetic trap pulling on the droplet, we
add a harmonic potential term constraining the distance between
the center of mass rcom of the points {Ra}NIB

a=1 and the externally
controlled trap position Rext(t) as follows:

u trap = ktrap(t)
2
�Rext(t) − Rcom�2. (A4)

We let both ktrap(t) and Rext(t) depend on time so that the trap can
be turned on and off as well as moved in space. Figure 13 provides a
schematic of the IB model.

The droplet is assumed to be permeable, so that both the exte-
rior and interior of the closed loop contain the fluid. The interaction
between the points Ra and the fluid is bidirectional. In the boundary-
to-fluid direction, the constitutive equation U�{Ra}NIB

a=1� produces
forces fa = −∇Ra U at the positions Ra. These forces are “spread” to
the grid points of the LB domain through kernel-weighted sums over
the IB points in the vicinity of the grid points. Different choices of
kernels are possible, and in this work we use

K(r) = ϕ(rx)ϕ(ry)�(�x)2, (A5)

where

ϕ(x) =
���������

1
4
�1 + cos�πx

2
��, 0 ≤ �x� ≤ 2�x,

0, 2�x ≤ �x�. (A6)

FIG. 13. The NIB points Ra that make up the immersed boundary are illustrated
for NIB = 10, showing the quantities la, γa, Rcom, Rext, and the trap displacement
vector d = Rext − Rcom that enter into the constitutive equation for the boundary.

The IB force fIB(r) at lattice position r is then computed as

fIB(r) = NIB�
a=1

faK(Ra − r). (A7)

For further details on this force-spreading procedure, see Refs. 30,
32, and 37. The force fIB enters as a contribution toward the external
force f in Eq. (2), which is then accounted for in the LB algorithm fol-
lowing the approach introduced in Ref. 44. In the fluid-to-boundary
direction, we assume that there is a no-slip condition between the
boundary and the neighboring fluid, such that the boundary points
Ra are simply carried along by the local fluid velocity v(Ra). The
fluid velocities are only defined on the grid points, so v(Ra) is inter-
polated at the point Ra using kernel-weighted sums over the lattice
points in the vicinity of Ra as follows:30

v(Ra) =�
r
(�x)2v(r)K(Ra − r). (A8)

For simplicity, we assume here that the boundary motion is over-
damped, so that @tRa = v(Ra). In the time step �t, the point Ra is
then updated using a finite difference integration scheme in tandem
with the LB iteration. We use the predictor–corrector algorithm for
all finite difference integration in this paper. It would be straightfor-
ward to relax both the no-slip condition, to account for finite friction
between the boundary and fluid, and the overdamped condition, to
account for inertia of the boundary,84 but we do not pursue this
here.

The pulling protocol, defined by the curves ktrap(t) and Rext(t)
that enter into Eq. (A4), was observed to lead in some cases to
instabilities in the simulation. This occurred when the transitions
between resting, pulling, and letting go were not sufficiently smooth,
causing high-frequency fluctuations in the fluid. To alleviate this,
the pulling protocol is formed from successive sigmoid functions
instead of step functions. We use a width of 30 time steps for the sig-
moid functions, and before pulling we first let the system equilibrate
for 30 time steps.

APPENDIX B: ANISOTROPIC ELASTICITY TENSOR

The expression for the elasticity tensor C̃(P) in the Mandel
basis is given by the integral [cf. Eq. (21)]

C̃αβ(θP, k; K̃ x) = � 2π

0
g(θ − θP; k)K̃αβ(θ)dθ, (B1)

where θP and k are one-to-one functions of P and P̂, g(θ; k) is
the von-Mises distribution, and for simplicity we have absorbed the
prefactor (ρp − ρref)a into the definition of K̃. The tensor K̃(θ) is
given as a rotation of the constant tensor K̃ x via Eq. (26), where K̃ x

is specified in Eq. (24). The rotation tensor T̃ appearing in Eq. (26)
is a function of the polar angle θ of n̂, given by

T̃(θ) =
������

cos2 θ sin2 θ −2 sin θ cos θ

sin2 θ cos2 θ 2 sin θ cos θ

sin θ cos θ − sin θ cos θ cos2 θ − sin2 θ

������
, (B2)

and T̃−1(θ) = T̃(−θ).
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Evaluation of Eq. (B1) gives

C̃11 = ��k�k2 + 24�I0(k) − 8�k2 + 6�I1(k)� cos(4θP)(K x
1111 − 2K x

1122 − 4K x
1212 + K x

2222)
k3

+ I0(k)(3K x
1111 + 2K x

1122 + 4K x
1212 + 3K x

2222) + 4I2(k)(K x
1111 − K x

2222) cos(2θP)��8I0(k) , (B3)

C̃12 = 1
8
�−�k�k2 + 24�I0(k) − 8�k2 + 6�I1(k)� cos(4θP)(K x

1111 − 2K x
1122 − 4K x

1212 + K x
2222)

k3I0(k)
+ K x

1111 + 6K x
1122 − 4K x

1212 + K x
2222�, (B4)

C̃13 = �π�k�k2 + 24�I0(k) − 8�k2 + 6�I1(k)� sin(4θP)(K x
1111 − 2K x

1122 − 4K x
1212 + K x

2222)
k3

+ 2πI2(k)(K x
1111 − K x

2222) sin(2θP)��4πI0(k) , (B5)

C̃21 = C̃12, (B6)

C̃22 = C̃11 − �I2(k)(K x
1111 − K x

2222) cos(2θP)��I0(k) , (B7)

C̃23 = − �π�k�k2 + 24�I0(k) − 8�k2 + 6�I1(k)� sin(4θP)(K x
1111 − 2K x

1122 − 4K x
1212 + K x

2222)
k3

+ 2πI2(k)(K x
2222 − K x

1111) sin(2θP)��4πI0(k) , (B8)

C̃31 = �π�k�k2 + 24�I0(k) − 8�k2 + 6�I1(k)� sin(4θP)(K x
1111 − 2K x

1122 − 4K x
1212 + K x

2222)
k3

+ 2πI2(k)(K x
1111 − K x

2222) sin(2θP)��8πI0(k) , (B9)

C̃32 = − �π�k�k2 + 24�I0(k) − 8�k2 + 6�I1(k)� sin(4θP)(K x
1111 − 2K x

1122 − 4K x
1212 + K x

2222)
k3

+ 2πI2(k)(K x
2222 − K x

1111) sin(2θP)��8πI0(k) , (B10)

C̃33 = 1
4
�−�k�k2 + 24�I0(k) − 8�k2 + 6�I1(k)� cos(4θP)(K x

1111 − 2K x
1122 − 4K x

1212 + K x
2222)

k3I0(k)
+ K x

1111 − 2K x
1122 + 4K x

1212 + K x
2222�. (B11)
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