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Abstract

Thermodynamic properties of fluids in nanopores are altered by confinement, and

equations of state (EOS) for bulk fluids are not able to predict them. We utilized a

recent EOS based on the Peng-Robinson EOS, which takes into account the effects of

confinement, to derive an analytical expression for the elastic properties of the fluid,

isothermal bulk modulus, or compressibility. We calculated the modulus of liquid argon

confined in model spherical nanopores of various sizes. We compared the predictions

based on the EOS to calculations of the bulk modulus directly from Monte Carlo

simulations in the grand canonical ensemble (GCMC). The bulk modulus of argon

in mesopores predicted by the EOS appeared consistent with the GCMC predictions,

showing in particular linear dependence on Laplace pressure and on the inverse pore

size. Furthermore, the EOS appeared capable of predicting the modulus of the fluid in

micropores, where GCMC predictions failed. Our result is a step towards developing

an equation of state for confined fluids, which can be used for predictions of elasticity.
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Introduction

Predicting the behavior of confined fluids in nanopores is needed for many science and

engineering applications. Examples include nanofluidic devices,1,2 electrochemical applica-

tions,3–5 and even water in nanopores inside the collagen-apatite matrix in bones,6 etc.

However, within the last decade, the interest in confined fluids has been strongly driven by

the exploration and development of unconventional hydrocarbon resources.7–11 Several ex-

perimental and theoretical studies demonstrated that the elasticity (bulk modulus or com-

pressibility) of confined hydrocarbons differs from the elasticity of the same fluid in bulk.12–15

The elasticity of fluids in the pores contributes to the elasticity of the fluid-saturated porous

media, which determines the speed of seismic waves and is needed for the correct interpreta-

tion of seismic data used for geophysical exploration.16–18 Therefore, quantitative predictions

for the elasticity of a confined fluid are of practical interest.

The elastic modulus of confined fluids can be theoretically predicted by using methods

based on statistical mechanics. For example, molecular dynamics,14,19 Monte Carlo simula-

tions,15,20 and classical density functional theory (cDFT).21–23 Nevertheless, depending on

the system, simulations may require high computational resources to predict elasticity with

high enough accuracy. Regarding cDFT, its applicability for confined systems is limited to

simple fluids,24 and even for them, cDFT fails to provide quantitative predictions.25 Alter-

natively, the elastic modulus of a confined fluid, similar to a bulk fluid, can be calculated

based on an equation of state (EOS).26

EOSs have the advantage of containing the whole system’s thermodynamics in a set of

equations, so it is enough to know some system’s variables according to the degrees of freedom

of the fluid to describe its state completely. One of the simplest EOSs developed for real

liquids is the van der Waals EOS (vdW EOS),27 from which several EOSs were derived to

describe confined fluids: Schoen and Diestler extended the vdW EOS utilizing perturbation

theory,28 Truskett et al. used Schoen and Diestler’s approach to include hydrogen-bonding

interactions,29 Zarragoicoechea and Kuz applied classical thermodynamics, and stress tensors

3



instead of perturbations,30 and Travalloni et al. extended the vdW EOS through density

packing (TvdW EOS).31

Even though none of the equations mentioned previously were developed focusing on

calculating the elasticity of confined fluids, Dobrzanski et al. succeeded in deriving the

isothermal elastic modulus from the TvdW EOS and utilized it for predicting confined argon

in cylindrical silica pores.26 TvdW EOS succeeded in predicting only qualitatively capillary

condensation, the adsorbed amount of molecules on the pore, and elasticity. One possible

cause of this disagreement is the vdW EOS chosen as a basis since it can only qualitatively

predict the properties of bulk fluids. Instead, Peng-Robinson EOS (PR EOS)32 can predict

elasticity for the bulk phase with reasonable accuracy. To improve TvdW EOS, Barbosa et

al. extended the PR EOS using the same approach as Travalloni et al. did for their EOS

and generalized it to spherical and cylindrical pores.33

In the current paper, we derived analytical expressions that calculate the elastic modulus

of fluids from an EOS developed by Barbosa et al. (we will refer to it as BPR, for short).

We parameterized BPR EOS based on the data for argon in spherical silica pores generated

from Monte Carlo molecular simulations in the grand canonical ensemble (GCMC). We

used the resulting parameters to calculate elasticity from BPR EOS and compared it to the

calculations based on GCMC. Our results showed significant improvement compared to the

earlier results by Dobrzanski et al.,26 based on the TvdW EOS.31

Methods

Below is a detailed description of the methods to model argon adsorbed on silica pores, BPR

EOS, and GCMC simulations. The former method applies two assumptions to derive the

coming equations: A molecule-molecule interaction potential of the square-well type and

the packing of hard spheres. From these two assumptions and using the PR EOS to relate

confined and bulk phases, it is possible to derive a pressure equation and a chemical potential.
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The rest of the equations are implications of these assumptions. The latter method, unlike

BPR EOS, utilizes Lennard-Jones (LJ) interactions for fluid-fluid and solid-fluid interactions.

The chemical potential was approximated to the chemical potential of the ideal gas, and the

bulk modulus was calculated from statistical mechanics.

Equation of state

Barbosa et al. derived an EOS based on the canonical ensemble and assumed that fluid-fluid

and solid-fluid interactions are of the square-well potential type, i.e.,

uij(rij) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞, rij ≤ σ

−ϵ, σ < rij ≤ σ + δ

0, rij > σ + δ,

(1)

for fluid-fluid interactions, and

ui(ri) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞, ri ≥ rp − σp/2

−ϵp, rp − σp/2− δp ≤ ri < rp − σp/2

0, ri < rp − σp/2− δp,

(2)

for solid-fluid interactions, where rij is the distance between two fluid molecules, ri the radial

position of a fluid molecule in the pore, rp is the external pore radius, δ and δp are the widths

of the square-well potentials for fluid-fluid and solid-fluid interactions, respectively, and ϵ,

ϵp, σ and σp are the depths and molecular diameters of their respective potentials.

Since BPR EOS is focused only on the fluid molecules, it is important to distinguish

between the pore radius of the confined fluid rint (also called internal pore radius) and the

external pore radius. For a solid-fluid square-well potential, interactions tend to infinity for
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distances between solid and fluid molecules lower than σp/2, hence

rint = rp −
σp

2
. (3)

For a spherical pore shape and taking as a basis the PR EOS to describe the fluid’s

properties in the bulk phase, for a simple and homogeneous fluid at a fixed temperature, the

derived pressure equation and chemical potential are

P (v) =
RT

v − bp
− ap

v(v + bp) + bp(v − bp)
− θbpξ

v2

(︃
1− bp

v

)︃θ−1

, (4)

and

µ(ρ) =µ0 +RT

[︃
ln

(︃
ρ− ρmax

ρ

)︃
+

ρ

ρmax − ρ

]︃
+ ξ

[︃
1− (θ + 1) ρ

ρmax

]︃(︃
1− ρ

ρmax

)︃θ−1

− apρmaxζ −NAFprϵp, (5)

which approximate to PR EOS and its chemical potential when rp → ∞. For the rest of the

parameters and variables,

ξ ≡ (1− Fpr)

{︃
RT

[︃
1− exp

(︃
−NAϵp

RT

)︃]︃
−NAϵp

}︃
, (6)

ζ ≡
√
2

4
ln

[︄
ρmax + (

√
2 + 1)ρ

ρmax − (
√
2− 1)ρ

]︄
+

1
ρmax

ρ
+ 2− ρ

ρmax

, (7)

σ =
c1b

NA

, (8)

µ0 is the reference chemical potential, v is the confined molar volume, ρ = 1/v the molar

density, P the fluid’s pressure, T its temperature, R is the gas constant, NA the Avogadro

number, bp = NA/ρmax and ap = ah the modified PR EOS parameters (a and b), h =

Nc,max/10, θ is a term that modulates the effect of the confined density on the fraction of
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molecules in the square-well region of the pore,

θ =
rint

δp + σ/2
, (9)

Fpr is the fraction of the confined molecules in the same square-well region for a random

distribution of the fluid,

Fpr =
(rint − σ/2)3 − (rint − σ/2− δp)

3

(rint − σ/2)3
, (10)

Nc,max is the average molecule-molecule coordination number in the packed structure,

Nc,max =A+
10− A{︂

1 + U exp
[︂
−B

(︂rint
σ

−M
)︂]︂}︂1/ν

−
exp

[︄
−(rint/σ − η)2

2φ2

]︄
√
2πφ

, (11)

ρmax is the molecular density of the closed-packed fluid,

ρmaxσ
3 =c1 − c2 exp

[︃
c3

(︃
1

2
− rint

σ

)︃]︃
+ c4 exp

[︃
c5

(︃
1

2
− rint

σ

)︃]︃
, (12)

and c1 = 1.095, c2 = 1.127, c3 = 1.562, c4 = 1.942, c5 = 27.456, A = −4.6849× 10−4,

B = 0.2628, U = 3.3445, M = −0.8141, ν = 3.2547× 10−4, η = 1.7948, and φ = 0.2666 are

universal parameters for spherical pores obtained by fitting the packed density and eq. 11

with available data.34

From BPR EOS, one can derive the bulk modulus using its definition from thermody-
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namics, getting

KT ≡ −v

(︃
∂P

∂v

)︃
T

=
vRT

(v − bp)2
− 2apv(v + bp)

[v (v + bp) + bp (v − bp)]
2

+
θbp
v2

ξ

(︃
1− bp

v

)︃θ−2 [︃
2− bp

v
(θ − 1)

]︃
. (13)

It is important to note that we are assuming an isotropic pressure in the confined phase

to allow the derivation of Eq. 13, even though the fluid-pore interactions force the fluid

to become inhomogeneous. The reason to consider this assumption, further than the sake

of simplicity, is that several models that were developed to predict the bulk modulus of a

simple confined fluid and ignored its inhomogeneity succeeded in reasonably predicting its

elastic properties.14,26,35

Solving the equation of state for confined fluids

At constant temperature, Eq. 13 is written as a function of v, where v depends on a given

value of the chemical potential, i.e., v = v(µ), where 1/v = ρ, and it gives an adsorption

isotherm. To calculate it, one needs to use the equation for chemical equilibrium between

the bulk and confined phases,

µbulk(Pbulk; a, b) = µconf(ρ, rint; a, b, ϵp, δp). (14)

It is easy to find the left-hand side of Eq. 14 since it depends on the Peng-Robinson pa-

rameters a and b, and the bulk pressure Pbulk is an arbitrary variable. Furthermore, Eq. 5

approximates the chemical potential of the PR EOS when rp → ∞.

To find the right-hand side of Eq. 14, the parameters ϵp and δp must be known in advance.

One can determine these two parameters by fitting adsorption isotherms from molecular

simulation data through the least squares method. For this purpose, the optimization model

8



utilized was Particle Swarm Optimization.36 Eq. 14 is complex enough to solve analytically

for ρ. However, it is possible to find the derivative of the chemical potential with respect to

the confined density analytically,

(︃
dµ

dρ

)︃
T

=
RT

ρ3
(︃
1

ρ
− 1

ρmax

)︃2 − 2apρ
3
max (ρ+ ρmax)

(ρ2 − 2ρρmax − ρ2max)
2

+ ξθ

(︃
1− ρ

ρmax

)︃θ
ρ− 2ρmax + θρ

(ρ− ρmax)
2 , (15)

and utilize numerical methods, such as Newton-Raphson, to solve Eq. 14. It is important

to note that the BPR EOS is not a cubic EOS. Therefore, more than three solutions can

be obtained by solving Eq. 14. Additionally, the number of physically meaningful roots

obtained from Eq. 14 depends on the specific thermodynamic conditions and values of the

BPR EOS parameters, as discussed by Travalloni et al.31 To identify the most stable state,

we utilized the thermodynamic stability criterion, which is, for a simple homogeneous fluid

in open rigid walls that interacts with a heat bath, the pressure of the confined fluid reaches

its maximum at the equilibrium. The algorithm and the criterion are explained in more

detail in the next section.

Calculation of adsorption isotherms from BPR EOS

The roots of Eq. 14 can be found using the Newton-Raphson method. To have a good

estimate of a root, it’s useful to create a grid over the range of relative densities 0 < ρr < 1,
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where ρr ≡ ρ/ρmax. Introducing

∆ρr ≡
1− δ

N
, δ ≪ 1, (16)

ρr,i ≡ δ + i∆ρr, ∀i ∈ {0, 1, ..., N − 1} , (17)

f(ρr) ≡ µconf(ρr)− µbulk, (18)

Dρr [µconf(ρr,i)] ≡
dµconf

dρr

⃓⃓⃓
ρr=ρr,i

, (19)

Here, N is the number of boxes that form the relative density grid, ∆ρr is its uniform width,

ρr,i is a given value among the range of relative densities, δ is a very small number, f comes

from Eq. 14, and Dρr [µconf ] is Eq. 15. The absolute value of a variable x will be defined as

abs(x).

The problem, therefore, becomes to find the roots of µ = µ(ρr). We utilized the following

algorithm.

1. Define i ≡ 0 and tol ≪ 1.

2. If i = N , stop the algorithm. Otherwise, define

ρr,− 1
2
i ≡ ρr,i − 0.5∆ρr

ρr,+ 1
2
i ≡ ρr,i + 0.5∆ρr,

and

f− 1
2
i ≡ f(ρr,− 1

2
i)

f+ 1
2
i ≡ f(ρr,+ 1

2
i).

3. If
(︂
f− 1

2
i

)︂(︂
f+ 1

2
i

)︂
≥ 0, define i = i + 1. and go back to step 2. Otherwise, proceed to

the next step.
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4. Define err ≡ 1, and ρr,new ≡ 0. Note: err > tol.

5. If err ≥ tol, then define

ρr,new = ρr,i −
f(ρr,i)

Dρr [µconf(ρr,i)]

and proceed to the following step. Otherwise, select ρr,new as a root, define i = i + 1,

and go back to step 2.

6. Define err = abs(ρr,i − ρr,new).

7. Define ρr,i = ρr,new, and go back to step 5.

Once all the possible relative densities are found, the applicability of the stability criterion

for this system will highlight the thermodynamically stable root among the rest. It is enough

to choose the root that returns the highest pressure from Eq. 4, and which derivative, Eq.

15, is positive,

(︃
dµ

dρ

)︃
T

> 0. (20)

Stability criterion

For a simple and homogeneous fluid in rigid walls, in which temperature, the total volume

of the adsorbed phase (V ), and chemical potential are specified, the second law of thermo-

dynamics renders

d (U − TS − µn) ≤ 0, (21)

where U , S, and n are the internal energy, entropy, and adsorbed fluid mole number, respec-

tively, and the quantity in parenthesis is the well-known grand potential (Ω ≡ Ω (µ, V, T )).

Recognizing that Ω is a first-order homogeneous function in V or the Gibbs free energy
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G = µn = U + PV − TS,37,38 Eq. 21 becomes dP ≥ 0, which means that, for fluid in an

open system that interacts with a heat bath and volume V (grand canonical ensemble), the

thermodynamic equilibrium will be reached after maximizing the fluid’s pressure.

Moreover, from the chemical potential for a simple and homogeneous fluid,

dµ = −sdT + vdP, (22)

the following equation can be derived for thermodynamic processes at constant temperature,

(︃
∂µ

∂ρ

)︃
T

= v

(︃
∂P

∂ρ

)︃
T

. (23)

As the pressure is a monotonic function with respect to the confined density, the term at

the left side of the equality must be monotonic as well, i. e.,

(︃
∂µ

∂ρ

)︃
T

> 0. (24)

Simulation details

Adsorption of argon was simulated on a spherical pore composed of silica for three different

sizes, 1 nm, 3 nm, and 5 nm, and at the temperatures 87.3K, 100K, and 119.6K for each pore

size. Simulations were performed in a grand canonical ensemble using Chainbuild molecular

simulation code39 for a conventional GCMC method with 8× 109 Monte Carlo trial moves.

The pair potential used for fluid-fluid and solid-fluid interactions was of the LJ type, and its

parameters are listed in Table 1.

Table 1: LJ parameters for confined argon on GCMC simulations (ε and σ), solid surface density (ns ) and
cut-off radius (rcut).

40,41 No tail corrections were used.

ε/kB, K σ, nm ns, nm
−2 rcut, σff

Ar-Ar 119.6 0.34 5
Ar-Silica 171.4 0.3 15.3 10
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Given the system’s conditions, argon exhibits very similar behavior to that of an ideal

gas, so the external pressure was related to the chemical potential through the equation

µ = µ0 +RT ln

(︃
p

p0

)︃
, (25)

where p/p0 is the relative pressure of the bulk fluid, and µ0 the chemical potential at

saturation pressure, which was obtained through the Johnson et al. equation of state,42

µ0/kB = −1147.4K. The chemical potentials were calculated under the interval of relative

pressures [10−2, 1].

For the solid-fluid interactions, we used the integrated LJ potential for a spherical pore,43

usf(r, rp) =
4

5
πnsεsfσ

6
sf

×
{︄
σ6
sf

9∑︂
i=0

1

rip

[︄
1

(rp − r)10−i +
1

(rp + r)10−i

]︄

−
3∑︂

i=0

1

rip

[︄
1

(rp − r)4−i +
1

(rp + r)4−i

]︄}︄
, (26)

where σsf and εsf are shown in Table 1, and the internal diameter, unlike BPR EOS, is related

to the former through the following equation,44

dint = dext − 1.7168σsf + σff . (27)

For the calculation of the bulk modulus, the formulation derived from statistical mechan-

ics was used, which requires a normal distribution of molecules during the simulation, and

after thermalization,

KT =
1

βT

=
kBT ⟨N⟩2
V ⟨δN2⟩ , (28)

where βT is the isothermal elastic modulus, ⟨N⟩ is the average number of molecules in the
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ensemble, ⟨δN2⟩ its variance, and V the volume of the confined fluid corresponding to the

internal diameter.

To compare the bulk moduli obtained from BPR EOS with those from simulations, we

focused on the values after capillary condensation, as the bulk modulus presents a linear

behavior after reaching condensation when it is expressed in terms of the logarithm of the

relative pressure.45

Results

The isotherms obtained as a result of the GCMC simulations are shown in Figure 1, from

which we calculated the parameters δp and ϵp using Particle Swarm Optimization, getting

ϵp/kB = 2080.3K, and δp = 0.0596 nm. These parameters were utilized in BPR EOS, and

the resulting isotherms are also shown in Figure 1. All the isotherms show good agreement

with describing the capillary condensation at all temperatures and pore sizes. However,

that is not the case for the adsorbed amount after reaching condensation: The isotherms

derived from BPR EOS predict higher densities than those predicted by simulations, which

is a known issue for this type of EOS.46 Moreover, GCMC isotherms show increasing density

maxima with increasing the pore size, while BPR EOS isotherms for 3 nm in pore size are

higher than those of 5 nm in pore size.

From molecular simulations, we obtained the distribution of molecules for each given

chemical potential. Figure 2 shows the distribution of molecules in spherical silica pores

of 1 nm, 3 nm and 5 nm at the temperature T = 87.3K and chemical potential µ/kB =

−1207.9K, after GCMC equilibration. Figure 2 shows that the molecules for 1 nm pores

do not follow a normal distribution. Therefore, GCMC simulations cannot be utilized for

calculations of bulk modulus for this pore size. We only performed the modulus calculations

for the sizes 3 nm and 5 nm.

Figure 3 shows the bulk modulus calculated from the GCMC data using Eq. 28 and from
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Figure 1: Adsorption isotherms of argon predicted by GCMC simulations (dashed curves) and BPR EOS
(solid curves) at different temperatures, and for different pore sizes: 1 nm (red curves), 3 nm (green curves),
and 5 nm (blue curves). The adsorbed amount is expressed in reduced units (n∗ = nσ3, where n refers to the
confined number density and σ is the fluid-fluid LJ parameter), and related to the relative pressure, where
p0 is the saturation pressure of argon at its respective temperature. The error bars are twice the standard
deviation in length.
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Figure 2: Distribution of the number of adsorbed argon molecules N on spherical silica pores for 1 nm
(2a), 3 nm (2b), and 5 nm (2c) in pore size at the temperature T = 87.3K and chemical potential µ/kB =
−1479.7K, after performing a GCMC simulation.
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BPR EOS using Eq. 13. The modulus is plotted as a function of the Laplace pressure given

by

PL =
RT

vl
ln

(︃
p

p0

)︃
, (29)

where vl is the liquid phase molar volume of the bulk fluid at saturation conditions, and

it can be obtained experimentally. The results are plotted along with the modulus of bulk

liquid argon at the same temperature as a function of the bulk pressure.

Unlike GCMC simulations, BPR EOS permits calculating the bulk modulus even for

smaller pore sizes. In Figure 3, the bulk moduli derived from BPR EOS for each pore size

follow the Tait-Murnaghan equation47 (linear relation between the pressure of the confined

fluid and the bulk modulus), where is important to note that the intercepts of each of the

lines depend on the pore size. The intercepts for the BPR EOS follow the same trend as

those derived from GCMC simulations, but the slopes for 3 nm and 5 nm in pore size differ

considerably, especially with the slope of the modulus for bulk argon. Regarding the case

of 1 nm, the slope seems to follow a better agreement with the bulk phase. A more detailed

explanation of this agreement is shown in the discussion section. The slopes are shown in

Table 2.

Table 2: Slopes of the bulk moduli (and twice the standard deviations for those obtained from GCMC
simulations) derived in Figure 3. The bulk moduli (in MPa) for the bulk phase was obtained by CoolProp.

Pore size Method T = 87.3K T = 100K T = 119.6K

1 nm BPR EOS 8.259 7.904 7.288
3 nm GCMC 9.425± 0.376 9.701± 0.511 10.620± 0.540

BPR EOS 18.446 16.070 14.094
5 nm GCMC 9.856± 1.156 10.783± 0.357 12.377± 0.657

BPR EOS 16.486 13.972 10.995

Bulk CoolProp 9.649 9.925 10.555

The bulk modulus at p = p0 was also related to the reciprocal of the pore sizes, which is

shown in Figure 4. The bulk moduli derived from BPR EOS predict the linear dependence

with the inverse of the pore size until 2 nm in size, even though they do not show a good
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Figure 3: Bulk moduli of confined argon in spherical silica pores derived from BPR EOS (solid lines),
and GCMC simulations (circles) along with their linear fit (dashed lines) at different temperatures, and for
different pore sizes, as well as the modulus of bulk liquid argon. For the confined phase, the bulk modulus
is a function of the Laplace pressure (vl was calculated by CoolProp48); for the bulk phase, it is a function
of the external pressure. Saturation pressure for the latter is represented by the black square, and the bulk
modulus at saturation pressure by the dashed horizontal line.
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match with the values obtained from GCMC simulations. When pore size decreases, the

moduli predicted by BPR EOS show a minimum around 1.1 nm, maxima around 2 nm and

0.8 nm, and a steeply increase at dext = 0.7 nm.
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Figure 4: Bulk moduli of confined argon in spherical silica pores derived from BPR EOS (solid lines),
and GCMC simulations (stars) at the temperatures 87.3K (red curves), 100K (green curves), and 119.6K
(blue curves), related to the reciprocal of the pore sizes 1/dext at the saturation pressure of its associated
temperature. The vertical dashed-dotted lines point the local maxima of the bulk modulus at 6σ (around
2 nm), and 3

4πσ (around 0.8 nm), where σ is obtained from Eq. 8.

The behavior of KT as a function of the pore size (Fig. 4) can be better understood based

on the solvation pressure as a function of the pore size as it is shown in the right-hand side

of Figure 5. This time, we split the fluid pressure into two terms: The first one, pff refers

to the pressure derived from PR EOS and is associated with the fluid-fluid interactions;

the second term psf refers to the solid-fluid interactions. Figure 5 also shows that the same

behavior was obtained for the bulk modulus, meaning that pff has a stronger effect on the

bulk modulus than psf , which implies the consistency of the bulk modulus of confined fluids

with the Tait-Murnaghan equation. For pores smaller than 2 nm (around 6σ), the solid-fluid

interactions outweight the pff , affecting the linearity of KT .

The effect of psf was previously pointed out by Dobrzanski et al. when they analyzed

TvdW EOS for cylinders.26 They found that the pressure term related to the bulk fluid

excerpted a strong influence under the solvation pressure, and the reason for the peaks in

their elastic moduli as a function of 1/dext was especially caused by the factor v − bp. The
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left-hand side of Figure 5 shows a correlation between the factor v/(v−bp) and the reciprocal

of the pore size. Around 2 nm, 0.8 nm, and 0.7 nm, the difference v − bp approaches zero,

and v/(v − bp) reaches its peaks.
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Figure 5: Left: Molar volume of confined liquid argon at saturation pressure as a function of the reciprocal
of the pore size for each temperature calculated from BPR EOS, and the first term of Eq. 13 (considering only
v and bp). Calculations from BPR EOS. Right: Confined fluid pressure split into fluid-fluid interactions (pff)
and solid-fluid interactions (psf) as a function of the pore size at different temperatures. The dashed-dotted
lines point the local maxima of the bulk modulus around 2 nm and 0.8 nm.

Discussion

Although there were no quantitative agreements after comparing both methods, BPR EOS

and GCMC simulations, the qualitative agreements are remarkable, such as the presence of

the capillary condensation, the linear dependence of the bulk modulus with the logarithm of

the external pressure and the reciprocal of the pore size (for large pores), and the dependence

of the latter on the temperature (as higher the external temperature is as higher external

pressures will be needed to condense the fluid). The correct qualitative behavior of pressure

and modulus predicted by BPR EOS allows us to analyze the fluids in micropores (dext <

2 nm) where GCMC fails to calculate the bulk modulus.

There is a hypothesis. The behavior of the bulk modulus in Figure 4 may be a conse-

quence of the molecule distribution in the pore. Figures 5 show that the repulsive fluid-fluid
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interactions affect the elastic modulus more than the solid-fluid interactions. When the

pore is larger than 6σ (around 2 nm) in external diameter, the distribution of molecules not

interacting with the walls tends to follow a normal distribution, as in the bulk fluid. Con-

sequently, the bulk modulus of the confined fluid has approximately the same slope as the

modulus of the bulk fluid. However, for micropores, the pore walls force the confined fluid

to rearrange its molecules depending on the pore shape,35 which explains the maximum at

3πσ/4 (around 0.8 nm) in external diameter. This rearrangement reduces their movement

and causes a solid-like behavior. Consequently, the elastic modulus shows a non-linear trend.

When the pore size is lower than a critical value of 0.8 nm shown in Figure 4, a complete

layer of fluid molecules is removed from the pore, giving more freedom to the remaining

molecules to move randomly. This explains why the maxima are at rp/σ ∈ {3, 3π/8, 1}.

However, as the pore becomes smaller, the fluid molecules reduce their movement and finally

reach once again the solid-like behavior. When the external diameter approaches 2σ, the

bulk modulus tends to infinity, and therefore, BPR EOS loses any physical meaning. As

a consequence, the linear trend of the bulk modulus doesn’t depend on the pore shape for

pores larger than 2 nm (or 6σ) in external diameter.

Adsorption-desorption process in mesoporous materials typically shows hysteresis.49–51

However, in our work, when studying the modulus of the fluid in the pores, we considered

adsorption process only, not calculating the desorption branches of the isotherms. Neglect-

ing the desorption branch and hysteresis when calculating the modulus of confined fluid is

justified by multiple ultrasonic experiments on adsorption in mesoporous solids.12,52–54 Ex-

perimentally the fluid modulus in mesoporous samples can be probed only when pores are

completely filled with a capillary condensate, at pressures above the hysteresis region.

While the predictions of EOS considered here did not provide quantitative agreement

with the molecular simulation results, we believe that such agreement can be achieved if a

more advanced EOS for confined fluid is utilized. In recent years various SAFT-based EOSs

for adsorbed fluids demonstrated excellent performance in predicting other thermodynamic
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properties .55–58 Therefore it is plausible that these equations can provide predictions for

elastic properties as well.

Conclusion

To summarize, we derived an analytical expression for the bulk modulus of a fluid confined

in a spherical nanopore. We parameterized the EOS based on molecular simulation data

for argon in model silica pores and showed that the resulting model predicts the modulus

of argon in three different pore sizes at three different temperatures reasonably well. Our

equation gives the linear dependence of the modulus on solvation pressure, as well as the

linear dependence on the reciprocal pore size. The latter holds only in the mesopore re-

gion, but for micropores we see a non-trivial trend. This trend has not been confirmed by

molecular simulations because the simulation method we utilized is not capable of predicting

the modulus in micropores. Our study showed that although a more advanced EOS gives

better predictions than the EOS based on the van der Waals model, the agreement between

elasticity predicted based on the BPR EOS and based on molecular simulations is still only

qualitative. Overall, our result is a step towards developing an equation of state for confined

fluids, which can be used for predictions of elasticity.
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