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Hydrodynamic correlation functions of chiral active fluids
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The success of spectroscopy to characterize equilibrium fluids, for example the heat-
capacity ratio, suggests a parallel approach for active fluids. Here, we start from a
hydrodynamic description of chiral active fluids composed of spinning constituents and
derive their low-frequency, long-wavelength response functions using the Kadanoff-Martin
formalism. We find that the presence of odd (equivalently, Hall) viscosity leads to mixed
density-vorticity response even at linear order. Such response, prohibited in time-reversal-
invariant fluids, is a large-scale manifestation of the microscopic breaking of time-reversal
symmetry. Our work suggests possible experimental probes that can measure anomalous
transport coefficients in active fluids through dynamic light scattering.
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I. INTRODUCTION

Spectroscopy of a fluid involves measuring linear response using scattering probes in order to
characterize macroscopic modes and microscopic constituents. For example, scattering by electro-
magnetic waves directly measures the density-density response, via a quantity called the dynamic
structure factor (DSF). The large-frequency, large-wave vector parts of the DSF (i.e., the scattering
function obtained using either neutron or x-ray scattering) measure the intermolecular correlations
and interactions on the smallest scales. On the other hand, scattering by visible or near-visible
light can measure the low-frequency, low-wave-vector properties of simple fluids—precisely the
properties captured by the equations of fluid hydrodynamics. This subtle relationship between the
hydrodynamics and DSF was first derived by Landau and Placzek [1] for simple fluids and explored
in generality in Ref. [2] (see also Ref. [3]).

The dynamic structure factor contains information about macroscopic thermodynamic quantities
(e.g., specific heat and compressibility) as well as response coefficients (e.g., diffusivity). Inertial
density waves (i.e., acoustics) are well characterized by a region of DSF called the Brillouin peak—
the peak location captures wave dispersion, and the peak width and height capture wave attenuation.
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On the other hand, the purely dissipative thermal response is contained in the Rayleigh peak of the
DSF. These two peaks allow for the measurement of the ratio of isobaric (CP) to isochoric (CV )
specific heats (equivalently, ratio of isothermal to adiabatic compressibilities) via the ratio of the
peak heights, also called the Landau-Placzek ratio [1].

The success of correlations and response to characterize equilibrium fluids suggests a parallel
approach for the hydrodynamics of active fluids [4]. To implement this idea, we characterize
how the anomalous coefficients of active-fluid hydrodynamics [5] enter the fluid’s response. For
example, chiral active fluids possess an anomalous transport coefficient called odd viscosity [6,7].
Such active fluids are composed of self-rotating particles, with examples including biological
[8–12], colloidal [13–16], granular [17], polymer [18], and liquid-crystalline [19] constituents. For
isotropic spheres or disks, it may be difficult to measure single-particle rotations, but anomalous
hydrodynamic coefficients can nevertheless reveal the active nature of fluid mechanics. These
coarse-grained coefficients are present due to the effect of active rotations on the large-scale motion
of the particles. Recent experimental advances have led to measurements of odd (Hall) viscosity in
graphene’s electron fluid [20] and in chiral active fluids composed of spinning colloids [21,22].
In addition to odd viscosity [6,23], such anomalous coefficients can include an antisymmetric
component to the fluid stress [24,25]. Antisymmetric stress appears in various fluids where local
angular momentum couples to flow, including the hydrodynamics of liquid crystals. However, in
systems of active rotors, the antisymmetric stress arises not because of elastic interactions, but
because of the coupling of intrinsic rotation of the constituents to the fluid vorticity. How can one
use scattering to distill the effects of odd viscosity from those of other viscosity coefficients and
antisymmetric stress? We answer this question by using an analysis that parallels Refs. [2,3], but
for chiral active hydrodynamics. Significantly, we find that odd viscosity leads to an anomalous
dynamic response Re[ω(q, z)/ρ(q)] of vorticity ω(q, z) in terms of wave number q and frequency
z due to density excitations ρ(q) and vice versa. When the fluctuation-dissipation theorem is valid,
the vorticity-density dynamical correlations Sρ,ω(q, z) is proportional to the odd viscosity νo. We
compute this off-diagonal correlation and show how it distinguishes the effects of odd viscosity not
only from equilibrium hydrodynamic coefficients, but also from the effects of antisymmetric stress
present in chiral active fluids.

II. HYDRODYNAMIC EQUATIONS OF ACTIVE ROTOR FLUIDS

The emergent physics in systems of active rotors (as shown in Fig. 1) has recently been explored
using a variety of theoretical and numerical techniques [26–33]. The presence of torques in such
chiral active fluids distinguishes these systems from the more commonly studied class of active
materials: those composed of (polar) self-propelled particles. The presence of activity breaks time-
reversal symmetry, whereas the presence of active rotation breaks parity in two-dimensional systems
[6]. This breaking of symmetries leads to the breakdown of Onsager reciprocal relations that restrict
fluid response. Specifically, the presence of antisymmetric stress [24,25] and odd viscosity [6,23] in
the hydrodynamic limit distinguishes active-rotor fluids from their polar active counterparts.

The presence of active rotation makes the system of chiral active rotors similar to a two-
dimensional quantum system of charges in a magnetic field. As shown in Ref. [6], one can find
an emergent odd viscosity in these systems analogous to the Hall viscosity [34,35] predicted in
electronic quantum Hall fluids [36] and measured in graphene [20]. The addition of Hall viscosity
to hydrodynamic stress [23,37] results in the phenomenology discussed in Refs. [23,38–42]. We
examine the presence of odd viscosity and antisymmetric stresses in chiral active fluids in which
these terms emerge as a consequence of the coupling between intrinsic angular momentum and
fluid velocity. Both odd viscosity and antisymmetric stress show up in the transverse response of
the fluid. However, these effects can be distinguished by the fact that odd viscosity depends on the
mean intrinsic rotation rate whereas hydrodynamic terms due to antisymmetric stress only enter in
proportion to spatial gradients of the intrinsic rotation rate.
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FIG. 1. (a) A schematic representation of a chiral active fluid composed of granular rotors. The red arrows
indicate the intrinsic rotation field for each of the fluid’s constituents around their own center of mass, and
the black arrow represents the linear velocity of the center of mass for each particle. The frictional coupling
between rotors is represented by the gear-like shape. (b) Schematic illustration of the mechanism that couples
intrinsic rotation and fluid vorticity. When two particles collide, the frictional coupling is responsible for the
generation of an angular momentum in the fluid (in terms of the center-of-mass velocities) due to intrinsic
rotation.

In two dimensions, the hydrodynamic equations of chiral active rotors [6] governing the evolution
of the slowly varying fields, namely mass density ρ, momentum density ρv, and intrinsic angular-
momentum density I$, are given by

Dtρ = −ρ∇ · v, (1)

ρDtvi = ∂ j
(
σ a

i j + σ s
i j

)
− 'vvi, (2)

IDt$ = τ + D$∇2$ − '$$ − εi jσ
a
i j, (3)

where Dt ≡ ∂t + vk∂k is the convective derivative ( here we neglect the effect of corotational stress
discussed in Ref. [43] since the effect of rotations is obtained by liner terms in the antisymmetric
stress discussed below). Equation (1) arises from the conservation of mass in the flow whereas
Eq. (2) arises from the combination of linear momentum conservation and friction, where v is
the velocity, 'v is a friction term that dissipates linear momentum, and σi j ≡ (σ s

i j + σ a
i j ) is the

hydrodynamic stress term written in terms of the symmetric part σ s
i j and the antisymmetric part

σ a
i j . In two dimensions, the antisymmetric part of a two-component tensor is proportional to the

Levi-Civita symbol εi j = −ε ji, with εxy = 1. Equation (3) describes the evolution of intrinsic
angular momentum of the particles constituting the fluid. This angular momentum is not conserved
and can be acquired from an external torque, converted to fluid vorticity, or dissipated by friction.
Here, '$ is the rotational friction, D$ is the rotational diffusion, ' is the dissipative coupling
coefficient between $ and ω, and τ is the active torque. In the above equations, the components
of the hydrodynamic stress σi j can be written as

σ a
i j ≡ '

2
εi j ($ − ω/2), σ s

i j ≡ −pδi j + ηi jklvkl + ηo
i jklvkl , (4)

where p is the hydrostatic pressure, vkl ≡ (∂lvk + ∂kvl )/2 is the strain-rate tensor, and the odd
viscosity tensor ηo

i jkl is given by the pseudoscalar ηo that we derive below [6]. The vorticity of
the flow is given by ω = ∇∗ · v ≡ εi j∂iv j .
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III. RELATION BETWEEN LOCAL ROTATIONS AND ODD VISCOSITY

One of the central assumptions of chiral active hydrodynamics in Eqs. (2) and (3) is that the
coefficient ' (and the entire expression for the antisymmetric stress σ a

i j) are the same in both
equations. Although this assumptions could be violated far from equilibrium, we instead focus
on chiral active fluids in which the active drive is not so strong as to violate this assumption.
In this case, the equilibrium limit τ → 0 remains well defined and in this limit thermodynamic
relations, including Onsager reciprocal relations, still hold. Furthermore, in the limit τ → 0, the
sum of fluid angular momentum and local angular momentum of particles is conserved. We use
these assumptions below to develop a variational-functional approach to derive the terms containing
odd viscosity.

In this section, we develop a variational approach for the derivation of odd viscosity from
dissipative coefficients. To this end, we begin with an energy functional analogous to the Rayleigh
dissipation function, but which includes coupling of intrinsic rotation to flow velocity. Note that in
the previous section the coupling term between Eqs. (2) and (3) can be generated using an energy
functional which has the form

F0 = '

2

∫
dx($ − ω/2)2. (5)

The simplest way to augment this functional such that it includes coupling between linear
momentum and intrinsic rotation is

F = '

2

∫
dx[$ − ω/2 + α∇ · ($v)]2, (6)

where −α∇ · ($v) ≡ ωind/2 is an induced vorticity. Using the product rule, the above expression
becomes

F = '

2

∫
dx[$ − ω/2 + α$∇ · v + α(v · ∇)$]2. (7)

Substituting this expression into the equation describing dynamics of the local rotation field and
evaluating the Euler-Lagrange equation, we obtain

ρDt$ = − δF
δ$

= − ∂ f
∂$

+ ∇i
∂ f

∂ (∇i$)
(8)

= −'(1 + α∇ · v)[$ − ω/2 + α$∇ · v] + α'(v · ∇)[ω/2 − α$∇ · v − α(v · ∇)$], (9)

where f = '/2[$ − ω/2 + α∇ · ($v)]2. Note that in the final expression in Eq. (9), the first term
is identical to the last term in Eq. (3), whereas the second term is higher order in either the gradients
of v or in α. Therefore, Eq. (3) describes the large-scale dynamics of the local rotation field.

Similarly, we derive the dynamics of the velocity field,

Dtvi = − δF
δvi

= − ∂ f
∂vi

+ ∇ j
∂ f

∂ (∇ jvi )

≈ '

2
∇∗

i [$ − ω/2 + α∇ · ($v)] + α'$∇i[$ − ω/2], (10)

where we discard all terms of order α2$2 to get to Eq. (10)—these terms only contribute as
corrections to the existing terms in the stress. Note that whereas the first term in Eq. (10) provides
the expected correction to the antisymmetric component of the stress, the second term in this
equation couples local rotation to the flow velocity within the symmetric component of the stress. To
show that this equation includes a contribution from odd (or Hall) viscosity, we rearrange Eq. (10)
to find the expression

ρDtvi = '

2
∇∗

i [$ − ω/2 + α(v · ∇)$] + α'

2
(∇∗

i $)(∇ · v)

− α'$∇i$ − 1
2
α'$[∇iω + ∇∗

i (∇ · v)], (11)
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where the first term is the new antisymmetric stress term, the second term couples compressible
flow to the gradients in the local rotation, and third term may be rewritten in terms of ∇($2) and,
therefore, contributes to the symmetric stress σ s. Significantly, the last term may be reexpressed
using the two-dimensional identity −∇2v∗ = ∇(∇∗ · v) + ∇∗(∇ · v) as 1

2α'$∇2v∗. Comparing
this term to the odd viscosity contribution to the flow, ηo∇2v∗, we conclude that in the active-rotor
liquid, the effective odd viscosity can be written in terms of the local rotation field and the coupling
parameters as

ηo = 1
2α'$. (12)

This equality relates the dissipationless odd viscosity ηo to the dissipative coefficient ' of antisym-
metric stress.

Although the precise form of Eq. (11) depends on the form for the effective free energy in Eq. (6),
odd viscosity arises only as a consequence of the single cross term in F of the form α'$ω(∇ · v).
There are many forms of F that can generate this cross term, including alternative ways of writing
down a complete square. For example, if we instead had taken

F2 = '

2

∫
dx[$ − ω − α2∇ · (ωv)]2, (13)

then the cross term α2'$ω(∇ · v) appears, leading to a similar expression for ηo in terms of α2.

A. Density-dependent coefficients

In this section, we present an additional way to derive odd viscosity. Starting from the energy
functional F = '

2

∫
dx($ − ω)2, we consider the functional dependence of ' on density ρ. Next

we consider slow variations of density in time and expand '(ρ(t )). We obtain

'(ρ) = '0 + '1(∂tρ) + · · · , = '0 − '1(∇ · (ρv)). (14)

The term in the energy functional of the form '1$∇ · (ρv) can be reexpressed as

'1$∇ · (ρv) = '1ρ∇ · ($v) + '1$(v · ∇)ρ − '1ρ(v · ∇)$. (15)

The first term in the last line has been shown in the previous section to result in odd viscosity. The
relevant term in the expression for F has the form '1ρ∇ · ($v) or, equivalently, the form of the α
term in Eq. (6), with α = '1ρ/'0.

From the form of the stress in Eq. (4), we focus on two contributions that distinguish active-rotor
liquids from those that are well described by the Navier-Stokes equations: (1) the antisymmetric
stress σ a that corresponds to a local torque on the center-of-mass motion of the rotors and (2) the
odd viscosity ηo that results from the breaking of time-reversal symmetry. These expressions allow
us to establish the conditions in which the odd viscosity dominates over the antisymmetric stress
[6]. We can estimate both σ a and ηo in terms of the angular frequency $0 ≡ τ/'$ corresponding to
the average of the local rotation field. Then, σ a ∼ '$0 and ηo ∼ α'$0/2 scale similarly with the
applied torque τ . However, note that only gradients of σ a enter Eq. (2). By contrast, ηo enters as a
factor multiplying a strain rate. Therefore, in a liquid in which the gradients of $ are much smaller
than $0, the odd viscosity contribution will be of a lower order in hydrodynamic variables than the
odd stress terms. In such a liquid, we can consider those phenomena associated with odd viscosity
without considering the odd stress.

IV. EQUATIONS OF MOTION

To analyze the linear hydrodynamic response for chiral active fluids, we start out with a nonlinear
set of equations, Eqs. (1)–(3). In this section, we write out all of the terms explicitly and then
linearize these equations around the state with constant density and no flow. We then relate these
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linearized equations of motion to the correlations and response functions at long timescales and at
large length scales.

The full nonlinear hydrodynamics (including contributions from odd viscosity and antisymmetric
stress) is described by

∂t- + ∇ · (-v) = 0, (16)

∂t (-v) + ∇ · (-vv) = −c2∇- − 'vv + η∇2v + ζ∇(∇ · v) + ηo∇2v∗ + '′

2
∇∗($′ − ω/2), (17)

∂t (I$′) + α∇ · (vI$′) = τ ′ + D$′∇2$′ − '$′$′ − '′($′ − ω/2), (18)

where -(x, t ) is the fluid-density field, v(x, t ) is the velocity field, c is the speed of sound in the fluid,
α is a coefficient that measures how far the system is from Galilean invariance (α = 1 is Galilean
invariant), and, as before, 'v is a coefficient of substrate friction, η is the (dynamic) dissipative
viscosity, ζ is the bulk viscosity, ηo is the odd viscosity, '′ is the “gear factor” which enters as the
coefficient of antisymmetric stress, $′ is the local rotation rate for particles in the fluid, I is the
moment of inertia of each particle, τ ′ is the active torque that each particle experiences, D$′ is the
diffusivity of intrinsic rotation, and '$′ is the coefficient of single-particle rotational friction. Here,
we have introduced the prime symbol to distinguish these “dynamic” response coefficients from the
“kinematic” coefficients per unit density or unit moment of inertia, introduced below. Here, we set
'v = 0 and α = 1.

A. Linearized equations of motion

We now linearize Eqs. (16)–(18) around the state (-, v,$′) = (ρ0 + ρ, 0 + v,$0 + $) in ρ, v,
and $, where $0 ≡ τ ′/('$′ + '′). We find

∂tρ = −ρ0∇ · v, (19)

∂t v = −c2∇ρ/ρ0 + ν∇2v + νo∇2v∗ + '

2
∇∗($ − ω/2), (20)

∂t$ = D$∇2$ − '$$ − 'r ($ − ω/2), (21)

where ' ≡ '′/ρ0, ν[≡η/ρ0] (νo[≡ηo/ρ0]) is the kinematic dissipative (odd) viscosity, 'r ≡ '′/I ,
'$ ≡ '$′/I , and D$ ≡ D$′/I .

Using Helmholtz decomposition, it is convenient to express v in terms of longitudinal and trans-
verse components, v = v/ + vt , where ∇ × v/ = 0 and ∇ · vt = 0. Then, the vorticity ω = ∇ × vt
and the compression ∇ · v = ∇ · v/ determine the flow up to a choice of inertial reference frame.
Using this decomposition, we rewrite Eqs. (19)–(21),

∂tρ = −ρ0∇ · v, (22)

∂t (∇ · v) = −c2∇2ρ/ρ0 + ν ′∇2(∇ · v) + νo∇2ω, (23)

∂tω = (ν + '/4)∇2ω − νo∇2(∇ · v) − '

2
∇2$, (24)

∂t$ = D$∇2$ − '$$ − 'r ($ − ω/2), (25)

where we define ν ′ ≡ ν + ζ/ρ0.
To further distinguish between the different terms, it is useful to combine Eqs. (22) and (23) into

a single equation for the density ρ. In addition, we have the fields vorticity ω and intrinsic rotation

043301-6



HYDRODYNAMIC CORRELATION FUNCTIONS OF CHIRAL …

$ for a total of three hydrodynamic equations:

∂2
t ρ = c2∇2ρ + ν ′∇2(∂tρ) − ρ0ν

o∇2ω, (26)

∂tω = (ν + '/4)∇2ω − νo

ρ0
∇2(∂tρ) − '

2
∇2$, (27)

∂t$ = D$∇2$ − ('$ + 'r )$ + 'rω/2. (28)

Note that Eqs. (26)–(28) highlight the main difference between the anomalous coupling due to
odd viscosity and antisymmetric stress. Whereas odd viscosity couples the transverse velocity ω
(i.e., the vorticity ∇ × v) to the density field ρ, the antisymmetric stress couples ω to the intrinsic
rotation $.

V. FROM HYDRODYNAMICS TO STRUCTURE AND RESPONSE

The hydrodynamic equations provide information about the response at large length- and
timescales. For the density field, information about this response is encoded in a different form in
the (complex) response function ρ(q, z)/ρ(q) [i.e., response in frequency z due to an initial density
configuration ρ(q) in terms of the wave vector q], and in the dynamic structure factor S(q, z) where
q = |q| is the wave number and z is the angular frequency. In equilibrium, the fluctuation-dissipation
theorem states that the response Re[ρ(q, z)/ρ(q)] is proportional to the dynamic structure factor
S(q, z). Kadanoff and Martin [2] showed how to derive such structure and response functions from
(generalized) hydrodynamic equations in an equilibrium fluid.

Here we perform this analysis for a chiral active fluid, which does not obey the conditions of
equilibrium and can therefore have additional response functions. For example, in equilibrium, the
response ω(q, z)/ρ(q) (relating the transverse component of velocity to the density) is zero. We
show that in a chiral active fluid, this response function is nonzero and proportional to odd viscosity.
The response ρ(q, z)/ω(q) obeys the generalized Onsager relation ω(q, z)/ρ(q) ∝ −ρ(q, z)/ω(q)
appropriate for fluids with broken time-reversal symmetry. Furthermore, the intrinsic rotational
response $(q, z)/ω(q) is proportional to the antisymmetric stress, and the coupling ρ(q, z)/$(q)
requires both odd viscosity and antisymmetric stress. In addition to these off-diagonal responses,
chiral active fluids have signatures of activity in the usual diagonal response functions ρ(q, z)/ρ(q),
ω(q, z)/ω(q), and $(q, z)/$(q). We derive analytical expressions for various responses, in a
variety of physical limits. Beforehand, we review the Kadanoff and Martin approach for the
Navier-Stokes equations.

A. Review: From Navier-Stokes equations to the dynamic structure factor

Reference [2] analyses Eqs. (26)–(28) for the case ' = νo = 0. In this case, these equations are
identical to the linearized Navier-Stokes equations in the compressible regime,

∂2
t ρ = c2∇2ρ + ν ′∇2(∂tρ), (29)

∂tω = ν∇2ω. (30)

We have ignored the field $ because it is not a hydrodynamic variable for an equilibrium fluid.
Note that the equations for the density and the transverse velocity can be analyzed independently.

To arrive at response functions, we take Fourier transforms in both space and time, keeping both the
dynamical terms that depend on (q, z) and the terms stemming from initial conditions that depend
on q only. We first consider the simpler case of the vorticity, which obeys the diffusion equation.
For the diffusion Eq. (30), the right-hand side transforms to

∫ ∞

0
dt

∫
dx e−iq·x+izt [ν∇2ω(x, t )] = −νq2ω(q, z), (31)

043301-7



BANERJEE, SOUSLOV, AND VITELLI

and the left-hand side transforms to
∫ ∞

0
dt

∫
dx e−iq·x+izt [∂tω(x, t )] = izω(q, z) + ω(q), (32)

where ω(q) =
∫

dx e−iq·xω(x, 0) is the Fourier transform of the vorticity field at time t = 0. This
last term arises due to integration by parts and is essential in the analysis of the response. The
combined equation then reads

(−iz + νq2)ω(q, z) = ω(q). (33)

Comparing this expression with the definition of the response function: ω(q, z)/ω(q), we ob-
tain the expression ω(q, z)/ω(q) = (−iz + νq2)−1. The fluctuation-dissipation theorem relates the
vorticity-vorticity correlation function Sω,ω ≡ 〈ω(q, z)ω(−q,−z)〉 to the real part of the response
ω(q, z)/ω(q) via Sω,ω = χωRe[ω(q, z)/ω(q)]. The proportionality coefficient χω is the thermody-
namic static susceptibility of the vorticity due to an external torque density τ (q), χω = ω(q)/τ (q).
These thermodynamic prefactors depend on the details of the system and may be significantly
affected by activity. We will only write out the correlations up to such prefactors. Therefore,

Sω,ω ∝ νq2

z2 + (νq2)2 . (34)

This result for the correlation function is the main conclusion of this analysis, and in equilibrium
fluids it may be possible to measure it directly via scattering. However, it is more common to focus
on measuring the density-density correlations Sρ,ρ ≡ 〈ρ(q, z)ρ(−q,−z)〉 = 〈δ-(q, z)δ-(−q,−z)〉.
This correlation can be obtained using the Fourier transform of Eq. (29),

[−z2 + c2q2 − izν ′q2]ρ(q, z) = [−iz + ν ′q2]ρ(q). (35)

Solving the above equation, we find that the complex response function is given by

ρ(q, z)
ρ(q)

= −iz + ν ′q2

−z2 + c2q2 − izν ′q2
. (36)

The real part of this response, and the corresponding density-density correlation function Sρ,ρ (q, z)
can be read off as

Sρ,ρ (q, z) ∝ Re
ρ(q, z)
ρ(q)

= c2q4ν ′

(zν ′q2)2 + (z2 − c2q2)2 . (37)

This is one of the terms in the expression first derived by Landau and Placzek, corresponding to
adiabatic sound propagation. This term dominates away from the critical point. The other part of the
dynamic structure factor corresponds to heat transport and results in corrections to this expression
near q = 0.

Alternatively, the same expressions can also be obtained by using the method of fluctuating
hydrodynamics as described in Ref. [44]. We assume that the initial conditions (ω(q), ρ(q)) form
a statistical ensemble over which we need to average to get deterministic dynamic correlations (in
both frequency and wave-vector space). For linear response, the correlations in initial conditions
and the dynamic correlations are proportional to each other, and the fluctuation-dissipation theorem
states that this proportionality coefficient is related to the dissipative part of the response function.
The explicit calculation gives us the following relations for vorticity correlations:

Re
[ 〈ω(q, z)ω(−q,−z)〉

〈ω(q)ω(−q)〉

]
= νq2

z2 + (νq2)2 , (38)

and for density correlations:

Re
[ 〈ρ(q, z)ρ(−q,−z)〉

〈ρ(q)ρ(−q)〉

]
= c2q4ν ′

(c2q2 − z2)2 + (zν ′q2)2 . (39)

043301-8



HYDRODYNAMIC CORRELATION FUNCTIONS OF CHIRAL …

Comparing Eq. (38) to Eq. (34) and Eq. (39) to Eq. (37), we recover the fluctuation dissipation
theorem in the context of classical fluids. As we expected, the response functions obtained from con-
tinuum hydrodynamics and the correlation functions obtained from fluctuating hydrodynamics are
proportional to each other. Although we focus on active systems, for thermal systems these relations
simplify further. In equilibrium, both static correlation functions, 〈ω(q)ω(−q)〉 and 〈ρ(q)ρ(−q)〉,
are given by a white-noise spectrum independent of q and are proportional to the temperature. Using
these values, one recovers the prefactors in the fluctuation-dissipation relation. We contrast this
approach to the dynamical forcing of a system with a time-dependent noise ζρ (q, z) for the density
field and ζω(q, z) for the vorticity field. With this stochastic forcing, the hydrodynamic systems is
given by the following equations:

[−z2 + c2q2 − izν ′q2]ρ(q, z) = ζρ (q, z), [−iz + νq2]ω(q, z) = ζω(q, z). (40)

Here, the density response is distinct from both the response to an initial condition and from the
dynamic structure factor. Calculating the response function for the density field, we recover

Im
ρ(q, z)
ζρ (q, z)

= zν ′q2

(z2 − c2q2)2 + (zν ′q2)2 . (41)

This distinct expression could be potentially measured in a simple fluid by driving it with a
stochastic noise, but it is not the response measured using light scattering.

B. Chiral active fluids

Now we extend the above analysis to chiral active fluids in a parallel approach. In the previous
section, the response functions were derived for an equilibrium fluid where the fluctuation-
dissipation theorem is known to hold. We show that assuming an effective temperature in a chiral
active fluid also results in similar relations [45–47]. In addition, we use fluctuating hydrodynamics
to derive expressions for dynamical correlations that do not rely on a thermal ensemble. We start
with the linearized equations of motion, Eqs. (26)–(28), whose Fourier transforms are

[−z2 + c2q2 − izν ′q2]ρ(q, z) = [−iz + ν ′q2]ρ(q) + νoρ0q2ω(q, z), (42)

[−iz + (ν + '/4)q2]ω(q, z) = ω(q) − izνoq2ρ(q, z)/ρ0 − νoq2ρ(q)/ρ0 + 1
2'q2$(q, z), (43)

[−iz + '$ + 'r + D$q2]$(q, z) = $(q) + 'rω(q, z)/2. (44)

The response functions that result from this set of equations are easiest to analyze in two separate
limits: the limit in which the fluid is dominated by antisymmetric stress (νo → 0), considered in the
next section, and the limit in which the fluid is dominated by odd viscosity (' → 0), considered in
the following section.

C. Structure in chiral active fluids dominated by antisymmetric stress

In a chiral active fluid in which the rotation rate is slow, gradients of the intrinsic rotation rate
$ and the resulting antisymmetric stress dominate over the higher-order response that involves
a product of $ and strain rates ∂iv j . As shown in the previous sections, the odd viscosity is a
linearized version of this cross coupling between $ and ∂iv j . In the limit of slow rotation rate, we
can consider odd viscosity to be negligible, νo → 0, and focus on the effect of antisymmetric stress
only. Because the antisymmetric stress does not enter the density-density correlation function, in
this case the expression for the dynamic structure factor is the same as for an equilibrium fluid. The
other response functions can be calculated from the two equations for the transverse velocity and
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the intrinsic rotation rate $:

[−iz + (ν + '/4)q2]ω(q, z) = ω(q) + 1
2'q2$(q, z), (45)

[−iz + '$ + 'r + D$q2]$(q, z) = $(q) + 'rω(q, z)/2. (46)

To solve this linear system of equations, we represent it as a matrix equation and invert the matrix:
(

ω(q, z)
$(q, z)

)
= P(q, z)

(
2(−iz + '$ + 'r + D$q2) −'q2

−'r −2iz + (2ν + '/2)q2

)(
ω(q)
$(q)

)
, (47)

where the prefactor P(q, z) is given by

P(q, z) ≡ 1
−''rq2/2 + 2('$ + 'r + D$q2 − iz)[(ν + '/4)q2 − iz]

. (48)

The entries in the inverted matrix equation are exactly the hydrodynamic response functions.
Assuming that the fluctuation-dissipation theorem holds, we then relate these response functions
to dynamic correlations Sa,b, where each of the entries a and b can be either the field $ or ω. The
correlation function is the ensemble average of the product of these two fields in Fourier space. The
resulting expressions are

Sω,ω(q, z) ∝ Re
ω(q, z)
ω(q)

= 4q2{−''r ('$ + 'r + D$q2) + 4(ν+'/4)[('$ + 'r + D$q2)2+z2]}
'2'r2q4+8''rq2[−(ν+'/4)q2('$ + 'r + D$q2)+z2]

,

(49)

S$,$(q, z) ∝ Re
$(q, z)
$(q)

= −4''r (ν + '/4)q4 + 16('$ + 'r + D$q2)[(ν + '/4)q4 + z2]
'2'r2q4 + 8''rq2[−(ν + '/4)q2('$ + 'r + D$q2) + z2]

,

(50)

Sω,$(q, z) ∝ Re
ω(q, z)
$(q)

= 2'q4[''r + 4(ν + '/4)('$ + 'r + D$q2)] − 8'q2z2

'2'r2q4 + 8''rq2[−(ν + '/4)q2('$ + 'r + D$q2) + z2]
. (51)

Note the Onsager relation Sω,$(q, z) ∝ 'rS$,ω(q, z)/('q2) = ρ0S$,ω(q, z)/(Iq2).
In the trivial limit ' → 0, we find that the expression for Sω,ω reduces to Eq. (34) with corrections

O('). To lowest order in ', the signatures of the antisymmetric stress are the correlation function
Sω,$(q, z) and the response function Re ω(q,z)

$(q) , which are both linear in ':

Sω,$(q, z) ∝ Re
ω(q, z)
$(q)

∼ − 'q2[('$ + 'r + D$q2)νq2 − z2]
2(ν2q4 + z2)[('$ + 'r )2 + ('$ + 'r + D$q2)2D$q2+z2]

+O('2). (52)

For a scattering experiment for a chiral active fluid dominated by gradients in $ and therefore by
antisymmetric stress, measuring the characteristic shape of the response in Eq. (52) would quantify
the anomalous response of this chiral active fluid.

D. Structure in chiral active fluids dominated by odd viscosity

1. Structure factor using Kadanoff-Martin treatment

We show that the hydrodynamic responses allow one to differentiate between the phenomena
associated with odd viscosity and antisymmetric stress. The case dominated by odd viscosity
corresponds to the parameters ' = 0 and νo .= 0. This limit occurs in fluids in which gradients of $
(and the associated antisymmetric stress) are much smaller than the odd viscosity term proportional
to both $ (without gradients) and strain rates ∂iv j . In this section, we find the effects of odd viscosity
on the response and correlations in the active fluid. In the absence of the coupling ', the equation for
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$ decouples from the other equations and the signature of odd viscosity is in the remaining 2 × 2
system of equations for density and transverse velocity on which we now focus. In Fourier space,
these two equations read

[−z2 + c2q2 − izν ′q2]ρ(q, z) = [−iz + ν ′q2]ρ(q) + νoρ0q2ω(q, z), (53)

[−iz + νq2]ω(q, z) = ω(q) − izνoq2ρ(q, z)/ρ0 − νoq2ρ(q)/ρ0. (54)

We proceed as before, by transforming these two equations into a single matrix equation and
inverting the matrix. In matrix form, the above equations read:

(
ρ(q, z)
ω(q, z)

)
= Q(q, z)

(
iq4(νν ′ − [νo]2) + q2(ν + ν ′)z − iz2 iq2νoρ0

−ic2q4νo/ρ0 zq2ν ′ + ic2q2 − iz2

)(
ρ(q)
ω(q)

)
,

(55)
where the prefactor Q(q, z) is defined via

Q(q, z) ≡ 1
c2q2(z + iq2ν) − z[q4([νo]2 − νν ′) + iq2(ν + ν ′)z + z2]

. (56)

Significantly, the form of the above matrix allows us to conclude that ρ(q,z)
ω(q) = − ρ2

0
c2q2

ω(q,z)
ρ(q) . This

is a generalization of Onsager reciprocity for the case in which the fluid has broken time-reversal
symmetry and therefore time-reversal-odd correlations can exist. These correlations are related, up
to a prefactor, by the time-reversal operation and therefore by a minus sign.

The fluid has therefore characteristic response functions for density-density, vorticity-vorticity,
and the off-diagonal vorticity-density. The expressions for these (real) response functions are given
by

Re
ρ(q, z)
ρ(q)

= c2q4[νq4(νν ′ − νo2)+ν ′z2]
c4q4(ν2q4+z2)−2c2q2z2(ν2q4+νo2q4+z2)+z2[νo4q8+(ν2q4+z2)(ν ′2q4+z2 )+νo2(−2νν ′q8+2q4z2)]

,

(57)

Re
ω(q, z)
ω(q)

= c4νq6−2c2νq4z4+q2z2[−νo2ν ′q4+ν(ν ′2q4+z2 )]
c4q4(ν2q4+z2)−2c2q2z2(ν2q4+νo2q4+z2)+z2[νo4q8+(ν2q4+z2)(ν ′2q4+z2 )+νo2(−2νν ′q8+2q4z2)]

,

(58)

Re
ρ(q, z)
ω(q)

= νoq4ρ0[c2νq2−(ν+ν ′)z2]
c4q4(ν2q4+z2)−2c2q2z2(ν2q4+νo2q4+z2)+z2[νo4q8+(ν2q4+z2)(ν ′2q4+z2)+νo2(−2νν ′q8+2q4z2)]

.

(59)

In the next section, we show that the correlations functions Sa,b for a fluid with odd viscosity have
the same form, provided that the noise driving the fluid is uncorrelated.

2. Correlation functions using fluctuating hydrodynamics

In this section, we rederive these same expressions for the correlations using fluctuating hydrody-
namics. Although the results are the same, the advantage of this approach is that it does not rely on
the fluctuation-dissipation theorem, which might not hold for an active fluid far from equilibrium.
Instead, comparing the expressions for correlations in this section to the response in the previous
section lets us find the conditions necessary for the fluctuation-dissipation theorem to hold in chiral
active fluids. We follow the approach in Ref. [44]. Assuming that the initial conditions are given by
a statistical ensemble, we average over both the initial (ρ(q),ω(q)) and the frequency-dependent
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(ρ(q, z),ω(q, z)) to find the relations

[−z2 + c2q2−izν ′q2]〈ρ(q, z)ρ(−q,−z)〉 = [−iz+ν ′q2]〈ρ(q)ρ(−q)〉+νoρ0q2〈ω(q, z)ρ(−q,−z)〉,
(60)

[−iz + νq2]〈ω(q, z)ω(−q,−z)〉 = 〈ω(q)ω(−q)〉 − izνoq2〈ρ(q, z)ω(−q,−z)〉/ρ0. (61)

The above equations can be solved to find expressions for the correlations, and the results have the
same form as the response functions obtained using the Kadanoff-Martin approach. In particular,
we have an expression using the dynamic the correlation functions 〈a(q, z)b(−q,−z)〉 for two
quantities a and b as Re 〈b(q,z)a(−q,−z)〉

〈a(q)a(−q)〉 = Re a(q,z)
b(q) . The static correlation 〈b(q)b(−q)〉 is a real

quantity that can be factored out. As a result, we find the following explicit relations for the
correlation functions:

Sρ,ρ = Re〈ρ(q, z)ρ(−q,−z)〉 = 〈ρ(q)ρ(−q)〉Re
ρ(q, z)
ρ(q)

, (62)

Sω,ω = Re〈ω(q, z)ω(−q,−z)〉 = 〈ω(q)ω(−q)〉Re
ω(q, z)
ω(q)

, (63)

Sρ,ω = Re〈ω(q, z)ρ(−q,−z)〉 = 〈ρ(q)ρ(−q)〉Re
ρ(q, z)
ω(q)

, (64)

in terms of the response expressions in Eqs. (57)–(59). The correlation functions
〈ρ(q, z)ω(−q,−z)〉 and 〈ω(q, z)ρ(−q,−z)〉 are related by the same Onsager reciprocity relation
that relates the two corresponding response functions. In the above expressions, the initial
time-independent correlations, 〈ρ(q)ρ(−q)〉 and 〈ω(q)ω(−q)〉, play the role of a thermodynamic
prefactor in a fluctuation-dissipation relation: in equilibrium, these factors would be proportional
to the temperature. For active fluids, these prefactors instead depend on the active noise and could
have complicated dependence on the wave vector q. Nevertheless, hydrodynamic theory predicts
that expressions analogous to the fluctuation-dissipation theorem and given by Eqs. (62)–(64) still
hold at large length scale and slow timescales, even if the fluid is active. Even in the absence of the
equilibrium fluctuation-dissipation theorem, the dynamical correlations can be obtained from the
static correlation functions using the above expressions. In Fig. 2, we plot these dynamic correlation
functions for νo = 0 and small values of νo. In the figure, the parameters ρ0, ν, and c2 are all set to
unity and we consider the wave number q = 10. This figure is described well by considering the
case of small odd viscosity. In this case, νo → 0 and the expressions for Sρ,ρ and Sω,ω reduce to
Eqs. (37) and (34), respectively, with corrections O([νo]2). To lowest order in odd viscosity, O(νo),
the only effect of activity is the off-diagonal density-vorticity response and the density-vorticity
correlation function Sρ,ω:

Sρ,ω ∝ Re
ρ(q, z)
ω(q)

∼ q4νoρ0(νc2q2 − νz2 − ν ′z2)

(ν2q4 + z2)[(zν ′q2)2 + (z2 − c2q2)2]
+ O(νo3). (65)

This functional form is the main result of our work, showing the lowest-order change in fluid
response and correlations due to the presence of odd viscosity. This result suggests that a potential
experiment to measure the dynamic correlation function in Eq. (65) could extract the value for odd
viscosity.

3. Driven systems and fluctuation-dissipation theorem

In this section, we instead consider the response that can be obtained from the fluid equations with
odd viscosity in the presence of an external drive (ζρ (q, z), ζω(q, z)). These equations are

[−z2 + c2q2 − izν ′q2]ρ(q, z) − νoρ0q2ω(q, z) = ζρ (q, z), (66)

[−iz + νq2]ω(q, z) + izνoq2ρ(q, z)/ρ0 = ζω(q, z). (67)
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FIG. 2. Contour plots of correlation functions Sa,b versus frequency of response z and wave number of
response q (up to overall prefactors). (a) The density-density correlation function Sρ,ρ from Eqs. (57), (62) for
νo = 0 and (b) νo = ν/10. Note that the color bar uses logarithmic scale. (c) The vorticity-vorticity correlation
function Sω,ω from Eqs. (58), (63) for νo = 0 and (d) νo = ν/10 (color bar is logarithmic). For these small
values of odd viscosity νo, its effect is not evident from the above density-density and vorticity-vorticity cor-
relations. However, the effect of odd viscosity becomes apparent in the plots of off-diagonal density-vorticity
correlations Sρ,ω from Eqs. (59), (64). (e) For νo = 0, the color bar is in linear scale, Sρ,ω = 0 everywhere while
for (f) νo = ν/10 there is a nonzero Sρ,ω correlation. In this figure, the parameters ρ0, ν, ν ′, and c2 are all set to
unity.

From the above equations, we obtain the two anomalous response functions:

Im
ω(q, z)
ζρ (q, z)

∝ −1
νoρ0q2

, (68)

Im
ρ(q, z)
ζω(q, z)

∝ ρ0

izνoq2
. (69)

We can contrast these relations with the correlations obtained in the previous section. Unlike the
response to initial conditions or the dynamic structure factor, these anomalous responses to dynamic
driving depend on the odd viscosity νo in a nonanalytic way. These predictions could potentially be
tested in an active fluid using an additional external drive.

In the case both odd viscosity and antisymmetric stress are present, the expressions become
more complicated. Although the separate limits considered above capture most of the effect of odd
viscosity and antisymmetric stress, there can be additional effects due to the combined effects of
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these two types of active stresses. In the case both ' .= 0 and νo .= 0, there exist nonzero correlations
between the intrinsic rotation rate $ and density ρ, S$,ρ (q, z) (and the corresponding off-diagonal
response function) proportional to νo'.

VI. CONCLUSIONS

In this work, we have shown how anomalous linear transport coefficients arise in a fluid of
spinning particles by expanding nonlinear antisymmetric stress terms. We present several examples
of this approach, using expansions in either the intrinsic rotation field or the density. These
approaches all generate an anomalous transport coefficient called odd viscosity, which has been
recently measured in both chiral active fluids [21] and electronic fluids in a magnetic field [20].

Starting from equations of hydrodynamics, we have derived the linearized response of chiral
active fluids. We show that antisymmetric stress leads to off-diagonal response and correlations
between the intrinsic spinning rate and vorticity. By contrast, the presence of odd viscosity leads to
cross correlations between density and vorticity. This off-diagonal density-vorticity response results
from the breaking of time-reversal symmetry and distinguishes odd viscosity from other active
hydrodynamic terms. The quantification of wave propagation in experimental active-fluid systems
is rapidly developing. For example, Ref. [4] fully quantified sound propagation within a polar active
fluid through direct imagining. Reference [21] measures odd viscosity for an experimental chiral
active fluid. A common feature between our approach and Ref. [21] is that waves are characterized
through response in Fourier space.

Based on our results, we envision a general experimental approach for measuring odd viscosity
using dynamical scattering of light beams that carry orbital angular momentum. Scattering measure-
ments for both density and vorticity are well developed in simple fluids. Vorticity measurements
form a crucial experimental probe of turbulence, and various laser scattering techniques can
quantify vorticity components. For example, orbital angular momentum of light couples directly
to vorticity and so designer laser beams can be used to measure vorticity [48–53]. However, in
simple fluids, density and vorticity are uncorrelated. We hypothesize two possible extensions to
measure density-vorticity correlations within chiral active fluids with odd viscosity: (1) measuring
both quantities simultaneously, in parallel, within a single experimental setup, or (2) extending
the vorticity light-scattering measurements to be density sensitive. In future work, anomalous
correlations in active matter could be explored both theoretically and experimentally in solids with
odd elasticity [54], viscoelastic fluids [55,56], and anisotropic fluids with odd viscosity [57–60].
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